JPH118098A - Temperature control system for accelerating tube - Google Patents

Temperature control system for accelerating tube

Info

Publication number
JPH118098A
JPH118098A JP9172857A JP17285797A JPH118098A JP H118098 A JPH118098 A JP H118098A JP 9172857 A JP9172857 A JP 9172857A JP 17285797 A JP17285797 A JP 17285797A JP H118098 A JPH118098 A JP H118098A
Authority
JP
Japan
Prior art keywords
temperature
tube
electric heater
temperature control
control system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9172857A
Other languages
Japanese (ja)
Inventor
Minoru Yokoyama
横山  稔
Fumihiko Oda
史彦 小田
Masayuki Kawai
正之 河合
Akihiro Nakayama
章弘 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP9172857A priority Critical patent/JPH118098A/en
Publication of JPH118098A publication Critical patent/JPH118098A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a more economical temperature control system for accelerating tube by simplifying the temperature control of cooling water. SOLUTION: An electric heater 12 and a temperature sensor 15 are mounted so as to be brought into contact with an accelerating tube 1. Based on the output of the temperature sensor 15 which directly-measured the temperature of the accelerating tube 1, the electric heater is controlled to control the temperature of the accelerating tube, thereby maintaining respective resonance cavities at fixed dimensions for assurance of stable accelerating magnetic fields. In order to prevent generation of excessive magnetic fields due to current, it is desirable that the resistance wire should be formed so as to go and return on the roughly same route.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、荷電粒子を高エネ
ルギーまで加速する粒子加速器に用いる加速管の温度調
節システムに係る技術分野に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technical field of a temperature control system for an acceleration tube used in a particle accelerator for accelerating charged particles to high energy.

【0002】[0002]

【従来の技術】線形加速器で加速された高エネルギー粒
子ビームは、ガン治療や医療用品の殺菌、硫黄化合物S
Oxや窒素化合物NOxの分解などの環境改善装置、シ
ンクロトロン光利用や蓄積リング自由電子レーザの発生
など、多くの分野で応用技術開発が進められ、実用化が
なされてきた。このうち、自由電子レーザは1977年
にメーデーが原理実証実験を成功させて以来、各国で開
発が進んできている。特に線形加速器を用いた装置では
基礎的な実証は完了し、近年は具体的な利用研究が医療
分野、同位体分離などの原子力分野、半導体分野などま
で広がってきている。
2. Description of the Related Art A high-energy particle beam accelerated by a linear accelerator is used for cancer treatment, sterilization of medical supplies, and sulfur compound S.
Applied technologies have been developed and put to practical use in many fields, such as an environmental improvement device for decomposing Ox and NOx, NOx, and the like, use of synchrotron light, generation of a storage ring free electron laser, and the like. Among them, the free electron laser has been developed in various countries since Mayday, when the principle demonstration experiment was successfully performed in May 1977. In particular, basic demonstrations have been completed for devices using linear accelerators, and in recent years, specific utilization studies have been extended to the medical field, the nuclear field such as isotope separation, and the semiconductor field.

【0003】自由電子レーザには時間的に安定ししかも
質の高い荷電粒子ビームが必要とされる。加速管は極め
て高いQ値をもった多数の共振キャビティ群(加速構
造)を備えて、荷電粒子の加速はこの加速構造内に共振
周波数のマイクロ波を入力し、加速粒子とほぼ同じ位相
速度を有する加速電界を発生させることにより行う。従
って質の高い荷電粒子ビームを形成するためには加速管
における共振モードと励振するマイクロ波の振動数が正
確に合致する必要がある。
[0003] Free electron lasers require a charged particle beam that is stable in time and of high quality. The accelerating tube has a number of resonance cavities (acceleration structure) with extremely high Q value. When the charged particles are accelerated, microwaves of the resonance frequency are input into this acceleration structure, and the same phase velocity as the accelerating particles is obtained. This is performed by generating an accelerating electric field. Therefore, in order to form a high quality charged particle beam, it is necessary that the resonance mode in the accelerator tube and the frequency of the microwave to be excited exactly match.

【0004】ところが、加速管は熱膨張率が比較的大き
い金属で形成されるため、各共振キャビティの形状は温
度に大きく影響される。共振キャビティの寸法形状が所
定の値とずれると共振モードが変化したり高いQ値が維
持できなくなり、ビームエネルギーが分散するなどの原
因により粒子加速の状態が変化しビームの質が劣化す
る。そこで安定な加速電場を形成するためには加速管温
度を時間的に一定にしかつ加速管全体の温度分布を均一
にすることが好ましい。
However, since the accelerating tube is formed of a metal having a relatively large coefficient of thermal expansion, the shape of each resonance cavity is greatly affected by the temperature. If the dimension and shape of the resonance cavity deviate from a predetermined value, the resonance mode changes or a high Q value cannot be maintained, and the state of particle acceleration changes due to the dispersion of beam energy and the beam quality deteriorates. Therefore, in order to form a stable accelerating electric field, it is preferable to keep the temperature of the accelerating tube constant with time and to make the temperature distribution of the entire accelerating tube uniform.

【0005】さらに、荷電粒子ビームが存在する状態で
は加速用マイクロ波から荷電粒子へのエネルギー供給が
あるため各キャビティでのマイクロ波の強度は一定でな
く分布が生じる。従って各キャビティ毎の熱負荷が異な
り温度分布が生じ、熱負荷分布により各キャビティ毎に
熱膨張が異なるため、共振周波数の分布が発生して加速
位相のずれが生じて加速性能が劣化することがあった。
このため、従来は、加速管に冷却水配管を備えて温度制
御した冷却水を通して管内で発生する熱を排除し、加速
管全長に亘る温度を所定の温度に対して±0.1度程度
以内に収まるように管理してきた。このように厳密な温
度管理を達成するため、温度を精密に制御した冷却水を
大量に流通させる必要があった。
Further, in the state where the charged particle beam is present, since the energy is supplied from the accelerating microwave to the charged particles, the intensity of the microwaves in each cavity is not constant but distribution occurs. Therefore, the thermal load differs for each cavity and a temperature distribution occurs, and the thermal expansion differs for each cavity due to the thermal load distribution. Thus, a distribution of the resonance frequency occurs, and a shift in the acceleration phase occurs, thereby deteriorating the acceleration performance. there were.
For this reason, conventionally, heat generated in the accelerating tube is eliminated by passing cooling water whose temperature is controlled by providing a cooling water pipe in the accelerating tube, and the temperature over the entire length of the accelerating tube is within about ± 0.1 degrees with respect to a predetermined temperature. Has been managed to fit in. In order to achieve such strict temperature control, it was necessary to distribute a large amount of cooling water whose temperature was precisely controlled.

