JPH1180112A - Production of cyanoethyl compound for lithium or lithium ion secondary battery electrolyte - Google Patents

Production of cyanoethyl compound for lithium or lithium ion secondary battery electrolyte

Info

Publication number
JPH1180112A
JPH1180112A JP9245178A JP24517897A JPH1180112A JP H1180112 A JPH1180112 A JP H1180112A JP 9245178 A JP9245178 A JP 9245178A JP 24517897 A JP24517897 A JP 24517897A JP H1180112 A JPH1180112 A JP H1180112A
Authority
JP
Japan
Prior art keywords
compound
lithium
cyanoethyl
acrylonitrile
hydroxyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9245178A
Other languages
Japanese (ja)
Other versions
JP3946825B2 (en
Inventor
Takashi Nishikawa
俊 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sunstar Engineering Inc
Uni Sunstar BV
Original Assignee
Sunstar Engineering Inc
Uni Sunstar BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunstar Engineering Inc, Uni Sunstar BV filed Critical Sunstar Engineering Inc
Priority to JP24517897A priority Critical patent/JP3946825B2/en
Publication of JPH1180112A publication Critical patent/JPH1180112A/en
Application granted granted Critical
Publication of JP3946825B2 publication Critical patent/JP3946825B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Secondary Cells (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To readily produce the subject high-purity compound without causing polymerization of acrylonitrile and discoloring by carrying out the cyanoethylating reaction of a specific compound with the acrylonitrile in the presence of a specified catalyst in a nonaqueous system. SOLUTION: The cyanoethylating reaction of (A) a compound having 1-4 hydroxyl groups (a hydroxyl group-containing compound) with (B) acrylonitrile is carried out in the presence of (C) a reactional catalyst which is at least one selected from the group of compounds, composed of (i) lithium hydroxide and (ii) metallic lithium, lithium alkoxides or compounds composed of lithium and an active methylene compound such as lithium acetylacetonate and capable of manifesting effects substantially equivalent to those of the component (i) in an amount of 0.001-5 wt.%, based on the total amount of the components A and B and expressed in terms of the lithium in a nonaqueous system to afford the objective compound represented by the formula (R1 O)a R2 (OCH2 CH2 CN)b R1 is a 1-3C alkyl; R2 is a residue after removing all the hydroxyl groups from a hydroxyl group-containing compound; (a) is 0-3; (b) is 1-4; [(a)+(b)] is 1-4}.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウムまたはリチ
ウムイオン2次電池電解液用シアノエチル化合物の製造
法、更に詳しくは、水酸基を有する化合物とアクリロニ
トリルのシアノエチル化反応において、特定の反応触媒
を用い、非水系でシアノエチル化反応を行なうことによ
り、ビス(2−シアノエチル)エーテルの生成を抑え、か
つアクリロニトリルの重合およびこれに伴なう着色を生
じさせないシアノエチル化合物の製造法に関する。
The present invention relates to a method for producing a cyanoethyl compound for use as an electrolyte in a lithium or lithium ion secondary battery, and more particularly, to a method for producing a cyanoethyl compound of a compound having a hydroxyl group and acrylonitrile using a specific reaction catalyst. The present invention relates to a method for producing a cyanoethyl compound which suppresses the production of bis (2-cyanoethyl) ether by carrying out a cyanoethylation reaction in an aqueous system, and does not cause polymerization of acrylonitrile and the accompanying coloring.

【0002】[0002]

【従来の技術と発明が解決しようとする課題】従来、水
酸基を有する化合物とアクリロニトリルによるシアノエ
チル化反応には通常、苛性アルカリ(NaOH、KO
H)、第4級アンモニウム塩基などの触媒が用いられ、
そして媒体として水が用いられている。中でも、専ら経
済性に優れ、入手の容易な水酸化ナトリウムを用いて製
造されたシアノエチル化合物;シアノエチル化ポリビニ
ルアルコール、シアノエチル化プルラン、あるいは部分
シアノエチル化多価アルコールの(メタ)アクリレートを
ラジカル重合した高分子化合物等が、主に有機分散型エ
レクトロルミネッセンス用のバインダー樹脂として使用
されている。また、シアノエチル化合物は良好なイオン
導電性を示し、その高分子化した材料は、電池用材料、
特にリチウムまたはリチウムイオン2次電池の電極バイ
ンダー樹脂、ゲル型固体電解質のマトリックス樹脂など
に適用が検討されている。さらに、低分子シアノエチル
化合物もイオン導電性を活かし、これら電池の有機電解
液、ゲル型固体電解質等に検討されている。
2. Description of the Related Art Conventionally, a cyanoethylation reaction between a compound having a hydroxyl group and acrylonitrile usually involves caustic alkali (NaOH, KO).
H), a catalyst such as a quaternary ammonium base is used,
And water is used as a medium. Among them, cyanoethyl compounds produced using sodium hydroxide, which is exclusively economical and easily available; cyanoethylated polyvinyl alcohol, cyanoethylated pullulan, or partially cyanoethylated polyhydric alcohol (meth) acrylate obtained by radical polymerization Molecular compounds and the like are mainly used as binder resins for organic dispersion-type electroluminescence. Further, the cyanoethyl compound shows good ionic conductivity, and the polymerized material is a battery material,
Particularly, application to an electrode binder resin of a lithium or lithium ion secondary battery, a matrix resin of a gel-type solid electrolyte, and the like are being studied. Furthermore, low molecular cyanoethyl compounds also utilize ionic conductivity and are being studied for organic electrolytes, gel-type solid electrolytes, and the like for these batteries.

