JPH1180144A - Selective epoxidation of olefin - Google Patents

Selective epoxidation of olefin

Info

Publication number
JPH1180144A
JPH1180144A JP9239572A JP23957297A JPH1180144A JP H1180144 A JPH1180144 A JP H1180144A JP 9239572 A JP9239572 A JP 9239572A JP 23957297 A JP23957297 A JP 23957297A JP H1180144 A JPH1180144 A JP H1180144A
Authority
JP
Japan
Prior art keywords
thallium
reaction
catalyst
epoxidation
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9239572A
Other languages
Japanese (ja)
Other versions
JP4016461B2 (en
Inventor
Yasuo Kikuzono
康雄 菊園
Tomoyuki Kitano
智之 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP23957297A priority Critical patent/JP4016461B2/en
Publication of JPH1180144A publication Critical patent/JPH1180144A/en
Application granted granted Critical
Publication of JP4016461B2 publication Critical patent/JP4016461B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To control the ring opening of an epoxy ring without reducing a main reaction and to prevent the clogging of a catalyst channel caused by a by-product by using a specific cocatalyst in the epoxidation reaction of an olefin by a titanium atom-containing zeolite catalyst. SOLUTION: This selective epoxidation of an olefin comprises using a univalent thallium compound in reacting a 3-9C aliphatic olefin of the formula (R<1> to R<3> are each H or a 1-2C alkyl) with hydrogen peroxide or a compound to form hydrogen peroxide in the presence of a titanosilicate catalyst. A compound selected from thallium halide, thallium sulfate, thallium nitrate, thallium phosphate, thallium carbonate, thallium carboxylate and thallium hydroxide is used as the univalent thallium compound. Preferably a reaction phase is a liquid phase in the epoxidation and a solvent is water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アリル位が塩素置
換された脂肪族オレフィンの選択的エポキシ化法に関す
るものである。本発明で得られるエポキシ化合物は、反
応性の高いアリル位の塩素とエポキシ環からなる2官能
性化合物であり、新規なエポキシ樹脂原料、樹脂改質
剤、および農医薬等の各種合成中間体原料として極めて
有用な化合物である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for selective epoxidation of an aliphatic olefin having a chlorine-substituted allyl position. The epoxy compound obtained in the present invention is a highly reactive bifunctional compound comprising an allyl chlorine and an epoxy ring, and is a novel epoxy resin material, a resin modifier, and various synthetic intermediate materials such as agricultural and pharmaceutical products. Is a very useful compound.

【0002】[0002]

【従来の技術】アリル位が塩素置換されたエポキシ化合
物、例えばエピクロルヒドリンを製造するには、アリル
クロライドを出発原料とし過カルボン酸による直接エポ
キシ化法、アリルクロライドのクロルヒドリンを経由す
るクロルヒドリン法、および、過酸化水素とある種のチ
タン含有合成ゼオライト触媒による直接エポキシ化法等
が知られている。しかしながら、過カルボン酸による直
接エポキシ化法では、酸化剤の再生プロセスが必要であ
ることや酸化剤−有機物系が爆発性であり反応操作や設
備上の問題がある。また、クロルヒドリン法では、副生
する塩化カルシウムや多量の廃水処理の問題がある。
2. Description of the Related Art In order to produce an epoxy compound substituted with chlorine at allyl position, for example, epichlorohydrin, a direct epoxidation method using percarboxylic acid starting from allyl chloride, a chlorhydrin method via allyl chloride through chlorohydrin, and A direct epoxidation method using hydrogen peroxide and a certain titanium-containing synthetic zeolite catalyst is known. However, in the direct epoxidation method using a percarboxylic acid, a regeneration process of the oxidizing agent is required, and the oxidizing agent-organic system is explosive, which has problems in reaction operation and equipment. Further, the chlorhydrin method has a problem of treating by-product calcium chloride and a large amount of wastewater.

【0003】一方、過酸化水素とある種のチタン原子含
有合成ゼオライト触媒による直接エポキシ化は、例え
ば、特公平4-5028 号公報、米国特許第4,833,260 号明
細書に開示されているが、目的エポキシドに対する選択
率は一般に高いものの、水およびアルコールを含むプロ
トン性溶媒中でエポキシ化反応を行なうと、上述の合成
ゼオライト骨格上に存在する酸性水酸基の触媒作用によ
って、原料オレフィンのオリゴマー化や重合反応が生
じ、さらに、生成したエポキシ環の開環反応やさらにこ
の開環生成物と溶媒アルコールの縮合によるエーテル化
反応等がエポキシ化反応と併発して起こる。この結果、
上記のチタン原子含有合成ゼオライト触媒では、これら
の副反応によって生成する分子形状の大きな副生物が、
触媒の活性点に通じる" チャンネル" と称する反応基質
や生成物の通路を閉塞させ、エポキシ化活性が短時間で
低下し失活するという問題を生じる。
On the other hand, direct epoxidation using hydrogen peroxide and a certain kind of synthetic zeolite catalyst containing a titanium atom is disclosed in, for example, Japanese Patent Publication No. 4-5028 and US Pat. No. 4,833,260. Although the selectivity with respect to is generally high, when the epoxidation reaction is carried out in a protic solvent containing water and alcohol, the oligomerization or polymerization reaction of the starting olefin is caused by the catalytic action of the acidic hydroxyl groups present on the synthetic zeolite skeleton described above. Then, a ring-opening reaction of the formed epoxy ring and an etherification reaction by condensation of the ring-opened product with a solvent alcohol occur simultaneously with the epoxidation reaction. As a result,
In the above-mentioned titanium atom-containing synthetic zeolite catalyst, a by-product having a large molecular shape generated by these side reactions is
This obstructs the passage of reaction substrates and products called "channels" leading to the active site of the catalyst, causing a problem that the epoxidation activity is reduced and deactivated in a short time.

【0004】米国特許第4,824,976 号明細書には、上記
の問題を解決するため、反応前または反応中に適当な酸
中和剤を用いてチタン原子含有合成ゼオライト触媒を処
理することによって、合成ゼオライト骨格上に存在する
酸性水酸基を中和し、これによってエポキシ生成物の選
択率の向上を図ることが記載されている。この方法によ
れば、例えば、アリルクロライドのエポキシ化反応の場
合、選択率の向上が認められるが、エポキシ化の反応性
は酸中和剤の前処理によって低下し、前処理を行なわな
いチタン原子含有ゼオライト触媒を使用した場合と比べ
エピクロルヒドリンの生成速度が著しく減少する。
US Pat. No. 4,824,976 discloses a solution to the above problem by treating a synthetic zeolite catalyst containing a titanium atom with a suitable acid neutralizing agent before or during the reaction. It is described that an acidic hydroxyl group existing on a skeleton is neutralized, thereby improving the selectivity of an epoxy product. According to this method, for example, in the case of the epoxidation reaction of allyl chloride, the selectivity is improved, but the reactivity of the epoxidation is reduced by the pretreatment of the acid neutralizing agent, and the titanium atom which is not subjected to the pretreatment is treated. The production rate of epichlorohydrin is remarkably reduced as compared with the case where the contained zeolite catalyst is used.

【0005】また、特開平8-225556号公報には、エポキ
シ環の開環反応の抑制方法として、非塩基性塩を用いて
触媒を処理することにより上記の合成ゼオライト骨格上
に存在する酸性水酸基を中和し、これによってエポキシ
生成物の選択率の向上を図ることが記載されている。し
かし、この方法によっても、上記と同様の選択率の向上
は認められるが、エポキシ化の反応性は低下し、前処理
を行なわない触媒を使用した場合に比べオレフィンオキ
サイドの生成速度が著しく減少することは避けられな
い。
Japanese Patent Application Laid-Open No. 8-225556 discloses a method for suppressing the ring-opening reaction of an epoxy ring by treating a catalyst with a non-basic salt to form an acidic hydroxyl group existing on the synthetic zeolite skeleton. To neutralize, thereby increasing the selectivity of the epoxy product. However, even with this method, the same selectivity improvement as described above is observed, but the reactivity of epoxidation is reduced, and the production rate of olefin oxide is significantly reduced as compared with the case where a catalyst without pretreatment is used. That is inevitable.