【0006】図8は従来の冷却水温度制御の例を示すブ
ロック図である。冷却水は、冷却水タンク内でチラーと
ヒータにより摂氏1度程度の幅で温度制御した上、ポン
プにより電熱ヒータを介して加速管に送られる。冷却水
は外壁中に設けられた冷却水配管を通過する間に加速管
中で発生する熱を吸収して搬出する。加速管出口で測定
した冷却水温度に基づいて電熱ヒータを調整し、温度偏
差が±0.1度程度になるようにする。また、加速管に
おける軸方向の温度分布幅を小さくするためには、上流
と下流で温度差があってはならないため、極めて大量の
冷却水を流す必要があった。なお、冷却水の全部を加速
管の上流から下流へ流さずに、一部を下流から上流に流
すようにして温度差を小さくする工夫もなされていた。
FIG. 8 is a block diagram showing an example of conventional cooling water temperature control. Cooling water is temperature-controlled in a cooling water tank by a chiller and a heater at a width of about 1 degree Celsius, and then sent to an acceleration tube by a pump via an electric heater. The cooling water absorbs the heat generated in the accelerating tube while passing through a cooling water pipe provided in the outer wall, and is carried out. The electric heater is adjusted based on the cooling water temperature measured at the outlet of the accelerating tube so that the temperature deviation is about ± 0.1 degrees. Further, in order to reduce the axial temperature distribution width in the accelerating tube, there must be no difference in temperature between the upstream and the downstream, so it was necessary to flow an extremely large amount of cooling water. In addition, there has been devised to reduce the temperature difference by flowing part of the cooling water from the downstream to the upstream without flowing the entire cooling water from the upstream to the downstream of the accelerating tube.

【0007】また、特開平8−273898には、加速
管の一端から他端に向けて減少する熱負荷分布に対応し
て段階的に厚さが拡大するように形成された冷却水ジャ
ケットを備えたり、冷却水との接触面積や接触面の熱伝
達を調整したりして、加速管の軸方向に存する熱膨張分
布を解消するようにした加速管が開示されている。この
方法では、加速管温度を保つために相当量の水を循環さ
せる必要が依然存在し、特に、温度変化に対する応答時
間、立ち上げから定常運転までに要する時間は循環水量
に依存するので、運転の安定化のためには大きな循環水
量が必要となることは同じである。従って、大量の冷却
水を循環させる設備および大量の循環水の温度制御を行
う設備が必要となり、設置場所等への大きな制約条件と
なっている。
Japanese Patent Application Laid-Open No. 8-273898 has a cooling water jacket formed so as to increase its thickness in a stepwise manner in response to a thermal load distribution decreasing from one end of the accelerating tube to the other end. There is disclosed an acceleration tube in which the thermal expansion distribution existing in the axial direction of the acceleration tube is eliminated by adjusting the contact area with the cooling water or the heat transfer of the contact surface. In this method, it is still necessary to circulate a considerable amount of water in order to maintain the temperature of the accelerating tube, and in particular, the response time to temperature change and the time required from startup to steady operation depend on the amount of circulating water. It is the same that a large amount of circulating water is required for stabilization. Therefore, equipment for circulating a large amount of cooling water and equipment for controlling the temperature of a large amount of circulating water are required, which is a great constraint on the installation location and the like.

【0008】[0008]

【発明が解決しようとする課題】そこで、本発明の解決
しようとする課題は、冷却水の温度制御を簡易化して全
体としてより簡単に加速管の温度調整をすることができ
る温度調節システムを提供することであり、また別の課
題は、加速管の軸方向に発生する温度分布幅を縮小化す
る温度調節システムを提供することである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a temperature control system capable of simplifying the temperature control of the cooling water and easily adjusting the temperature of the acceleration tube as a whole. Another object of the present invention is to provide a temperature control system for reducing a temperature distribution width generated in an axial direction of an acceleration tube.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するた
め、荷電粒子を加速する粒子加速器に用いる加速管の温
度調節システムは、電熱ヒータと温度センサを加速管に
接触設置して、温度センサの出力に基づいて電熱ヒータ
を制御して加速管の温度を調整することを特徴とする。
従来でも加速管温度調節システム中に電熱ヒータを用い
ることもあったが、電熱ヒータは冷却水の温度調整に用
いるのが普通で、加速管に直接的に接触設置されること
はなかった。従来は加速管で発生する熱を十分奪うこと
で室温に近い温度状態にし、かつ冷却水をふんだんに流
通させることで軸方向に温度差がないようにして、各共
振キャビティが設計値通りの共振モードを確保するとい
う技術思想に基づいていたからである。
In order to solve the above-mentioned problems, a temperature control system for an acceleration tube used in a particle accelerator for accelerating charged particles includes an electric heater and a temperature sensor which are installed in contact with the acceleration tube, and a temperature sensor for the temperature sensor. The electric heater is controlled based on the output to adjust the temperature of the acceleration tube.
In the past, an electric heater was sometimes used in the accelerating tube temperature control system, but the electric heater was usually used for adjusting the temperature of the cooling water, and was not directly installed in contact with the accelerating tube. Conventionally, the temperature generated by the accelerating tube is sufficiently removed to make the temperature close to room temperature, and the cooling water is circulated abundantly so that there is no temperature difference in the axial direction. This is based on the technical idea of ensuring

【0010】しかし、本発明の発明者らは、加速管の寸
法安定性のためには加速管内の温度水準の如何によらず
温度分布が一定になるように管理すれば十分であるとい
う事実に注目して、本発明に至ったものである。すなわ
ち、加速管内の発熱のために加速管は昇温して各部の寸
法は熱膨張により拡張する。加速管の温度は加速管にお
ける発熱量と放熱量もしくは積極的手段による吸熱量と
のバランスで決定される。従って装置の環境や運転条件
により必ずしも一定しない。
However, the inventors of the present invention have found that it is sufficient to control the temperature distribution to be constant regardless of the temperature level in the accelerator tube for the dimensional stability of the accelerator tube. Attention has been directed to the present invention. In other words, the temperature of the accelerating tube rises due to the heat generated in the accelerating tube, and the dimensions of each part are expanded by thermal expansion. The temperature of the accelerating tube is determined by the balance between the amount of heat generated in the accelerating tube and the amount of heat radiation or the amount of heat absorbed by positive means. Therefore, it is not always constant depending on the environment and operating conditions of the device.