【0003】これら低分子シアノエチル化合物は、低分
子の水酸基を有する化合物を同様にアクリロニトリルで
シアノエチル化して製造されるが、水酸基の残存量を可
能な限り少なくする必要があり、水酸基量に対し過剰の
アクリロニトリルを用いる等の手段で水酸基を完全にシ
アノエチル基へ転換することが好ましい。しかし、過剰
のアクリロニトリルを使用すれば、媒体としての水がシ
アノエチル化され、ビス(2−シアノエチル)エーテル
[NCCH2CH2OCH2CH2CN]が生成し易いことが
判った。ビス(2−シアノエチル)エーテルも、元々シア
ノエチル化合物であり悪作用化合物ではないので、混合
物の形で供するにしても、その生成割合の制御が困難
で、製造バッチごとに含有量が変化し、品質にムラを生
じ問題が多い。
[0003] These low-molecular cyanoethyl compounds are produced by similarly cyanoethylating a compound having a low-molecular hydroxyl group with acrylonitrile. However, it is necessary to reduce the residual amount of hydroxyl groups as much as possible. It is preferable to completely convert the hydroxyl group to a cyanoethyl group by a method such as using acrylonitrile. However, if an excess of acrylonitrile is used, water as a medium is cyanoethylated, and bis (2-cyanoethyl) ether
[NCCH 2 CH 2 OCH 2 CH 2 CN] was found to be easily formed. Bis (2-cyanoethyl) ether is also originally a cyanoethyl compound and not an adverse compound. Therefore, even when provided in the form of a mixture, it is difficult to control the production ratio, and the content changes for each production batch. This causes many problems.

【0004】また、この副生物の生成を極力抑制しよう
とする場合は、反応で消費されるアクリロニトリル量に
合せアクリロニトリルの滴下速度を遅くして反応系中の
アクリロニトリル濃度を極力抑えること、および用いる
アクリロニトリル量を水酸基に対する当量より多く用い
ないこと等によって、ある程度の生成抑制は可能である
が、反面、得られるシアノエチル化合物中の水酸基の残
存量が増加し、品質が低下するという問題がある。この
問題は、分留等の分離手段で解決も可能であるが、著し
く生産性が低下し、コストアップと歩留りの低下を招
く。さらに、水のシアノエチル化を防ぐためには、非水
下で反応すれば解決できることが予測されるが、この場
合、苛性アルカリや有機塩基の存在によってアクリロニ
トリルの重合が起り、また該重合に応じて著しい着色
(褐色〜黒褐色:アルカリ、塩基によるアクリロニトリル
の環化重合と考えられる)を生じるという別の問題が発
生し、解決には至らないことが判った。
In order to minimize the formation of this by-product, the dropping rate of acrylonitrile is slowed down in accordance with the amount of acrylonitrile consumed in the reaction to minimize the acrylonitrile concentration in the reaction system, and to use acrylonitrile. Although the production can be suppressed to some extent by not using an amount larger than the equivalent to the hydroxyl group, there is a problem that the remaining amount of hydroxyl group in the obtained cyanoethyl compound is increased and the quality is reduced. Although this problem can be solved by a separation means such as fractionation, productivity is remarkably reduced, resulting in an increase in cost and a decrease in yield. Further, in order to prevent cyanoethylation of water, it is expected that the reaction can be solved by reacting in non-aqueous solution.In this case, however, polymerization of acrylonitrile occurs due to the presence of a caustic alkali or an organic base, and remarkable depending on the polymerization. Coloring
(Brown-black-brown: believed to be cyclopolymerization of acrylonitrile with alkali and base), which proved unsolved.

【0005】そこで、本発明者らは、かかる従来のシア
ノエチル化合物の製造において、ビス(2−シアノエチ
ル)エーテルを生成せず、アクリロニトリルの重合、着
色を生じさせないことについて鋭意検討を進めたとこ
ろ、反応触媒として水酸化リチウムもしくはその等価物
を用い、かつ非水下でシアノエチル化反応を行なえば、
ビス(2−シアノエチル)エーテルを全く生じず、またア
クリロニトリルの重合、着色もなく、簡単に高純度のシ
アノエチル化合物が得られることを見出し、本発明を完
成させるに至った。
Accordingly, the present inventors have conducted intensive studies on the production of bis (2-cyanoethyl) ether and the prevention of polymerization and coloring of acrylonitrile in the production of such a conventional cyanoethyl compound. If lithium hydroxide or its equivalent is used as a catalyst and the cyanoethylation reaction is performed in non-aqueous solution,
The present inventors have found that bis (2-cyanoethyl) ether is not generated at all, and there is no polymerization or coloring of acrylonitrile, and a high-purity cyanoethyl compound can be easily obtained, thereby completing the present invention.

【0006】すなわち、本発明は、式: (R1O)aR2(OCH2CH2CN)b [式中、R1は炭素数1〜3のアルキル基;R2は1〜4個
の水酸基を有する化合物(以下、水酸基含有化合物と称
す)から全ての水酸基を除いた残基;aは0〜3;およびb
は1〜4(但し、a+bは1〜4)である]で示されるシア
ノエチル化合物の製造法であって、上記水酸基含有化合
物とアクリロニトリルのシアノエチル化反応で当該シア
ノエチル化合物を製造するに当り、その反応触媒とし
て、(a)水酸化リチウム;および(b)実質的に水酸化リチ
ウムと等価な効果を示す、金属リチウム;リチウムアル
コキシド類;リチウムアセチルアセトネートなどのリチ
ウムと活性メチレン化合物からなる化合物;の群から選
ばれる少なくとも1種を用い、非水下でシアノエチル化
反応を行なうことを特徴とするシアノエチル化合物の製
造法を提供するものである。
Namely, the present invention has the formula: (R 1 O) aR 2 in (OCH 2 CH 2 CN) b [ wherein, R 1 represents an alkyl group having 1 to 3 carbon atoms; R 2 is a 1-4 A residue having all hydroxyl groups removed from a compound having a hydroxyl group (hereinafter, referred to as a hydroxyl group-containing compound); a is 0 to 3; and b
Is from 1 to 4 (where a + b is from 1 to 4). The method according to claim 1, wherein the cyanoethyl compound is produced by a cyanoethylation reaction of the hydroxyl group-containing compound and acrylonitrile. As a catalyst, (a) lithium hydroxide; and (b) a metal lithium; lithium alkoxides; a compound consisting of lithium and an active methylene compound such as lithium acetylacetonate; which has an effect substantially equivalent to lithium hydroxide; An object of the present invention is to provide a method for producing a cyanoethyl compound, comprising performing a cyanoethylation reaction under non-aqueous condition using at least one member selected from the group.