【0006】さらに、これらの従来技術では、反応溶媒
としてメタノールのようなアルコール類、または、アセ
トン等の有機溶媒が好ましく、これらを添加しない場合
は、エポキシ化の反応性が著しく低下することが示され
ている。また、例えば、メタノールを溶媒として用いる
と、原料オレフィンが炭素数3〜9の低級オレフィンの
場合は、殆どの場合、原料オレフィンおよび/または、
生成エポキシドとメタノールおよび水が、共沸組成を形
成するので、特に生成物の回収が困難となり、この触媒
プロセスを実用化する際大きな問題となる。
Further, in these conventional techniques, alcohols such as methanol or organic solvents such as acetone are preferable as reaction solvents, and when these are not added, the epoxidation reactivity is remarkably reduced. Have been. Further, for example, when methanol is used as a solvent, when the starting olefin is a lower olefin having 3 to 9 carbon atoms, in most cases, the starting olefin and / or
Since the produced epoxide, methanol, and water form an azeotropic composition, it is particularly difficult to recover the product, which is a major problem in putting this catalytic process into practical use.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、チタ
ン原子含有ゼオライト触媒(チタノシリケート触媒)に
よるオレフィンのエポキシ化反応において、主反応であ
るエポキシ化反応の活性を低下させることなく、エポキ
シ環の開環を抑制し、副反応生成物による触媒“チャン
ネル”の閉塞を抑止する方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an epoxidation reaction of an olefin with a titanium atom-containing zeolite catalyst (titanosilicate catalyst) without reducing the activity of the epoxidation reaction which is the main reaction. It is an object of the present invention to provide a method for suppressing ring opening and suppressing blockage of a catalyst “channel” by a by-product.

【0008】[0008]

【課題を解決するための手段】本発明は、すなわち、下
記一般式(1)で示される炭素数3〜9の脂肪族オレフィ
ンと過酸化水素、または反応系中で過酸化水素を生成す
る化合物とをチタノシリケート触媒の存在下で反応させ
るにあたり、助触媒として一価のタリウム化合物を用い
ることを特徴とするオレフィンの選択的エポキシ化法で
ある。
The present invention relates to an aliphatic olefin having 3 to 9 carbon atoms represented by the following general formula (1) and hydrogen peroxide, or a compound which forms hydrogen peroxide in a reaction system. And c. In the presence of a titanosilicate catalyst, wherein a monovalent thallium compound is used as a co-catalyst.

【0009】[0009]

【化2】 (式中、R1 、R2 およびR3 は水素原子、またはC
1 〜C2 のアルキル基を示し、それぞれ同一であっも異
なっていてもよい。)
Embedded image (Wherein R 1 , R 2 and R 3 represent a hydrogen atom or C
1 -C shows two alkyl groups, or different an each identical. )

【0010】本発明に用いられる一般式(1)で示される
脂肪族オレフィンとしては、アリルクロライド、メタリ
ルクロライド、1−クロロ−2−ブテン、1−クロロ−
3−メチル−2−ブテン、1−クロロ−2−ペンテン等
が挙げられ、工業的にはエポキシ化反応によりエピクロ
ルヒドリンを生成するアリルクロライド、または、メタ
リルクロライドが有用である。また、過酸化水素として
は通常、過酸化水素水が使用され、過酸化水素を生成す
る化合物としては例えば尿素の過酸化水素付加化合物、
あるいはt−ブチルハイドロパ−オキサイド等が挙げら
れる。
The aliphatic olefin represented by the general formula (1) used in the present invention includes allyl chloride, methallyl chloride, 1-chloro-2-butene, 1-chloro-
Examples thereof include 3-methyl-2-butene and 1-chloro-2-pentene. Industrially, allyl chloride or methallyl chloride, which produces epichlorohydrin by an epoxidation reaction, is useful. In addition, hydrogen peroxide is usually used as a hydrogen peroxide solution, and as a compound that generates hydrogen peroxide, for example, a hydrogen peroxide addition compound of urea,
Alternatively, t-butyl hydroperoxide and the like can be mentioned.

【0011】本発明に用いられるチタノシリケート触媒
は、一般式: xTiO2・(1-x)SiO2(式中のxが0.002〜0.20)
で示される組成のチタン原子含有合成ゼオライト触媒
(TS−1と称される)組成の場合、特に効果が大きい
が、一価のタリウム化合物の助触媒としての効果は、こ
の範囲に限られるものでなく、一般にエポキシ化活性を
有するチタノシリケート触媒であれば同様の助触媒効果
を示すことが可能である。
The titanosilicate catalyst used in the present invention has a general formula: xTiO 2 · (1-x) SiO 2 (where x is 0.002 to 0.20)
In the case of the composition of a titanium atom-containing synthetic zeolite catalyst (referred to as TS-1) having the composition represented by the following formula, the effect is particularly large, but the effect of the monovalent thallium compound as a cocatalyst is limited to this range. In general, a titanosilicate catalyst having epoxidation activity can exhibit the same cocatalyst effect.

【0012】また、本発明に用いられるチタノシリケー
ト触媒は、その結晶構造が、MFI、MELまたはBE
Aの場合に一般に高いエポキシ化活性を示すので、これ
らの結晶構造を有するチタノシリケート触媒の場合に一
価のタリウム化合物の助触媒としての添加効果が特に顕
著に発現する。しかし、本発明が適用可能なチタノシリ
ケート触媒の結晶構造はこれらに限られるものでなく、
メソポアと呼ばれる大孔形骨格を有するチタノシリケー
ト触媒であれば結晶性であっても、非晶性であっても同
様な助触媒効果を示すことが可能である。
The titanosilicate catalyst used in the present invention has a crystal structure of MFI, MEL or BE.
A generally exhibits a high epoxidation activity in the case of A. Therefore, in the case of titanosilicate catalysts having these crystal structures, the effect of adding a monovalent thallium compound as a cocatalyst is particularly remarkably exhibited. However, the crystal structure of the titanosilicate catalyst to which the present invention can be applied is not limited to these,
A titanosilicate catalyst having a large pore skeleton called mesopore can exhibit the same cocatalyst effect regardless of whether it is crystalline or amorphous.

【0013】本発明ににおいて助触媒として用いられる
一価のタリウム化合物は、タリウムのハロゲン化物、硫
酸塩、硝酸塩、りん酸塩、炭酸塩、カルボン酸塩等の一
価のタリウム塩や一価の水酸化タリウムであり、特に対
アニオンは制限されるものではない。一価のタリウム塩
としては、ハロゲン化物と硝酸塩が優れた添加効果を示
し、さらにこれらの中で弗化タリウム(一価)が最も優
れている。
The monovalent thallium compound used as a co-catalyst in the present invention may be a monovalent thallium salt such as a thallium halide, sulfate, nitrate, phosphate, carbonate, carboxylate or the like. Thallium hydroxide, and the counter anion is not particularly limited. As monovalent thallium salts, halides and nitrates exhibit excellent addition effects, and among these, thallium fluoride (monovalent) is the most excellent.

【0014】[0014]

【発明の実施の形態】本発明に使用されるチタノシリケ
ート(チタン原子含有合成ゼオライト)の調製にあたっ
ては、酸化ケイ素、酸化チタン、含窒素有機塩基および
水でなる反応混合物を調製する。酸化ケイ素源はテトラ
アルキルオルトケイ酸エステル、好ましくは、オルトケ
イ酸テトラエチルまたは単にコロイド状のシリカでもよ
い。酸化チタン源は、テトラアルコキシチタン、好まし
くは、テトラエトキシチタン、テトライソプロポキシチ
タン、または、テトラブトキシチタンの中から選ばれる
化合物、または、四塩化チタンやオキシ塩化チタンのよ
うな無機化合物でもよい。有機塩基は、水酸化テトラア
ルキルアンモニウム、または、臭化テトラアルキルアン
モニウムの中から選ばれる化合物、特に好ましくは、水
酸化テトラ−n−プロピルアンモニウムである。各試薬
の混合物を撹拌し、得られた沈殿より溶媒を除去した後
オートクレーブに移し、130〜200℃、自己圧力、
1〜30日の条件下で、チタノシリケート前駆体の結晶
が形成されるまで水熱処理する。次いでこれらの結晶を
母液から分離し水で注意深く洗浄、乾燥した後、空気中
で500〜800℃で焼成することにより目的とするチ
タノシリケート触媒が得られる。
BEST MODE FOR CARRYING OUT THE INVENTION In preparing a titanosilicate (a synthetic zeolite containing a titanium atom) used in the present invention, a reaction mixture comprising silicon oxide, titanium oxide, a nitrogen-containing organic base and water is prepared. The silicon oxide source may be a tetraalkyl orthosilicate, preferably tetraethyl orthosilicate or simply colloidal silica. The titanium oxide source may be a compound selected from tetraalkoxytitanium, preferably tetraethoxytitanium, tetraisopropoxytitanium, or tetrabutoxytitanium, or an inorganic compound such as titanium tetrachloride or titanium oxychloride. The organic base is a compound selected from tetraalkylammonium hydroxide or tetraalkylammonium bromide, particularly preferably tetra-n-propylammonium hydroxide. The mixture of each reagent was stirred, the solvent was removed from the obtained precipitate, and then transferred to an autoclave.
Hydrothermal treatment is performed under conditions of 1 to 30 days until crystals of the titanosilicate precursor are formed. Next, these crystals are separated from the mother liquor, carefully washed with water and dried, and then calcined at 500 to 800 ° C. in air to obtain the desired titanosilicate catalyst.

【0015】一般式(1)で示されるオレフィンに対す
るチタノシリケ−ト触媒の好ましい仕込み濃度は、0.
5〜20重量%であり、2〜15重量%で最も高いオレ
フィン基準のエポキシ化選択率、および収率が得られ
る。用いる水溶液中の過酸化水素の好ましい濃度は1〜
60重量%であるが保存性や操作性の面から10〜40
重量%が好ましい。助触媒となる一価のタリウム化合物
のチタノシリケート触媒に対する仕込み量は、0.1〜
20重量%であり、0.5〜10重量%が好ましい。タ
リウム化合物による処理方法は、タリウム化合物を適当
な溶媒、例えば、水やアルコールに溶解してチタノシリ
ケート触媒を加えスラリー溶液を調製し、このスラリー
溶液を撹拌してチタノシリケートの細孔の中にタリウム
化合物を取り込み、その後、ろ過、または、遠心分離と
デカンテーション等により触媒を分離して、要すれば洗
浄、乾燥して反応系に導入することができる。もちろ
ん、タリウム化合物をチタノシリケート触媒と別個に反
応系に直接導入して反応させることもできる。
The preferred concentration of the titanosilicate catalyst with respect to the olefin represented by the general formula (1) is 0.1.
The epoxidation selectivity based on olefin and the yield are 5 to 20% by weight, and the highest is 2 to 15% by weight. The preferred concentration of hydrogen peroxide in the aqueous solution used is from 1 to
Although it is 60% by weight, it is 10 to 40 in terms of storability and operability.
% By weight is preferred. The charged amount of the monovalent thallium compound serving as a cocatalyst with respect to the titanosilicate catalyst is 0.1 to
It is 20% by weight, preferably 0.5 to 10% by weight. In the treatment method using a thallium compound, a thallium compound is dissolved in an appropriate solvent, for example, water or alcohol, and a titanosilicate catalyst is added to prepare a slurry solution.The slurry solution is stirred to form a slurry in the pores of the titanosilicate. Then, the thallium compound is taken in, and then the catalyst can be separated by filtration or centrifugation and decantation, and, if necessary, washed and dried to be introduced into the reaction system. Needless to say, the thallium compound may be directly introduced into the reaction system separately from the titanosilicate catalyst to cause the reaction.

【0016】エポキシ化反応は、適当な溶媒の存在下で
行なうことができる。適当な溶媒としては、水、メタノ
ールやイソプロピルアルコールのような低級アルコー
ル、アセトン、等の有機溶媒、または、これらの混合物
が挙げられる。なお、本発明においては、後述のように
単一溶媒として水を使用する方法が原料オレフィンの種
類により特に有利であり、この場合、過酸化水素水中に
含まれる水をそのまま利用することができる。
The epoxidation reaction can be performed in the presence of a suitable solvent. Suitable solvents include water, lower alcohols such as methanol and isopropyl alcohol, organic solvents such as acetone, and mixtures thereof. In the present invention, the method of using water as a single solvent as described later is particularly advantageous depending on the type of the starting olefin. In this case, the water contained in the hydrogen peroxide solution can be used as it is.

【0017】本発明のエポキシ化反応の反応温度は、0
〜150℃で、好ましくは10〜80℃で行なうことが
できる。しかし、タリウム化合物を助触媒として使用し
ない従来法では、エポキシ化反応と並行して高温で優勢
となる触媒上の酸点が関与したエポキシ環の開環、原料
オレフィンのオリゴーマー化や重合などの副反応が起こ
るため、反応温度が、40℃以上になるとエポキシ選択
率が著しく低下する。これに対して、タリウム化合物を
助触媒として使用した場合は、触媒中の副反応サイトと
なっている酸点が選択的かつ効果的にブロックされ、こ
れら酸点が関与するエポキシ環の開環反応、原料オレフ
ィンのオリゴーマー化や重合反応がほぼ完全に抑制され
るため、反応温度を60℃としても、エポキシ選択率が
殆ど低下することなく、短時間でエポキシ化反応を完結
させることができる。エポキシ化反応の反応圧力は、大
気圧〜20気圧という広い圧力範囲で行うことができ
る。また、反応方法は連続流通式、回分式のいずれの方
法でも可能である。
The reaction temperature of the epoxidation reaction of the present invention is 0.
The reaction can be carried out at a temperature of up to 150 ° C, preferably at a temperature of 10 to 80 ° C. However, in the conventional method in which a thallium compound is not used as a co-catalyst, in parallel with the epoxidation reaction, the epoxy ring opening involving the acid sites on the catalyst, which becomes predominant at a high temperature, is involved in secondary reactions such as oligomerization and polymerization of the starting olefin. Since the reaction occurs, when the reaction temperature is 40 ° C. or higher, the epoxy selectivity is significantly reduced. On the other hand, when a thallium compound is used as a co-catalyst, the acid sites serving as side reaction sites in the catalyst are selectively and effectively blocked, and the ring-opening reaction of the epoxy ring involving these acid sites is performed. Since the oligomerization or polymerization reaction of the starting olefin is almost completely suppressed, the epoxidation reaction can be completed in a short time without substantially lowering the epoxy selectivity even at a reaction temperature of 60 ° C. The reaction pressure of the epoxidation reaction can be performed in a wide pressure range from atmospheric pressure to 20 atm. The reaction method may be any of a continuous flow method and a batch method.

【0018】エポキシ化反応終了後、チタノシリケート
触媒、または一価のタリウム化合物で処理したチタノシ
リケート触媒を、ろ過あるいは遠心分離等の方法により
エポキシ化反応混合物から分離した後、回収されたチタ
ノシリケート触媒は次のエポキシ化反応において有効に
利用することができる。触媒分離後の反応液は、水層と
有機層の二層に分離しており原料および生成物の99%
以上が有機層にある。含水量が0.1〜0.8重量%の
ため、分液後、そのまま、もしくは、微量残留した触媒
を精密ろ過で除去した後、蒸留で直接原料の回収および
生成物の精製が可能である。
After completion of the epoxidation reaction, the titanosilicate catalyst or the titanosilicate catalyst treated with a monovalent thallium compound is separated from the epoxidation reaction mixture by a method such as filtration or centrifugation, and then the recovered titanosilicate catalyst is recovered. The nosilicate catalyst can be effectively used in the next epoxidation reaction. The reaction solution after the catalyst separation is separated into two layers, an aqueous layer and an organic layer, and 99% of the raw materials and products are separated.
The above is the organic layer. Since the water content is 0.1 to 0.8% by weight, it is possible to directly recover the raw material and purify the product by distillation, after the separation, as it is, or after removing a trace amount of the remaining catalyst by microfiltration. .

【0019】[0019]

【作用】以下、本エポキシ化反応について考察する。一
価のタリウム化合物を助触媒として用いた場合は、アル
カリ金属やアルカリ土類金属を助触媒として用いた場合
に比べてオレフィンの反応性を低下させることなく酸点
をブロックしエポキシ環の開環をほぼ完全に抑制できる
ことが認められた。これは一価のタリウムの電荷が+1
と最小であり、かつこの+1の電荷が重元素に起因する
厚い外殻電子の遮蔽を受けることにより"Si-O(δ-)Tl(
δ+)" なる結合における結合分極による電場勾配が、タ
リウム原子よりも低周期に位置し外殻電子の遮蔽が卑な
アルカリ金属(Na,K)やアルカリ土類金属(Mg,
Ca,Sr,Ba)に比して小さくなり、この結果、活
性点に通じるゼオライト中のチャンネルや活性点付近の
疎水性の低下が少なくなったためと推察される。さら
に、一価のタリウムで酸点をブロックした場合は、これ
をブロックしない場合の"Si-O(-)H(+)"という結合にお
ける結合分極による電場勾配よりさらに勾配が小さくな
るため、1価のタリウムで処理しない場合に比べて逆に
疎水性が増し活性が向上するという、酸点ブロックと合
わせて二重の効果が得られる。
The epoxidation reaction will be discussed below. When a monovalent thallium compound is used as a cocatalyst, the acid sites are blocked and the epoxy ring is opened without reducing the reactivity of the olefin, as compared with the case where an alkali metal or alkaline earth metal is used as a cocatalyst. Was found to be almost completely suppressed. This is because the charge of monovalent thallium is +1
And this +1 charge is shielded by the thick outer electrons due to heavy elements, resulting in "Si-O (δ-) Tl (
δ +) ", the electric field gradient due to the bond polarization is located at a lower period than that of the thallium atom, and the shielding of outer electrons is less alkaline metal (Na, K) or alkaline earth metal (Mg,
Ca, Sr, Ba), which is presumed to be due to a decrease in the hydrophobicity near the active site in the channel in the zeolite leading to the active site. Furthermore, when the acid site is blocked with monovalent thallium, the gradient becomes smaller than the electric field gradient due to the bond polarization in the bond of “Si—O (−) H (+)” when the acid site is not blocked. Contrary to the case where no treatment with thallium is used, a double effect is obtained in combination with the acid site block, in which the hydrophobicity is increased and the activity is improved.