【0011】そこで、本発明の加速管温度調節システム
は、加速管を加熱する電熱ヒータと温度センサを加速管
に接触設置して、加速管の温度を直接測定した結果を用
いて加熱側で温度制御し加速管を一定温度にすることに
より、各共振キャビティを一定の寸法に維持して安定な
加速電場を確保しようとするものである。加速管の温度
が高過ぎるときには、加速管に放熱フィンを設備したり
装置を設置する部屋に空調装置を設備して加速管からの
放熱を促進することが望ましい。なお、加速管の温度水
準が異なるため共振キャビティの共振モードに偏差が生
じても、入力するマイクロ波の周波数を偏倚させて適合
する共振波長に調整することができる。
Therefore, the accelerating tube temperature control system of the present invention provides an electric heater for heating the accelerating tube and a temperature sensor in contact with the accelerating tube, and uses the result of directly measuring the temperature of the accelerating tube to determine the temperature on the heating side. By controlling and keeping the accelerating tube at a constant temperature, each resonance cavity is maintained at a constant size to secure a stable accelerating electric field. When the temperature of the accelerating tube is too high, it is desirable to provide a radiation fin on the accelerating tube or install an air conditioner in a room where the device is installed to promote heat radiation from the accelerating tube. It should be noted that even if a deviation occurs in the resonance mode of the resonance cavity due to the difference in the temperature level of the accelerator tube, the frequency of the input microwave can be deviated and adjusted to an appropriate resonance wavelength.

【0012】さらに、電熱ヒータの抵抗発熱線をほぼ同
一の経路を往復するように設けて、同じ量の加熱電流が
対向して流れるようにすることが好ましい。加速管の周
囲に電流が流れれば、この電流により生起される電磁場
が加速管内の荷電粒子の運動に影響を及ぼし軌道が狂っ
てしまう。そこで、電熱ヒータを用いるときには加速管
内部に余分な電磁場が生じないように高度な電磁遮蔽を
施す必要がある。しかし、加熱電流がほぼ同一の経路を
往復するようにすれば、電流により正逆両方向に同じ強
さの電磁界を励起させるので両者が相殺し電磁場の発生
を抑制することになり、高度な電磁遮蔽手段を導入しな
くても荷電粒子の運動を乱さないようにすることができ
る。
Further, it is preferable that a resistance heating wire of the electric heater is provided so as to reciprocate in substantially the same path so that the same amount of heating current flows in opposite directions. If a current flows around the accelerating tube, the electromagnetic field generated by this current affects the motion of charged particles in the accelerating tube, and the orbit is disrupted. Therefore, when using an electric heater, it is necessary to perform advanced electromagnetic shielding so that an extra electromagnetic field is not generated inside the acceleration tube. However, if the heating current reciprocates in almost the same path, the current excites an electromagnetic field of the same strength in both the forward and reverse directions, so that the two cancel each other out, thereby suppressing the generation of an electromagnetic field. Even if no shielding means is introduced, the movement of the charged particles can be prevented from being disturbed.

【0013】また、本発明の加速管の温度調節システム
に用いる電熱ヒータは、複数のブロックに分割されてい
て、各ブロック毎に備える温度センサの出力に基づいて
それぞれ独立に印加電力の制御をするようにしてもよ
い。このような電熱ヒータを用いれば、各キャビティ毎
の熱負荷が異なるために生ずる温度分布に合わせて、電
熱ヒータの各ブロック毎に独立に温度制御することがで
きるから、キャビティの共振周波数を適当に調整して加
速性能の劣化を防止することができる。
Further, the electric heater used in the temperature control system for the accelerating tube of the present invention is divided into a plurality of blocks, and independently controls applied electric power based on the output of a temperature sensor provided for each block. You may do so. If such an electric heater is used, the temperature can be controlled independently for each block of the electric heater in accordance with the temperature distribution generated due to the different heat load of each cavity, so that the resonance frequency of the cavity can be appropriately set. Adjustment can prevent deterioration of the acceleration performance.

【0014】また、電熱ヒータが単位長さ当たりの発熱
量に勾配を設けて加速管内の発熱量分布を相殺するよう
に構成することもできる。荷電粒子ビームが存在する状
態で加速管内に発生する熱負荷分布は、入口側で大きく
出口側で小さい。この熱負荷分布を相殺するように電熱
ヒータの密度を入口側で薄く出口側で濃くするように調
整すると、ヒータ電源と温度検出器を含む1式のヒータ
制御システムにより均等化した温度分布状態が得られて
経済的である。なお、電熱ヒータの密度を調整するため
には、加速管単位長当たりのヒータ抵抗線の巻付き数を
変えたり、抵抗線をコイル状に巻いて単位長当たりの抵
抗線の長さを調整するなど、簡単な方法が利用できる。
Further, the electric heater may be configured so that a heat generation amount per unit length is provided with a gradient to offset a heat generation amount distribution in the acceleration tube. The heat load distribution generated in the accelerator tube in the presence of the charged particle beam is large on the inlet side and small on the outlet side. If the density of the electric heater is adjusted so as to be thinner at the inlet side and thicker at the outlet side so as to offset this heat load distribution, the temperature distribution state equalized by a single heater control system including a heater power supply and a temperature detector is obtained. Obtained and economical. In order to adjust the density of the electric heater, the number of windings of the heater resistance wire per unit length of the accelerating tube is changed, or the resistance wire is wound in a coil shape to adjust the length of the resistance wire per unit length. Simple methods are available.

【0015】さらに冷却水配管を加速管の軸方向に添設
するようにしてもよい。加速管での発熱を外気への放熱
で相殺するだけでは加速管が適当な温度水準にならない
場合には、上記の冷却水配管に冷却水を加速管の軸方向
に流して熱を取ることが好ましい。この場合にも、従来
とは異なり冷却水により加速管で発生する熱を適当に取
り去ってから電熱ヒータによって目的温度に昇温調整す
るものであるから、冷却水の温度制御は厳密である必要
はなく、また加速管の温度と冷却水の温度との差も大き
くて良いため冷却水量もより少なくて良い。従って、冷
却水の温度調整装置は、従来と比べて容量も小さく精度
も低く遥かに簡便なもので十分で、加速管全体の温度調
節システムとしての経済性が向上する。
Further, a cooling water pipe may be provided in the axial direction of the acceleration pipe. If the acceleration tube does not reach the appropriate temperature level simply by offsetting the heat generated in the acceleration tube by heat radiation to the outside air, it is necessary to flow cooling water in the above cooling water pipe in the axial direction of the acceleration tube to take heat. preferable. Also in this case, unlike the conventional case, the heat generated in the accelerator tube is appropriately removed by the cooling water, and then the temperature is adjusted to the target temperature by the electric heater. Therefore, it is not necessary to control the temperature of the cooling water strictly. In addition, since the difference between the temperature of the acceleration tube and the temperature of the cooling water may be large, the amount of cooling water may be smaller. Therefore, a cooling water temperature control device having a smaller capacity, a lower accuracy and a much simpler configuration than the conventional cooling water device is sufficient, and the economy as a temperature control system for the entire acceleration tube is improved.

【0016】なお、電熱ヒータの温度はPID制御によ
り制御することができる。比例動作、積分動作、微分動
作を含むPID制御を用いることにより、通常のヒータ
制御に多用されるオンオフ制御等では得られないような
応答性向上が達成できる。なお、電熱ヒータにより加速
管を加熱するときの熱伝達の遅れを活用することができ
るため、PID制御における制御出力はアナログ信号の
他にパルス式信号であっても良く、また交流電源電圧の
位相を調整する方式であってもよい。
The temperature of the electric heater can be controlled by PID control. By using the PID control including the proportional operation, the integral operation, and the differential operation, it is possible to achieve an improvement in responsiveness that cannot be obtained by on-off control or the like frequently used in normal heater control. Since a delay in heat transfer when the accelerating tube is heated by the electric heater can be used, the control output in the PID control may be a pulse type signal in addition to an analog signal. May be adjusted.

【0017】本発明の自由電子レーザ装置は、上記いず
れかの加速管温度調節システムを備えた線形加速器を用
いたことを特徴とする。これにより温度調節システムが
簡便になり自由電子レーザ装置全体の建設費用も運転費
用も従来と比較して大いに経済的になる。
A free electron laser device according to the present invention is characterized in that a linear accelerator equipped with any of the above accelerating tube temperature control systems is used. As a result, the temperature control system is simplified, and the construction cost and the operation cost of the entire free electron laser device are much more economical than the conventional one.

【0018】[0018]

【発明の実施の形態】以下、本発明に係る加速管の温度
調節システムを、図面を用い実施例に基づいて詳細に説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a temperature control system for an accelerating tube according to the present invention will be described in detail with reference to the drawings.

【0019】[0019]

【実施例1】図1は本発明の加速管温度調節システムの
第1の実施例を示すブロック図、図2は第1実施例にお
ける加速管の断面図である。図1および図2を参照して
説明すると、本実施例の加速管1は、無酸素銅により形
成された筒状の形状を有し、内部は中心に荷電粒子が通
る穴を開けた円盤状の加速管ディスク2により多数の共
振キャビティに仕切られている。加速管1の外壁には軸
方向に冷却水配管3が複数設けられていて、ここに冷却
水を通して運転時に共振キャビティ中で発生する熱損を
吸収し加速管外に搬出する。加速管で加熱された冷却水
は冷却水タンク4に戻る。
Embodiment 1 FIG. 1 is a block diagram showing a first embodiment of an accelerating tube temperature control system according to the present invention, and FIG. 2 is a sectional view of the accelerating tube in the first embodiment. Explaining with reference to FIGS. 1 and 2, the accelerating tube 1 of the present embodiment has a cylindrical shape formed of oxygen-free copper, and has a disk-like shape having a hole at the center where a charged particle passes. Are divided into a number of resonance cavities by the acceleration tube disk 2. A plurality of cooling water pipes 3 are provided in the outer wall of the acceleration tube 1 in the axial direction, through which cooling water absorbs heat loss generated in the resonance cavity during operation and is carried out of the acceleration tube. The cooling water heated by the acceleration tube returns to the cooling water tank 4.

【0020】冷却水タンク4には熱交換器または2次冷
却管5と電熱ヒータ7が設備されていて、冷却水はここ
に滞留している間に熱交換器あるいは2次冷却管5によ
り冷却され電熱ヒータ7により加熱されて、適当な温度
に調整された後に、再び加速管1の冷却水配管中に送り
出される。2次冷却管5は冷凍機6と接続されていても
良いが、単に外部の冷熱源から冷媒を供給するようにし
てもよい。冷却水タンク4に設けられた温度検出端10
が水温を測定し、その測定出力が温度変換器11を介し
て制御器9に入力される。制御器9の制御出力はヒータ
電源8の出力を調整して電熱ヒータ7の発熱量を制御す
る。冷却水タンク4における冷却水温度の制御精度は摂
氏1度程度であることが好ましい。
The cooling water tank 4 is provided with a heat exchanger or a secondary cooling pipe 5 and an electric heater 7. The cooling water is cooled by the heat exchanger or the secondary cooling pipe 5 while staying there. After being heated by the electric heater 7 and adjusted to an appropriate temperature, it is sent out again into the cooling water pipe of the acceleration pipe 1. The secondary cooling pipe 5 may be connected to the refrigerator 6 or may simply supply the refrigerant from an external cold source. Temperature detection end 10 provided in cooling water tank 4
Measures the water temperature, and the measured output is input to the controller 9 via the temperature converter 11. The control output of the controller 9 controls the amount of heat generated by the electric heater 7 by adjusting the output of the heater power supply 8. The control accuracy of the cooling water temperature in the cooling water tank 4 is preferably about 1 degree Celsius.

【0021】加速管1の外周には電熱ヒータ12を巻き
付けて溶接、接着あるいは緊縛などの方法で固定してあ
り、この電熱ヒータ12にヒータ電源13から加熱電流
が供給される。ヒータ電源13の電流出力は制御器14
の制御出力に制御される。制御器14には加速管の温度
を測定する温度検出端15の出力を適当な電気信号に変
換する温度変換器16が接続されている。電熱ヒータ1
2は抵抗発熱線が往復でペアになった構造を有し、供給
される加熱電流が常に対向方向に流れるようになってい
る。このため電流が励起する電磁場が相殺されて、加速
管1内の荷電粒子の運動に影響を与えない。
An electric heater 12 is wound around the outer circumference of the accelerating tube 1 and fixed by a method such as welding, bonding or binding. A heating current is supplied to the electric heater 12 from a heater power supply 13. The current output of the heater power supply 13 is controlled by a controller 14.
Control output. The controller 14 is connected to a temperature converter 16 for converting the output of the temperature detecting end 15 for measuring the temperature of the accelerating tube into an appropriate electric signal. Electric heater 1
Reference numeral 2 has a structure in which resistance heating wires are paired in a reciprocating manner, so that a supplied heating current always flows in the opposite direction. Therefore, the electromagnetic field excited by the current is canceled out, and does not affect the motion of the charged particles in the acceleration tube 1.

【0022】なお、制御器14は比例動作、積分動作、
微分動作を含むPID制御を用いて電熱ヒータ12の制
御を行うようにすることが好ましい。通常の温度制御で
は熱伝達に適度な1次遅れがあることを利用してオンオ
フ制御など単純な制御アルゴリズムが用いられることが
多いが、本実施例の加速管ではより応答性の良い温度制
御を行うためPID制御が採用されている。
The controller 14 performs a proportional operation, an integral operation,
It is preferable to control the electric heater 12 using PID control including a differential operation. In ordinary temperature control, a simple control algorithm such as on / off control is often used by utilizing the fact that there is an appropriate first-order lag in heat transfer. For this purpose, PID control is employed.

【0023】従来の冷却水のみによる温度調整方法で
は、加速管の温度を限りなく冷却水の温度に近づけるた
め大量の冷却水を循環させる必要があり、これを一定の
温度に管理するための設備や運転費用に関する負担が大
きかった。しかし、本実施例の加速管の温度調節システ
ムによれば、加速管で発生する熱負荷を冷却水で適当に
除去して最終的な加速管温度を電熱ヒータの温度制御に
より調整するため、冷却水の量も少なく冷却水の温度管
理もそう厳密である必要がない。従って、加速管の温度
調節システム全体の設備費や最終的な運転費用が節約で
きる。さらに、加速管に供給するマイクロ波電力が小さ
い場合には、冷却水による冷却を省略して加速管周囲の
雰囲気に加速管を曝すことにより放冷するだけでも十分
であることがある。なお、このような放冷の効果を高め
るため放熱フィンを設けるようにしても良い。こうした
構成では雰囲気を調整する空調設備を適当に整えれば、
加速管に取り付けた電熱ヒータの制御システムのみがあ
ればよいので、装置の経済性はより向上する。また、上
記実施例の加速管温度調節システムを用いた自由電子レ
ーザ装置は、従来必要とされてきた冷却水温度制御のた
めの大型装置を設備する必要がないため、設備費や運転
費が低廉化するほかに立地条件が緩くなり色々な所に導
入できるようになるという利点も生ずる。
In the conventional temperature control method using only cooling water, it is necessary to circulate a large amount of cooling water to keep the temperature of the accelerating tube as close as possible to the temperature of the cooling water. And the burden on operating costs was heavy. However, according to the temperature control system for the accelerator tube of the present embodiment, the heat load generated in the accelerator tube is appropriately removed with cooling water to adjust the final accelerator tube temperature by controlling the temperature of the electric heater. The amount of water is small and the temperature control of the cooling water does not need to be strict. Therefore, the equipment cost and the final operation cost of the entire temperature control system of the acceleration tube can be saved. Further, when the microwave power supplied to the acceleration tube is small, it may be sufficient to omit the cooling by the cooling water and expose the acceleration tube to an atmosphere around the acceleration tube to allow the acceleration tube to cool. Note that a radiation fin may be provided to enhance the effect of such cooling. In such a configuration, if the air conditioning equipment for adjusting the atmosphere is properly prepared,
Since only the control system for the electric heater attached to the accelerating tube is required, the economy of the apparatus is further improved. Further, the free electron laser device using the accelerating tube temperature control system of the above embodiment does not require a large-sized device for controlling the cooling water temperature, which has been conventionally required, so that equipment costs and operation costs are low. In addition to this, there is also an advantage that the location conditions are relaxed and the device can be introduced in various places.

【0024】[0024]

【実施例2】図3は本発明の加速管温度調節システムの
第2実施例で用いられる加速管加熱ヒータの装着状態を
示す側面図、図4はその加速管の断面図である。図3お
よび図4を参照して説明すると、本実施例の加速管1
は、加速管ディスク2により仕切られた共振キャビティ
の周囲に形成される外壁には軸方向に多数の孔が設けら
れている。これらの孔は、1個おきに冷却水配管3とな
り冷却水が供給されるが、冷却水配管3に挟まれる孔は
それぞれ電熱ヒータ21を通して、第1実施例の電熱ヒ
ータと同じようにヒータ電源13に電気的に接続され
る。残りの構成は第1実施例の場合と変わらない。この
ように電熱ヒータ21を加速管壁に直接埋め込んで使用
することにより、より直接的に共振キャビティの熱膨張
を支配して所望の共振モードを生じさせることができ
る。なお、ここでも電熱ヒータを正逆両方向に電流を流
す1対の抵抗線をシースに収めたもので形成することに
より電磁場の影響を抑えるようにすることができる。抵
抗線は一端を接続して必ず同じ電流が同じ位置を往復す
るように構成しても良いし、1対の独立した抵抗線に互
いに反対に電源電極を接続して、同じ強さの電流を逆方
向に流すようにしても良い。
Embodiment 2 FIG. 3 is a side view showing a mounted state of an acceleration tube heater used in a second embodiment of the acceleration tube temperature control system of the present invention, and FIG. 4 is a sectional view of the acceleration tube. Referring to FIG. 3 and FIG. 4, the acceleration tube 1 of the present embodiment will be described.
The outer wall formed around the resonance cavity partitioned by the acceleration tube disk 2 is provided with a large number of holes in the axial direction. These holes become cooling water pipes 3 every other hole, and cooling water is supplied. The holes interposed between the cooling water pipes 3 pass through the electric heater 21 respectively, and the heater power is supplied in the same manner as the electric heater of the first embodiment. 13 is electrically connected. The rest of the configuration is the same as in the first embodiment. As described above, by using the electric heater 21 directly embedded in the wall of the acceleration tube, it is possible to more directly control the thermal expansion of the resonance cavity and to generate a desired resonance mode. In this case as well, the influence of the electromagnetic field can be suppressed by forming the electric heater with a pair of resistance wires that allow current to flow in both the forward and reverse directions contained in a sheath. One end of the resistance wire may be connected so that the same current always reciprocates at the same position. Alternatively, a power supply electrode is connected to a pair of independent resistance wires opposite to each other, and a current of the same intensity is supplied. You may make it flow in a reverse direction.

【0025】[0025]

【実施例3】図5は加速管中に生じる熱損の分布を示す
図面、図6は本発明の加速管温度調節システムの第3の
実施例における加速管加熱ヒータの装着状態を示すブロ
ック図である。加速管内でマイクロ波により発熱する量
は一様でない。加速管長が3mのときに入力マイクロ波
の出力が40MWである場合を例として示した図6から
分かるように、電力ロスすなわち発熱量は入口付近で大
きく出口に向かって徐々に小さくなる傾向を示す。従っ
て、長い加速管に対して電熱ヒータを用いた温度制御を
する場合に加速管の温度を長手方向に亘って均等にしよ
うとすれば、何らかの工夫をする必要がある。
Third Embodiment FIG. 5 is a drawing showing the distribution of heat loss generated in the accelerating tube, and FIG. 6 is a block diagram showing a mounting state of the accelerating tube heater in the third embodiment of the accelerating tube temperature control system of the present invention. It is. The amount of heat generated by the microwaves in the accelerator tube is not uniform. As can be seen from FIG. 6 showing an example in which the output of the input microwave is 40 MW when the length of the accelerating tube is 3 m, the power loss, that is, the calorific value tends to be large near the entrance and gradually decrease toward the exit. . Therefore, when controlling the temperature of the long accelerating tube using the electric heater in order to make the temperature of the accelerating tube uniform in the longitudinal direction, some measures need to be taken.

【0026】本発明の第3実施例は、加速管に接触設置
する電熱ヒータを長手方向に複数のブロック23に分割
して、各ブロック毎に対応してヒータ電源24を設け、
図外の温度センサの出力に基づいて制御器25でそれぞ
れ独立に印加電力の制御をするようにしたものである。
他の構成要素については第1実施例のシステムと変わら
ない。このような電熱ヒータを用いれば、各キャビティ
毎の熱負荷が異なるために生ずる温度分布に合わせて、
電熱ヒータの各ブロック毎に独立に温度制御をするか
ら、キャビティの共振周波数を適当に調整して加速性能
の劣化を防止することができる。なお、制御器25は各
ヒータ電源24をそれぞれ独立に制御するものである
が、各ヒータブロック毎に独立に設けても良いことは言
うまでもない。
In the third embodiment of the present invention, the electric heater which is installed in contact with the accelerating tube is divided into a plurality of blocks 23 in the longitudinal direction, and a heater power supply 24 is provided for each block.
The controller 25 controls the applied power independently based on the output of a temperature sensor (not shown).
Other components are the same as the system of the first embodiment. If such an electric heater is used, in accordance with the temperature distribution generated due to the different heat load of each cavity,
Since the temperature is controlled independently for each block of the electric heater, the resonance frequency of the cavity can be appropriately adjusted to prevent deterioration of the acceleration performance. The controller 25 controls each heater power supply 24 independently. However, it goes without saying that the controller 25 may be provided independently for each heater block.

【0027】[0027]

【実施例4】図7は本発明の加速管温度調節システムの
第4実施例における加速管加熱ヒータの装着状態を示す
ブロック図である。本実施例は、第3実施例のように多
数のヒータブロックを備えてそれぞれ独立に温度調整す
る代わりに、図5に示す熱損発生量の分布を相殺するよ
うに入口側で薄く出口側で濃くするような発熱量分布を
有する発熱線配置を採用した電熱ヒータ26を用いたも
のである。加速管単位長当たりのヒータ抵抗線の巻付き
数を変えたり、抵抗線をコイル状に巻いて単位長当たり
の抵抗線の長さを調整するなど簡単な方法により電熱ヒ
ータ26の密度を調整することができる。
Fourth Embodiment FIG. 7 is a block diagram showing a mounting state of an acceleration tube heater in a fourth embodiment of the acceleration tube temperature control system of the present invention. This embodiment is different from the third embodiment in that a large number of heater blocks are provided and temperature is controlled independently of each other. Instead, the inlet side is thin and the outlet side is thin so as to offset the distribution of the amount of heat loss shown in FIG. The electric heater 26 employs a heating wire arrangement having a heating value distribution such that the heating value is increased. The density of the electric heater 26 is adjusted by a simple method such as changing the number of windings of the heater resistance wire per unit length of the acceleration tube, or adjusting the length of the resistance wire per unit length by winding the resistance wire in a coil shape. be able to.

【0028】このような構造の電熱ヒータ26を使用す
ると、1基のヒータ電源と1個の温度検出器からなる1
式のヒータ制御システムにより加速完全長に亘って均等
化した温度分布状態が得られて経済的である。なお、こ
れら発熱量に分布を有する電熱ヒータ26を用いる場合
にも、冷却水による冷却を併用することが可能なことは
言うまでもない。また、この場合にも、電熱ヒータを流
れる電流により加速管内の荷電粒子の動きを乱さないよ
うにするため、抵抗線を対にして互いに反対方向に電流
を流すようにすることが好ましい。
When the electric heater 26 having such a structure is used, one heater power supply and one temperature detector are used.
It is economical to obtain a uniform temperature distribution over the full acceleration length by the heater control system of the formula. It is needless to say that cooling using cooling water can also be used when using the electric heater 26 having a distribution of the generated heat. Also in this case, in order to prevent the movement of the charged particles in the accelerating tube from being disturbed by the current flowing through the electric heater, it is preferable to flow the currents in opposite directions with a pair of resistance wires.

【0029】上記各実施例では冷却水の循環を省略ある
いは簡約するため温度調節システムが極めて経済的に構
成できるが、温度調整を電熱ヒータによる加熱に頼るよ
うにしているため、通常は加速管の温度は周囲の温度よ
りかなり高い水準に保持されるようになる。しかし、加
速管の温度水準が多少高くても時間的及び空間的に温度
変動が少なければ加速管の寸法精度を所望の値に収める
ことが可能で、上記システムによっても加速管の加速性
能を十分維持することができる。
In each of the above embodiments, the temperature control system can be very economically constructed to omit or simplify the circulation of the cooling water. However, since the temperature control relies on heating by an electric heater, the temperature of the accelerating tube is usually reduced. The temperature will be maintained at a much higher level than the ambient temperature. However, even if the temperature level of the accelerating tube is somewhat high, if the temperature fluctuation is small in time and space, the dimensional accuracy of the accelerating tube can be kept at a desired value. Can be maintained.

【0030】[0030]

【発明の効果】以上詳細に説明した通り、本発明の加速
管の温度調節システムによれば、加速管内の温度調整を
冷却水の精密な温度制御によって行う代わりに、より簡
易な温度制御システムを用いて行うため、従来と比較し
て格段に経済的な温度制御システムを構築することがで
きる。
As described above in detail, according to the temperature control system for an acceleration tube of the present invention, a simpler temperature control system can be provided instead of performing the temperature control in the acceleration tube by precise temperature control of the cooling water. Since the temperature control system is used, a much more economical temperature control system can be constructed as compared with the related art.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の加速管の温度調節システムの第1実施
例を示すブロック図である。
FIG. 1 is a block diagram showing a first embodiment of a temperature control system for an accelerator tube according to the present invention.

【図2】第1実施例における加速管の横断面図である。FIG. 2 is a cross-sectional view of the acceleration tube in the first embodiment.

【図3】本発明の加速管温度調節システムの第2実施例
で用いられる加速管加熱ヒータの装着状態を示す側面図
である。
FIG. 3 is a side view showing a mounted state of an acceleration tube heater used in a second embodiment of the acceleration tube temperature control system of the present invention.

【図4】第2実施例における加速管の横断面図である。FIG. 4 is a cross-sectional view of an acceleration tube according to a second embodiment.

【図5】加速管中に生じる熱損の分布を示す図面であ
る。
FIG. 5 is a diagram showing a distribution of heat loss generated in an acceleration tube.

【図6】本発明の加速管温度調節システムの第3実施例
における加速管加熱ヒータの装着状態を示すブロック図
である。
FIG. 6 is a block diagram showing a mounting state of an accelerating tube heater in a third embodiment of the accelerating tube temperature adjusting system of the present invention.

【図7】本発明の加速管温度調節システムの第4実施例
における加速管加熱ヒータの装着状態を示すブロック図
である。
FIG. 7 is a block diagram showing a mounting state of an acceleration tube heater in a fourth embodiment of the acceleration tube temperature control system of the present invention.

【図8】従来の加速管の温度調節システムを示すブロッ
ク図である。
FIG. 8 is a block diagram showing a conventional accelerating tube temperature control system.

【符号の説明】[Explanation of symbols]

1 加速管 2 加速管ディスク 3 冷却水配管 4 冷却水タンク 5 2次冷却管 6 冷凍機 7 電熱ヒータ 8 ヒータ電源 9 制御器 10 温度検出端 11 温度変換器 12 電熱ヒータ 13 ヒータ電源 14 制御器 15 温度検出端 16 温度変換器 21 電熱ヒータ 23 ヒータブロック 24 ヒータ電源 25 制御器 26 電熱ヒータ DESCRIPTION OF SYMBOLS 1 Acceleration pipe 2 Acceleration pipe disk 3 Cooling water pipe 4 Cooling water tank 5 Secondary cooling pipe 6 Refrigerator 7 Electric heater 8 Heater power supply 9 Controller 10 Temperature detection end 11 Temperature converter 12 Electric heat heater 13 Heater power supply 14 Controller 15 Temperature detecting end 16 Temperature converter 21 Electric heater 23 Heater block 24 Heater power supply 25 Controller 26 Electric heater

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河合 正之 千葉県野田市二ツ塚118番地 川崎重工業 株式会社野田工場内 (72)発明者 中山 章弘 千葉県野田市二ツ塚118番地 川崎重工業 株式会社野田工場内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Masayuki Kawai 118 Futatsuka Noda City, Chiba Prefecture Kawada Heavy Industries Noda Factory Co., Ltd. (72) Inventor Akihiro Nakayama 118 Futatsuka Noda City Chiba Prefecture Kawasaki Heavy Industries Noda Factory Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 荷電粒子を高エネルギーまで加速する粒
子加速器に用いる加速管において、電熱ヒータと温度セ
ンサを加速管に接触設置するとともに制御器を備え、該
制御器が前記温度センサの出力に基づいて前記電熱ヒー
タを制御して加速管の温度を調整することを特徴とする
加速管の温度調節システム。
1. An accelerating tube for use in a particle accelerator for accelerating charged particles to high energy, comprising an electric heater and a temperature sensor in contact with the accelerating tube, and further comprising a controller. Controlling the electric heater to adjust the temperature of the acceleration tube.
【請求項2】 前記電熱ヒータがほぼ同一の経路を往復
するように配置された抵抗線からなり、印加電流がほぼ
同一の経路を往復することにより電流により生起する電
磁界を相殺されるように構成したものであることを特徴
とする請求項1記載の加速管の温度調節システム。
2. The electric heater comprises a resistance wire arranged so as to reciprocate substantially the same path, so that an applied current reciprocates the substantially same path so that an electromagnetic field generated by the current is canceled. The temperature control system for an acceleration tube according to claim 1, wherein the temperature control system is configured.
【請求項3】 前記電熱ヒータが複数のブロックに分割
されていて、各ブロック毎に備える温度センサの出力に
基づいてそれぞれ独立に印加電力の制御をすることを特
徴とする請求項1または2記載の加速管の温度調節シス
テム。
3. The electric heater according to claim 1, wherein the electric heater is divided into a plurality of blocks, and the applied electric power is controlled independently based on an output of a temperature sensor provided for each block. Accelerating tube temperature control system.
【請求項4】 前記電熱ヒータが単位長さ当たりの発熱
量に勾配を設けて加速管内の発熱量分布を相殺するよう
にしたことを特徴とする請求項1または2記載の加速管
の温度調節システム。
4. The temperature control of the accelerating tube according to claim 1, wherein the electric heater has a gradient in the calorific value per unit length so as to offset the calorific value distribution in the accelerating tube. system.
【請求項5】 さらに冷却水配管を加速管の軸方向に添
設したことを特徴とする請求項1から4のいずれかに記
載の加速管の温度調節システム。
5. The temperature control system for an acceleration pipe according to claim 1, wherein a cooling water pipe is further provided in an axial direction of the acceleration pipe.
【請求項6】 前記制御器がPID制御を行うことを特
徴とする請求項1から5のいずれかに記載の加速管の温
度調節システム。
6. The temperature control system for an accelerator tube according to claim 1, wherein the controller performs PID control.
【請求項7】 請求項1から6のいずれかに記載の加速
管の温度調節システムを備えた線形加速器を用いた自由
電子レーザ装置。
7. A free electron laser device using a linear accelerator equipped with the temperature control system for an acceleration tube according to claim 1. Description:
JP9172857A 1997-06-13 1997-06-13 Temperature control system for accelerating tube Pending JPH118098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9172857A JPH118098A (en) 1997-06-13 1997-06-13 Temperature control system for accelerating tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9172857A JPH118098A (en) 1997-06-13 1997-06-13 Temperature control system for accelerating tube

Publications (1)

Publication Number Publication Date
JPH118098A true JPH118098A (en) 1999-01-12

Family

ID=15949589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9172857A Pending JPH118098A (en) 1997-06-13 1997-06-13 Temperature control system for accelerating tube

Country Status (1)

Country Link
JP (1) JPH118098A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004388A (en) * 2004-01-23 2009-01-08 Hitachi Metals Ltd Insertion device
JP2016184520A (en) * 2015-03-26 2016-10-20 三菱重工メカトロシステムズ株式会社 Accelerator, and temperature management method of acceleration tube

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738600A (en) * 1980-08-20 1982-03-03 Mitsubishi Electric Corp Accelerating tube for linear accelerator
JPH04163900A (en) * 1990-10-29 1992-06-09 Toshiba Corp Vacuum protector for particle accelerator
JPH0590215A (en) * 1991-09-30 1993-04-09 Nippon Telegr & Teleph Corp <Ntt> Local etching device and local etching method of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738600A (en) * 1980-08-20 1982-03-03 Mitsubishi Electric Corp Accelerating tube for linear accelerator
JPH04163900A (en) * 1990-10-29 1992-06-09 Toshiba Corp Vacuum protector for particle accelerator
JPH0590215A (en) * 1991-09-30 1993-04-09 Nippon Telegr & Teleph Corp <Ntt> Local etching device and local etching method of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004388A (en) * 2004-01-23 2009-01-08 Hitachi Metals Ltd Insertion device
JP2016184520A (en) * 2015-03-26 2016-10-20 三菱重工メカトロシステムズ株式会社 Accelerator, and temperature management method of acceleration tube

Similar Documents

Publication Publication Date Title
Hara et al. Mode transition of a Hall thruster discharge plasma
US6525537B2 (en) Magnetic resonance apparatus having a single-circuit cooling circulation system
EP1715731B1 (en) Undulator
Kaita et al. Experiments with liquid metal walls: Status of the lithium tokamak experiment
US8030927B2 (en) Magnet temperature control device
US20180240587A1 (en) Cooling Of A Static Electric Induction System
JP2021163883A (en) Physics package, optical grating clock physics package, atomic clock physics package, atomic interferometer physics package, and quantum information processing device physics package
US20010042824A1 (en) Electromagnetic device for production of cold neutral atoms
JPH118098A (en) Temperature control system for accelerating tube
CN115461942A (en) 3-axis magnetic field correction coil, physical package for optical lattice clock, physical package for atomic interferometer, physical package for quantum information processing device, and physical package system
Walker Synchrotron radiation
JP2017135218A (en) Charged particle beam lens device, charged particle beam column, and charged particle beam exposure device
EP0852835A1 (en) Supersonic and subsonic laser with rf discharge excitation
JP6161430B2 (en) Electron lens and charged particle beam device
JP2017157768A (en) Superconducting electromagnet apparatus, and magnetic resonance imaging apparatus
Bryzgunov et al. Status of the high-voltage electron-cooling system of the NICA collider
Valentinov et al. New superconducting wigglers for KSRS
CN115362606A (en) Physical package for optical crystal clock
JP2967978B2 (en) Accelerator tube using heat pipe and its temperature control system
Kundu et al. Development of a water-based cooling system for the Muon Chamber detector system of the CBM experiment
JP7449418B2 (en) mass spectrometer
US20200035441A1 (en) Objective lens and condenser lens for an x-ray tube, x-ray tube and a method for operating such an x-ray tube
JP7198605B2 (en) Objective and focusing lenses for X-ray tubes, X-ray tubes and methods of operating such X-ray tubes
JPH10172796A (en) Superconducting wiggler having dually structured beam chamber
Poolman et al. A polarized 3He internal target for storage rings