【0007】上記水酸基含有化合物としては、 (a)炭素数1〜6の1価アルコール(たとえばメタノー
ル、エタノール、n−プロパノール、イソプロパノー
ル、n−ブタノール、sec−ブタノール等); (b)炭素数2〜6の2〜4価アルコール類(たとえばエチ
レングリコール、プロピレングリコール、ネオペンチル
グリコール、ブタンジオール、ヘキシレングリコールな
どのグリコール類;グリセリン、トリメチロールプロパ
ン、エリスリトール、ペンタエリスリトールなどの3〜
4価アルコール類;ジエチレングリコール、トリエチレ
ングリコール、ジプロピレングリコール、トリプロピレ
ングリコール、ポリエチレングリコール、ポリプロピレ
ングリコールなどのポリグリコール類);
The hydroxyl group-containing compound includes: (a) a monohydric alcohol having 1 to 6 carbon atoms (eg, methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, etc.); Dihydric alcohols such as glycols such as ethylene glycol, propylene glycol, neopentyl glycol, butanediol, and hexylene glycol; triglycols such as glycerin, trimethylolpropane, erythritol and pentaerythritol
Tetrahydric alcohols; polyethylenes such as diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, polyethylene glycol, and polypropylene glycol);

【0008】(c)グリコール類またはポリグリコール類
の部分アルキルエーテル(たとえばエチレングリコール
モノメチルエーテル、エチレングリコールモノエチルエ
ーテル、ジエチレングリコールモノメチルエーテル、ジ
エチレングリコールモノエチルエーテル、トリエチレン
グリコールモノメチルエーテル、プロピレングリコール
モノメチルエーテル、プロピレングリコールモノエチル
エーテル、ジプロピレングリコールモノメチルエーテ
ル、トリプロピレングリコールモノメチルエーテル、ポ
リエチレングリコールモノメチルエーテル、ポリエチレ
ングリコールモノエチルエーテル、ポリエチレングリコ
ールモノブチルエーテル、ポリプロピレングリコールモ
ノメチルエーテル等); (d)分子量600以下のポリオキシアルキレンポリオー
ル類(たとえば、グリセリン、トリメチロールプロパ
ン、ペンタエリスリトール等にエチレンオキサイドおよ
び/またはプロピレンオキサイドを付加重合して得られ
るポリオキシエチレントリオール、ポリオキシプロピレ
ントリオール、ポリオキシエチレンテトラオール等);ま
たは
(C) Partial alkyl ethers of glycols or polyglycols (eg, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, triethylene glycol monomethyl ether, propylene glycol monomethyl ether, propylene Glycol monoethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, polyethylene glycol monomethyl ether, polyethylene glycol monoethyl ether, polyethylene glycol monobutyl ether, polypropylene glycol monomethyl ether, etc.); (d) polyoxyalkylene having a molecular weight of 600 or less Polyols (For example, polyoxyethylene triol, polyoxypropylene triol, polyoxyethylene tetraol, etc. obtained by addition polymerization of ethylene oxide and / or propylene oxide to glycerin, trimethylolpropane, pentaerythritol, etc.); or

【0009】(e)アンモニアまたはアミン化合物[たとえ
ばトリエタノールアミン、トリイソプロパノールアミ
ン、N−(2−ヒドロキシエチル)ジエチルアミン、N,
N−ビス(2−ヒドロキシエチル)エチルアミン、N,N
−ビス(2−ヒドロキシエチル)1−プロピルアミン、
N,N,N',N'−テトラキス(2−ヒドロキシエチル)エ
チレンジアミン、N,N,N',N'−テトラキス(2−ヒド
ロキシプロピル)エチレンジアミン等]にアルキレンオキ
サイド(エチレンオキサイドおよび/またはプロピレン
オキサイド)を付加重合した、分子量600以下の分子
末端に水酸基を有するN−モノ〜ポリオキシアルキレン
ポリオール類 が挙げられる。なお、上記(d)および(e)の水酸基含有化
合物にあって、その分子量が600を越えると、得られ
るシアノエチル化合物のイオン導電性が低下したり、粘
度が高くなりすぎる傾向にあり好ましくない。
(E) ammonia or an amine compound such as triethanolamine, triisopropanolamine, N- (2-hydroxyethyl) diethylamine, N,
N-bis (2-hydroxyethyl) ethylamine, N, N
-Bis (2-hydroxyethyl) 1-propylamine,
N, N, N ', N'-tetrakis (2-hydroxyethyl) ethylenediamine, N, N, N', N'-tetrakis (2-hydroxypropyl) ethylenediamine, etc.] and alkylene oxide (ethylene oxide and / or propylene oxide) And N-mono to polyoxyalkylene polyols having a hydroxyl group at the molecular terminal and having a molecular weight of 600 or less, obtained by addition-polymerizing the above. If the molecular weight of the hydroxyl group-containing compounds (d) and (e) exceeds 600, the resulting cyanoethyl compound tends to have low ionic conductivity or too high viscosity, which is not preferable.

【0010】本発明は、上記シアノエチル化反応の触媒
として水酸化リチウム(水和物も含む)の使用を特徴とす
るが、これ以外にも、実質的に水酸化リチウムと等価な
効果を示す化合物(等価物)、たとえば金属リチウム;リ
チウムアルコキシド類(リチウムメチルアルコラート、
リチウムエチルアルコラート、エチレングリコールリチ
ウムビスアルコラートなど);リチウムと活性メチレン化
合物(アセチルアセトン、マロン酸ジエチル、アセト酢
酸エチル、マロン酸ジニトリルなど)からなる化合物、
たとえばリチウムアセチルアセトネートなども使用しう
る。反応触媒の使用量は通常、水酸基含有化合物とアク
リロニトリルの合計量に対してリチウム分計算で0.0
01〜5%(重量%、以下同様)の範囲で選定すればよ
い。0.001%未満では、シアノエチル化反応の進行
が遅く、また5%を越えると、非水下では触媒の溶解性
が悪かったり、触媒の除去(精製)に手数がかかるなどの
問題がある。
The present invention is characterized by the use of lithium hydroxide (including hydrates) as a catalyst for the above cyanoethylation reaction. In addition, the present invention provides a compound having an effect substantially equivalent to lithium hydroxide. (Equivalent), for example, lithium metal; lithium alkoxides (lithium methyl alcoholate,
Lithium ethyl alcoholate, ethylene glycol lithium bis alcoholate, etc.); a compound composed of lithium and an active methylene compound (acetylacetone, diethyl malonate, ethyl acetoacetate, dinitrile malonate, etc.),
For example, lithium acetylacetonate may be used. The amount of the reaction catalyst used is usually 0.0% in terms of lithium content based on the total amount of the hydroxyl group-containing compound and acrylonitrile.
The selection may be made in the range of 01 to 5% (% by weight, the same applies hereinafter). If it is less than 0.001%, the progress of the cyanoethylation reaction is slow, and if it exceeds 5%, there is a problem that the solubility of the catalyst is poor under non-aqueous conditions, and it takes time to remove (purify) the catalyst.

【0011】上記シアノエチル化反応は通常、上述の反
応触媒(リチウム化合物)と水酸基含有化合物、および必
要に応じ有機溶剤等の媒体の存在下常温〜60℃程度の
温度で撹拌しつつ、所定量のアクリロニトリルを滴下し
ながら反応させることにより行なわれる。このように反
応触媒として水酸化リチウムなどのリチウム化合物を用
いることにより、アクリロニトリルの重合が生ぜず、更
に製造されるシアノエチル化合物に多少の触媒成分(Li
イオン)が残存しても、その弊害は少なく、精製を簡略
化することも可能でたいへん都合がよい。この理由は明
らかではないが、おそらく、水酸化リチウムの塩基度が
他の苛性アルカリや有機塩基類よりも小さいためではな
いかと推察される。
The above-mentioned cyanoethylation reaction is usually carried out in a predetermined amount while stirring at a temperature of about room temperature to about 60 ° C. in the presence of the above-mentioned reaction catalyst (lithium compound), a hydroxyl group-containing compound and, if necessary, a medium such as an organic solvent. The reaction is carried out by dropwise addition of acrylonitrile. By using a lithium compound such as lithium hydroxide as a reaction catalyst in this manner, polymerization of acrylonitrile does not occur, and some catalyst components (Li
Even if the (ion) remains, its adverse effect is small and purification can be simplified, which is very convenient. The reason for this is not clear, but it is presumed that the basicity of lithium hydroxide is probably smaller than other caustic alkalis and organic bases.

【0012】本発明によって製造されるシアノエチル化
合物の少なくとも1種に、通常のリチウム塩(たとえば
LiClO4、LiSCN、LiBF4、LiAsF6、LiCF
3SO3、LiPF6など)を溶解することにより、リチウ
ムまたはリチウムイオン2次電池の有機電解液として用
いることができる。ここで、電解液溶剤として機能する
シアノエチル化合物に加えて、従来より用いられている
他の非プロトン系極性溶剤(たとえば炭酸ジエチル、炭
酸エチレン、炭酸プロピレン、N−メチルピロリドン、
γ−ブチロラクトン、ジメチルスルホキシド、スルホラ
ン、N,N'−テトラメチル尿素、シアノ酢酸エチル、ア
セトニトリル、プロピオニトリル、サクシノニトリル、
ジオキサン、トリオキサン、テトラヒドロフラン、ジメ
トキシエタン、ジエトキシエタン、トリアセチン、リン
酸トリエチル、ニトロメタン、ニトロエタン、ニトロプ
ロパンなど)を併用することもできる。この場合、シア
ノエチル化合物を他の非プロトン系極性溶剤との合計量
に対して10重量%以上の範囲で選定すればよい。10
重量%未満では、シアノエチル化合物の使用効果が発現
しなくなる傾向にある。
[0012] At least one of the cyanoethyl compounds prepared according to the present invention may be added to a conventional lithium salt (eg, LiClO 4 , LiSCN, LiBF 4 , LiAsF 6 , LiCF).
By dissolving 3 SO 3 , LiPF 6 or the like, it can be used as an organic electrolyte for lithium or lithium ion secondary batteries. Here, in addition to the cyanoethyl compound that functions as an electrolyte solvent, other conventionally used aprotic polar solvents (e.g., diethyl carbonate, ethylene carbonate, propylene carbonate, N-methylpyrrolidone,
γ-butyrolactone, dimethylsulfoxide, sulfolane, N, N′-tetramethylurea, ethyl cyanoacetate, acetonitrile, propionitrile, succinonitrile,
Dioxane, trioxane, tetrahydrofuran, dimethoxyethane, diethoxyethane, triacetin, triethyl phosphate, nitromethane, nitroethane, nitropropane, etc.) can also be used in combination. In this case, the cyanoethyl compound may be selected in a range of 10% by weight or more based on the total amount of the other aprotic polar solvents. 10
If the amount is less than the weight percentage, the use effect of the cyanoethyl compound tends to be not exhibited.

【0013】本発明製造法による当該シアノエチル化合
物は、高沸点および低粘度の液体でかつ低凝固温度のも
のとして、高純度で得られることから、上述の手法によ
って、特にリチウムまたはリチウムイオン2次電池の有
機電解液への用途に有用であるが、これ以外に、適当な
マトリックス樹脂に包含させてゲル型固体電解質とする
こともできる。この場合、マトリックス樹脂を当該シア
ノエチル化合物で膨潤させることによってゲル型固体電
解質とする。上記マトリックス樹脂としては、SBR、
NBRなどの炭化水素鎖含有ポリマーおよび該ポリマー
のシアノエチル化ポリマー;フッ化ビニリデンなどのフ
ッ化ポリマーおよび該ポリマーのシアノエチル化ポリマ
ー;シアノエチル化ポリウレタン;シアノエチル化アクリ
ル系ポリマーが例示される。
The cyanoethyl compound according to the production method of the present invention can be obtained as a liquid having a high boiling point and a low viscosity and a high coagulation temperature and a high solidification temperature. Although it is useful for application to organic electrolytes, it is also possible to include a suitable matrix resin to obtain a gel-type solid electrolyte. In this case, a gel-type solid electrolyte is obtained by swelling the matrix resin with the cyanoethyl compound. As the matrix resin, SBR,
Examples thereof include a hydrocarbon chain-containing polymer such as NBR and a cyanoethylated polymer of the polymer; a fluorinated polymer such as vinylidene fluoride and a cyanoethylated polymer of the polymer; a cyanoethylated polyurethane; and a cyanoethylated acrylic polymer.

【0014】[0014]

【実施例】次に実施例および比較例を挙げて、本発明を
より具体的に説明する。 実施例1 4つ口フラスコに水酸基含有化合物としてエチレングリ
コール124.2g(2モル)と水酸化リチウム(LiOH
・H2O)0.1gを仕込み、60℃でLiOH・H2Oが
溶解するまで加熱撹拌する。次に40〜50℃に保ちな
がら、アクリロニトリル222.8g(4.2モル:水酸
基含有化合物の水酸基1モルに対し1.05モル)を2
時間かけて滴下する。滴下終了後、そのままの温度で3
時間撹拌を続けた後、塩化メチレン200gとイオン交
換水500mlを加え、数分撹拌する。撹拌を止め静置す
ると、2層に分離するので、上層の水層を分液廃棄し、
更に同様にイオン交換水を用い2回の水洗を行い、真空
ポンプを用いて乾燥、低揮発成分を除去して目的物を得
る。得られた目的物は、無色透明の低粘度液であって、
赤外線吸収スペクトルによりエチレングリコールビス
(2−シアノエチル)エーテル(記号2CE−EG)である
ことを確認し、ガスクロマトグラフ純度は99.5%以
上であった。
Next, the present invention will be described more specifically with reference to examples and comparative examples. Example 1 In a four-necked flask, 124.2 g (2 mol) of ethylene glycol as a hydroxyl-containing compound and lithium hydroxide (LiOH) were added.
· H 2 O) was charged 0.1 g, heating and stirring until dissolution is LiOH · H 2 O at 60 ° C.. Next, while maintaining the temperature at 40 to 50 ° C., 222.8 g of acrylonitrile (4.2 mol: 1.05 mol per mol of hydroxyl group of the hydroxyl group-containing compound) was added to 2 parts.
Drip over time. After dropping, keep the temperature at 3
After continuing stirring for 200 hours, 200 g of methylene chloride and 500 ml of ion-exchanged water are added, and the mixture is stirred for several minutes. When the stirring is stopped and the mixture is allowed to stand, it separates into two layers, and the upper aqueous layer is separated and discarded.
Further, similarly, washing with water is performed twice using ion-exchanged water, drying is performed using a vacuum pump, and low volatile components are removed to obtain a target product. The obtained target is a colorless and transparent low-viscosity liquid,
Ethylene glycol bis according to infrared absorption spectrum
It was confirmed to be (2-cyanoethyl) ether (symbol 2CE-EG), and the gas chromatographic purity was 99.5% or more.

【0015】実施例2 4つ口フラスコに、予めモレキュラーシーブで脱水した
エチレングリコール124.2g(2モル)と金属リチウ
ム粉末0.02gを仕込み、乾燥窒素ガスを導入しなが
ら、60℃で1時間反応させる。その後、実施例1と同
様40〜50℃に保ちながら、アクリロニトリル22
2.8g(4.2モル)を2時間かけて滴下反応、同様に
順次、塩化メチレンによる抽出、純水洗浄、乾燥を行
い、目的物を得る。同様赤外線吸収スペクトルでエチレ
ングリコールビス(2−シアノエチル)エーテルであるこ
とを確認、ガスクロマトグラフ純度も99.5%以上で
あることを確認した。
Example 2 A four-necked flask was charged with 124.2 g (2 mol) of ethylene glycol and 0.02 g of lithium metal powder which had been dehydrated with a molecular sieve in advance, and heated at 60 ° C. for 1 hour while introducing dry nitrogen gas. Let react. Thereafter, while maintaining the temperature at 40 to 50 ° C. as in Example 1, acrylonitrile 22
2.8 g (4.2 mol) was added dropwise over 2 hours, followed by successive extraction with methylene chloride, washing with pure water, and drying to obtain the desired product. Similarly, the infrared absorption spectrum confirmed that the product was ethylene glycol bis (2-cyanoethyl) ether, and the gas chromatographic purity was 99.5% or more.

【0016】実施例3〜29 上記実施例1,2と同様にして、下記表1〜5に示す水
酸基含有化合物を用い、それぞれ対応するシアノエチル
化合物を製造した。なお、仕込み量は上記と同様、水酸
基含有化合物2モル、アクリロニトリルは水酸基含有化
合物の水酸基1モルに対し1.05モル、LiOH・H2
Oは0.1gである。
Examples 3 to 29 In the same manner as in Examples 1 and 2, the corresponding cyanoethyl compounds were produced using the hydroxyl group-containing compounds shown in Tables 1 to 5 below. In the same manner as above, the charged amount was 2 mol of the hydroxyl group-containing compound, acrylonitrile was 1.05 mol with respect to 1 mol of the hydroxyl group of the hydroxyl group-containing compound, and LiOH.H 2
O is 0.1 g.

【0017】[0017]

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【表4】 [Table 4]

【表5】 [Table 5]

【0018】比較例1 4つ口フラスコに水酸基含有化合物としてエチレングリ
コール124.2g(2モル)と水酸化ナトリウムの2.
5%水溶液100gを仕込み、40〜50℃に保ちなが
ら、アクリロニトリル222.8g(4.2モル:水酸基
含有化合物の水酸基1モルに対し1.05モル)を2時
間かけて滴下する。滴下終了後、そのままの温度で3時
間撹拌を続けた後、塩化メチレン200gとイオン交換
水500mlを加え、数分撹拌する。撹拌を止め静置する
と、2層に分離するので、上層の水層を分液廃棄し、更
に同様にイオン交換水を用い2回の水洗を行い、真空ポ
ンプを用いて乾燥、低揮発成分を除去して無色透明の低
粘度液を得た。赤外線吸収スペクトル、およびガスクロ
マトグラフにより、目的物のエチレングリコールビス
(2−シアノエチル)エーテル68.6%および副生物の
ビス(2−シアノエチル)エーテル31.4%の含有率を
確認した。
COMPARATIVE EXAMPLE 1 In a four-necked flask, 124.2 g (2 mol) of ethylene glycol and sodium hydroxide were used as hydroxyl-containing compounds.
100 g of a 5% aqueous solution is charged, and while maintaining the temperature at 40 to 50 ° C., 222.8 g of acrylonitrile (4.2 mol: 1.05 mol per mol of hydroxyl group of the hydroxyl group-containing compound) is added dropwise over 2 hours. After completion of the dropwise addition, stirring was continued at the same temperature for 3 hours, then 200 g of methylene chloride and 500 ml of ion-exchanged water were added, and the mixture was stirred for several minutes. When the stirring is stopped and the mixture is allowed to stand, the mixture is separated into two layers. The upper aqueous layer is separated and discarded, and then similarly washed twice using ion-exchanged water, dried using a vacuum pump, and dried to remove low volatile components. Removal gave a colorless and transparent low-viscosity liquid. According to the infrared absorption spectrum and gas chromatograph, ethylene glycol bis
The contents of 68.6% of (2-cyanoethyl) ether and 31.4% of bis (2-cyanoethyl) ether as a by-product were confirmed.

【0019】比較例2 4つ口フラスコに水酸基含有化合物としてエチレングリ
コール124.2g(2モル)と水酸化ナトリウム0.1g
を仕込み、60℃で水酸化ナトリウムが溶解するまで加
熱撹拌する。次に40〜50℃に保ちながら、アクリロ
ニトリル222.8g(4.2モル)を2時間かけて滴下
する。滴下開始後1.5時間を経過した頃から反応液が
徐々に褐色を呈しはじめ、滴下終了後も着色は激しく、
そのままの温度で撹拌を続けたが、着色は茶褐色から黒
褐色を呈し、褐色の沈澱物が生成してきたので、反応の
継続を断念した。液体部分をガスクロマトグラフで分析
したところ、ビス(2−シアノエチル)エーテルの生成は
見られなかったが、高沸点側に数本の同定不可能なピー
クが観察された。
Comparative Example 2 124.2 g (2 mol) of ethylene glycol and 0.1 g of sodium hydroxide were used as a hydroxyl-containing compound in a four-necked flask.
And heated and stirred at 60 ° C. until the sodium hydroxide is dissolved. Next, while maintaining the temperature at 40 to 50 ° C., 222.8 g (4.2 mol) of acrylonitrile is added dropwise over 2 hours. After about 1.5 hours from the start of the dropwise addition, the reaction solution gradually began to turn brown, and the coloring was intense even after the completion of the dropwise addition.
The stirring was continued at the same temperature, but the color changed from brown to black-brown, and a brown precipitate was formed. When the liquid portion was analyzed by gas chromatography, no formation of bis (2-cyanoethyl) ether was observed, but several unidentifiable peaks were observed on the high boiling point side.

【0020】実施例30(電解液の配合) 下記表6〜7に示す量の、シアノエチル化合物および要
すれば他の非プロトン系極性化合物にリチウム塩を溶解
し、次いでモレキュラーシーブ3オングストロームで脱
水後、20℃,1KHzでの電導度をLCZメーターを用
いて測定した。結果を表6,7に併記する。
Example 30 (Blending of electrolytic solution) Lithium salt was dissolved in the amount of a cyanoethyl compound and, if necessary, other aprotic polar compounds in the amounts shown in Tables 6 and 7 below, followed by dehydration with a molecular sieve of 3 Å. The conductivity at 20 ° C. and 1 KHz was measured using an LCZ meter. The results are shown in Tables 6 and 7.

【表6】 [Table 6]

【表7】 [Table 7]

【0021】[0021]

【発明の効果】以上の構成から成る本発明製造法によれ
ば、ビス(2−シアノエチル)エーテルを全く生じず、ま
たアクリロニトリルの重合、着色もなく、簡単に高純度
のシアノエチル化合物を得ることができる。更に本発明
製造法では、過剰のアクリロニトリルが存在しても上記
副生物が生じないため、水酸基含有化合物に対し過剰量
のアクリロニトリルを使用することができ、残存水酸基
量の著しく低い高品質のシアノエチル化合物が得られ、
またアクリロニトリルの滴下速度を速めることが可能
で、生産性も著しく向上し、更には触媒がリチウム化合
物であるため、残存イオンがリチウムイオンであり、リ
チウムまたはリチウムイオン2次電池の電解液に用いる
場合、精製の手数を簡略化でき、残存触媒を過塩素酸や
トリフルオロメタンスルホン酸等で中和すれば、電解液
に使用される電解質塩そのものとすることができ、場合
によっては精製を省略して供することも可能であり、極
めて有用な方法である。
According to the production method of the present invention having the above constitution, a high purity cyanoethyl compound can be easily obtained without producing any bis (2-cyanoethyl) ether and without polymerizing or coloring acrylonitrile. it can. Furthermore, in the production method of the present invention, since the above-mentioned by-product does not occur even if excess acrylonitrile is present, an excess amount of acrylonitrile can be used relative to the hydroxyl group-containing compound, and a high quality cyanoethyl compound having an extremely low residual hydroxyl group amount can be used. Is obtained,
Further, it is possible to increase the dropping rate of acrylonitrile, and the productivity is remarkably improved. Further, since the catalyst is a lithium compound, the remaining ions are lithium ions, and the catalyst is used in the electrolyte of lithium or lithium ion secondary batteries. If the remaining catalyst is neutralized with perchloric acid or trifluoromethanesulfonic acid, etc., the purification step can be simplified, and the electrolyte salt itself used in the electrolytic solution can be obtained. It is also possible to provide such a method, which is a very useful method.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 式: (R1O)aR2(OCH2CH2CN)b [式中、R1は炭素数1〜3のアルキル基;R2は1〜4個
の水酸基を有する化合物(以下、水酸基含有化合物と称
す)から全ての水酸基を除いた残基;aは0〜3;およびb
は1〜4(但し、a+bは1〜4)である]で示されるシア
ノエチル化合物の製造法であって、 上記水酸基含有化合物とアクリロニトリルのシアノエチ
ル化反応で当該シアノエチル化合物を製造するに当り、
その反応触媒として、 (a)水酸化リチウム;および(b)実質的に水酸化リチウム
と等価な効果を示す、金属リチウム;リチウムアルコキ
シド類;リチウムアセチルアセトネートなどのリチウム
と活性メチレン化合物からなる化合物;の群から選ばれ
る少なくとも1種を用い、非水下でシアノエチル化反応
を行なうことを特徴とするシアノエチル化合物の製造
法。
1. A compound having the formula: (R 1 O) aR 2 (OCH 2 CH 2 CN) b wherein R 1 is an alkyl group having 1 to 3 carbon atoms; R 2 is a compound having 1 to 4 hydroxyl groups. (Hereinafter, referred to as a hydroxyl group-containing compound) residues obtained by removing all hydroxyl groups; a is 0 to 3; and b
Is from 1 to 4 (where a + b is from 1 to 4). The method for producing a cyanoethyl compound according to claim 1, wherein the cyanoethyl compound is produced by a cyanoethylation reaction of the hydroxyl-containing compound and acrylonitrile.
As the reaction catalyst, (a) lithium hydroxide; and (b) a compound comprising lithium and an active methylene compound such as lithium metal; lithium alkoxides; lithium acetylacetonate, which has an effect substantially equivalent to lithium hydroxide. A method for producing a cyanoethyl compound, wherein a cyanoethylation reaction is carried out in non-water using at least one member selected from the group consisting of:
【請求項2】 反応触媒を水酸基含有化合物とアクリロ
ニトリルの合計量に対してリチウム分計算で0.001
〜5重量%の範囲で用いる請求項1に記載のシアノエチ
ル化合物の製造法。
2. The reaction catalyst is calculated to have a lithium content of 0.001 to the total amount of the hydroxyl group-containing compound and acrylonitrile.
The method for producing a cyanoethyl compound according to claim 1, which is used in an amount of from 5 to 5% by weight.
【請求項3】 水酸基含有化合物が、 (a)炭素数1〜6の1価アルコール; (b)炭素数2〜6の2〜4価アルコール類; (c)グリコール類またはポリグリコール類の部分アルキ
ルエーテル; (d)分子量600以下のポリオキシアルキレンポリオー
ル類;または (e)アンモニアまたはアミン化合物にアルキレンオキサ
イドを付加重合した、分子量600以下の分子末端に水
酸基を有するN−モノ〜ポリオキシアルキレンポリオー
ル類である請求項1または2に記載のシアノエチル化合
物の製造法。
3. A compound containing a hydroxyl group, comprising: (a) a monohydric alcohol having 1 to 6 carbon atoms; (b) a dihydric alcohol having 2 to 6 carbon atoms; (c) a part of a glycol or a polyglycol. Alkyl ethers; (d) polyoxyalkylene polyols having a molecular weight of 600 or less; or (e) N-mono to polyoxyalkylene polyols having a hydroxyl group at the molecular terminal having a molecular weight of 600 or less, obtained by addition-polymerizing an alkylene oxide to ammonia or an amine compound. The method for producing a cyanoethyl compound according to claim 1 or 2, wherein
【請求項4】 分子量600以下のポリオキシアルキレ
ンポリオール類(d)またはN−モノ〜ポリオキシアルキ
レンポリオール類(e)にあって、そのポリオキシアルキ
レン単位がポリオキシエチレンおよび/またはポリオキ
シプロピレンである請求項3に記載のシアノエチル化合
物の製造法。
4. The polyoxyalkylene polyol (d) or the N-mono-polyoxyalkylene polyol (e) having a molecular weight of 600 or less, wherein the polyoxyalkylene unit is polyoxyethylene and / or polyoxypropylene. The method for producing a cyanoethyl compound according to claim 3.
【請求項5】 請求項1〜4に記載の製造法で得られる
シアノエチル化合物の少なくとも1種に、リチウム塩を
溶解してなるリチウムまたはリチウムイオン2次電池の
有機電解液。
5. An organic electrolyte for a lithium or lithium ion secondary battery obtained by dissolving a lithium salt in at least one of the cyanoethyl compounds obtained by the production method according to claim 1.
【請求項6】 シアノエチル化合物と他の非プロトン系
極性化合物を併用する請求項5に記載の有機電解液。
6. The organic electrolyte according to claim 5, wherein a cyanoethyl compound and another aprotic polar compound are used in combination.
【請求項7】 シアノエチル化合物を他の非プロトン系
極性化合物との合計量に対して10重量%以上用いる請
求項6に記載の有機電解液。
7. The organic electrolyte according to claim 6, wherein the cyanoethyl compound is used in an amount of 10% by weight or more based on the total amount of the other aprotic polar compounds.
JP24517897A 1997-09-10 1997-09-10 Method for producing cyanoethyl compound for electrolyte of lithium or lithium ion secondary battery Expired - Fee Related JP3946825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24517897A JP3946825B2 (en) 1997-09-10 1997-09-10 Method for producing cyanoethyl compound for electrolyte of lithium or lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24517897A JP3946825B2 (en) 1997-09-10 1997-09-10 Method for producing cyanoethyl compound for electrolyte of lithium or lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JPH1180112A true JPH1180112A (en) 1999-03-26
JP3946825B2 JP3946825B2 (en) 2007-07-18

Family

ID=17129781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24517897A Expired - Fee Related JP3946825B2 (en) 1997-09-10 1997-09-10 Method for producing cyanoethyl compound for electrolyte of lithium or lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP3946825B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169262A (en) * 2005-11-28 2007-07-05 Nippon Shokubai Co Ltd Lithium dicyano triazolate
JP2010165653A (en) * 2008-02-29 2010-07-29 Equos Research Co Ltd Electrolyte for lithium ion battery
JP2012227136A (en) * 2011-04-05 2012-11-15 Shin Etsu Chem Co Ltd Binder for separator of non-aqueous electrolyte battery including 2-cyanoethyl group containing polymer, and separator and battery using the same
JP2013043980A (en) * 2011-08-26 2013-03-04 Yamaguchi Univ Polytrimethylene oxide and battery obtained by using the same as electrolyte
KR102232137B1 (en) * 2020-08-28 2021-03-25 미원상사주식회사 Method for producing 2-cyanoethyl group-containing organic compound having high temperature stability
CN115322119A (en) * 2022-07-29 2022-11-11 抚顺顺能化工有限公司 Preparation method of ethylene glycol bis (propionitrile) ether

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101440529B1 (en) 2011-03-18 2014-09-17 주식회사 엘지화학 Method of preparing dinitrile compounds
KR101516854B1 (en) 2012-05-22 2015-05-04 주식회사 엘지화학 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169262A (en) * 2005-11-28 2007-07-05 Nippon Shokubai Co Ltd Lithium dicyano triazolate
JP2010165653A (en) * 2008-02-29 2010-07-29 Equos Research Co Ltd Electrolyte for lithium ion battery
JP2012227136A (en) * 2011-04-05 2012-11-15 Shin Etsu Chem Co Ltd Binder for separator of non-aqueous electrolyte battery including 2-cyanoethyl group containing polymer, and separator and battery using the same
JP2013043980A (en) * 2011-08-26 2013-03-04 Yamaguchi Univ Polytrimethylene oxide and battery obtained by using the same as electrolyte
KR102232137B1 (en) * 2020-08-28 2021-03-25 미원상사주식회사 Method for producing 2-cyanoethyl group-containing organic compound having high temperature stability
CN115322119A (en) * 2022-07-29 2022-11-11 抚顺顺能化工有限公司 Preparation method of ethylene glycol bis (propionitrile) ether
CN115322119B (en) * 2022-07-29 2023-09-29 抚顺顺能化工有限公司 Preparation method of ethylene glycol bis (propionitrile) ether

Also Published As

Publication number Publication date
JP3946825B2 (en) 2007-07-18

Similar Documents

Publication Publication Date Title
US10316006B2 (en) Heterocyclic ionic liquids
EP2693558B1 (en) Lithium ion secondary battery and nonaqueous electrolyte for lithium ion secondary battery
US9466431B2 (en) Ionic compound and process for production thereof, and electrolytic solution and electrical storage device each utilizing the ionic compound
CA2688952C (en) Nonaqueous electrolyte for use in a lithium ion cell
EP1721900B1 (en) Novel imidazolium compound
EP3466872B1 (en) Method for producing bis(fluorosulfonyl)imide alkali metal salt and method for producing non-aqueous electrolytic solution
US11038196B2 (en) Electrolytes containing six membered ring cyclic sulfates
EP2857408A1 (en) Method for producing tetrafluoro(oxalate)phosphate solution
TWI595003B (en) Method for producing difluoride ion complex
JPH1180112A (en) Production of cyanoethyl compound for lithium or lithium ion secondary battery electrolyte
US9394242B2 (en) Method for preparing dinitrile compound
DE60012706T2 (en) IONIC LIQUID POLYMER, ELECTROLYTE POLYMER AND ELECTRICAL DEVICE
EP1249464B1 (en) Polyether polymer compounds as well as ion conductive polymer compositions and electrochemical devices using the same
CN111137870B (en) Lithium difluorophosphate, preparation method thereof and lithium ion battery electrolyte
JPH11185808A (en) Organic electrolyte
EP4064407A1 (en) Composition, electrolytic solution material, and electrolytic solution
EP4350836A1 (en) Method for producing nonaqueous electrolyte solution
EP4332056A1 (en) Composition comprising an alkali metal salt of bis(fluoro sulfonyl)imide
EP4332055A1 (en) Composition comprising an alkali metal salt of bis(fluoro sulfonyl)imide
EP4332054A1 (en) Composition comprising an alkali metal salt of bis(fluoro sulfonyl)imide
KR101197115B1 (en) Novel imidazolium compound
JP2019220450A (en) Electrolytic solution for rocking chair type secondary battery, and rocking chair type secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040519

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050825

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees