JPH1180752A - Desulfurization of petroleum - Google Patents

Desulfurization of petroleum

Info

Publication number
JPH1180752A
JPH1180752A JP24002497A JP24002497A JPH1180752A JP H1180752 A JPH1180752 A JP H1180752A JP 24002497 A JP24002497 A JP 24002497A JP 24002497 A JP24002497 A JP 24002497A JP H1180752 A JPH1180752 A JP H1180752A
Authority
JP
Japan
Prior art keywords
petroleum
water
reaction
polar organic
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24002497A
Other languages
Japanese (ja)
Inventor
Isao Komazawa
勲 駒沢
Takayuki Hirai
隆之 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP24002497A priority Critical patent/JPH1180752A/en
Publication of JPH1180752A publication Critical patent/JPH1180752A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the desulfurization efficiency in the desulfurization of petroleum by ultraviolet irradiation without being influenced by aromatic compounds such as naphthalene in the petroleum in the photochemical reaction. SOLUTION: Petroleum oil selected from gasoline, kerosene, light oil, heavy oil and crude oil is irradiated with ultraviolet rays under the introduction of an oxygen-containing gas in the presence of one or more polar organic solvents selected from acetonitrile, dimethylformamide and diethylene glycol or the above polar organic solvents mixed with water to effect photochemical reaction. After the reaction, the system is separated by leaving standing to transfer the sulfur component to the polar organic solvent and obtain desulfurized petroleum.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、紫外線を利用し石
油類の脱硫を行う方法に関する。
TECHNICAL FIELD The present invention relates to a method for desulfurizing petroleums using ultraviolet rays.

【0002】[0002]

【従来の技術】従来のこの種の石油類の脱硫方法として
は、水素化脱硫、酸化脱硫(過酸化水素脱硫、バイオ脱
硫)などが知られている。また、近年、本発明者の駒沢
らは、紫外線を照射して石油類の脱硫を行う方法を提案
している。この方法は、軽油に水の存在下、酸素含有気
体を供給しながら紫外線を照射し、軽油中に含有されて
いる硫黄化合物を軽油相中で光化学反応により酸化させ
ると、酸化された硫黄化合物が水溶性となって軽油相か
ら水相に移動するため分離可能となり、脱硫できるもの
である。
2. Description of the Related Art Hydrodesulfurization, oxidative desulfurization (hydrogen peroxide desulfurization, biodesulfurization) and the like are known as conventional methods for desulfurizing petroleum of this kind. In recent years, the present inventor, Komazawa et al., Has proposed a method of irradiating ultraviolet rays to desulfurize petroleums. This method involves irradiating ultraviolet light while supplying oxygen-containing gas to gas oil in the presence of water, and oxidizing sulfur compounds contained in gas oil by a photochemical reaction in the gas oil phase. It becomes water-soluble and moves from the light oil phase to the water phase, so that it can be separated and desulfurized.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
方法においては、軽油に酸素含有気体を供給しながら紫
外線を照射し光化学反応を起こす際に、軽油中に含有さ
れているナフタレンなどの芳香族化合物が励起エネルギ
ーを吸収して、目的の脱硫反応を阻害する光反応阻害を
起こすため、反応速度が減少し、脱硫効率が低下すると
いう不都合を生じる。特に、難脱硫成分であるジベンゾ
チオフェン(DBT)の光化学反応は、ナフタレン等の
芳香族化合物との共存により著しく抑制される。
However, in the above method, when a photochemical reaction is caused by irradiating ultraviolet rays while supplying an oxygen-containing gas to the light oil, aromatic compounds such as naphthalene contained in the light oil are used. Absorbs the excitation energy and causes a photoreaction inhibition that inhibits the desired desulfurization reaction, so that the reaction rate is reduced and the desulfurization efficiency is reduced. In particular, the photochemical reaction of dibenzothiophene (DBT), which is a difficult-to-desulfurize component, is significantly suppressed by coexistence with an aromatic compound such as naphthalene.

【0004】本発明は上記事情に鑑みてなされたもの
で、脱硫しにくい硫黄化合物を含む石油類であっても、
ナフタレン等の芳香族化合物の共存により反応を抑制さ
れることなく、反応速度を上昇させ、高い脱硫効率を得
る方法を提供することを目的とする。
[0004] The present invention has been made in view of the above circumstances, and even if petroleum containing a sulfur compound which is difficult to desulfurize,
An object of the present invention is to provide a method for increasing the reaction rate and obtaining high desulfurization efficiency without suppressing the reaction due to the coexistence of an aromatic compound such as naphthalene.

【0005】[0005]

【課題を解決するための手段】請求項1に係る発明は、
石油類に極性有機溶剤の存在下、酸素含有気体を供給し
ながら紫外線を照射することを特徴とする石油類の脱硫
方法である。請求項2に係る発明は、上記極性有機溶剤
が、アセトニトリル、ジメチルフォルムアミド、ジエチ
レングリコールの1種もしくは2種以上であることを特
徴とする請求項1記載の石油類の脱硫方法である。請求
項3に係る発明は、上記極性有機溶剤には水が添加され
ていることを特徴とする請求項1記載の石油類の脱硫方
法である。
The invention according to claim 1 is
A method for desulfurizing petroleums, comprising irradiating petroleums with ultraviolet rays in the presence of a polar organic solvent while supplying an oxygen-containing gas. The invention according to claim 2 is the petroleum desulfurization method according to claim 1, wherein the polar organic solvent is one or more of acetonitrile, dimethylformamide, and diethylene glycol. The invention according to claim 3 is the petroleum desulfurization method according to claim 1, wherein water is added to the polar organic solvent.

【0006】[0006]

【発明の実施の形態】以下、図面を参照して本発明の実
施例を詳細に説明する。図1は本発明の石油類の脱硫方
法を実施するための装置の一例を示すものである。この
装置は、円筒形の石英ガラス製内部照射型反応管で、反
応管本体1と、この反応管本体1の肩部に設けられたL
字型細管状の気体吹き込み口2と、気体吹き込み口2の
反対側の肩部に設けられた試料注入口3と、反応管本体
1の中心部鉛直方向に設けられた反応管本体1よりも径
の小さい円筒形のアウタージャケット4と、このアウタ
ージャケット4の内部に備えられた発光部5と、この発
光部5の内部に備えられた300Wの高圧水銀灯6と、
反応管本体1の内側底部に備えられたマグネティックス
ターラー7とで構成されている。上記気体吹き込み口2
は、反応管本体1の底部付近まで延びた細管とつながっ
ており、気体吹き込み口2から吹き込まれた気体はこの
管を通って反応管本体1の内部に供給される。上記アウ
タージャケット4の、反応管本体1の上方に突出した部
分には、管の外側に冷却水を供給するための対面する2
つのL字型の細管を備えている。また、上記アウタージ
ャケット4の内部には、アウタージャケットより小径の
上記発光部5が挿入され、最上部に栓がされている。さ
らに、アウタージャケット4と上記発光部5との間の液
槽には照射波長を調整するためのパイレックス製やウラ
ニルガラス製のフィルター管8が挿入されている。パイ
レックス製のフィルター管は紫外線の280nm未満の
波長の光を遮断し、またウラニルガラス製のフィルター
管は320nm未満の波長の光を遮断する。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows an example of an apparatus for performing the petroleum desulfurization method of the present invention. This apparatus is a cylindrical quartz glass internal irradiation type reaction tube, and has a reaction tube main body 1 and an L provided on a shoulder portion of the reaction tube main body 1.
A gas injection port 2 in the shape of a U-shaped tube, a sample injection port 3 provided on a shoulder opposite to the gas injection port 2, and a reaction tube main body 1 provided in the center of the reaction tube main body 1 in a vertical direction. A cylindrical outer jacket 4 having a small diameter, a light emitting unit 5 provided inside the outer jacket 4, a 300 W high-pressure mercury lamp 6 provided inside the light emitting unit 5,
And a magnetic stirrer 7 provided on the inner bottom of the reaction tube main body 1. The above gas inlet 2
Is connected to a thin tube extending to near the bottom of the reaction tube main body 1, and the gas blown from the gas blowing port 2 is supplied to the inside of the reaction tube main body 1 through this tube. A portion of the outer jacket 4 protruding above the reaction tube body 1 has a facing surface 2 for supplying cooling water to the outside of the tube.
It has two L-shaped tubules. The light emitting section 5 having a smaller diameter than the outer jacket is inserted into the outer jacket 4, and a plug is plugged at the top. Further, a filter tube 8 made of Pyrex or uranyl glass for adjusting the irradiation wavelength is inserted into a liquid tank between the outer jacket 4 and the light emitting section 5. A Pyrex filter tube blocks ultraviolet light of wavelength less than 280 nm, and a uranyl glass filter tube blocks light of wavelength less than 320 nm.

【0007】続いて、上述の装置を用いて石油類を脱硫
する方法の一例を以下に示す。反応管本体1に試料注入
口3から石油類と極性有機溶剤との混合物を両者の体積
比が1:1〜1:7程度となるように入れる。次に、気
体吹き込み口2から酸素を200〜800ml/min
の流速で供給する。この酸素の代わりに空気などの酸素
含有気体を供給してもよく、この場合、この酸素含有気
体の酸素濃度は20〜40mol%とし、供給流速は酸
素の供給量が溶液全体の飽和量となるようにすれば良
い。上記酸素または酸素含有気体を供給しながら、マグ
ネティックスターラー7または酸素含有気体バブリング
により攪拌する。波長が250〜320nmの紫外線を
2〜24時間照射し、光化学反応を行う。操作はすべて
大気圧下で行い、反応中の温度は20〜80℃程度に保
たれる。
Next, an example of a method for desulfurizing petroleum using the above-described apparatus will be described below. A mixture of petroleum and a polar organic solvent is put into the reaction tube main body 1 from the sample injection port 3 so that the volume ratio between them is about 1: 1 to 1: 7. Next, oxygen is supplied from the gas blowing port 2 at 200 to 800 ml / min.
Feed at a flow rate of Instead of this oxygen, an oxygen-containing gas such as air may be supplied. In this case, the oxygen concentration of this oxygen-containing gas is set to 20 to 40 mol%, and the supply flow rate is such that the supply amount of oxygen is the saturation amount of the whole solution. What should I do? While supplying the oxygen or the oxygen-containing gas, the mixture is stirred by the magnetic stirrer 7 or the oxygen-containing gas bubbling. Ultraviolet light having a wavelength of 250 to 320 nm is irradiated for 2 to 24 hours to perform a photochemical reaction. All operations are performed under atmospheric pressure, and the temperature during the reaction is maintained at about 20 to 80 ° C.

【0008】本発明で用いる石油類は、軽油または重油
(アラビアンライト)であるが、この他にガソリン、灯
油及び原油を含めて石油類とし、いずれを用いても良
い。また、本発明で用いる極性有機溶剤は、芳香族抽出
に有効であり、かつ、官能基に硫黄を含有しないものを
用いる。例えば、アセトニトリル、ジエチレングリコー
ル及びジメチルフォルムアミドなどが有効である。ここ
で、極性有機溶剤として硫黄含有のもの、例えばジメチ
ルスルホキシドやスルフォランを用いると、紫外線照射
の過程で溶剤自身が紫外線を吸収し、さらに副反応を起
こすといった、反応効率を低下させるような原因が生じ
る。したがって、好ましくは硫黄を含有せず、紫外域の
吸収が小さい極性有機溶剤を用いて脱硫を行う。一方、
上記極性有機溶剤に水を存在させると、軽油等の石油類
に極性有機溶剤が溶解するのを抑制できる。このため成
分分離が容易になることから、上記極性有機溶剤に水を
添加して混合溶剤とし、これを用いても良い。ここで、
極性有機溶剤と水との混合溶剤中の水の体積パーセント
は、0〜100%の範囲のいずれかの点であり、好まし
くは0〜30%のいずれかの点である。また、この混合
溶剤を用いて石油類の反応を行う場合、石油類と混合溶
剤との混合物を両者の体積比が1:1〜1:7程度とな
るようにする。さらに、石油類、極性有機溶剤または水
を添加した極性有機溶剤及び酸素含有気体の混合は良く
行われなければならないが、混合方法は機械的攪拌、ま
たは空気による攪拌のいずれの方法を用いても良い。
The petroleum used in the present invention is light oil or heavy oil (Arabian light). In addition, any petroleum including gasoline, kerosene and crude oil may be used. The polar organic solvent used in the present invention is one that is effective for aromatic extraction and does not contain sulfur in the functional group. For example, acetonitrile, diethylene glycol and dimethylformamide are effective. Here, when a sulfur-containing one such as dimethyl sulfoxide or sulfolane is used as the polar organic solvent, the solvent itself absorbs ultraviolet rays in the process of irradiating ultraviolet rays, and further causes a side reaction. Occurs. Therefore, desulfurization is preferably performed using a polar organic solvent that does not contain sulfur and has a low absorption in the ultraviolet region. on the other hand,
When water is present in the polar organic solvent, the dissolution of the polar organic solvent in petroleum such as light oil can be suppressed. For this reason, component separation is facilitated, and water may be added to the polar organic solvent to form a mixed solvent, which may be used. here,
The volume percentage of water in the mixed solvent of the polar organic solvent and water is any point in the range of 0 to 100%, preferably any point of 0 to 30%. When a petroleum reaction is carried out using this mixed solvent, the mixture of the petroleum and the mixed solvent is adjusted so that the volume ratio between the two becomes about 1: 1 to 1: 7. Further, the mixing of the petroleum, the polar organic solvent or the polar organic solvent to which water is added and the oxygen-containing gas must be performed well, and the mixing method may be either mechanical stirring or air stirring. good.

【0009】光化学反応後、反応液を静置し、油相と溶
剤相とに分離させる。分離後、油相と溶剤相のそれぞれ
について、精製を行う。油相については、水洗および蒸
留を行い溶解している溶剤を除去する。また、溶剤相に
ついては蒸留または抽出を行い成分分離を行う。蒸留を
行う場合、沸点の差からまず溶剤が流出し、続いて油分
が流出し、最後に硫黄化合物が残さとして残留するので
これをそれぞれ回収する。一方抽出を行う場合、n−パ
ラフィンを用いて油分を抽出し、さらに蒸留を行って溶
剤と硫黄化合物とに分離する。取りだした硫黄化合物は
そのまま有効利用するか、または、水の存在下空気を吹
き込みながら攪拌し、紫外線を照射して反応させ硫酸イ
オンの形にした後、アルカリ処理を行う。
After the photochemical reaction, the reaction solution is allowed to stand, and separated into an oil phase and a solvent phase. After separation, purification is performed for each of the oil phase and the solvent phase. The oil phase is washed with water and distilled to remove the dissolved solvent. The solvent phase is subjected to distillation or extraction to separate components. In the case of performing distillation, the solvent first flows out due to the difference in boiling point, then the oil component flows out, and finally the sulfur compound remains as a residue. On the other hand, in the case of performing extraction, an oil component is extracted using n-paraffin, and further, distillation is performed to separate into a solvent and a sulfur compound. The removed sulfur compound is used effectively as it is, or is stirred while blowing air in the presence of water, irradiated with ultraviolet rays, reacted to form sulfate ions, and then subjected to alkali treatment.

【0010】以上のような装置を用いて操作を行う方法
によると、石油類中の硫黄化合物は極性有機溶剤相中で
酸素との光化学反応によって酸化し、極性有機溶剤に可
溶でかつ石油類に難溶のスルホキシドまたはスルホンに
なるため、油相からの脱硫が可能となる。ここで、石油
類に含まれる難脱硫性の硫黄化合物、例えばジベンゾチ
オフェンは、上記極性有機溶剤または水を添加した極性
有機溶剤との混合攪拌時に、選択的に溶剤相に溶出す
る。このため、これまでの溶剤として水のみを用いた反
応系において、反応を抑制していた石油類中のナフタレ
ン類は、極性有機溶剤中では反応を抑制することがな
く、溶剤相中で反応を進めることが可能となる。したが
って、脱硫効率が上昇するものである。また、成分分離
は、エマルジョンの生成がないため、水のみを用いた反
応系よりも処理時間を短縮させることが可能である。さ
らに、分離精製後の酸化した硫黄化合物(スルホキシド
及びスルホン)を本発明の脱硫方法によりさらに酸化し
硫酸イオンにしたものは、アルカリ処理により硫酸ナト
リウムとなるためそのまま廃棄することが可能である。
したがって、新たに廃棄処理のためのプロセスを用いる
必要がないため、コストダウンにつながる。
[0010] According to the method using the above-mentioned apparatus, sulfur compounds in petroleum are oxidized by a photochemical reaction with oxygen in a polar organic solvent phase, and are soluble in a polar organic solvent and petroleum. Since it becomes hardly soluble sulfoxide or sulfone, desulfurization from the oil phase becomes possible. Here, the hardly desulfurizable sulfur compound contained in petroleum, for example, dibenzothiophene, is selectively eluted into the solvent phase during mixing and stirring with the polar organic solvent or the polar organic solvent to which water is added. For this reason, naphthalenes in petroleum, which had suppressed the reaction in a conventional reaction system using only water as a solvent, did not suppress the reaction in a polar organic solvent, and did not react in a solvent phase. It is possible to proceed. Therefore, the desulfurization efficiency increases. In addition, since there is no formation of an emulsion in the component separation, the processing time can be reduced as compared with a reaction system using only water. Further, the oxidized sulfur compounds (sulfoxide and sulfone) after the separation and purification are further oxidized to sulfate ions by the desulfurization method of the present invention, and are converted to sodium sulfate by alkali treatment, so that they can be directly discarded.
Therefore, there is no need to use a new process for disposal, leading to cost reduction.

【0011】図2は、本発明の工業的規模での脱硫プロ
セスの一例をフローチャートで示したものである。この
例は、極性有機溶剤としてアセトニトリルを用い、これ
に水を添加したものを使用し反応を行うものである。ま
ず、アセトニトリルに水を混合し、この混合物に軽油を
加え、これに空気を吹き込みながら紫外線を照射し脱硫
を行う。続いてこの混合物を静置し、軽油相とアセトニ
トリル相とを分離する。上澄み部分の軽油相は水洗およ
び蒸留を行い、溶解しているアセトニトリルを分離して
脱硫軽油を取り出す。また、アセトニトリル相はn−ヘ
キサンを用いて抽出を行い溶解している芳香族分を分離
する。ヘキサン相はさらに蒸留を行い軽油を分離する。
アセトニトリル相についても蒸留を行いアセトニトリル
と酸化した硫黄化合物とに分離する。
FIG. 2 is a flowchart showing an example of the industrial-scale desulfurization process of the present invention. In this example, the reaction is carried out using acetonitrile as a polar organic solvent and adding water thereto. First, water is mixed with acetonitrile, light oil is added to the mixture, and ultraviolet light is irradiated while blowing air into the mixture to perform desulfurization. Subsequently, the mixture is allowed to stand, and the gas oil phase and the acetonitrile phase are separated. The gas oil phase in the supernatant is washed with water and distilled to separate the dissolved acetonitrile to take out the desulfurized gas oil. The acetonitrile phase is extracted with n-hexane to separate dissolved aromatic components. The hexane phase is further distilled to separate light oil.
The acetonitrile phase is also subjected to distillation to separate acetonitrile and oxidized sulfur compounds.

【0012】得られたそれぞれの成分は有効利用する
か、または、最終的にアセトニトリル相から取り出した
硫黄化合物については、本発明の脱硫方法を用いてさら
に光化学反応を行い酸化させて硫酸イオンとし、続けて
アルカリ処理を行って廃棄することが可能である。
The respective components obtained are used effectively, or the sulfur compounds finally taken out from the acetonitrile phase are further subjected to a photochemical reaction using the desulfurization method of the present invention to be oxidized to sulfate ions, Subsequently, it is possible to carry out an alkali treatment and to discard.

【0013】[0013]

【実施例】【Example】

(実施例1)脱硫には以下のものを用いた。 反応管: 英光社製 内部照射型反応管:EHB−W−
300型 光源: 高圧水銀灯300W(平均寿命2000時間) 軽油: 市販軽油 反応管本体1に軽油100ml及びアセトニトリル30
0mlを試料注入口3より入れ、気体吹き込み口2より
空気を500ml/minの流量で吹き込みながら攪拌
し、発光部5よりフィルター管8を通して250〜32
0nmの紫外線を照射した。一定時間毎に試料3mlを
取り出し、取りだした試料について軽油相とアセトニト
リル相とに静置分離後、軽油相中の硫黄化合物含有量を
蛍光X線法および微量電量滴定法により分析した。な
お、操作は、紫外線を照射した際に反応管本体1の内部
温度が約50℃に保たれた以外は、大気圧下室温で行っ
た。その結果、軽油中の硫黄の重量パーセント濃度は、
初期濃度0.2重量%が、2時間後には0.05重量
%、5時間後には0.02重量%となった。
(Example 1) The following were used for desulfurization. Reaction tube: Eiko's internal irradiation type reaction tube: EHB-W-
300 type light source: High pressure mercury lamp 300W (average life 2000 hours) Light oil: Commercial light oil 100ml light oil and acetonitrile 30
0 ml is introduced from the sample inlet 3 and stirred while blowing air at a flow rate of 500 ml / min from the gas inlet 2, and 250 to 32 through the filter tube 8 from the light emitting part 5.
Irradiation with 0 nm ultraviolet light was performed. At regular intervals, 3 ml of a sample was taken out, the sample taken out was allowed to stand and separated into a gas oil phase and an acetonitrile phase, and then the sulfur compound content in the gas oil phase was analyzed by a fluorescent X-ray method and a microcoulometric titration method. The operation was performed at room temperature under atmospheric pressure, except that the internal temperature of the reaction tube main body 1 was maintained at about 50 ° C. when the ultraviolet irradiation was performed. As a result, the weight percent concentration of sulfur in light oil is
The initial concentration of 0.2% by weight was 0.05% by weight after 2 hours and 0.02% by weight after 5 hours.

【0014】(実施例2)前記反応管本体1に原油(ア
ラビアンライト)100ml及び水が10重量%である
アセトニトリル/水混合溶剤300mlを試料注入口3
より入れ、実施例1と同様の操作を行った。その結果、
原油中の硫黄の重量パーセント濃度は、初期濃度1.8
重量%が、2時間後には1.4重量%に、5時間後には
0.9重量%となった。
(Example 2) 100 ml of crude oil (Arabian light) and 300 ml of a mixed solvent of acetonitrile / water containing 10% by weight of water were introduced into the reaction tube main body 1 at a sample injection port 3.
And the same operation as in Example 1 was performed. as a result,
The weight percent concentration of sulfur in the crude oil was 1.8 at the initial concentration.
The weight% was 1.4% by weight after 2 hours and 0.9% by weight after 5 hours.

【0015】(実施例3)前記反応管本体1に軽油10
0ml及びジエチレングリコール300mlを試料注入
口3より入れ、実施例1と同様の操作を行った。その結
果、軽油中の硫黄の重量パーセント濃度は、初期濃度
0.2重量%が、2時間後には0.07重量%に、5時
間後には0.04重量%となった。
(Example 3) Light oil 10 was added to the reaction tube main body 1.
0 ml and 300 ml of diethylene glycol were introduced through the sample inlet 3, and the same operation as in Example 1 was performed. As a result, the weight percent concentration of sulfur in light oil was 0.2% by weight of the initial concentration, 0.07% by weight after 2 hours, and 0.04% by weight after 5 hours.

【0016】(実施例4)前記反応管本体1に軽油及び
アセトニトリルの総量400mlを試料注入口3より入
れ、気体吹き込み口2から空気を500ml/minの
流量で吹き込みながら攪拌し、発光部5よりフィルター
管8を通して250〜320nmの紫外線を照射した。
その後は実施例1と同様の操作を行った。ここでアセト
ニトリル/軽油体積比を1、3、7と変化させていき、
それぞれの軽油中の硫黄の重量パーセント濃度の経時変
化を測定した。なお、操作は、紫外線を照射した際に反
応管本体1の内部温度が約50℃に保たれた以外は、大
気圧下室温で行った。この結果を図3に示した。軽油中
の硫黄の重量パーセント濃度は、初期濃度0.2重量%
が、体積比1の時、2時間後には0.12重量%に、5
時間後には0.095重量%となった。体積比3の時、
2時間後には0.05重量%に、5時間後には0.03
重量%となった。また体積比7の時、2時間後には0.
02重量%に、5時間後には0.005重量%となっ
た。軽油/アセトニトリルの反応系では、アセトニトリ
ルの体積比が大きくなるほど、反応効率が上昇し、脱硫
効率が向上する結果が得られた。
(Example 4) A total of 400 ml of light oil and acetonitrile was put into the reaction tube main body 1 from the sample injection port 3 and stirred while blowing air at a flow rate of 500 ml / min from the gas injection port 2. Ultraviolet rays of 250 to 320 nm were irradiated through the filter tube 8.
Thereafter, the same operation as in Example 1 was performed. Here, the volume ratio of acetonitrile / light oil was changed to 1, 3, and 7,
The change with time of the weight percent concentration of sulfur in each gas oil was measured. The operation was performed at room temperature under atmospheric pressure, except that the internal temperature of the reaction tube main body 1 was maintained at about 50 ° C. when the ultraviolet irradiation was performed. The result is shown in FIG. The weight percent concentration of sulfur in light oil is 0.2% by weight
However, when the volume ratio is 1, after 2 hours, it is reduced to 0.12% by weight.
After an hour, it was 0.095% by weight. When the volume ratio is 3,
0.05% by weight after 2 hours, 0.03% after 5 hours
% By weight. When the volume ratio is 7, the volume ratio is 0.2 after 2 hours.
After 5 hours, the content became 0.005% by weight. In the gas oil / acetonitrile reaction system, the result was that the larger the volume ratio of acetonitrile, the higher the reaction efficiency and the higher the desulfurization efficiency.

【0017】(実施例5)前記反応管本体1に軽油及び
アセトニトリル/水の総量400mlを試料注入口3よ
り入れ、気体吹き込み口2から空気を500ml/mi
nの流量で吹き込みながら攪拌し、発光部5よりフィル
ター管8を通して250〜320nmの紫外線を照射し
た。その後は実施例1と同様の操作を行った。また、水
を用いることによって軽油中に溶剤が溶解するのを抑制
することが可能であることから、本実施例では、アセト
ニトリル/水混合溶剤の水の体積パーセントを0〜10
0%まで変化させそれぞれ反応を行った。この結果を図
4に示した。縦軸に軽油中に含まれる硫黄の重量パーセ
ント濃度をパラメータとして取り、また横軸には紫外線
の照射時間を取った。照射時間6時間後の場合、アセト
ニトリル/水混合溶剤の水の体積パーセントが0,1
0,20,50,100%と増加するに従い、硫黄の重
量パーセントは、0.025,0.03,0.06,
0.13,0.17重量%と増加した。したがって、ア
セトニトリル中の水の体積パーセントを0または0に近
づけるほど脱硫効率を上昇させることが可能であるとい
う結果が得られた。また、水を用いることによって軽油
中に溶剤が溶解するのを抑制することが可能であること
を加味するならば、水の体積パーセントが10〜20%
の水/アセトニトリル混合溶剤を用いるのが最も実用的
である。また、図5には、2時間の紫外線照射の有無に
よる軽油中の硫黄の重量パーセント濃度と溶剤中に含ま
れる水の体積パーセントとの関係を示した。縦軸に軽油
中に含まれる硫黄の重量パーセント濃度を取り、横軸に
アセトニトリル/水の混合溶剤の水の体積パーセントを
取った。また、アセトニトリル相/軽油相の体積比は3
であった。紫外線の照射により反応効率は上昇し、水の
体積パーセントが20%の時、紫外線を照射しないとき
の硫黄濃度は0.17重量%であるのに対し、照射した
ときは0.09重量%であった。
(Example 5) 400 ml of light oil and acetonitrile / water were put into the reaction tube main body 1 through the sample inlet 3 and air was blown through the gas inlet 2 at 500 ml / mi.
The mixture was stirred while blowing at a flow rate of n, and was irradiated with ultraviolet rays of 250 to 320 nm from the light emitting section 5 through the filter tube 8. Thereafter, the same operation as in Example 1 was performed. In addition, since it is possible to suppress the solvent from being dissolved in the light oil by using water, in this embodiment, the volume percentage of water in the acetonitrile / water mixed solvent is set to 0 to 10%.
The reaction was carried out while changing the amount to 0%. The result is shown in FIG. The vertical axis shows the weight percent concentration of sulfur contained in light oil as a parameter, and the horizontal axis shows the irradiation time of ultraviolet rays. After the irradiation time of 6 hours, the volume percentage of water in the mixed solvent of acetonitrile / water is 0.1 or 0.1.
As it increases to 0,20,50,100%, the weight percent of sulfur becomes 0.025,0.03,0.06,
It increased to 0.13 and 0.17% by weight. Therefore, the result was obtained that the desulfurization efficiency could be increased as the volume percentage of water in acetonitrile was reduced to 0 or closer to 0. Also, considering that it is possible to suppress the solvent from being dissolved in light oil by using water, the volume percentage of water is 10 to 20%.
It is most practical to use a mixed solvent of water / acetonitrile. FIG. 5 shows the relationship between the weight percent concentration of sulfur in light oil and the volume percent of water contained in the solvent depending on the presence or absence of ultraviolet irradiation for 2 hours. The vertical axis represents the weight percent concentration of sulfur contained in light oil, and the horizontal axis represents the volume percentage of water in the mixed solvent of acetonitrile / water. The volume ratio of acetonitrile phase / light oil phase is 3
Met. The reaction efficiency is increased by the irradiation of ultraviolet rays, and when the volume percentage of water is 20%, the sulfur concentration without irradiation with ultraviolet rays is 0.17% by weight, whereas the sulfur concentration is 0.09% by weight when irradiated. there were.

【0018】(比較例1)前記反応管本体1に軽油10
0ml及び純水300mlを試料注入口3より入れ、気
体吹き込み口2から空気を500ml/minの流量で
吹き込みながら攪拌し、発光部5よりフィルター管8を
通して250〜320nmの紫外線を照射した。一定時
間毎に試料3mlを取り出し、軽油の硫黄化合物含有量
を蛍光X線法により分析した。なお、操作は、紫外線照
射の際に反応管本体1の内部温度が約50℃に保たれた
以外は、大気圧下室温で行った。水/軽油のエマルジョ
ンが生成して有機溶媒系に比べ分離操作に長い時間を要
し十分に分離した後軽油相を取り出し硫黄化合物含有量
を蛍光X線法により同定した。その結果、軽油中の硫黄
の重量パーセント濃度は、初期濃度0.24重量%が、
12時間後には0.18重量%に、24時間後には0.
17重量%となった。
Comparative Example 1 Light oil 10 was added to the reaction tube body 1.
0 ml and 300 ml of pure water were introduced from the sample injection port 3 and stirred while blowing air at a flow rate of 500 ml / min from the gas injection port 2, and ultraviolet light of 250 to 320 nm was irradiated from the light emitting section 5 through the filter tube 8. A sample (3 ml) was taken out at regular intervals, and the sulfur compound content of the gas oil was analyzed by a fluorescent X-ray method. The operation was performed at room temperature under the atmospheric pressure, except that the internal temperature of the reaction tube main body 1 was kept at about 50 ° C. during the irradiation with ultraviolet rays. After a water / light oil emulsion was formed and the separation operation required a longer time than the organic solvent system and was sufficiently separated, the light oil phase was taken out and the sulfur compound content was identified by a fluorescent X-ray method. As a result, the weight percent concentration of sulfur in light oil is 0.24% by weight of the initial concentration,
0.18% by weight after 12 hours and 0.2% after 24 hours.
It was 17% by weight.

【0019】(比較例2)前記反応管本体1に軽油10
0ml及び30重量%過酸化水素水溶液300mlを試
料注入口3より入れ、気体吹き込み口2から空気を50
0ml/minの流量で吹き込みながら攪拌し、発光部
5よりフィルター管8を通して250〜320nmの紫
外線を照射した。なお、操作は、紫外線照射の際に反応
管本体1の内部温度が約50℃に保たれた以外は、大気
圧下室温で行った。一定時間毎に試料50mlを取り出
し、取りだした試料について軽油相と過酸化水素水相と
を静置分離後、軽油と同量の純水で軽油相を3回洗浄し
残存する過酸化水素を除去後、硫黄化合物含有量を蛍光
X線法により同定した。その結果、軽油中の硫黄の重量
パーセント濃度は、初期濃度0.2重量%が、12時間
後には0.08重量%に、24時間後には0.04重量
%となった。
Comparative Example 2 Light oil 10 was added to the reaction tube body 1.
0 ml and 300 ml of a 30% by weight aqueous hydrogen peroxide solution were introduced through the sample injection port 3, and air was blown through the gas injection port 2.
The mixture was stirred while blowing at a flow rate of 0 ml / min, and ultraviolet light of 250 to 320 nm was irradiated from the light emitting unit 5 through the filter tube 8. The operation was performed at room temperature under the atmospheric pressure, except that the internal temperature of the reaction tube main body 1 was kept at about 50 ° C. during the irradiation with ultraviolet rays. A 50 ml sample is taken out at regular intervals, the light oil phase and the aqueous hydrogen peroxide solution are allowed to stand for separation, and the light oil phase is washed three times with pure water of the same amount as the light oil to remove residual hydrogen peroxide. Thereafter, the sulfur compound content was identified by a fluorescent X-ray method. As a result, the weight percent concentration of sulfur in the gas oil was 0.2% by weight at the initial concentration, 0.08% by weight after 12 hours, and 0.04% by weight after 24 hours.

【0020】[0020]

【発明の効果】以上述べたように、本発明の脱硫方法に
よれば、極性有機溶剤を用いることによって、石油類に
含まれる硫黄化合物は極性有機溶剤に溶出し反応が進む
ため、石油類に含まれるナフタレン等の芳香族化合物の
光反応阻害の影響による反応の抑制を受けることなく脱
硫の効率が向上する。また、極性有機溶剤としてアセト
ニトリル、ジメチルフォルムアミド、ジエチレングリコ
ールの1種もしくは2種以上を用いることによって、紫
外線吸収や副反応などの弊害が除去でき、効率よく脱硫
を進めることが可能である。さらに、有機溶剤中に水を
混合させることによって、軽油等石油類に溶剤が溶解す
るのを抑制することができる。したがって、反応後の処
理が容易になるため、脱硫石油類を効率よく取り出すこ
とが可能である。工業的規模のプロセスの一例として
は、水の体積パーセントが10〜20%のアセトニトリ
ル/水混合溶剤を用いて反応を行うことで最も脱硫効率
が上昇する。このように脱硫効率が高く、また副生成物
を廃棄する際も容易に処理できることから、これまでの
脱硫方法に比べより実用的に優れる。
As described above, according to the desulfurization method of the present invention, by using a polar organic solvent, sulfur compounds contained in petroleum are eluted into the polar organic solvent and the reaction proceeds. The efficiency of desulfurization is improved without being affected by the reaction of the aromatic compound such as naphthalene contained therein due to the inhibition of the photoreaction. In addition, by using one or more of acetonitrile, dimethylformamide, and diethylene glycol as the polar organic solvent, adverse effects such as ultraviolet absorption and side reactions can be removed, and desulfurization can be efficiently promoted. Further, by mixing water in the organic solvent, the dissolution of the solvent in petroleum such as light oil can be suppressed. Therefore, since the treatment after the reaction is facilitated, desulfurized petroleum can be efficiently extracted. As an example of an industrial-scale process, the desulfurization efficiency is most increased by performing the reaction using a mixed solvent of acetonitrile / water having a volume percentage of water of 10 to 20%. As described above, since the desulfurization efficiency is high and the by-products can be easily treated when discarded, they are practically superior to the conventional desulfurization methods.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の脱硫方法を実施するに使用される装
置の一例を示す断面図である。
FIG. 1 is a cross-sectional view showing an example of an apparatus used to carry out the desulfurization method of the present invention.

【図2】 本発明の脱硫プロセスのフローチャートであ
る。
FIG. 2 is a flowchart of the desulfurization process of the present invention.

【図3】 実施例4の硫黄濃度の経時変化の図である。FIG. 3 is a graph showing a change over time in a sulfur concentration in Example 4.

【図4】 実施例5の硫黄濃度の経時変化の図である。FIG. 4 is a graph showing a change in sulfur concentration over time in Example 5.

【図5】 実施例5の水の体積パーセントの変化に伴う
硫黄濃度の変化の図である。
FIG. 5 is a diagram showing a change in sulfur concentration according to a change in volume percentage of water in Example 5.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 石油類に極性有機溶剤の存在下、酸素含
有気体を供給しながら紫外線を照射することを特徴とす
る石油類の脱硫方法。
1. A method for desulfurizing petroleums, comprising irradiating petroleums with ultraviolet rays in the presence of a polar organic solvent while supplying an oxygen-containing gas.
【請求項2】 上記極性有機溶剤が、アセトニトリル、
ジメチルフォルムアミド、ジエチレングリコールの1種
もしくは2種以上であることを特徴とする請求項1記載
の石油類の脱硫方法。
2. The method according to claim 1, wherein the polar organic solvent is acetonitrile,
2. The method for desulfurizing petroleums according to claim 1, wherein one or more of dimethylformamide and diethylene glycol are used.
【請求項3】 上記極性有機溶剤には水が添加されてい
ることを特徴とする請求項1記載の石油類の脱硫方法。
3. The method according to claim 1, wherein water is added to the polar organic solvent.
JP24002497A 1997-09-04 1997-09-04 Desulfurization of petroleum Withdrawn JPH1180752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24002497A JPH1180752A (en) 1997-09-04 1997-09-04 Desulfurization of petroleum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24002497A JPH1180752A (en) 1997-09-04 1997-09-04 Desulfurization of petroleum

Publications (1)

Publication Number Publication Date
JPH1180752A true JPH1180752A (en) 1999-03-26

Family

ID=17053338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24002497A Withdrawn JPH1180752A (en) 1997-09-04 1997-09-04 Desulfurization of petroleum

Country Status (1)

Country Link
JP (1) JPH1180752A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249447A (en) * 2008-04-03 2009-10-29 National Institute Of Advanced Industrial & Technology Method and device for oxidative desulfurization of fuel oil using reaction rate difference
JP2011510102A (en) * 2007-10-30 2011-03-31 サウジ アラビアン オイル カンパニー Complete crude oil desulfurization process by solvent extraction and hydrotreating
JP2017141451A (en) * 2008-12-19 2017-08-17 キシレコ インコーポレイテッド Processing method of biomass

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011510102A (en) * 2007-10-30 2011-03-31 サウジ アラビアン オイル カンパニー Complete crude oil desulfurization process by solvent extraction and hydrotreating
JP2009249447A (en) * 2008-04-03 2009-10-29 National Institute Of Advanced Industrial & Technology Method and device for oxidative desulfurization of fuel oil using reaction rate difference
JP2017141451A (en) * 2008-12-19 2017-08-17 キシレコ インコーポレイテッド Processing method of biomass
US10273416B2 (en) 2008-12-19 2019-04-30 Xyleco, Inc. Processing hydrocarbon-containing materials

Similar Documents

Publication Publication Date Title
EP1620528B1 (en) Process for the extractive oxidation of contaminants from raw hydrocarbon streams
EP2970795B1 (en) Process for removing sulphur compounds from hydrocarbons
AU2002321984B2 (en) Process for oxygenation of components for refinery blending of transportation fuels
US20160208179A1 (en) Targeted desulfurization apparatus integrating oxidative desulfurization and hydrodesulfurization to produce diesel fuel having an ultra-low level of organosulfur compounds
FR2818990A1 (en) PROCESS AND DEVICE FOR DESULFURIZING CHARGED HYDROCARBONS IN THIOPHENIC DERIVATIVES
US4417986A (en) Process for reducing the chemical oxygen demand of spent alkaline reagents
AU2002321984A1 (en) Process for oxygenation of components for refinery blending of transportation fuels
WO2012082851A1 (en) Desulfurization of hydrocarbon feed using gaseous oxidant
EP0198730A2 (en) Regeneration process of a used catalyst by an aqueous hydrogen peroxide solution stabilized by an organic compound
JP2014528974A5 (en) Method of oxidative desulfurization integrated with sulfone cracking
JP2002241767A (en) Method for removing mercury from liquid hydrocarbon
AU2002251783B2 (en) Integrated preparation of blending components for refinery transportation fuels
AU2002251783A1 (en) Integrated preparation of blending components for refinery transportation fuels
EP0236021A2 (en) Process for upgrading diesel oils
JPH1180752A (en) Desulfurization of petroleum
KR20130095174A (en) Process for purifying aromatic extracts containing aromatic polycyclic compounds
AU2002245281B2 (en) Transportation fuels
JP3697503B2 (en) Method for oxidizing organic sulfur compounds contained in fuel oil and method for oxidative desulfurization of fuel oil
JP2004168663A (en) Method for oxidizing sulfur compound and method for producing desulfurized oil
JP2000096068A (en) Desulfurization of petroleum
JP2001322953A (en) Method for removing organic sulfur compound
JP2000212576A (en) Removal of mercury in liquid hydrocarbon
RU2269566C1 (en) Hydrogen sulfide-containing crude oil treatment process
CN108863863A (en) A method of producing dimethyl sulfoxide
JP3723841B2 (en) Oil reforming method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041207