【0020】本発明のエポキシ化反応において、液相中
の溶媒が水のみである場合、反応液相中のアリルクロラ
イド骨格を持つオレフィンが、二重結合炭素に少なくと
も1以上のメチル基が置換したオレフィンである場合
に、特に高いエポキシ化活性が得られる。これは、一般
式(1)中のR1 、R2 およびR3 が全て水素である場合
のアリルクロライドでは、アリル位に置換された塩素原
子の効果により二重結合の電子供与性が低下し、この結
果、過酸化水素中の酸素の二重結合への親電子的攻撃に
より進行するエポキシ化の反応速度が低下するのに対し
て、R1 、R2 およびR3 の1つ以上がメチル基の場合
は、この置換メチル基の二重結合への電子供与効果によ
って、二重結合の親電子性を回復させるためであると推
察される。例えば、β-メチルアリルクロライド(メタ
リルクロライド)では、メタノール溶媒を添加しない、
より単純な反応液相で最も効率良くエポキシ化反応を実
施することができるため、未反応オレフィンおよびエポ
キシ生成物を蒸留で容易に高純度に分離することができ
る。
In the epoxidation reaction of the present invention, when the solvent in the liquid phase is water only, the olefin having an allyl chloride skeleton in the reaction liquid phase has at least one methyl group substituted on the double bond carbon. Particularly high epoxidation activity is obtained when it is an olefin. This is because in the case of allyl chloride where R 1 , R 2 and R 3 in the general formula (1) are all hydrogen, the electron donating property of the double bond is reduced due to the effect of the chlorine atom substituted at the allyl position. As a result, the reaction rate of epoxidation, which proceeds due to electrophilic attack on the double bond of oxygen in hydrogen peroxide, decreases, while one or more of R 1 , R 2 and R 3 are methyl. In the case of a group, it is presumed that this is to restore the electrophilicity of the double bond due to the electron donating effect of the substituted methyl group on the double bond. For example, in β-methylallyl chloride (methallyl chloride), no methanol solvent is added,
Since the epoxidation reaction can be carried out most efficiently in a simpler reaction liquid phase, the unreacted olefin and the epoxy product can be easily separated to a high purity by distillation.

【0021】また、上に示したオレフィンとして、例え
ばメタリルクロライドなどを用いる場合、メタノール等
の溶媒の添加によって、エポキシ化反応の速度は低下す
るが、タリウム化合物の助触媒としての効果、すなわち
エポキシ環の開環反応、原料オレフィンのオリゴマー化
や重合反応をほぼ完全に抑制するという効果は影響を受
けないので、目的に応じて、例えば反応液相を単一相と
する等のためにメタノール等の任意の溶媒を添加するこ
とができる。
When methallyl chloride or the like is used as the olefin shown above, the rate of the epoxidation reaction is reduced by the addition of a solvent such as methanol, but the effect of the thallium compound as a cocatalyst, that is, The effect of almost completely suppressing the ring opening reaction and the oligomerization or polymerization reaction of the starting olefin is not affected. Therefore, depending on the purpose, for example, methanol or the like may be used to make the reaction liquid phase a single phase. Can be added.

【0022】[0022]

【実施例】以下、実施例、比較例により本発明を具体的
に説明する。なお、例中、組成%はいずれも重量%であ
る。 触媒調製例1 Cogel溶液調製:ジムロート、温度計および滴下ロート
を備えた1L−セパラブルフラスコに、2-プロパノール
(IPA)100grを入れ、これにオルトケイ酸テトラエチル
(アルドリッチ社製>99.999%)93gr を室温、撹拌下で添
加した。一方、IPA 70.4gr に、0.05N-塩酸水溶液17.5
grを加え、これを滴下ロートに入れ室温、撹拌下で滴々
加え、無色透明溶液を得た。つぎに、IPA 49.0gr に、
チタン酸テトラブチル(アルドリッチ社製)5.44gr を加
え、これを滴下ロートに入れ、室温、撹拌下で滴々加え
た。添加により溶液は、淡黄色透明溶液となった。さら
に、アルドリッチ社製の20%-テトラプロピルアンモニウ
ムハイドロオキサイド( 以下、「TPAOH 」と称する)23.
5gr を滴下ロートに入れ、この水溶液を室温、撹拌下で
滴々加え、寒天状沈殿318gを得た。
The present invention will be specifically described below with reference to examples and comparative examples. In the examples, the composition percentages are all weight percentages. Catalyst Preparation Example 1 Cogel solution preparation: 2-propanol was placed in a 1 L-separable flask equipped with a Dimroth, thermometer and dropping funnel.
100 g of (IPA) was added, and 93 g of tetraethyl orthosilicate (> 99.999% manufactured by Aldrich) was added thereto at room temperature under stirring. On the other hand, IPA 70.4gr, 0.05N hydrochloric acid aqueous solution 17.5
gr was added, and this was put into a dropping funnel and added dropwise at room temperature under stirring to obtain a colorless transparent solution. Next, to IPA 49.0gr,
5.44 gr of tetrabutyl titanate (manufactured by Aldrich) was added, and the mixture was placed in a dropping funnel and added dropwise at room temperature with stirring. Upon addition, the solution became a pale yellow clear solution. Further, Aldrich 20% -tetrapropyl ammonium hydroxide (hereinafter referred to as `` TPAOH '') 23.
5 gr was put into a dropping funnel, and this aqueous solution was added dropwise at room temperature under stirring to obtain 318 g of an agar-like precipitate.

【0023】沈殿の濃縮乾固:この寒天状沈殿を1L−
ナスフラスコに移し、水流ポンプ減圧下80℃のロ−タリ
−エバポレ−タ−で溶媒を留去した。さらに、110 ℃の
オイルバス上で2時間乾燥処理し、白色沈殿35.1grを回
収した。この白色沈殿をアルミナ製自動乳鉢で粉砕し
た。
Concentration of the precipitate to dryness:
The mixture was transferred to an eggplant flask, and the solvent was distilled off with a rotary evaporator at 80 ° C. under a reduced pressure of a water pump. Further, the precipitate was dried on an oil bath at 110 ° C. for 2 hours to recover 35.1 gr of a white precipitate. This white precipitate was pulverized with an automatic mortar made of alumina.

【0024】水熱合成反応:粉砕後の沈殿31.098grをテ
フロン(商標名)製内筒を入れた500ml-SUS 製オートクレーフ゛
に入れ、これに20%-TPAOH34.8gr を添加した。撹拌なし
で、30〜170 ℃まで2時間で昇温し、170 ℃で24時間反
応させた。170 ℃での圧力は、約17Kg/cm2であった。反
応後、沈殿をろ過し、沈殿に脱イオン水を添加し洗浄を
行なった。洗浄液がN/10-AgNO3水溶液で白濁しなくなる
まで洗浄を繰り返した後、沈殿をろ過し、120 ℃恒温乾
燥機中で4時間乾燥した。
Hydrothermal synthesis reaction: 31.098 gr of the crushed precipitate was placed in a 500 ml-SUS autoclave containing an inner tube made of Teflon (trade name), and 34.8 gr of 20% -TPAOH was added thereto. Without stirring, the temperature was raised to 30 to 170 ° C in 2 hours, and the reaction was carried out at 170 ° C for 24 hours. The pressure at 170 ° C. was about 17 kg / cm 2 . After the reaction, the precipitate was filtered, and deionized water was added to the precipitate for washing. The washing was repeated with an N / 10-AgNO 3 aqueous solution until the washing solution was not clouded, and the precipitate was filtered and dried in a constant-temperature oven at 120 ° C. for 4 hours.

【0025】焼成:乾燥後の沈殿を磁性坩堝に入れ、マ
ッフル炉で空気雰囲気下550℃で3時間焼成し、純白の
焼成品を得た。このチタノシリケート触媒は、仕込み基
準でSiO2/TiO2=28.4(式量比)であった。
Firing: The dried precipitate was placed in a magnetic crucible and fired in a muffle furnace at 550 ° C. for 3 hours in an air atmosphere to obtain a pure white fired product. This titanosilicate catalyst had SiO 2 / TiO 2 = 28.4 (formula ratio) on a charged basis.

【0026】比較例1 300ml硝子オートクレーブに、触媒調製例1で調製した
触媒(以下、単にチタノシリケート触媒(A)という)
1.001gを入れ、これに、メタノール22.42gと35%-過酸化
水素水36.61gを添加し、さらに、メタリルクロライド6
1.80gを加えた後、圧力計付きの栓ネジで密封した。スター
ラー で撹拌下40℃の湯浴で2時間反応させた。反応後、
硝子オートクレーフ゛を氷冷した後、触媒を分離し、反応生成物
をガスクロマトグラフ、および、残存過酸化水素をヨー
ドメトリー法により分析定量した。この分析法は、以下
の各例でも同様にして行なった。反応結果を以下の各例
と共に表1に示す。
Comparative Example 1 A catalyst prepared in Catalyst Preparation Example 1 (hereinafter simply referred to as titanosilicate catalyst (A)) was placed in a 300 ml glass autoclave.
1.001 g was added, and thereto, methanol (22.42 g) and 35% -hydrogen peroxide (36.61 g) were added, and methallyl chloride 6 was further added.
After adding 1.80 g, it was sealed with a plug screw with a pressure gauge. The mixture was reacted for 2 hours in a water bath at 40 ° C. with stirring by a stirrer. After the reaction,
After cooling the glass autoclave with ice, the catalyst was separated, and the reaction product was analyzed and quantified by gas chromatography and the remaining hydrogen peroxide by iodometry. This analysis method was similarly performed in each of the following examples. The reaction results are shown in Table 1 together with the following examples.

【0027】比較例2 100ml硝子オートクレーフ゛ を使用し、チタノシリケート触媒
(A)2.003g、35%-過酸化水素水10.7g 、メタリルクロ
ライド16.5g とし、メタノールを加えないこと以外は、
比較例1と同様にしてエポキシ化反応を行なった。
Comparative Example 2 A 100 ml glass autoclave was used to prepare 2.003 g of titanosilicate catalyst (A), 10.7 g of 35% hydrogen peroxide solution and 16.5 g of methallyl chloride, except that methanol was not added.
An epoxidation reaction was performed in the same manner as in Comparative Example 1.

【0028】触媒調製例2(弗化タリウム処理触媒) 100ml 硝子オートクレーフ゛に、チタノシリケート触媒(A)1.
5gを入れ、これに、2%- TlF 水溶液18.5g を加え密栓し
た。撹拌しながら40℃の湯浴で2時間処理した。これ
にメタノール40.2g を添加し良く撹拌した後、触媒を遠
心分離し(6000rpm、30分)、上澄み液をテ゛カンテーションで除
いた後、沈殿2.6gを得た。この沈殿に脱イオン水53.3g
を添加し、室温中で30分間マグネチックスターラーで撹
拌洗浄した。洗浄後、このスラリーを遠心分離し(6000
rpm 、45分)、湿潤沈殿2.4gを得、これを17時間風乾
し、TlF処理触媒1.511gを得た。
Catalyst Preparation Example 2 (Thallium Fluoride Treated Catalyst) A titanosilicate catalyst (A) was placed in a 100 ml glass autoclave.
5 g was added thereto, and 18.5 g of a 2% -TlF aqueous solution was added thereto and sealed. The mixture was treated in a water bath at 40 ° C. for 2 hours with stirring. After adding 40.2 g of methanol to the mixture and stirring well, the catalyst was centrifuged (6000 rpm, 30 minutes), and the supernatant was removed by decantation to obtain 2.6 g of a precipitate. 53.3 g of deionized water in this precipitate
Was added and washed by stirring with a magnetic stirrer at room temperature for 30 minutes. After washing, the slurry was centrifuged (6000
rpm, 45 minutes) to obtain 2.4 g of a wet precipitate, which was air-dried for 17 hours to obtain 1.511 g of a TIF-treated catalyst.

【0029】実施例1 50ml硝子オートクレーブに、上記の弗化タリウム処理触
媒1.511gを入れ、これに、35%-過酸化水素水8.5gを添加
し、さらに、メタリルクロライド12.5g を加えた後、撹
拌下40℃の湯浴で2時間エポキシ化反応を行なった。
Example 1 In a 50 ml glass autoclave, 1.511 g of the above-mentioned thallium fluoride treatment catalyst was added, 8.5 g of 35% hydrogen peroxide solution was added thereto, and further 12.5 g of methallyl chloride was added. The epoxidation reaction was carried out in a water bath at 40 ° C. for 2 hours with stirring.

【0030】実施例2 50ml硝子オートクレーブに、チタノシリケート触媒
(A)1.004gを入れ、これに、35%-過酸化水素水5.4gお
よび2%-TlF水溶液1.381gを添加し、2分間撹拌した。こ
のスラリーに、メタリルクロライド8.6gを加えた後密封
し、撹拌下40℃の湯浴で2時間エポキシ化反応を行なっ
た。
Example 2 In a 50 ml glass autoclave, 1.004 g of titanosilicate catalyst (A) was added, and 5.4 g of 35% hydrogen peroxide solution and 1.381 g of 2% -TlF aqueous solution were added thereto, followed by stirring for 2 minutes. did. After adding 8.6 g of methallyl chloride to the slurry, the slurry was sealed and subjected to an epoxidation reaction in a 40 ° C. water bath with stirring for 2 hours.

【0031】実施例3 50ml硝子オートクレーフ゛に、チタノシリケート触媒(A)1.00
1g、35%-過酸化水素水5.7g、2%-TlF水溶液1.473g、メタ
リルクロライド8.7gを使用し、60℃の湯浴で30分間反応
させた以外は実施例2と同様にしてエポキシ化反応を行
なった。
Example 3 Titanosilicate catalyst (A) 1.00 was added to a 50 ml glass autoclave.
Using 1 g, 5.7 g of 35% -hydrogen peroxide solution, 1.473 g of 2% -TlF aqueous solution, and 8.7 g of methallyl chloride, the epoxy was reacted in the same manner as in Example 2 except that the reaction was carried out in a 60 ° C. water bath for 30 minutes. The reaction was carried out.

【0032】触媒調製例3(硝酸タリウム処理触媒) チタノシリケート触媒(A)2.0gを100ml-硝子オートク
レーブに入れ、これに2%-TlNO3水溶液32.2gを加え、密
栓した。これを60℃の湯浴に入れ、撹拌下、2時間処理
した。処理後硝子オートクレーブを水冷・開封し、これ
にメタノール41.0g を添加し数分撹拌した。このスラリ
ーを遠心分離し(6000rpm 、30分)、上澄み液をデカン
テーションで除去した後、脱イオン水52.0g を加え、室
温で洗浄した。洗浄後の触媒を遠心分離し(6000rpm 、
40分)、16時間風乾した後、70℃のガス循環乾燥器で3
時間乾燥し、2.05g の硝酸タリウム処理触媒を得た。
Catalyst Preparation Example 3 (Thallium Nitrate Treatment Catalyst) 2.0 g of the titanosilicate catalyst (A) was placed in a 100 ml glass autoclave, and 32.2 g of a 2% -TlNO 3 aqueous solution was added thereto, and the mixture was sealed. This was placed in a 60 ° C. water bath and treated with stirring for 2 hours. After the treatment, the glass autoclave was cooled with water and opened, and 41.0 g of methanol was added thereto, followed by stirring for several minutes. The slurry was centrifuged (6000 rpm, 30 minutes), the supernatant was removed by decantation, and 52.0 g of deionized water was added, followed by washing at room temperature. The washed catalyst is centrifuged (6000 rpm,
40 minutes), air-dry for 16 hours, and then use a gas circulation dryer at 70 ° C for 3 hours.
After drying for an hour, 2.05 g of thallium nitrate-treated catalyst was obtained.

【0033】実施例4 上記の硝酸タリウム処理触媒1.008g、35%-過酸化水素水
5.5g、メタリルクロライド8.8gを使用した以外は、実施
例1と同様にしてエポキシ化反応を行なった。
EXAMPLE 4 1.08 g of the above thallium nitrate treatment catalyst, 35% hydrogen peroxide solution
An epoxidation reaction was carried out in the same manner as in Example 1 except that 5.5 g and 8.8 g of methallyl chloride were used.

【0034】実施例5 チタノシリケート触媒(A)1.007g、35%-過酸化水素水
5.6g、2%-TlNO3水溶液3.678g、メタリルクロライド8.6g
を使用した以外は実施例2と同様にしてエポキシ化反応
を行なった。
Example 5 1.007 g of titanosilicate catalyst (A), 35% hydrogen peroxide solution
5.6 g, 2.678 g of 2% -TlNO 3 aqueous solution, 8.6 g of methallyl chloride
Epoxidation reaction was carried out in the same manner as in Example 2 except that

【0035】触媒調製例4(塩化タリウム処理触媒) チタノシリケート触媒(A)2.1gを300ml-硝子オートク
レーブに入れ、これに0.49%-TlCl水溶液113.6gを加え、
密栓した。これを60℃の湯浴に入れ、撹拌下2時間処理
した。処理後このスラリーを触媒調製例3と同様にして
遠心分離を行ない、脱イオン水で洗浄した後、乾燥し、
1.88g の塩化タリウム処理触媒を得た。
Catalyst Preparation Example 4 (Thallium chloride treated catalyst) 2.1 g of titanosilicate catalyst (A) was placed in a 300 ml glass autoclave, and 113.6 g of a 0.49% -TlCl aqueous solution was added thereto.
Sealed. This was placed in a 60 ° C. water bath and treated for 2 hours with stirring. After the treatment, the slurry was centrifuged in the same manner as in Catalyst Preparation Example 3, washed with deionized water, and dried.
1.88 g of thallium chloride treated catalyst were obtained.

【0036】実施例6 上記の塩化タリウム処理触媒1.004g、35%-過酸化水素水
6.3g、メタリルクロライド8.8gを使用した以外は、実施
例1と同様にしてエポキシ化反応を行なった。
Example 6 1.004 g of the above thallium chloride-treated catalyst, 35% -hydrogen peroxide solution
An epoxidation reaction was carried out in the same manner as in Example 1 except that 6.3 g and 8.8 g of methallyl chloride were used.

【0037】比較例3 100ml 硝子オートクレーブに、チタノシリケート触媒
(A)2.006gを入れ、これに、35%-過酸化水素水11.4g
およびLiF14mg を添加し、2分間撹拌した。このスラリ
ーに、メタリルクロライド16.7g を加えた後密栓し、撹
拌下40℃の湯浴で2時間エポキシ化反応を行なった。
Comparative Example 3 In a 100 ml glass autoclave, 2.006 g of the titanosilicate catalyst (A) was placed, and 11.4 g of 35% hydrogen peroxide solution was added thereto.
And 14 mg of LiF were added and stirred for 2 minutes. After adding 16.7 g of methallyl chloride to the slurry, the slurry was sealed and an epoxidation reaction was carried out in a water bath at 40 ° C. for 2 hours with stirring.

【0038】触媒調製例5(水酸化ナトリウム処理触
媒) チタノシリケート触媒(A)1.504gを100ml-硝子オート
クレーブに入れ、これに2%-NaOH 水溶液3.4gを加え、密
栓した。これを40℃の湯浴に入れ、2時間処理した。処
理後このスラリーを触媒調製例3と同様にして遠心分離
を行ない、脱イオン水で洗浄した後、風乾し、1.306gの
水酸化ナトリウム処理触媒を得た。
Catalyst Preparation Example 5 (Sodium hydroxide-treated catalyst) 1.504 g of the titanosilicate catalyst (A) was placed in a 100 ml-glass autoclave, and 3.4 g of a 2% -NaOH aqueous solution was added thereto, followed by sealing. This was placed in a 40 ° C. water bath and treated for 2 hours. After the treatment, this slurry was centrifuged in the same manner as in Catalyst Preparation Example 3, washed with deionized water, and air-dried to obtain 1.306 g of a sodium hydroxide-treated catalyst.

【0039】比較例4 上記の水酸化ナトリウム処理触媒1.306g、35%-過酸化水
素水6.9g、メタリルクロライド10.9g を使用した以外
は、実施例1と同様にしてエポキシ化反応を行なった。
Comparative Example 4 An epoxidation reaction was carried out in the same manner as in Example 1 except that 1.306 g of the above sodium hydroxide-treated catalyst, 6.9 g of 35% hydrogen peroxide solution, and 10.9 g of methallyl chloride were used. .

【0040】触媒調製例6(炭酸カリウム処理触媒) チタノシリケート触媒(A)2.046g、2%-K2CO3水溶液7.
6gを使用した以外は、触媒調製例5と同様にして炭酸カ
リウム処理触媒1.848gを得た。
Catalyst Preparation Example 6 (potassium carbonate treatment catalyst) 2.046 g of titanosilicate catalyst (A), 2% -K 2 CO 3 aqueous solution 7.
Except that 6 g was used, 1.848 g of a potassium carbonate-treated catalyst was obtained in the same manner as in Catalyst Preparation Example 5.

【0041】比較例5 上記の炭酸カリウム処理触媒1.848g、35%-過酸化水素水
9.9g、メタリルクロライド15.4gを使用した以外は、実
施例1と同様にしてエポキシ化反応を行なった。
Comparative Example 5 1.848 g of the above potassium carbonate treatment catalyst, 35% -hydrogen peroxide solution
The epoxidation reaction was carried out in the same manner as in Example 1 except that 9.9 g and 15.4 g of methallyl chloride were used.

【0042】触媒調製例7(塩化カルシウム処理触媒) チタノシリケート触媒(A)1.447gを30ml硝子オートク
レーブに入れ、これに2%-CaCl2水溶液8.8gを加え密栓し
た。以下の操作は触媒調製例5と同様にして塩化カルシ
ウム処理触媒1.302gを得た。
Catalyst Preparation Example 7 (Calcium chloride-treated catalyst) 1.447 g of the titanosilicate catalyst (A) was placed in a 30 ml glass autoclave, and 8.8 g of a 2% -CaCl 2 aqueous solution was added thereto, and the mixture was sealed. The following operation was carried out in the same manner as in Catalyst Preparation Example 5, to obtain 1.302 g of a calcium chloride-treated catalyst.

【0043】比較例6 上記の塩化カルシウム処理触媒1.302g、35%-過酸化水素
水7.0g、メタリルクロライド11.2g を使用した以外は、
実施例1と同様にしてエポキシ化反応を行なった。
Comparative Example 6 Except that 1.302 g of the above-mentioned calcium chloride-treated catalyst, 7.0 g of 35% hydrogen peroxide solution, and 11.2 g of methallyl chloride were used,
An epoxidation reaction was performed in the same manner as in Example 1.

【0044】触媒調製例8(酢酸バリウム処理触媒) チタノシリケート触媒(A)1.526g、2%-Ba(CH3COO)2
溶液21.3g を使用した以外は、触媒調製例5と同様にし
て酢酸バリウム処理触媒1.920gを得た。
Catalyst Preparation Example 8 (Barium acetate-treated catalyst) Except that 1.526 g of titanosilicate catalyst (A) and 21.3 g of 2% -Ba (CH 3 COO) 2 aqueous solution were used, the same procedure as in Catalyst Preparation Example 5 was used. 1.920 g of a barium acetate-treated catalyst was obtained.

【0045】比較例7 上記の酢酸バリウム処理触媒1.920g、35%-過酸化水素水
10.2g 、 メタリルクロライド16.0g を使用した以外は、
実施例1と同様にしてエポキシ化反応を行なった。
Comparative Example 7 1.920 g of the above-mentioned barium acetate-treated catalyst, 35% -hydrogen peroxide solution
Except using 10.2g and methallyl chloride 16.0g,
An epoxidation reaction was performed in the same manner as in Example 1.

【0046】比較例8 100ml 硝子オートクレーブに、チタノシリケート触媒
(A)0.498gを入れ、これに、35%-過酸化水素水19.9g
を添加し、さらに、常圧で蒸留した沸点45.0〜45.5℃の
留分のアリルクロライド( 以下、ACと称す)26.4gを加
えた後、撹拌下40℃の湯浴で2時間反応させた。反応
後、硝子オートクレーブを氷冷した後、触媒を分離し、
反応生成物をガスクロマトグラフ、および、残存過酸化
水素をヨードメトリー法により分析定量した。(以下、
各例も同様)反応結果を以下の各例と共に表2に示す。
Comparative Example 8 0.498 g of the titanosilicate catalyst (A) was placed in a 100 ml glass autoclave, and 19.9 g of 35% hydrogen peroxide solution was added thereto.
Was added, and further 26.4 g of allyl chloride (hereinafter referred to as AC) of a fraction having a boiling point of 45.0 to 45.5 ° C. distilled under normal pressure was added thereto, followed by a reaction in a 40 ° C. water bath with stirring for 2 hours. After the reaction, after cooling the glass autoclave with ice, the catalyst was separated,
The reaction product was analyzed and quantified by gas chromatography and the residual hydrogen peroxide was determined by iodometry. (Less than,
The reaction results are shown in Table 2 together with the following examples.

【0047】比較例9 チタノシリケート触媒(A)0.498g、メタノール11.1g
、35%-過酸化水素水18.1g 、AC26.0g を使用した以
外は、比較例8と同様にしてエポキシ化反応を行なっ
た。
Comparative Example 9 0.498 g of titanosilicate catalyst (A), 11.1 g of methanol
An epoxidation reaction was carried out in the same manner as in Comparative Example 8, except that 18.1 g of 35% aqueous hydrogen peroxide and 26.0 g of AC were used.

【0048】比較例10 50ml硝子オートクレーブを使用し、チタノシリケート触
媒(A)1.013g、35%-過酸化水素水6.2g、AC9.1gを使
用した以外は、比較例8と同様にしてエポキシ化反応を
行なった。
Comparative Example 10 An epoxy resin was prepared in the same manner as in Comparative Example 8 except that a 50 ml glass autoclave was used, and 1.013 g of titanosilicate catalyst (A), 6.2 g of 35% hydrogen peroxide solution, and 9.1 g of AC were used. The reaction was carried out.

【0049】実施例7 50ml硝子オートクレーブを使用し、チタノシリケート触
媒(A)1.003g、35%-過酸化水素水6.3g、メタノ−ル4.
0g、2%-TlF水溶液1.154g、AC8.6gを使用した以外は、
比較例8と同様にしてエポキシ化反応を行なった。
Example 7 Using a 50 ml glass autoclave, 1.003 g of titanosilicate catalyst (A), 6.3 g of 35% hydrogen peroxide solution, and methanol 4.
0 g, 1.154 g of 2% -TlF aqueous solution, except that AC 8.6 g was used,
An epoxidation reaction was performed in the same manner as in Comparative Example 8.

【0050】比較例11 50ml硝子オートクレーブを使用し、チタノシリケート触
媒(A)1.018g、35%-過酸化水素水6.3g、AC8.8gを使
用し、反応温度を60℃、反応時間を1時間とした以外は
比較例8と同様にしてエポキシ化反応を行なった。
Comparative Example 11 Using a 50 ml glass autoclave, 1.018 g of titanosilicate catalyst (A), 6.3 g of 35% hydrogen peroxide solution and 8.8 g of AC, a reaction temperature of 60 ° C. and a reaction time of 1 An epoxidation reaction was performed in the same manner as in Comparative Example 8 except that the time was changed.

【0051】実施例8 50ml硝子オートクレーブを使用し、チタノシリケート触
媒(A)1.013g、35%-過酸化水素水6.2g、2%-TlF水溶液
1.507g、AC8.9gを使用し、反応温度を60℃、反応時間
を1時間とした以外は比較例8と同様にしてエポキシ化
反応を行なった。
Example 8 Using a 50 ml glass autoclave, 1.013 g of titanosilicate catalyst (A), 6.2 g of 35% hydrogen peroxide solution, 2% aqueous solution of TlF
The epoxidation reaction was carried out in the same manner as in Comparative Example 8 except that 1.507 g and 8.9 g of AC were used, the reaction temperature was 60 ° C., and the reaction time was 1 hour.

【0052】[0052]

【表1】 [Table 1]

【0053】[0053]

【表2】 [Table 2]

【0054】上記各数値の計算方法は次式による。 (1) MAC、ACの反応率 (添加したMAC、ACのモル数−生成物中のMAC、
ACのモル数) ×100/添加したMAC、ACのモル
数 (2) 過酸化水素反応率 (添加した過酸化水素のモル数−生成物中の過酸化水素
のモル数)×100/添加した過酸化水素のモル数 (3)MEP、EPの選択率 生成物中のMEP、EPのモル数×100/反応したM
AC、ACのモル数 (4)ジオール選択率 生成物中のジオールのモル数×100/反応したMA
C、ACのモル数 (5)炭素収支 (生成物中のMAC、ACのモル数+生成物中のME
P、EPのモル数+生成物中のジオールのモル数)×1
00/添加したMAC、ACのモル数
The calculation method of the above numerical values is based on the following equation. (1) Reaction rate of MAC, AC (MAC added, moles of AC-MAC in product,
(Mol number of AC) × 100 / mol number of added MAC and AC (2) Hydrogen peroxide reaction rate (mol number of added hydrogen peroxide−mol number of hydrogen peroxide in product) × 100 / added Number of moles of hydrogen peroxide (3) Selectivity of MEP and EP Number of moles of MEP and EP in product × 100 / M reacted
AC, mole number of AC (4) diol selectivity mole number of diol in product × 100 / MA reacted
C, mole number of AC (5) Carbon balance (MAC in the product, mole number of AC + ME in the product
Number of moles of P, EP + number of moles of diol in product) × 1
00 / moles of added MAC and AC

【0055】以上の各実施例、比較例に示されるよう
に、本発明法は、チタノシリケート触媒のみ使用した場
合に比べエポキシ化物の生成速度は大差ないが選択率が
優れている。また、助触媒としてアルカリ金属またはア
ルカリ土類金属を使用した場合と比べエポキシ化物の生
成速度が促進されている。チタノシリケ−ト触媒のみの
場合、溶媒としてメタノ−ルの添加は、メタリルクロラ
イドのエポキシ化反応においては効果がなく寧ろ選択率
の低下が認められる(比較例1)。これに対し、アリル
クロライドのエポキシ化反応においてはエポキシ化物の
生成速度が非常に促進されるが選択率は十分でない(比
較例9)。また、本発明法においては、反応温度を60
℃まで高めても十分な選択率が保持されたまま生成速度
が促進される(実施例3、8)。
As shown in the above Examples and Comparative Examples, the method of the present invention is excellent in selectivity, although the production rate of epoxide is not much different from the case where only a titanosilicate catalyst is used. In addition, the rate of epoxidation is increased as compared with the case where an alkali metal or an alkaline earth metal is used as a promoter. In the case of using only the titanosilicate catalyst, addition of methanol as a solvent has no effect on the epoxidation reaction of methallyl chloride, but rather decreases the selectivity (Comparative Example 1). On the other hand, in the epoxidation reaction of allyl chloride, the production rate of the epoxide is greatly promoted, but the selectivity is not sufficient (Comparative Example 9). In the method of the present invention, the reaction temperature is set at 60.
Even when the temperature is raised to ° C., the production rate is promoted while a sufficient selectivity is maintained (Examples 3 and 8).

【0056】[0056]

【発明の効果】本発明によればオレフィンの過酸化水素
によるエポキシ化反応を行なうにあたり、チタノシリケ
ート触媒の助触媒として一価のタリウム化合物を使用す
ることにより、エポキシ化活性を低下させることなく、
生成されるエポキシ化合物の開環反応のみならず、原料
オレフィンのオリゴマー化や重合反応がほぼ完全に抑制
されるので、触媒中の細孔内へのエポキシ開環生成物、
および、オリゴマーや重合物等の蓄積による閉塞を防止
することが可能となり、エポキシ化反応の生成速度と共
にその選択率を高めることができる。また、触媒活性再
生のためのいかなる処理も行なうことなく長期間の繰り
返し使用が可能となる。
According to the present invention, in carrying out the epoxidation reaction of olefins with hydrogen peroxide, a monovalent thallium compound is used as a co-catalyst of a titanosilicate catalyst, so that the epoxidation activity is not reduced. ,
Not only the ring-opening reaction of the produced epoxy compound, but also the oligomerization and polymerization reaction of the starting olefin are almost completely suppressed, so the epoxy ring-opening product into the pores in the catalyst,
In addition, it is possible to prevent clogging due to accumulation of oligomers, polymers, and the like, and it is possible to increase the generation rate of the epoxidation reaction and the selectivity. In addition, long-term repeated use is possible without performing any treatment for regenerating the catalytic activity.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C07D 303/08 C07D 303/08 // C07B 61/00 300 C07B 61/00 300 ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 6 Identification code FI C07D 303/08 C07D 303/08 // C07B 61/00 300 C07B 61/00 300

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(1)で示される炭素数3〜
9の脂肪族オレフィンと過酸化水素、または反応系中で
過酸化水素を生成する化合物とをチタノシリケート触媒
の存在下で反応させるにあたり、助触媒として一価のタ
リウム化合物を用いることを特徴とするオレフィンの選
択的エポキシ化法。 【化1】 (式中、R1 、R2 及びR3 は水素原子またはC1 〜C
2 のアルキル基を示し、それぞれ同一であっも異なって
いてもよい。)
1. A compound having 3 to 3 carbon atoms represented by the following general formula (1):
Wherein the aliphatic olefin of No. 9 is reacted with hydrogen peroxide or a compound that generates hydrogen peroxide in the reaction system in the presence of a titanosilicate catalyst, wherein a monovalent thallium compound is used as a promoter. Process for selective epoxidation of olefins. Embedded image (Wherein R 1 , R 2 and R 3 represent a hydrogen atom or C 1 -C
And represents two alkyl groups, which may be the same or different. )
【請求項2】 一般式(1)で示される脂肪族オレフィ
ンがアリルクロライド、メタリルクロライド、1−クロ
ロ−2−ブテン、1−クロロ−3−メチル−2−ブテン
または1−クロロ−2−ペンテンである請求項1に記載
のエポキシ化法。
2. An aliphatic olefin represented by the general formula (1) is allyl chloride, methallyl chloride, 1-chloro-2-butene, 1-chloro-3-methyl-2-butene or 1-chloro-2-. The epoxidation method according to claim 1, which is pentene.
【請求項3】 チタノシリケート触媒が一般式: xTiO2
・(1-x)SiO2( 式中のx は0.002〜0.20) で示される化合
物である請求項1に記載のエポキシ化法。
3. The titanosilicate catalyst has a general formula: xTiO 2
· (1-x) epoxidation process of claim 1 (the x in the formula .002 to .20) SiO 2 is a compound represented by.
【請求項4】 チタノシリケート触媒がMFI、MEL
またはBEAの結晶構造を有する請求項3に記載のエポ
キシ化法。
4. A titanosilicate catalyst comprising MFI, MEL
4. The epoxidation method according to claim 3, which has a BEA crystal structure.
【請求項5】 一価のタリウム化合物がタリウムのハロ
ゲン化物、硫酸塩、硝酸塩、りん酸塩、炭酸塩、カルボ
ン酸塩および水酸化物から選ばれた少なくとも一種であ
る請求項1に記載のエポキシ化法。
5. The epoxy according to claim 1, wherein the monovalent thallium compound is at least one selected from a thallium halide, a sulfate, a nitrate, a phosphate, a carbonate, a carboxylate and a hydroxide. Chemical method.
【請求項6】 一価のタリウムのハロゲン化物がタリウ
ムのフッ化物または塩化物である請求項5に記載のエポ
キシ化法。
6. The epoxidation method according to claim 5, wherein the monovalent thallium halide is thallium fluoride or chloride.
【請求項7】 請求項1記載のオレフィンのエポキシ化
反応を行なうにあたり、一価のタリウム化合物で処理し
たチタノシリケート触媒を用いるか、または一価のタリ
ウム化合物とチタノシリケート触媒を別個に反応系に導
入することを特徴とする方法。
7. The olefin epoxidation reaction according to claim 1, wherein a titanosilicate catalyst treated with a monovalent thallium compound is used, or a monovalent thallium compound and a titanosilicate catalyst are separately reacted. A method characterized by being introduced into a system.
【請求項8】 請求項1記載のオレフィンのエポキシ化
反応を行なうにあたり、反応相が液相であり、該液相中
の溶媒が水であることを特徴とする方法。
8. The method according to claim 1, wherein the reaction phase is a liquid phase in conducting the epoxidation reaction of the olefin according to claim 1, and the solvent in the liquid phase is water.
JP23957297A 1997-09-04 1997-09-04 Selective epoxidation of olefins. Expired - Fee Related JP4016461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23957297A JP4016461B2 (en) 1997-09-04 1997-09-04 Selective epoxidation of olefins.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23957297A JP4016461B2 (en) 1997-09-04 1997-09-04 Selective epoxidation of olefins.

Publications (2)

Publication Number Publication Date
JPH1180144A true JPH1180144A (en) 1999-03-26
JP4016461B2 JP4016461B2 (en) 2007-12-05

Family

ID=17046800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23957297A Expired - Fee Related JP4016461B2 (en) 1997-09-04 1997-09-04 Selective epoxidation of olefins.

Country Status (1)

Country Link
JP (1) JP4016461B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001039965A (en) * 1999-05-24 2001-02-13 Kuraray Co Ltd Production of 3-hydroxy-3-methyltetrahydrofuran
JP2001163866A (en) * 1999-12-07 2001-06-19 Kuraray Co Ltd Method for producing 3-methyl-tetrahydrofuran
JP2001226366A (en) * 1999-12-06 2001-08-21 Kuraray Co Ltd Method for producing 3-methyltetrahydrofuran and intermediate thereof
JP2001524381A (en) * 1997-12-01 2001-12-04 ソルヴェイ Zeolite-based catalyst, its use and method of epoxidation in the presence of this catalyst
JP2006514007A (en) * 2002-11-12 2006-04-27 ソルヴェイ Process for producing 1,2-epoxy-3-chloropropane
JP2006514930A (en) * 2002-11-12 2006-05-18 ソルヴェイ Process for producing 1,2-epoxy-3-chloropropane
JP2007291010A (en) * 2006-04-25 2007-11-08 Daiso Co Ltd Method for producing optically active 2-methylepihalohydrin or the like
WO2008093711A1 (en) * 2007-01-31 2008-08-07 Osaka University Solid-phase oxidation reaction system
JP2013523633A (en) * 2010-03-25 2013-06-17 ダウ グローバル テクノロジーズ エルエルシー Process for producing propylene oxide using a pretreated epoxidation catalyst

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001524381A (en) * 1997-12-01 2001-12-04 ソルヴェイ Zeolite-based catalyst, its use and method of epoxidation in the presence of this catalyst
JP4712189B2 (en) * 1997-12-01 2011-06-29 ソルヴェイ(ソシエテ アノニム) Zeolite-based catalyst, its use and process for epoxidation in the presence of this catalyst
JP4566331B2 (en) * 1999-05-24 2010-10-20 株式会社クラレ Method for producing 3-hydroxy-3-methyltetrahydrofuran
JP2001039965A (en) * 1999-05-24 2001-02-13 Kuraray Co Ltd Production of 3-hydroxy-3-methyltetrahydrofuran
JP2001226366A (en) * 1999-12-06 2001-08-21 Kuraray Co Ltd Method for producing 3-methyltetrahydrofuran and intermediate thereof
JP4566332B2 (en) * 1999-12-06 2010-10-20 株式会社クラレ Process for producing 3-methyltetrahydrofuran and its intermediate
JP4578602B2 (en) * 1999-12-07 2010-11-10 株式会社クラレ Method for producing 3-methyltetrahydrofuran
JP2001163866A (en) * 1999-12-07 2001-06-19 Kuraray Co Ltd Method for producing 3-methyl-tetrahydrofuran
JP4864324B2 (en) * 2002-11-12 2012-02-01 ソルヴェイ(ソシエテ アノニム) Process for producing 1,2-epoxy-3-chloropropane
JP2006514007A (en) * 2002-11-12 2006-04-27 ソルヴェイ Process for producing 1,2-epoxy-3-chloropropane
JP2006514930A (en) * 2002-11-12 2006-05-18 ソルヴェイ Process for producing 1,2-epoxy-3-chloropropane
JP2011116783A (en) * 2002-11-12 2011-06-16 Solvay (Sa) Method for producing 1,2-epoxy-3-chloropropane
JP2011132254A (en) * 2002-11-12 2011-07-07 Solvay (Sa) Method for producing 1,2-epoxy-3-chloropropane
JP2007291010A (en) * 2006-04-25 2007-11-08 Daiso Co Ltd Method for producing optically active 2-methylepihalohydrin or the like
WO2008093711A1 (en) * 2007-01-31 2008-08-07 Osaka University Solid-phase oxidation reaction system
KR101207962B1 (en) 2007-01-31 2012-12-04 오사카 유니버시티 Solid-phase oxidation reaction mixtures
US8334394B2 (en) 2007-01-31 2012-12-18 Osaka University Solid phase reaction system for oxidation
JP5376505B2 (en) * 2007-01-31 2013-12-25 国立大学法人大阪大学 Solid phase oxidation reaction mixture
JP2013523633A (en) * 2010-03-25 2013-06-17 ダウ グローバル テクノロジーズ エルエルシー Process for producing propylene oxide using a pretreated epoxidation catalyst

Also Published As

Publication number Publication date
JP4016461B2 (en) 2007-12-05

Similar Documents

Publication Publication Date Title
EP0930308B1 (en) Process for the preparation of olefinic epoxides
KR100714666B1 (en) Process for producing propylene oxide
EP0971789B1 (en) Catalyst compositions derived from titanium-containing molecular sieves
KR100373573B1 (en) Method for preparing catalyst and oxirane compound
KR100999360B1 (en) Preparation of immobilized ionic liquid catalyst on porous amorphous silica and its use for the synthesis of five-membered cyclic carbonates
JP4016461B2 (en) Selective epoxidation of olefins.
KR100626104B1 (en) A process for producing propylene oxide
TWI466875B (en) Method for making epoxides
JPH11501250A (en) Epoxides produced by oxidizing olefins with air or oxygen
JP4055229B2 (en) Method for epoxidizing allyl halides and regenerating catalyst used
US20130116454A1 (en) Epoxidation process
JPH0441449A (en) Production of cyclohexane-1,2-diol
JP3405125B2 (en) Process for producing epoxidized olefins
KR20090020584A (en) Process for producing hydrogen peroxide
JPH05237392A (en) Oxidization catalyst and epoxidation method
JP2857236B2 (en) Method for producing glycidyl compound
TWI432262B (en) Method for making epoxides
EP3283468B1 (en) Improved catalyst performance in propylene epoxidation
JPH0116815B2 (en)
JPH06211821A (en) Method for epoxidizing olefin compound
JPH1045644A (en) Production of alkylene glycol
JPH1025285A (en) Epoxidation of olefin compound
JP3044878B2 (en) Production method of epoxy compound
JPH0959269A (en) Production of glycydyl methacrylate
JP2006169091A (en) Method for producing titanium silicalite ts-1

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140928

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees