JPH1177311A - Method for controlling heat input integration and indentation in stud welding - Google Patents

Method for controlling heat input integration and indentation in stud welding

Info

Publication number
JPH1177311A
JPH1177311A JP24938497A JP24938497A JPH1177311A JP H1177311 A JPH1177311 A JP H1177311A JP 24938497 A JP24938497 A JP 24938497A JP 24938497 A JP24938497 A JP 24938497A JP H1177311 A JPH1177311 A JP H1177311A
Authority
JP
Japan
Prior art keywords
heat input
main arc
period
welding
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24938497A
Other languages
Japanese (ja)
Other versions
JP4657391B2 (en
Inventor
Hiroyuki Ishii
博幸 石井
Shinya Okamoto
真也 岡本
Shoji Harada
章二 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP24938497A priority Critical patent/JP4657391B2/en
Publication of JPH1177311A publication Critical patent/JPH1177311A/en
Application granted granted Critical
Publication of JP4657391B2 publication Critical patent/JP4657391B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc Welding Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the control method for starting indentation by integrating heat input during the pulling-up period in stud welding by which an adequate heat input can be secured even if a short-circuit is caused and a satisfactory welding quality can be obtained. SOLUTION: Before the start of welding, a standard heat input Qst 38 is preset for the entire main arc period at the time of normal welding; at the point of time t2 for starting main arc current energization, with an auxiliary arc current Ip switched to the main arc current Ia, an average value of heat input ΔQav for each detecting interval is integrated, which is the product of an arc voltage average value Vav(Δt), measured at each detecting interval Δt from the point of time t3 for starting the detection of the main arc current/ voltage, and the main arc current average value Iav(Δt) at each detecting interval, so that the integrated heat input Qta3n for the main arc period is determined. Then, an indentation process is started at the time tn when the heat input value so determined reaches the preset standard heat input Qst38 of the entire main arc period.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スタッド溶接の引
き上げ期間中の入熱を積算して押し込みを開始する制御
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control method for accumulating heat input during a stud welding pull-up period and starting pushing.

【0002】[0002]

【従来の技術】スタッド溶接において、スタッドを被溶
接材から引き上げ、次にスタッドを被溶接材に所定の押
し込み量だけ押し込んで溶接して、その溶接の品質を確
保するためには、予め定めた必要入熱(以下、所要の入
熱という)Qrを得ることが重要である。もし、入熱等
の溶接条件が適正でなく、所要の入熱Qrを得ることが
できない場合、例えば、溶接電流値が適正値よりも低い
場合、引き上げ距離が短い場合又は溶接姿勢が不良の場
合は、引き上げ期間中にスタッドの溶融面が被溶接材の
溶融プールに接触して短絡が発生する。この短絡が発生
すると、適正なア−ク電圧値Vaが十分に継続しないた
めに入熱不足となって、押し込み中に所要の押し込み量
だけ押し込むことができなくなり溶接不良となる。
2. Description of the Related Art In stud welding, a stud is pulled up from a material to be welded, and then the stud is pushed into the material to be welded by a predetermined pushing amount to perform welding. It is important to obtain the required heat input (hereinafter, required heat input) Qr. If the welding conditions such as heat input are not appropriate and the required heat input Qr cannot be obtained, for example, if the welding current value is lower than the appropriate value, if the pulling distance is short, or if the welding posture is poor During the lifting period, the molten surface of the stud contacts the molten pool of the material to be welded, causing a short circuit. When this short-circuit occurs, the heat input is insufficient because the proper arc voltage value Va does not continue sufficiently, so that it is impossible to push in a required amount during the pushing, resulting in poor welding.

【0004】そこで、所要の入熱Qrが得られて溶接の
品質が確保されたかどうかを判定するために、近年にお
いては、次の方法が提案されている。 [従来技術1]特開昭61−242766の技術は、電
磁オシログラフを使用して溶接電流及び溶接電圧、特に
溶接終了時の押込み中の短絡電流を測定記録して、品質
判定を行っている。 [従来技術2]特開平1−154877の技術は、スタ
ッドの移動量とガンコイルの電圧及び溶接電流の各波形
とを検出して、押込み開始点、ガンコイルの電圧の出力
停止点及び溶接電流短絡時のサージ電流のピーク点の3
点の内のいずれか2つの時間的位置関係から溶接結果の
合否を判定してきた。
In order to determine whether the required heat input Qr has been obtained and the quality of welding has been ensured, the following method has recently been proposed in recent years. [Prior Art 1] In the technique of Japanese Patent Application Laid-Open No. 61-242766, quality is determined by measuring and recording welding current and welding voltage, particularly short-circuit current during indentation at the end of welding, using an electromagnetic oscillograph. . [Prior Art 2] The technique of Japanese Patent Application Laid-Open No. 1-154877 detects the amount of movement of a stud and each waveform of a gun coil voltage and a welding current, and starts a pushing start point, a gun coil voltage output stop point, and a welding current short circuit. Of peak point of surge current
The pass / fail of the welding result has been determined from the temporal positional relationship of any two of the points.

【0006】[従来技術3]特公平3−72388の技
術は、スタッドの移動量(押込量)を検出して、スタッ
ド押し込み工程での移動量を標準値と比較することによ
って品質判定を行っている。 [従来技術4]特開平7−144275の技術は、アー
ク電圧とスタッドの移動状態とを検出しモニタリングし
て押込み開始前0.3秒以内のアーク電圧を測定し、短
絡が生じて溶接電圧が低下したとき、融合不良欠陥を判
定している。
[Prior Art 3] The technique disclosed in Japanese Patent Publication No. 3-72388 detects the movement amount (push amount) of a stud and compares the movement amount in a stud pushing process with a standard value to judge quality. I have. [Prior Art 4] The technique of JP-A-7-144275 detects and monitors the arc voltage and the moving state of the stud and measures the arc voltage within 0.3 seconds before the start of pushing, and short-circuiting occurs and the welding voltage is reduced. When it has decreased, a defective fusion defect is determined.

【0008】[従来技術5]特許出願公表昭58−50
0279の技術は、マイクロプロセッサを使用し溶接電
流を制御して、溶接電流平均値、溶接電圧平均値、溶接
電流通電時間の各々を計算し、これら3つの値を乗算し
て入熱量を計算し、溶接電流平均値、溶接電圧平均値、
溶接電流通電時間、入熱量の記憶及び表示をしている。
また、主アーク期間Taの終わりで、溶接電流の設定値
と実際値を比較して設定値に満たない場合は、主アーク
期間Taを延長して所要の入熱Qrを確保するように制
御している。
[Prior Art 5] Patent Application Publication No. 58-50
The technique of 0279 uses a microprocessor to control the welding current, calculate the average welding current, the average welding voltage, and the welding current conduction time, and calculate the heat input by multiplying these three values. , Welding current average, welding voltage average,
It stores and displays the welding current conduction time and heat input.
At the end of the main arc period Ta, the set value of the welding current is compared with the actual value, and if the set value is less than the set value, the main arc period Ta is extended to control the required heat input Qr. ing.

【0010】[従来技術6]特開昭62−296966
の技術は、補助ア−ク(以下、補助アークという)期間
Tpのア−ク電圧値Vaを検出して予め設定した基準電
圧と比較し、検出電圧が高い場合(例えば、被溶接材の
表面がグリス等で汚染されている場合)には、通電する
溶接電流値又は溶接電圧値又は両者を増加させて被溶接
材の表面の汚染物質を焼くために必要なエネルギー量を
供給している。また、被溶接材の表面の汚染物質を焼く
ために必要なエネルギー量は溶接毎に異なるが、この従
来技術6においては、被溶接材の表面の汚染物質を焼く
ために必要なエネルギー量が増加しても、主アーク期間
Taに供給される入熱は、予め設定された所要の入熱Q
rよりも減少することがない。
[Prior Art 6] JP-A-62-296966
The technique disclosed in Japanese Patent Application Laid-Open No. H11-157556 detects an arc voltage value Va during an auxiliary arc (hereinafter, referred to as an auxiliary arc) period Tp and compares it with a preset reference voltage. Is contaminated with grease or the like), the amount of energy necessary to burn the contaminants on the surface of the material to be welded is increased by increasing the welding current value and / or welding voltage value to be energized. In addition, although the amount of energy required to burn contaminants on the surface of the material to be welded varies from one welding to another, in the prior art 6, the amount of energy required to burn contaminants on the surface of the material to be welded increases. However, the heat input supplied during the main arc period Ta is the predetermined required heat input Q
It does not decrease below r.

【0030】[図1の説明]図1は、上記の従来技術に
したがって、溶接電圧、溶接電流及び主アーク電流期間
を監視するために出願人が作成した従来方法を実施する
スタッド溶接装置のブロック図である。同図は、三相電
源30を入力としてサイリスタ等で構成される略定電流
特性の溶接電源装置1と、溶接ガン2と、溶接電源装置
1の出力端子の「−」端子と溶接ガン2との間に接続さ
れた2次ケーブル17と、スタッドを溶接する鉄骨構造
物等の被溶接材14と、溶接電源装置1の出力端子の
「+」端子と被溶接材14とを接続する接続線42、4
3等で形成されるスタッド溶接装置のブロック図であ
る。
[Description of FIG. 1] FIG. 1 is a block diagram of a stud welding apparatus for implementing a conventional method created by the applicant for monitoring a welding voltage, a welding current and a main arc current period according to the above-mentioned prior art. FIG. The figure shows a welding power supply 1 having a substantially constant current characteristic composed of a thyristor or the like using a three-phase power supply 30 as an input, a welding gun 2, a “−” terminal of the output terminal of the welding power supply 1, and , A welded member 14 such as a steel structure for welding a stud, and a connection line connecting the “+” terminal of the output terminal of the welding power supply device 1 and the welded member 14. 42, 4
It is a block diagram of the stud welding apparatus formed with 3 etc.

【0032】同図において、溶接電源装置1の出力端子
に接続された溶接電圧検出回路VCによって検出された
出力端子電圧Vdをフィルタ回路36によって平均値化
し、増幅回路37によって増幅して表示回路12によっ
て表示する。基準溶接電圧設定回路39は、適正な溶接
電圧が得られたときの適正溶接電圧平均値Veを設定す
る。上記の増幅回路37の出力信号と適正溶接電圧平均
値Veとを比較器40によって比較して、その差の絶対
値が適正溶接電圧範囲許容値△Veから外れる場合は、
警報器41を作動させて警報を発する。
In the figure, an output terminal voltage Vd detected by a welding voltage detection circuit VC connected to an output terminal of the welding power supply device 1 is averaged by a filter circuit 36, amplified by an amplifier circuit 37, and amplified by an amplifier circuit 37. View by. The reference welding voltage setting circuit 39 sets a proper welding voltage average value Ve when a proper welding voltage is obtained. The output signal of the amplifying circuit 37 is compared with the proper welding voltage average value Ve by the comparator 40. If the absolute value of the difference deviates from the proper welding voltage range allowable value ΔVe,
Activate the alarm 41 to issue an alarm.

【0034】さらに、溶接電源装置1において、2次ケ
ーブル17を通ってスタッド18に出力される出力電流
Ioを溶接電流検出回路ICが検出して溶接電流検出信
号Icを出力する。この溶接電流検出信号Icをフィル
タ回路44によって平均値化し、増幅回路45によって
増幅して表示回路12によって表示する。上記の溶接電
源装置1において、引き上げ期間中の所要の入熱Qrを
監視するために、引き上げ期間中の溶接電源装置の出力
端子電圧値Vdと出力電流値Ioと主アーク電流期間T
aとを表示回路12に表示している。
Further, in the welding power supply device 1, the welding current detection circuit IC detects an output current Io output to the stud 18 through the secondary cable 17, and outputs a welding current detection signal Ic. The welding current detection signal Ic is averaged by the filter circuit 44, amplified by the amplifier circuit 45, and displayed by the display circuit 12. In the above-described welding power supply device 1, in order to monitor the required heat input Qr during the raising period, the output terminal voltage value Vd, the output current value Io, and the main arc current period Td of the welding power supply device during the raising period.
a is displayed on the display circuit 12.

【0040】[0040]

【発明が解決しようとする課題】前述した従来技術1乃
至従来技術4方法は、スタッドの押し込み時点に注目し
て品質判定を行っている。これらの方法においては、正
常にア−クスタートしても、主アーク期間Taの前半に
おいて短絡が発生すると、主アーク期間Taの後半で短
絡が発生しなくなった場合、十分な入熱が得られないた
めに溶接不良になるが、上記の方法では、溶接不良を見
つけ出すことが困難であった。同様に、ア−クスタート
が遅れて主アーク期間Ta中のア−ク発生正味時間が短
くなった場合も、十分な入熱が得られないために溶接不
良になり、上記の方法では、溶接不良を見つけ出すこと
が困難であった。
In the above-mentioned prior art 1 to prior art 4 methods, the quality judgment is performed by paying attention to the point in time when the stud is pressed. In these methods, even if the arc is normally started, if a short circuit occurs in the first half of the main arc period Ta, a sufficient heat input can be obtained if the short circuit does not occur in the latter half of the main arc period Ta. However, it is difficult to find welding defects by the above method. Similarly, when the arc start is delayed and the net time of arc generation during the main arc period Ta is shortened, insufficient heat input is not obtained, resulting in poor welding. It was difficult to find the defect.

【0041】また、前述した従来技術1乃至5において
は次の問題点がある。建設現場において頻繁に行う貫通
溶接(鉄骨上に敷設されたデッキプレート上からスタッ
ドを鉄骨等に溶接)する場合、そのデッキプレートと被
溶接材(鉄骨等)との隙間(クリアランス)があるため
に、測定した引き上げ量は、デッキプレート上の位置か
ら引き上げられた位置までの距離になる。この距離は被
溶接材(鉄骨等)からの距離よりも、クリアランス及び
デッキプレートの厚みだけ長くなる。
The above-mentioned prior arts 1 to 5 have the following problems. When performing penetration welding (welding a stud to a steel frame from a deck plate laid on a steel frame) frequently performed at a construction site, there is a gap (clearance) between the deck plate and a material to be welded (a steel frame, etc.). The measured lifting amount is the distance from the position on the deck plate to the raised position. This distance is longer than the distance from the material to be welded (such as a steel frame) by the clearance and the thickness of the deck plate.

【0042】上記のクリアランスは、一般的に1〜2mm
であるが、それ以上の場合も頻繁に起こりうる。このク
リアランスが長い場合、引き上げられたスタッド先端と
被溶接材(鉄骨等)の表面との距離は、予め設定された
引き上げ量よりも長くなるために、アーク長が長くなっ
てアークが不安定になり、十分な入熱を得ることができ
ない。また、スタッドが被溶接材に接触した時点からの
押し込み量は、実際には設定された押し込み量よりも、
クリアランス及びデッキプレートの厚みだけ短く。従っ
て、クリアランスが長くなると、押し込み不足になる。
The above clearance is generally 1 to 2 mm
However, more cases can occur frequently. If the clearance is long, the distance between the raised end of the stud and the surface of the material to be welded (such as a steel frame) is longer than a preset lifting amount, so that the arc length becomes longer and the arc becomes unstable. Therefore, sufficient heat input cannot be obtained. Also, the pushing amount from the time when the stud comes into contact with the workpiece is actually larger than the set pushing amount.
Shorter by clearance and deck plate thickness. Therefore, when the clearance becomes longer, the pushing becomes insufficient.

【0043】また、従来技術4の方法では、溶接ガン可
動部(チャック側)の移動量を検出しているために、例
えば、スタッドを溶接ガンに固定させるチャックがゆる
んでいると、補助アークを発生させるために、補助ア−
ク電流通電と同時に、予め設定された引き上げ位置まで
スタッドを引き上げるときに、スタッドがすべって設定
値だけ引き上げられないために、短絡が発生する。
In the method of the prior art 4, since the amount of movement of the welding gun movable portion (chuck side) is detected, for example, if the chuck for fixing the stud to the welding gun is loose, the auxiliary arc is generated. To generate an auxiliary arc
When the stud is pulled up to the preset pulling position at the same time as the application of the cutting current, the stud slips and cannot be raised by the set value, so that a short circuit occurs.

【0044】また、ア−クスタート時に一瞬溶着して、
ア−クの発生が遅れた場合、スタッドを引き上げるとき
に、チャックとスタッドとがすべりを生じる。上記の押
し込み移動量を検出する方法では、このようなすべが発
生しても、スタッドの位置を正確に検出することができ
ないために、溶接不良が発生していても、溶接不良を見
つけ出すことが困難である。
Further, when the arc starts, it is welded momentarily,
If the generation of arc is delayed, the chuck and the stud slip when the stud is lifted. In the method of detecting the amount of pushing movement described above, even if such a slip occurs, the position of the stud cannot be accurately detected. Have difficulty.

【0045】従来技術5の方法では、溶接サイクル終了
時点でエネルギー量を算出しているために、終了時点で
エネルギー量が過大であることが判明しても、エネルギ
ー量を制御することができない。
In the method of the prior art 5, since the energy amount is calculated at the end of the welding cycle, the energy amount cannot be controlled even if it is determined that the energy amount is excessive at the end.

【0046】従来技術6の方法では、主アーク期間Ta
の入熱を監視していないために、アークが不安定で主ア
ーク期間中に短絡が発生すると、所要の入熱Qrを得る
ことができない。特に、貫通溶接等で溶接中に短絡が発
生しやすく、入熱不足になる。
In the method of the prior art 6, the main arc period Ta
Since the heat input is not monitored, if the arc is unstable and a short circuit occurs during the main arc period, the required heat input Qr cannot be obtained. In particular, a short circuit is apt to occur during welding, such as through welding, resulting in insufficient heat input.

【0048】従って、前述した従来技術1乃至6の従来
技術では、所要の入熱Qrを正確に供給することができ
ない。
Therefore, in the above-mentioned prior arts 1 to 6, the required heat input Qr cannot be supplied accurately.

【0051】[0051]

【課題を解決するための手段】請求項1の方法は、スタ
ッドを被溶接材から引き上げてアークを発生させた後
に、スタッドを被溶接材に所定の押し込み量だけ押し込
んで溶接するスタッド溶接において、検出間隔ごとの主
ア−ク電圧平均値Vav(Δt)から算出した主アーク期間
積算入熱量Qta3nが、予め設定した主アーク期間全体の
標準入熱量Qst38に達した時点tnで押し込み工程を開
始するスタッド溶接の入熱積算押し込み制御方法であ
る。
According to a first aspect of the present invention, there is provided a method for stud welding, comprising: raising a stud from a material to be welded, generating an arc, and then pressing the stud by a predetermined amount into the material to be welded. The push-in process is started at time tn when the main arc period integrated heat input Qta3n calculated from the main arc voltage average value Vav (Δt) for each detection interval reaches a preset standard heat input Qst38 for the entire main arc period. This is a method of controlling the cumulative input of heat input for stud welding.

【0052】請求項2の方法は、スタッドを被溶接材か
ら引き上げてアークを発生させた後に、スタッドを被溶
接材に所定の押し込み量だけ押し込んで溶接するスタッ
ド溶接において、主アーク期間積算電圧値Vta3nが、予
め設定した主アーク期間全体の標準入熱量Qst38から算
出した検出期間全体の主アーク電圧標準値Vst38に達し
た時点tnで押し込み工程を開始するスタッド溶接の入
熱積算押し込み制御方法である。
According to a second aspect of the present invention, in the stud welding in which an arc is generated by pulling up a stud from a material to be welded and then the stud is pushed into the material to be welded by a predetermined pushing amount, the integrated voltage value of the main arc period is used. This is a heat input integrated press-in control method for stud welding in which the press-in process is started at time tn when Vta3n reaches a main arc voltage standard value Vst38 in the entire detection period calculated from the standard heat input Qst38 in the entire main arc period set in advance. .

【0053】請求項3の方法は、スタッドを被溶接材か
ら引き上げてアークを発生させた後にスタッドを被溶接
材に所定の押し込み量だけ押し込んで溶接するスタッド
溶接において、検出期間全体の主アーク電圧平均値Vav
3nから算出した主アーク期間積算入熱量Qta3nが、予め
設定した主アーク期間全体の標準入熱量Qst38に達した
時点tnで押し込み工程を開始するスタッド溶接の入熱
積算押し込み制御方法である。
According to a third aspect of the present invention, there is provided a stud welding method in which a stud is pulled up from a material to be welded to generate an arc and then the stud is pushed into the material to be welded by a predetermined amount to be welded. Average value Vav
This is a heat input cumulative press-in control method for stud welding, in which the press-in process starts at time tn when the main arc period cumulative heat input Qta3n calculated from 3n reaches a preset standard heat input Qst38 for the entire main arc period.

【0054】請求項4の方法は、請求項1の方法におい
て、溶接開始前に、主アーク期間Ta中に短絡が発生し
ないで良好な溶接結果が得られる(以下、「正常な溶接
時の」という)主アーク期間全体の標準入熱量Qst38を
予め設定しておき、補助ア−ク電流Ipから主ア−ク電
流Iaに切り換えて、主アーク電流・電圧検出開始時点
t3から、検出間隔Δtごとに、検出間隔ごとの主ア−
ク電圧平均値Vav(Δt)を測定し、この検出間隔ごとの
主ア−ク電圧平均値Vav(Δt)と検出期間中の溶接電流
平均値Iavとの積の検出間隔ごとの入熱量平均値ΔQav
を積算して主アーク期間積算入熱量Qta3nを算出し、こ
の主アーク期間積算入熱量Qta3nが、上記の予め設定し
た主アーク期間全体の標準入熱量Qst38に達した時点t
nで押し込み工程を開始するスタッド溶接の入熱積算押
し込み制御方法である。
According to a fourth aspect of the present invention, in the method of the first aspect, a good welding result can be obtained without causing a short circuit during the main arc period Ta before the start of welding (hereinafter, “normal welding”). The standard heat input Qst38 for the entire main arc period is set in advance, the auxiliary arc current Ip is switched to the main arc current Ia, and from the main arc current / voltage detection start time t3, every detection interval Δt. The main arc at each detection interval
The average voltage Vav (Δt) is measured, and the average heat input value at each detection interval is the product of the average value of the main arc voltage Vav (Δt) at each detection interval and the average welding current Iav during the detection period. ΔQav
To calculate the main arc period integrated heat input Qta3n, and the time t when the main arc period integrated heat input Qta3n reaches the standard heat input Qst38 for the entire main arc period set in advance.
This is a method for controlling the integrated heat input press-in of stud welding in which the press-in step is started at n.

【0055】請求項5の方法は、請求項2の方法におい
て、溶接開始前に、正常な溶接時の主アーク期間全体の
標準入熱量Qst38を予め設定しておき、補助ア−ク電流
Ipから主ア−ク電流Iaに切り換えて、主アーク電流
・電圧検出開始時点t3から、検出間隔Δtごとに、検
出間隔ごとの主ア−ク電圧平均値Vav(Δt)を測定し、
この検出間隔ごとの主ア−ク電圧平均値Vav(Δt)を積
算して主アーク期間積算電圧値Vta3nを算出し、この主
アーク期間積算電圧値Vta3nが、上記の予め設定した主
アーク期間全体の標準入熱量Qst38を検出期間中の溶接
電流平均値Iavで除算した検出期間全体の主アーク電圧
標準値Vst38に達した時点tnで押し込み工程を開始す
るスタッド溶接の入熱積算押し込み制御方法である。
According to a fifth aspect of the present invention, in the method of the second aspect, before the start of welding, the standard heat input Qst38 for the entire main arc period during normal welding is set in advance and the auxiliary arc current Ip is calculated. After switching to the main arc current Ia, the main arc voltage average value Vav (Δt) for each detection interval is measured from the main arc current / voltage detection start time t3 at each detection interval Δt,
The main arc voltage average value Vav (Δt) for each detection interval is integrated to calculate a main arc period integrated voltage value Vta3n, and the main arc period integrated voltage value Vta3n is calculated based on the predetermined main arc period as a whole. The standardized heat input Qst38 is divided by the average welding current value Iav during the detection period, and the integrated heat input and press-in control method for stud welding starts the pressing process at time tn when the main arc voltage standard value Vst38 for the entire detection period is reached. .

【0056】請求項6の方法は、請求項3の方法におい
て、溶接開始前に、正常な溶接時の主アーク期間全体の
標準入熱量Qst38を予め設定しておき、補助ア−ク電流
Ipから主ア−ク電流Iaに切り換えて、主アーク電流
・電圧検出開始時点t3から、検出間隔Δtごとに、検
出間隔ごとの主ア−ク電圧平均値Vav(Δt)を測定し、
この検出間隔ごとの主ア−ク電圧平均値Vav(Δt)を積
算して主アーク期間積算電圧値Vta3nを算出し、この主
アーク期間積算電圧値Vta3nを検出回数nで除算して検
出期間全体の主アーク電圧平均値Vav3n=Vta3n/nを
算出し、この検出期間全体の主アーク電圧平均値Vav3n
と検出期間中の溶接電流平均値Iavと主アーク積算値検
出期間T3nとの積の主アーク期間積算入熱量Qta3nを算
出し、この主アーク期間積算入熱量Qta3nが、上記の予
め設定した主アーク期間全体の標準入熱量Qst38に達し
た時点tnで押し込み工程を開始するスタッド溶接の入
熱積算押し込み制御方法である。
According to a sixth aspect of the present invention, in the method of the third aspect, before the start of welding, the standard heat input Qst38 for the entire main arc period during normal welding is set in advance, and the auxiliary arc current Ip is set. After switching to the main arc current Ia, the main arc voltage average value Vav (Δt) for each detection interval is measured from the main arc current / voltage detection start time t3 at each detection interval Δt,
The main arc voltage average value Vav (Δt) at each detection interval is integrated to calculate a main arc period integrated voltage value Vta3n, and the main arc period integrated voltage value Vta3n is divided by the number of detections n to obtain the entire detection period. Of the main arc voltage Vav3n = Vta3n / n, and calculates the main arc voltage average value Vav3n of the entire detection period.
And the main arc integrated heat input Qta3n of the product of the welding current average value Iav during the detection period and the main arc integrated value detection period T3n, and the main arc integrated heat input Qta3n is determined by the above-mentioned predetermined main arc. This is a method for controlling the integrated heat input and press-in of stud welding in which the press-in step is started at time tn when the standard heat input Qst38 of the entire period is reached.

【0057】請求項7の方法は、請求項4の検出間隔ご
との主ア−ク電圧平均値Vav(Δt)から算出した主アー
ク期間積算入熱量Qta3nと補助アーク期間積算入熱量Q
ta12との和の引き上げ期間(以下、補助・主ア−ク期間
という)積算入熱量Qta1nが、予め設定した補助・主ア
ーク検出期間全体の標準入熱量Qst18に達した時点tn
で押し込み工程を開始する方法であって、溶接開始前
に、正常な溶接時の補助ア−ク期間Tp及び補助・主ア
ーク検出期間全体の標準入熱量Qst18を予め設定してお
き、補助アーク電流・電圧検出開始時点t1から、補助
ア−ク電圧平均値Vav12を測定して、この補助ア−ク電
圧平均値Vav12と補助ア−ク電流値Ipと補助ア−ク検
出期間T12との積の補助ア−ク期間積算入熱量Qta12を
算出し、次に補助ア−ク電流Ipから主ア−ク電流Ia
に切り換えて、主アーク電流・電圧検出開始時点t3か
ら、検出間隔Δtごとに、検出間隔ごとの主ア−ク電圧
平均値Vav(Δt)を測定し、この検出間隔ごとの主ア−
ク電圧平均値Vav(Δt)と検出期間中の溶接電流平均値
Iavとの積の検出間隔ごとの入熱量平均値ΔQavを、検
出回数n回まで積算して主アーク期間積算入熱量Qta3n
を算出し、補助ア−ク期間積算入熱量Qta12と主アーク
期間積算入熱量Qta3nとの和の補助・主アーク期間積算
入熱量Qta1nが、上記の予め設定した補助・主アーク検
出期間全体の標準入熱量Qst18に達した時点tnで押し
込み工程を開始するスタッド溶接の入熱積算押し込み制
御方法である。
The method of claim 7 is characterized in that the main arc period integrated heat input Qta3n and the auxiliary arc period integrated heat input Q calculated from the main arc voltage average value Vav (Δt) for each detection interval.
The time tn at which the accumulated heat input Qta1n during the period of raising the sum with ta12 (hereinafter referred to as the auxiliary / main arc period) reaches the preset standard heat input Qst18 for the entire auxiliary / main arc detection period.
In this method, the auxiliary arc period Tp during normal welding and the standard heat input Qst18 for the entire auxiliary / main arc detection period are set in advance before starting welding, and the auxiliary arc current is set. From the voltage detection start time t1, the auxiliary arc voltage average value Vav12 is measured, and the product of the auxiliary arc voltage average value Vav12, the auxiliary arc current value Ip, and the auxiliary arc detection period T12 is obtained. The auxiliary arc period accumulated heat input Qta12 is calculated, and then the main arc current Ia is calculated from the auxiliary arc current Ip.
The main arc voltage / average value Vav (Δt) at each detection interval is measured at every detection interval Δt from the main arc current / voltage detection start time t3, and the main arc voltage at each detection interval is measured.
The average heat input amount ΔQav for each detection interval of the product of the arc voltage average value Vav (Δt) and the welding current average value Iav during the detection period is integrated up to the number of detections n and the main arc period integrated heat input Qta3n
The auxiliary / main arc period integrated heat input Qta1n, which is the sum of the auxiliary arc period integrated heat input Qta12 and the main arc period integrated heat input Qta3n, is calculated as the standard for the preset auxiliary / main arc detection period. This is a method of controlling the cumulative heat input and press-in of stud welding in which the press-in step is started at time tn when the heat input amount Qst18 is reached.

【0058】請求項8の方法は、予め設定した補助・主
アーク検出期間全体の標準入熱量Qst18から補助ア−ク
期間積算入熱量Qta12を減算して主アーク期間全体の標
準入熱量Qst38を算出し、請求項5の主アーク期間積算
電圧値Vta3nが、この主アーク期間全体の標準入熱量Q
st38から算出した検出期間全体の主アーク電圧標準値V
st38に達した時点tnで押し込み工程を開始する方法で
あって、溶接開始前に、正常な溶接時の補助ア−ク期間
Tp及び補助・主アーク検出期間全体の標準入熱量Qst
18を予め設定しておき、補助ア−ク電流・電圧検出開始
時点t1から、補助ア−ク電圧平均値Vav12を測定し
て、この補助ア−ク電圧平均値Vav12と補助ア−ク電流
値Ipと補助ア−ク検出期間T12との積の補助ア−ク期
間積算入熱量Qta12を算出し、上記の予め設定した補助
・主アーク検出期間全体の標準入熱量Qst18から補助ア
−ク期間積算入熱量Qta12を減算して主ア−ク期間積算
入熱量Qta3nを算出しておき、次に補助ア−ク電流Ip
から主ア−ク電流Iaに切り換えて、主アーク電流・電
圧検出開始時点t3から、検出間隔Δtごとに、検出間
隔ごとの主ア−ク電圧平均値Vav(Δt)を測定し、この
検出間隔ごとの主ア−ク電圧平均値Vav(Δt)を積算し
て主アーク期間積算電圧値Vta3nを算出し、この主アー
ク期間積算電圧値Vta3nが、先に算出した主アーク期間
積算入熱量Qta3nを検出期間中の溶接電流平均値Iavで
除算した検出期間全体の主アーク電圧標準値Vst38に達
した時点tnで押し込み工程を開始するスタッド溶接の
入熱積算押し込み制御方法である。
The method according to claim 8 calculates the standard heat input Qst38 for the entire main arc period by subtracting the integrated heat input Qta12 for the auxiliary arc period from the standard heat input Qst18 for the entire auxiliary / main arc detection period. The integrated voltage value Vta3n of the main arc period according to claim 5 is the standard heat input Q over the entire main arc period.
Main arc voltage standard value V for the entire detection period calculated from st38
This is a method of starting the indentation process at time tn when st38 is reached. Before the start of welding, the standard heat input Qst during the normal auxiliary arc period Tp and the auxiliary / main arc detection period during normal welding.
18 is set in advance, the auxiliary arc voltage average value Vav12 is measured from the auxiliary arc current / voltage detection start time t1, and this auxiliary arc voltage average value Vav12 and the auxiliary arc current value are measured. An auxiliary arc period integrated heat input Qta12, which is the product of Ip and the auxiliary arc detection period T12, is calculated, and the auxiliary arc period integration is performed from the standard heat input Qst18 for the entire auxiliary / main arc detection period set in advance. The accumulated heat input Qta3n in the main arc period is calculated by subtracting the heat input Qta12, and then the auxiliary arc current Ip is calculated.
To the main arc current Ia, and from the main arc current / voltage detection start time t3, the main arc voltage average value Vav (Δt) for each detection interval is measured at every detection interval Δt. The main arc period integrated voltage value Vta (n) is integrated to calculate a main arc period integrated voltage value Vta3n, and the main arc period integrated voltage value Vta3n is calculated by the main arc period integrated heat input amount Qta3n previously calculated. This is a method for controlling the integrated heat input and press-in of stud welding in which the press-in process is started at time tn when the main arc voltage standard value Vst38 of the entire detection period is divided by the welding current average value Iav during the detection period.

【0059】請求項9の方法は、請求項6の検出期間全
体の主アーク電圧平均値Vav3nから算出した主アーク期
間積算入熱量Qta3nと補助ア−ク期間積算入熱量Qta12
との和の補助・主アーク期間積算入熱量Qta1nが、予め
設定した補助・主アーク検出期間全体の標準入熱量Qst
18に達した時点tnで押し込み工程を開始する方法であ
って、溶接開始前に、正常な溶接時の補助ア−ク期間T
p及び補助・主アーク検出期間全体の標準入熱量Qst18
を予め設定しておき、補助ア−ク電流・電圧検出開始時
点t1から、補助ア−ク電圧平均値Vav12を測定して、
この補助ア−ク電圧平均値Vav12と補助ア−ク電流値I
pと補助ア−ク検出期間T12との積の補助ア−ク期間積
算入熱量Qta12を算出し、次に補助ア−ク電流Ipから
主ア−ク電流Iaに切り換えて、主アーク電流・電圧検
出開始時点t3から、検出間隔Δtごとに、検出間隔ご
との主ア−ク電圧平均値Vav(Δt)を測定し、この検出
間隔ごとの主ア−ク電圧平均値Vav(Δt)を積算して主
アーク期間積算電圧値Vta3nを算出し、この主アーク期
間積算電圧値Vta3nを検出回数nで除算して検出期間全
体の主アーク電圧平均値Vav3n=Vta3n/nを算出し、
この検出期間全体の主アーク電圧平均値Vav3nと検出期
間中の溶接電流平均値Iavと主アーク積算値検出期間T
3nとの積の主アーク期間積算入熱量Qta3nを算出し、補
助ア−ク期間積算入熱量Qta12と主アーク期間積算入熱
量Qta3nとの和の補助・主アーク期間積算入熱量Qta1n
が、上記の予め設定した補助・主アーク検出期間全体の
標準入熱量Qst18に達した時点tnで押し込み工程を開
始するスタッド溶接の入熱積算押し込み制御方法であ
る。
According to the method of claim 9, the integrated heat input Qta3n of the main arc period and the integrated heat input Qta12 of the auxiliary arc period calculated from the main arc voltage average value Vav3n for the entire detection period of claim 6 are provided.
The auxiliary heat / main arc period accumulated heat input Qta1n is the standard heat input Qst for the entire auxiliary / main arc detection period.
18 is a method of starting the pushing process at time tn when the auxiliary arc period T at the time of normal welding is started before the start of welding.
p and the standard heat input Qst18 for the entire auxiliary / main arc detection period
The auxiliary arc voltage average value Vav12 is measured from the auxiliary arc current / voltage detection start time t1, and
The auxiliary arc voltage average value Vav12 and the auxiliary arc current value I
The auxiliary arc period integrated heat input Qta12, which is the product of p and the auxiliary arc detection period T12, is calculated. Then, the auxiliary arc current Ip is switched to the main arc current Ia to obtain the main arc current / voltage. From the detection start time t3, the main arc voltage average value Vav (Δt) at each detection interval is measured at each detection interval Δt, and the main arc voltage average value Vav (Δt) at each detection interval is integrated. The main arc period integrated voltage value Vta3n is calculated, and the main arc period integrated voltage value Vta3n is divided by the number of detections n to calculate a main arc voltage average value Vav3n = Vta3n / n for the entire detection period.
The main arc voltage average value Vav3n during the entire detection period, the welding current average value Iav during the detection period, and the main arc integrated value detection period T
Calculate the integrated heat input Qta3n of the main arc period, which is the product of the product of 3n, and calculate the auxiliary / main arc period integrated heat input Qta1n of the sum of the auxiliary arc period integrated heat input Qta12 and the main arc period integrated heat input Qta3n.
This is a method of controlling the accumulated heat input and press-in of stud welding in which the press-in step is started at time tn when the standard heat input Qst18 in the entire auxiliary / main arc detection period is reached.

【0060】請求項10の方法は、請求項4又は請求項
5又は請求項6又は請求項7又は請求項8又は請求項9
の方法において、溶接開始前に、溶接部の欠陥になる可
能性のある微小短絡の一回の発生時間よりも短い数[mS
ec]の検出間隔Δt及び短絡が発生しないときの検出間
隔Δtごとの入熱量標準値(以下、検出間隔ごとの入熱
量標準値という)ΔQst及び主アーク期間全体の標準入
熱量Qst38を確保する標準入熱許容短絡回数Nstを予め
設定しておき、主アーク電流・電圧検出開始時点t3か
ら、検出間隔Δtごとに、検出間隔ごとの主ア−ク電圧
平均値Vav(Δt)を測定して、検出間隔ごとの主ア−ク
電圧平均値Vav(Δt)と検出期間中の溶接電流平均値Ia
vとの積の検出間隔Δtごとの入熱量の平均値(以下、
検出間隔ごとの入熱量平均値という)ΔQavを算出し、
この検出間隔ごとの入熱量平均値ΔQavが検出間隔ごと
の入熱量標準値ΔQstよりも低下した短絡回数Nsを計
数して、この短絡回数Nsが上記の予め設定した標準入
熱許容短絡回数Nst以上になると溶接不良を表示するス
タッド溶接の入熱積算押し込み制御方法である。
The method of claim 10 is the method of claim 4 or claim 5 or claim 6 or claim 7 or claim 8 or claim 9.
Before the start of welding, the number [mS
ec] and a standard value for securing the heat input standard value ΔQst for each detection interval Δt when no short circuit occurs (hereinafter referred to as a heat input standard value for each detection interval) and a standard heat input Qst38 for the entire main arc period. The allowable number of heat input short-circuits Nst is set in advance, and the main arc voltage average value Vav (Δt) is measured for each detection interval Δt from the main arc current / voltage detection start time t3. Main arc voltage average value Vav (Δt) for each detection interval and welding current average value Ia during the detection period
The average value of the heat input for each detection interval Δt of the product of
Calculate ΔQav)
The number of short-circuits Ns at which the average value of heat input ΔQav at each detection interval is lower than the standard value of heat input at each detection interval ΔQst is counted, and the number of short-circuits Ns is equal to or more than the preset standard number of allowable heat input short-circuit Nst. This is a stud welding integrated heat input push-in control method in which a welding defect is displayed when it becomes.

【0061】請求項11の方法は、請求項4又は請求項
5又は請求項6又は請求項7又は請求項8又は請求項9
の方法において、溶接開始前に、溶接部の欠陥になる可
能性のある微小短絡の一回の発生時間よりも短い数[mS
ec]の検出間隔Δt及び短絡が発生しない検出間隔Δt
の適正な検出間隔ごとの入熱量標準値ΔQst及び主アー
ク期間全体の標準入熱量Qst38を確保する標準入熱許容
短絡回数Nstを予め設定しておき、主アーク電流・電圧
検出開始時点t3から、検出間隔Δtごとに、検出間隔
ごとの主ア−ク電圧平均値Vav(Δt)を測定して、検出
間隔ごとの主ア−ク電圧平均値Vav(Δt)と検出期間中
の溶接電流平均値Iavとの積の検出間隔ごとの入熱量平
均値ΔQavを算出し、この検出間隔ごとの入熱量平均値
ΔQavが検出間隔ごとの入熱量標準値ΔQstよりも低下
した短絡回数Nsを計数して、この短絡回数Nsが上記
の予め設定した標準入熱許容短絡回数Nst以上になる
と、さらに予め設定した時間だけ主アーク電流Iaの通
電時間を追加するスタッド溶接の入熱積算押し込み制御
方法である。
The method according to claim 11 is the method according to claim 4 or claim 5 or claim 6 or claim 7 or claim 8 or claim 9.
Before the start of welding, the number [mS
ec] and the detection interval Δt at which no short circuit occurs
The heat input standard value ΔQst for each appropriate detection interval and the standard heat input allowable short circuit count Nst for securing the standard heat input Qst38 for the entire main arc period are set in advance, and from the main arc current / voltage detection start time t3, At each detection interval Δt, the main arc voltage average value Vav (Δt) at each detection interval is measured, and the main arc voltage average value Vav (Δt) at each detection interval and the welding current average value during the detection period are measured. The average heat input amount ΔQav for each detection interval of the product of Iav is calculated, and the number of short circuits Ns in which the average heat input amount ΔQav for each detection interval is lower than the standard heat input amount ΔQst for each detection interval is counted. When the number of short-circuits Ns is equal to or greater than the preset standard allowable number of heat input short-circuits Nst, a heat input cumulative push-in control method for stud welding is provided in which the energizing time of the main arc current Ia is further added for a preset time.

【0062】請求項12の方法は、請求項4又は請求項
5又は請求項6又は請求項7又は請求項8又は請求項9
又は請求項10又は請求項11の検出期間中の溶接電流
平均値Iavが、定電流出力特性の溶接電源装置に設定し
た主ア−ク電流設定値であるスタッド溶接の入熱積算押
し込み制御方法である。
A method according to claim 12 is the method according to claim 4 or claim 5 or claim 6 or claim 7 or claim 8 or claim 9.
Alternatively, in the stud welding heat input integrated push-in control method, the welding current average value Iav during the detection period according to claim 10 or 11 is a main arc current set value set in the welding power supply device having a constant current output characteristic. is there.

【0063】請求項13の方法は、請求項4又は請求項
5又は請求項6又は請求項7又は請求項8又は請求項9
又は請求項10又は請求項11の検出期間中の溶接電流
平均値Iavが、主アーク電流・電圧検出開始時点t3か
ら後で測定した定電流出力特性の溶接電源装置から出力
する主ア−ク電流測定値であるスタッド溶接の入熱積算
押し込み制御方法である。
The method of claim 13 is the method of claim 4 or claim 5 or claim 6 or claim 7 or claim 8 or claim 9.
The main arc current output from the welding power supply device having a constant current output characteristic measured after the main arc current / voltage detection start time t3 when the welding current average value Iav during the detection period according to claim 10 or 11 is obtained. This is a method for controlling the cumulative input of heat input for stud welding, which is a measured value.

【0064】請求項14の方法は、請求項4又は請求項
5又は請求項6又は請求項7又は請求項8又は請求項9
又は請求項10又は請求項11の検出期間中の溶接電流
平均値Iavが、主アーク電流・電圧検出開始時点t3か
ら、検出間隔Δtごとに算出した検出間隔ごとの主ア−
ク電流平均値Iav(Δt)を検出回数1回からn回まで積
算して算出した値であるスタッド溶接の入熱積算押し込
み制御方法である。
The method of claim 14 is the method of claim 4 or claim 5 or claim 6 or claim 7 or claim 8 or claim 9.
Alternatively, the welding current average value Iav during the detection period according to claim 10 or 11 is calculated from the main arc current / voltage detection start time t3 at each detection interval Δt calculated at each detection interval Δt.
This is a method for controlling the cumulative heat input and press-in of stud welding, which is a value calculated by integrating the average current value Iav (Δt) from one detection to n detections.

【0065】請求項15の方法は、請求項7又は請求項
8又は請求項9の補助ア−ク電流値Ipが、定電流出力
特性の溶接電源装置に設定した補助ア−ク電流設定値で
あるスタッド溶接の入熱積算押し込み制御方法である。
According to a fifteenth aspect of the present invention, the auxiliary arc current value Ip of the seventh, eighth, or ninth aspect is the auxiliary arc current set value set in the welding power supply having a constant current output characteristic. This is a control method for controlling the cumulative heat input of certain stud welding.

【0066】請求項16の方法は、請求項7又は請求項
8又は請求項9の補助ア−ク電流値Ipが補助ア−ク電
流・電圧検出開始時点t1から測定した定電流出力特性
の溶接電源装置から出力する補助ア−ク電流測定値であ
るスタッド溶接の入熱積算押し込み制御方法である。
The method according to claim 16 is a method for welding the constant current output characteristic in which the auxiliary arc current value Ip according to claim 7 or claim 8 or 9 is measured from the auxiliary arc current / voltage detection start time t1. This is a method for controlling the cumulative heat input and press-in of stud welding, which is the measured value of the auxiliary arc current output from the power supply device.

【0070】[0070]

【発明の実施の形態】本発明のスタッド溶接の入熱積算
押し込み制御方法は、請求項4に記載した検出間隔ごと
の主ア−ク電圧平均値Vav(Δt)から算出した主アーク
期間積算入熱量Qta3nが、主アーク期間全体の標準入熱
量Qst38に達した時点tnで押し込み工程を開始する方
法であって、下記の手順のとおりである。 (A)溶接開始前に、図2のように、正常な溶接時の主
アーク期間全体の標準入熱量Qst38を、数1乃至数3に
よって、予め設定しておく。 (B)補助ア−ク電流通電開始時点t0において、溶接
ガン2の起動スイッチ13を押して補助ア−ク電流Ip
の通電を開始するとともに、スタッド18を被溶接材1
4から引き上げて補助ア−クを発生させる。 (C)補助ア−ク期間Tpが経過した主ア−ク電流通電
開始時点t2で、補助ア−ク電流Ipから主ア−ク電流
Iaに切り換える。 (D)図3に示すように、主アーク電流・電圧検出開始
時点t3から、検出間隔Δtごとに、検出間隔ごとの主
ア−ク電流平均値Iav(Δt)及び検出間隔ごとの主ア−
ク電圧平均値Vav(Δt)を測定する。 (E)この検出間隔ごとの主ア−ク電圧平均値Vav(Δ
t)と検出期間中の溶接電流平均値Iav又は検出間隔ごと
の主ア−ク電流平均値Iav(Δt)との積の検出間隔ごと
の入熱量平均値ΔQavを積算して主アーク期間積算入熱
量Qta3nを算出する。 (F)この主アーク期間積算入熱量Qta3nが、予め設定
した主アーク期間全体の標準入熱量Qst38に達した時点
tnで押し込み工程を開始する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS According to a fourth aspect of the present invention, there is provided a method for controlling the integrated heat input and press-in of stud welding according to the present invention. This is a method in which the pushing process is started at time tn when the heat quantity Qta3n reaches the standard heat input Qst38 of the entire main arc period, as follows. (A) Prior to the start of welding, as shown in FIG. 2, the standard heat input Qst38 for the entire main arc period during normal welding is set in advance by Equations 1 to 3. (B) At the start of the energization of the auxiliary arc current t0, the start switch 13 of the welding gun 2 is depressed to set the auxiliary arc current Ip.
And the stud 18 is connected to the workpiece 1.
4 to raise an auxiliary arc. (C) The auxiliary arc current Ip is switched to the main arc current Ia at the main arc current energization start time t2 after the lapse of the auxiliary arc period Tp. (D) As shown in FIG. 3, from the start time t3 of the main arc current / voltage detection, the main arc current average value Iav (Δt) for each detection interval and the main arc current for each detection interval are set for each detection interval Δt.
The average voltage Vav (Δt) is measured. (E) The main arc voltage average value Vav (Δ
t) and the average of the heat input amount ΔQav for each detection interval of the product of the product of the welding current average value Iav during the detection period or the main arc current average value Iav (Δt) for each detection interval. The calorie Qta3n is calculated. (F) At the time tn when the accumulated heat input Qta3n of the main arc period reaches the standard heat input Qst38 of the entire main arc period set in advance, the pushing process is started.

【0071】[0071]

【実施例】スタッド溶接は、溶接ガン2の起動スイッチ
13を押して補助ア−ク電流Ipの通電を開始するとと
もに、スタッド18を被溶接材14から引き上げて補助
ア−クを発生させる。次に、ろ補助ア−ク期間Tpが経
過した時点で、補助ア−ク電流Ipから主ア−ク電流I
aに切り換えて、予め設定した主アーク期間Taの経過
後に、アーク発生中のスタッドが被溶接材に押込まれて
被溶接材と短絡し、予め設定した短絡期間Tsだけ短絡
電流Isを通電した後に溶接電流をしゃ断して、溶接を
終了する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In stud welding, an auxiliary arc current Ip is started by pressing a start switch 13 of a welding gun 2, and an auxiliary arc is generated by pulling up a stud 18 from a workpiece 14 to be welded. Next, when the filter auxiliary arc period Tp has elapsed, the auxiliary arc current Ip is reduced to the main arc current Ip.
After the preset main arc period Ta elapses, the stud during arc generation is pushed into the workpiece and short-circuited with the workpiece, and after the short-circuit current Is has been applied for the preset short-circuit period Ts, The welding current is cut off and the welding is terminated.

【0072】[図2の説明]図2(A)は、正常な溶接
時の主アーク期間全体の出力電流Ioから検出期間中の
溶接電流平均値Iavを算出する説明図であり、同図
(B)は、正常な溶接時の主アーク期間全体の出力端子
電圧Vdから検出間隔Δtごとに検出間隔ごとの主ア−
ク電圧平均値Vav(Δt)を算出する説明図であり、同図
(C)は正常な溶接時のスタッド引き上げ距離を示す図
である。
[Explanation of FIG. 2] FIG. 2A is an explanatory diagram for calculating the welding current average value Iav during the detection period from the output current Io during the entire main arc period during normal welding. B) shows the main arc at each detection interval Δt from the output terminal voltage Vd during the entire main arc period during normal welding.
FIG. 4C is an explanatory diagram for calculating an average voltage Vav (Δt), and FIG. 4C is a diagram showing a stud lifting distance during normal welding.

【0074】同図(A)に示すように、補助ア−ク電流
通電開始時点t0において、起動スイッチ13を押して
補助ア−ク電流Ipの通電を開始するとともに、スタッ
ド18を被溶接材14から引き上げて補助ア−クを発生
させる。
As shown in FIG. 9A, at the time point t0 when the auxiliary arc current is supplied, the start switch 13 is pressed to start supplying the auxiliary arc current Ip, and the stud 18 is removed from the workpiece 14 by the welding. Pull up to generate an auxiliary arc.

【0076】この補助ア−ク電流通電開始時点t0又は
後述する主ア−ク電流通電開始時点t2から、後述する
図7の溶接電流検出回路IC及び溶接電圧検出回路VC
によって、各時刻tの溶接電圧値V1(t)及び各時刻tの
溶接電流値I1(t)を予め設定した検出間隔△tで検出し
て、この検出間隔Δtごとに検出間隔ごとの主ア−ク電
圧平均値Vav(△t)及び主ア−ク電流平均値Iav(△
t)を算出する。
From the auxiliary arc current energization start time t0 or the main arc current energization start time t2 described later, a welding current detection circuit IC and a welding voltage detection circuit VC shown in FIG.
Thus, the welding voltage value V1 (t) at each time t and the welding current value I1 (t) at each time t are detected at a predetermined detection interval Δt, and a main address at each detection interval Δt is detected at each detection interval Δt. -Average voltage Vav (△ t) and main arc current average Iav (△ t).
Calculate t).

【0078】次に、主ア−ク電流通電開始時点t2にお
いて、補助ア−ク電流Ipから主ア−ク電流Iaに切り
換える。前述した主ア−ク電流通電開始時点t2直後の
主ア−ク電流・電圧検出開始時点t3から主ア−ク電流
・電圧検出終了時点t8までの主アーク入熱標準値設定
期間T38に、各時刻tの溶接電圧値V1(t)を検出して、
短絡が発生しないときの検出間隔ごとの主ア−ク電圧平
均値Vav(Δt)を算出する。同様に、各時刻tの溶接
電流値I1(t)を検出して、短絡が発生しないときの検出
間隔ごとの主ア−ク電流平均値Iav(Δt)を算出する。
Next, at the time t2 when the main arc current starts to flow, the auxiliary arc current Ip is switched to the main arc current Ia. During the main arc heat input standard value setting period T38 from the main arc current / voltage detection start time t3 immediately after the main arc current energization start time t2 described above to the main arc current / voltage detection end time t8, Detecting the welding voltage value V1 (t) at time t,
The main arc voltage average value Vav (Δt) is calculated for each detection interval when a short circuit does not occur. Similarly, the welding current value I1 (t) at each time t is detected, and the main arc current average value Iav (Δt) for each detection interval when no short circuit occurs is calculated.

【0080】[数1の説明]この主ア−ク電流・電圧検
出開始時点t3から主ア−ク電流・電圧検出終了時点t
8までの間、検出間隔Δtごとに、検出間隔ごとの主ア
−ク電圧平均値Vav(Δt)及び検出間隔ごとの主ア−
ク電流平均値Iav(Δt)を算出し、検出間隔ごとの入熱
量平均値ΔQavを数1によって算出する。
[Explanation of Equation 1] The main arc current / voltage detection start time t3 to the main arc current / voltage detection end time t3
8, the main arc voltage average value Vav (Δt) for each detection interval and the main arc voltage for each detection interval.
The average current Iav (Δt) is calculated, and the average heat input amount ΔQav for each detection interval is calculated by Equation 1.

【数1】 (Equation 1)

【0081】正常な溶接動作が行われた場合の全入熱量
はほぼ一定であるために、この正常な溶接動作が行われ
る場合の全入熱量を溶接スタッドの径及び被溶接材14
の条件及び溶接姿勢(下向き、横向き等)に応じて選定
された検出期間全体の標準入熱量Qstにする。
Since the total heat input when the normal welding operation is performed is substantially constant, the total heat input when the normal welding operation is performed is determined by the diameter of the welding stud and the material 14 to be welded.
And the standard heat input Qst for the entire detection period selected according to the conditions (1) and the welding posture (downward, lateral, etc.).

【0082】[数2の説明]以下、図2(A)及び
(B)に示すように、主ア−ク電流・電圧検出開始時点
t3から主ア−ク電流・電圧検出終了時点t8までの正
常な溶接時の検出期間全体の標準入熱量Qstを算出する
式について説明する。数2の右辺の1番目の式によっ
て、検出間隔ごとの入熱量平均値ΔQavを主ア−ク電流
・電圧検出開始時点t3から主ア−ク電流・電圧検出終
了時点t8まで積算して検出期間全体の標準入熱量Qst
を算出する。
[Explanation of Equation 2] Hereinafter, as shown in FIGS. 2A and 2B, the period from the start of the main arc current / voltage detection t3 to the end of the main arc current / voltage detection t8. An equation for calculating the standard heat input Qst for the entire detection period during normal welding will be described. According to the first expression on the right side of Expression 2, the average heat input amount ΔQav for each detection interval is integrated from the main arc current / voltage detection start time t3 to the main arc current / voltage detection end time t8, and the detection period is calculated. Overall standard heat input Qst
Is calculated.

【数2】 (Equation 2)

【0084】[数3の説明]図2(A)及び(B)に示
すように、上記の主ア−ク電流・電圧検出開始時点t3
の検出間隔Δtの検出開始時点はt01であり、主ア−ク
電流・電圧検出終了時点t8の検出間隔Δtの検出開始
時点はt0nである。したがって、1回目の検出間隔Δt
の検出開始時点t01から検出回数n回目の検出間隔Δt
の検出開始時点t0nまでの検出期間全体の標準入熱量Q
stを、数2の右辺の2番目の式によって算出してもよ
い。
[Explanation of Equation 3] As shown in FIGS. 2A and 2B, the above-mentioned main arc current / voltage detection start time t3
The detection start time of the detection interval .DELTA.t is t01, and the detection start time of the detection interval .DELTA.t at the main arc current / voltage detection end time t8 is t0n. Therefore, the first detection interval Δt
Detection interval Δt from the detection start time t01
Heat input Q over the entire detection period up to the detection start point t0n
st may be calculated by the second expression on the right side of Equation 2.

【0086】また、検出期間全体の標準入熱量Qstを上
記の数2によって算出する代わりに、主ア−ク電流・電
圧検出開始時点t3の1回目の検出間隔Δtから主ア−
ク電流・電圧検出終了時点t8の検出回数n回目の検出
間隔Δtまでの検出期間全体の標準入熱量Qstを、数3
によって算出してもよい。
Also, instead of calculating the standard heat input amount Qst for the entire detection period by the above equation 2, the main arc current is calculated from the first detection interval Δt at the main arc current / voltage detection start time t3.
The standard heat input Qst for the entire detection period up to the n-th detection interval Δt at the end of the current / voltage detection time t8 is expressed by the following equation (3).
May be calculated.

【数3】 (Equation 3)

【0090】[図3の説明]図3(A)は、各溶接中の
主アーク期間全体の出力電流Ioから検出期間中の溶接
電流平均値Iavを算出する説明図であり、同図(B)
は、各溶接中の主アーク期間全体の出力端子電圧Vdか
ら検出間隔Δtごとに検出間隔ごとの主ア−ク電圧平均
値Vav(Δt)を算出する説明図である。
[Explanation of FIG. 3] FIG. 3A is an explanatory diagram for calculating the welding current average value Iav during the detection period from the output current Io during the entire main arc period during each welding, and FIG. )
FIG. 7 is an explanatory diagram for calculating the main arc voltage average value Vav (Δt) at each detection interval Δt from the output terminal voltage Vd during the entire main arc period during each welding.

【0092】図1で説明した溶接電源装置1として、サ
イリスタ等の半導体スイッチング素子を用いた略定電流
制御方式の電源装置を使用た場合、主アーク電流通電開
始時点t2から短絡電流通電終了時点t10までの間、出
力電流Ioがほぼ一定に制御された定電流が流れる。
When a power supply of a substantially constant current control type using a semiconductor switching element such as a thyristor is used as the welding power supply 1 described with reference to FIG. 1, the main arc current supply start time t2 to the short-circuit current supply end time t10. During this period, a constant current in which the output current Io is controlled to be substantially constant flows.

【0094】主ア−ク電流通電終了時点即ち短絡電流通
電開始時点t9で、押し込み動作を開始して短絡させる
と、図3(A)に示すように、正常に短絡した瞬間に急
峻な電流が流れる。この急峻な電流の増加分は、主アー
ク電流Iaの平均値と比較して無視することができる範
囲である。そこで、主アーク期間Taの出力電流Io
は、アーク時も瞬時的な短絡時も略一定であるので、検
出間隔ごとの主ア−ク電流平均値Iav(Δt)を測定しな
いで、検出期間中の溶接電圧平均値Vavだけを測定して
もよい。
At the end of the main arc current application, that is, at the start time t9 of the short-circuit current application, when the push-in operation is started and short-circuited, as shown in FIG. Flows. This steep increase in current is in a range that can be ignored compared to the average value of the main arc current Ia. Thus, the output current Io during the main arc period Ta
In this method, the average value of the main arc current Iav (Δt) at each detection interval is not measured, and only the average value Vav of the welding voltage during the detection period is measured, since the average is almost constant both at the time of the arc and the momentary short circuit. You may.

【0095】次に、図3(A)及び(B)を参照して、
主ア−ク電流・電圧検出開始時点t3から、検出期間全
体の標準入熱量Qstに達した主ア−ク電流・電圧検出終
了時点tnまでの短絡が発生しない積算入熱量Qtaを算
出する式について説明する。
Next, referring to FIGS. 3A and 3B,
Formula for calculating integrated heat input Qta that does not cause a short circuit from main arc current / voltage detection start time t3 to main arc current / voltage detection end time tn that has reached standard heat input Qst for the entire detection period. explain.

【0096】[数4の説明]数4の右辺の1番目の式に
よって、主ア−ク電流・電圧検出開始時点t3から主ア
−ク電流・電圧検出終了時点tnまで、検出間隔ごとの
入熱量平均値ΔQavを積算して、積算入熱量Qtaを算出
する。
[Explanation of Equation 4] From the first equation on the right side of Equation 4, the input from the main arc current / voltage detection start point t3 to the main arc current / voltage detection end point tn at each detection interval is performed. The heat quantity average value ΔQav is integrated to calculate an integrated heat input quantity Qta.

【数4】 (Equation 4)

【0098】上記の主ア−ク電流・電圧検出開始時点t
3の検出間隔Δtの検出開始時点はt01であり、主ア−
ク電流・電圧検出終了時点tnの検出間隔Δtの検出開
始時点はt0nである。したがって、1回目の検出間隔Δ
tの検出開始時点t01から検出回数n回目の検出間隔Δ
tの検出開始時点t0nまでの積算入熱量Qtaを、数4の
右辺の2番目の式によって算出してもよい。
The above-described main arc current / voltage detection start time t
The detection start time of the detection interval Δt of No. 3 is t01, and the main arc is detected.
The detection start time of the detection interval Δt of the current / voltage detection end time tn is t0n. Therefore, the first detection interval Δ
n detection interval Δ from the detection start time t01 of t
The accumulated heat input amount Qta up to the detection start time t0n of t may be calculated by the second expression on the right side of Expression 4.

【0100】[数5の説明]また、積算入熱量Qtaを上
記の数4によって算出する代わりに、主ア−ク電流・電
圧検出開始時点t3の1回目の検出間隔Δtから主ア−
ク電流・電圧検出終了時点tnの検出回数n回目の検出
間隔Δtまでの積算入熱量Qtaを、数5によって算出し
てもよい。
[Explanation of Equation 5] Further, instead of calculating the integrated heat input amount Qta by the above Equation 4, the main arc current is calculated from the first detection interval Δt at the main arc current / voltage detection start time t3.
The accumulated heat input Qta up to the n-th detection interval Δt at the end of the current / voltage detection time tn may be calculated by Equation 5.

【数5】 (Equation 5)

【0101】[図4の説明]図4(A)は、各溶接中の
主アーク期間全体の出力電流Ioから検出間隔ごとの主
ア−ク電流平均値Iav(Δt)を算出する説明図であり、
同図(B)は、各溶接中の主アーク期間全体の出力端子
電圧Vdから検出間隔Δtごとに検出間隔ごとの主ア−
ク電圧平均値Vav(Δt)を算出する説明図である。
[Description of FIG. 4] FIG. 4A is an explanatory diagram for calculating the main arc current average value Iav (Δt) for each detection interval from the output current Io during the entire main arc period during each welding. Yes,
FIG. 7B shows the main arc at each detection interval from the output terminal voltage Vd during the main arc period during each welding.
FIG. 4 is an explanatory diagram for calculating a peak voltage average value Vav (Δt).

【0102】次に、図4(A)及び(B)を参照して、
主ア−ク電流・電圧検出開始時点t3から、検出期間全
体の標準入熱量Qstに達した主ア−ク電流・電圧検出終
了時点tnまでの短絡が発生しない積算入熱量Qtaを算
出する式について説明する。
Next, referring to FIGS. 4A and 4B,
Formula for calculating integrated heat input Qta that does not cause a short circuit from main arc current / voltage detection start time t3 to main arc current / voltage detection end time tn that has reached standard heat input Qst for the entire detection period. explain.

【0103】[数6の説明]積算入熱量Qtaは、検出間
隔ごとの入熱量平均値ΔQavを、主ア−ク電流・電圧検
出開始時点t3から主ア−ク電流・電圧検出終了時点t
nまで、数6の右辺の1番目の式によって算出する。
[Explanation of Equation 6] The integrated heat input Qta is calculated by calculating the average value of the heat input ΔQav for each detection interval from the main arc current / voltage detection start time t3 to the main arc current / voltage detection end time t3.
Up to n, it is calculated by the first expression on the right side of Expression 6.

【数6】 (Equation 6)

【0104】上記の主ア−ク電流・電圧検出開始時点t
3の検出間隔Δtの検出開始時点はt01であり、主ア−
ク電流・電圧検出終了時点tnの検出間隔Δtの検出開
始時点はt0nである。したがって、1回目の検出間隔Δ
tの検出開始時点t01から検出回数n回目の検出間隔Δ
tの検出開始時点t0nまでの積算入熱量Qtaを、数6の
右辺の2番目の式によって算出してもよい。
The main arc current / voltage detection start time t
The detection start time of the detection interval Δt of No. 3 is t01, and the main arc is detected.
The detection start time of the detection interval Δt of the current / voltage detection end time tn is t0n. Therefore, the first detection interval Δ
n detection interval Δ from the detection start time t01 of t
The accumulated heat input amount Qta up to the detection start time t0n of t may be calculated by the second equation on the right side of Expression 6.

【0106】[数7の説明]また、積算入熱量Qtaを上
記の数4によって算出する代わりに、主ア−ク電流・電
圧検出開始時点t3の1回目の検出間隔Δtから主ア−
ク電流・電圧検出終了時点tnの検出回数n回目の検出
間隔Δtまでの積算入熱量Qtaを、数7によって算出し
てもよい。
[Explanation of Equation 7] Also, instead of calculating the integrated heat input amount Qta by the above Equation 4, the main arc current is calculated from the first detection interval Δt at the main arc current / voltage detection start time t3.
The accumulated heat input amount Qta up to the n-th detection interval Δt at the end of the current / voltage detection time tn may be calculated by Expression 7.

【数7】 (Equation 7)

【0110】次に、補助ア−ク期間Tpの補助ア−ク電
流・電圧検出開始時点t1から補助ア−ク電流値Ipを
測定するとともに、補助ア−ク電圧平均値Vav12を測定
して補助ア−ク期間積算入熱量Qta12を算出する場合に
ついて説明する。
Next, the auxiliary arc current value Ip is measured from the auxiliary arc current / voltage detection start time t1 during the auxiliary arc period Tp, and the auxiliary arc voltage average value Vav12 is measured to determine the auxiliary arc current value. The case where the arc period integrated heat input amount Qta12 is calculated will be described.

【0112】通常のスタッド溶接においては、前述した
図2に示した補助ア−ク期間Tpは0.1〜0.2[秒]
であり、主アーク期間Taは0.4〜1.5[秒]であ
り、短絡期間Tsは0.2[秒]位であって、補助ア−
ク期間Tpは主アーク期間Taに比べて1/10程度の
通電時間であり、しかも補助ア−ク電流値Ipは主ア−
ク電流値Iaよりも小であるので、制御回路を簡単にす
るために、補助ア−ク期間積算入熱量Qta12の算出を省
略している。
In normal stud welding, the auxiliary arc period Tp shown in FIG. 2 is 0.1 to 0.2 [sec].
The main arc period Ta is 0.4 to 1.5 [sec], the short-circuit period Ts is about 0.2 [sec], and the auxiliary arc period is
The arc period Tp is a conduction time that is about 1/10 of that of the main arc period Ta, and the auxiliary arc current value Ip is the main arc period.
Since it is smaller than the arc current value Ia, the calculation of the auxiliary arc period accumulated heat input Qta12 is omitted to simplify the control circuit.

【0114】しかし、溶接条件によっては、補助ア−ク
期間積算入熱量Qta12を主アーク期間積算入熱量Qta3n
に対して無視することができなくなりその場合は、補助
ア−ク電流平均値Ipと補助ア−ク電圧平均値と補助ア
−ク期間Tpとから補助ア−ク期間積算入熱量Qta12を
算出する。補助ア−ク期間Tpは前述したとおり、主ア
ーク期間Taに比べて短時間であるので、補助ア−ク電
流平均値Ipと補助ア−ク電圧平均値とは、検出間隔ご
との主ア−ク電流平均値Iav(Δt)及び検出間隔ごとの
主ア−ク電圧平均値Vav(Δt)のように、検出間隔Δt
ごとに算出する必要はなく、補助ア−ク電流・電圧検出
開始時点t1から、補助ア−ク電圧平均値Vav12を測定
して、この補助ア−ク電圧平均値Vav12と補助ア−ク電
流値Ipとから、補助ア−ク期間積算入熱量Qta12を算
出すればよい。
However, depending on the welding conditions, the auxiliary arc period integrated heat input Qta12 may be replaced by the main arc period integrated heat input Qta3n.
In this case, the auxiliary arc period integrated heat input Qta12 is calculated from the auxiliary arc current average value Ip, the auxiliary arc voltage average value, and the auxiliary arc period Tp. . As described above, since the auxiliary arc period Tp is shorter than the main arc period Ta, the auxiliary arc current average value Ip and the auxiliary arc voltage average value are different from the main arc period Ta at each detection interval. As in the case of the average current value Iav (Δt) and the main arc voltage average value Vav (Δt) for each detection interval, the detection interval Δt
It is not necessary to calculate the average value of the auxiliary arc voltage Vav12 and the average value of the auxiliary arc voltage Vav12 from the auxiliary arc current / voltage detection start time t1. It is sufficient to calculate the auxiliary arc period accumulated heat input Qta12 from Ip.

【0116】補助ア−ク期間積算入熱量Qta12は、下記
の式に示すとおり、補助ア−ク電流・電圧検出開始時点
t1から、補助ア−ク電圧平均値Vav12を測定して、こ
の補助ア−ク電圧平均値Vav12と補助ア−ク電流値Ip
と補助ア−ク検出期間T12との積から算出する。補助・
主アーク期間積算入熱量Qta1nは、下記の式に示すとお
り、検出間隔ごとの主ア−ク電圧平均値Vav(Δt)から
算出した主アーク期間積算入熱量Qta3nと補助ア−ク期
間積算入熱量Qta12との和となる。 Qta12=Vav12・Ip・T12 Qta1n=Qta12+Qta3n
As shown in the following equation, the auxiliary arc period integrated heat input Qta12 is obtained by measuring the auxiliary arc voltage average value Vav12 from the auxiliary arc current / voltage detection start time t1. -Average voltage value Vav12 and auxiliary arc current value Ip
And the auxiliary arc detection period T12. auxiliary·
The main arc period integrated heat input Qta1n is calculated by the main arc period integrated heat input Qta3n and the auxiliary arc period integrated heat input calculated from the main arc voltage average value Vav (Δt) for each detection interval as shown in the following equation. It is the sum with Qta12. Qta12 = Vav12 ・ Ip ・ T12 Qta1n = Qta12 + Qta3n

【0120】[図5の説明]図5は、主アーク期間Ta
中に、引き上げ不良、異常アーク現象による片溶け等に
よって、スタッド18が、一時的に、溶融プールに短絡
した場合の溶接電圧波形及び溶接電流波形を示す図であ
る。
[Description of FIG. 5] FIG. 5 shows the main arc period Ta.
It is a figure which shows the welding voltage waveform and the welding current waveform when the stud 18 is short-circuited temporarily to the molten pool due to pulling failure, partial melting due to an abnormal arc phenomenon or the like.

【0122】主アーク期間Ta中に、引き上げ不良、異
常アーク現象、例えば磁気吹きによる片溶け等によって
スタッド18が、一時的に、溶融プールに短絡した場
合、検出間隔ごとの短絡発生時の入熱量平均値ΔQasが
低くなるために、主アーク期間Ta中に短絡が多く発生
して積算入熱量Qtaは減少する。
During the main arc period Ta, if the stud 18 is temporarily short-circuited to the molten pool due to a pull-up failure, an abnormal arc phenomenon, for example, one-side melting due to magnetic blowing, etc. Since the average value ΔQas decreases, many short circuits occur during the main arc period Ta, and the integrated heat input amount Qta decreases.

【0124】主ア−ク電流・電圧検出開始時点t3から
積算して、検出期間全体の標準入熱量Qstが積算入熱量
Qtaと一致した時点又は越えた直後の時点tnにおける
積算入熱量Qtaを、数4乃至数7によって算出する。
By integrating from the main arc current / voltage detection start time t3, the integrated heat input Qta at the time tn when the standard heat input Qst for the entire detection period coincides with or exceeds the integrated heat input Qta, It is calculated by Equations 4 to 7.

【0126】主アーク期間Ta中に短絡が発生した場合
の出力端子電圧Vdは、検出間隔ごとの短絡発生時の出
力端子電圧平均値Vas(Δt)となるので、検出期間中の
溶接電圧平均値Vavは減少する。また、このときの出力
電流Ioは、検出間隔ごとの短絡発生時の出力電流平均
値Ias(Δt)となるが、溶接電源装置の出力特性が定電
流特性の場合は、検出期間中の溶接電流平均値Iavはほ
とんど変化することがなく、また溶接電源装置の出力特
性が垂下特性のような定電流特性でない場合は、検出期
間中の溶接電流平均値Iavは多少増加する。
The output terminal voltage Vd when a short circuit occurs during the main arc period Ta is the output terminal voltage average value Vas (Δt) when a short circuit occurs at each detection interval. Vav decreases. The output current Io at this time is the average output current value Ias (Δt) when a short circuit occurs at each detection interval. If the output characteristics of the welding power supply device are constant current characteristics, the welding current during the detection period is The average value Iav hardly changes, and when the output characteristics of the welding power supply device are not constant current characteristics such as drooping characteristics, the welding current average value Iav during the detection period slightly increases.

【0130】[図6の説明]図6(A)は、主アーク期
間Ta中に微小短絡が発生した場合の出力電流Ioの波
形を示す溶接電流波形図であり、同図(B)は、主アー
ク期間Ta中に短絡が発生した場合の出力端子電圧Vd
の波形を示す図である。
[Explanation of FIG. 6] FIG. 6A is a welding current waveform diagram showing a waveform of the output current Io when a micro short circuit occurs during the main arc period Ta, and FIG. Output terminal voltage Vd when short circuit occurs during main arc period Ta
It is a figure which shows the waveform of.

【0132】上記の図6に示すように、前述した実施例
では、太径スタッド溶接のように溶接時間が長くなった
とき、貫通溶接のとき、横向き溶接のとき等で微小短絡
が頻繁に発生しても、積算入熱量Qtaはほとんど減少し
ない。しかし、これらの微少短絡が頻繁に発生すると、
溶接部の欠陥になる可能性が大きい。
As shown in FIG. 6, in the above-described embodiment, when the welding time is long, such as in the case of large diameter stud welding, in the case of penetration welding, in the case of horizontal welding, etc., a minute short circuit frequently occurs. Even so, the accumulated heat input Qta hardly decreases. However, when these short circuits occur frequently,
There is a high possibility that the weld will become defective.

【0134】この場合は、検出間隔ごとの入熱量平均値
ΔQavを算出する検出間隔Δtを、溶接部の欠陥になる
可能性のある微小短絡の一回の発生時間よりも小さい数
[mSec]程度に定める。次に、正常な溶接動作が行われ
た場合の検出間隔ごとの入熱量平均値ΔQavの適正値
を、溶接スタッドの径及び被溶接材14の条件及び溶接
姿勢(下向き、横向き等)に応じて検出間隔ごとの入熱
量標準値ΔQstとして定める。この予め設定した検出間
隔ごとの入熱量平均値ΔQavを、検出間隔Δtごとに、
検出間隔ごとの入熱量標準値ΔQstと比較する。この検
出間隔ごとの入熱量平均値ΔQavが検出間隔ごとの入熱
量標準値ΔQstよりも低下した短絡回数Nsを計数し
て、この短絡回数Nsが上記の予め設定した標準入熱許
容短絡回数Nst以上になると溶接不良と判定する。
In this case, the detection interval Δt for calculating the average heat input amount ΔQav for each detection interval is set to a number [mSec] smaller than the time of one occurrence of a micro short-circuit that may become a defect in the welded portion. Set forth in Next, the appropriate value of the average value of heat input ΔQav for each detection interval when a normal welding operation is performed is determined according to the diameter of the welding stud, the condition of the workpiece 14 and the welding position (downward, sideways, etc.). It is determined as a heat input standard value ΔQst for each detection interval. The heat input average value ΔQav for each predetermined detection interval is calculated for each detection interval Δt,
This is compared with the heat input standard value ΔQst for each detection interval. The number of short-circuits Ns at which the average value of heat input ΔQav at each detection interval is lower than the standard value of heat input at each detection interval ΔQst is counted, and the number of short-circuits Ns is equal to or more than the preset standard number of allowable heat input short-circuit Nst. Is determined to be poor welding.

【0136】上記の判定結果を使用して、数4乃至数1
2によって算出する方法の積算入熱量Qtaで溶接したス
タッド溶接終了時に、微小短絡回数が許容範囲を越えた
ことを表示したり、さらに入熱を加算したりする。
Using the above determination results, Equations 4 to 1
At the end of the stud welding with the integrated heat input Qta of the method calculated in Step 2, the fact that the number of minute short circuits has exceeded the allowable range is displayed, and the heat input is further added.

【0140】[数8乃至数12の説明]図4(A)及び
(B)の右端の符号Vav及びIavに示すように、検出期
間中の溶接電流平均値Iav及び検出期間中の溶接電圧平
均値Vavを算出し、主アーク入熱標準値設定期間T38を
乗算して積算入熱量Qtaを算出してもよい。
[Explanation of Expressions 8 to 12] As shown by the reference numerals Vav and Iav at the right end of FIGS. 4A and 4B, the welding current average value Iav during the detection period and the welding voltage average during the detection period are shown. The value Vav may be calculated and multiplied by the main arc heat input standard value setting period T38 to calculate the integrated heat input amount Qta.

【0142】検出間隔ごとの主ア−ク電圧平均値Vav
(Δt)を、検出回数1回からn回まで積算して、主アー
ク期間積算電圧値Vta3nを、数8によって算出する。
Main arc voltage average value Vav for each detection interval
(Δt) is integrated from the number of detections of 1 to n times, and the main arc period integrated voltage value Vta3n is calculated by Expression 8.

【数8】 検出間隔ごとの主ア−ク電流平均値Iav(Δt)を、検出
回数1回からn回まで積算して、主アーク期間積算電流
値Ita3nを、数9によって算出する。
(Equation 8) The main arc current average value Iav (Δt) for each detection interval is integrated from the number of detections of 1 to n times, and the main arc period integrated current value Ita3n is calculated by Expression 9.

【数9】 (Equation 9)

【0144】数8によって算出した主アーク期間積算電
圧値Vta3nを検出回数nで除算して、検出期間中の溶接
電圧平均値Vavを、数10によて算出する。
By dividing the main arc period integrated voltage value Vta3n calculated by Expression 8 by the number of detections n, the welding voltage average value Vav during the detection period is calculated by Expression 10.

【数10】 数9によって算出した主アーク期間積算電流値Ita3nを
検出回数nで除算して、検出期間中の溶接電流の平均値
Iavを、数11によって算出する。
(Equation 10) The average value Iav of the welding current during the detection period is calculated by Expression 11 by dividing the main arc period integrated current value Ita3n calculated by Expression 9 by the number of detections n.

【数11】 [Equation 11]

【0146】前述した数10によって算出した検出期間
中の溶接電圧平均値Vavと数11によって算出した検出
期間中の溶接電流の平均値Iavと主アーク積算値検出期
間T3nとを乗算してから、数12によって、積算入熱量
Qtaを算出する。
After multiplying the welding voltage average value Vav during the detection period calculated by Equation 10 and the welding current average value Iav during the detection period calculated by Equation 11 by the main arc integrated value detection period T3n, From the equation 12, the integrated heat input amount Qta is calculated.

【数12】 (Equation 12)

【0150】[請求項4の実施例の説明]請求項4の方
法は、検出間隔ごとの主ア−ク電圧平均値Vav(Δt)か
ら算出した主アーク期間積算入熱量Qta3nが、主アーク
期間全体の標準入熱量Qst38に達した時点tnで押し込
み工程を開始する方法である。以下、図2乃至図3を参
照して、この方法について説明する。 (A)溶接開始前に、数1乃至数3によって、正常な溶
接時の主アーク期間全体の標準入熱量Qst38を予め設定
しておく。
[Explanation of the Fourth Embodiment] The method of the fourth embodiment is characterized in that the main arc period integrated heat input Qta3n calculated from the main arc voltage average value Vav (Δt) for each detection interval is equal to the main arc period. This is a method in which the pushing process is started at time tn when the total standard heat input Qst38 is reached. Hereinafter, this method will be described with reference to FIGS. (A) Prior to the start of welding, the standard heat input Qst38 for the entire main arc period during normal welding is set in advance by Equations 1 to 3.

【0152】(B)補助ア−ク電流通電開始時点t0に
おいて、溶接ガン2の起動スイッチ13を押して補助ア
−ク電流Ipの通電を開始するとともに、スタッド18
を被溶接材14から引き上げて補助ア−クを発生させ
る。 (C)補助ア−ク期間Tpが経過した主ア−ク電流通電
開始時点t2で、補助ア−ク電流Ipから主ア−ク電流
Iaに切り換える。
(B) At the time point t0 when the auxiliary arc current is started, the start switch 13 of the welding gun 2 is pressed to start the supply of the auxiliary arc current Ip and the stud 18 is started.
Is lifted from the workpiece 14 to generate an auxiliary arc. (C) The auxiliary arc current Ip is switched to the main arc current Ia at the main arc current energization start time t2 after the lapse of the auxiliary arc period Tp.

【0154】(D)図3に示すように、主アーク電流・
電圧検出開始時点t3から、検出間隔Δtごとに、検出
間隔ごとの主ア−ク電圧平均値Vav(Δt)を測定する。 (E)この検出間隔ごとの主ア−ク電圧平均値Vav(Δ
t)と検出期間中の溶接電流平均値Iavとの積の検出間隔
ごとの入熱量平均値ΔQavを積算して主アーク期間積算
入熱量Qta3nを、数4乃至数7のいずれかによって算出
する。
(D) As shown in FIG.
From the voltage detection start time t3, the main arc voltage average value Vav (Δt) is measured at each detection interval Δt. (E) The main arc voltage average value Vav (Δ
The average heat input amount ΔQav for each detection interval of the product of t) and the welding current average value Iav during the detection period is integrated to calculate the main arc period integrated heat input Qta3n by any one of Equations 4 to 7.

【0156】(F)この主アーク期間積算入熱量Qta3n
が、予め設定した主アーク期間全体の標準入熱量Qst38
に達した時点tnで押し込み工程を開始する。 Qta3n>=Qst38 (G)なお、検出期間中の溶接電流平均値Iavは、請求
項12又は請求項13又は請求項14の方法で算出した
値である。
(F) This main arc period integrated heat input Qta3n
Is the standard heat input Qst38 for the entire main arc period set in advance.
At the time point tn when the pressure reaches. Qta3n> = Qst38 (G) The welding current average value Iav during the detection period is a value calculated by the method of claim 12, claim 13, or claim 14.

【0160】[請求項5の実施例の説明]請求項5の方
法は、主アーク期間積算電圧値Vta3nが、主アーク期間
全体の標準入熱量Qst38から算出した検出期間全体の主
アーク電圧標準値Vst38に達した時点tnで押し込み工
程を開始する方法である。以下、図2乃至図3を参照し
て、この方法について説明する。 (A)乃至(D)及び(H)の説明は、請求項4の実施
例の説明と同じなので省略する。
[Explanation of the embodiment of claim 5] In the method of claim 5, the main arc period integrated voltage value Vta3n is calculated based on the standard heat input Qst38 of the entire main arc period. This is a method of starting the pushing process at time tn when the voltage reaches Vst38. Hereinafter, this method will be described with reference to FIGS. Descriptions of (A) to (D) and (H) are the same as those of the fourth embodiment, and will not be repeated.

【0162】(E5)この検出間隔ごとの主ア−ク電圧
平均値Vav(Δt)を積算して主アーク期間積算電圧値Vt
a3nを、数8によって算出する。 (F5)予め設定した主アーク期間全体の標準入熱量Q
st38を検出期間中の溶接電流平均値Iavで除算した検出
期間全体の主アーク電圧標準値Vst38を算出する。 Vst38=Qst38/Iav
(E5) The main arc voltage average value Vav (Δt) for each detection interval is integrated to obtain the main arc period integrated voltage value Vt.
a3n is calculated by Expression 8. (F5) Standard heat input Q for the entire main arc period set in advance
The main arc voltage standard value Vst38 for the entire detection period is calculated by dividing st38 by the welding current average value Iav during the detection period. Vst38 = Qst38 / Iav

【0164】(G5)この主アーク期間積算電圧値Vta
3nが、検出期間全体の主アーク電圧標準値Vst38に達し
た時点tnで押し込み工程を開始する。 Vta3n>=Vst38
(G5) This main arc period integrated voltage value Vta
The pushing process is started at time tn when 3n reaches the main arc voltage standard value Vst38 for the entire detection period. Vta3n> = Vst38

【0170】[請求項6の実施例の説明]請求項6の方
法は、検出期間全体の主アーク電圧平均値Vav3nから算
出した主アーク期間積算入熱量Qta3nが、主アーク期間
全体の標準入熱量Qst38に達した時点tnで押し込み工
程を開始する方法である。以下、図2乃至図3を参照し
て、この方法について説明する。(A)乃至(D)及び
(H)の説明は、請求項4の実施例の説明と同じなので
省略する。
[Explanation of an embodiment of claim 6] In the method of claim 6, the main arc period integrated heat input Qta3n calculated from the main arc voltage average value Vav3n for the entire detection period is the standard heat input for the entire main arc period. This is a method of starting the pressing process at time tn when Qst38 is reached. Hereinafter, this method will be described with reference to FIGS. Descriptions of (A) to (D) and (H) are the same as those of the fourth embodiment, and will not be repeated.

【0172】(E61)この検出間隔ごとの主ア−ク電
圧平均値Vav(Δt)を積算して主アーク期間積算電圧値
Vta3nを、数8によって算出する。 (E62)この主アーク期間積算電圧値Vta3nを検出回
数nで除算して検出期間全体の主アーク電圧平均値Vav
3n=Vta3n/nを、数10によって算出する。
(E61) The main arc voltage average value Vav (Δt) for each detection interval is integrated to calculate a main arc period integrated voltage value Vta3n according to equation (8). (E62) This main arc period integrated voltage value Vta3n is divided by the number of detections n to obtain a main arc voltage average value Vav for the entire detection period.
3n = Vta3n / n is calculated by Expression 10.

【0174】(F6)検出期間全体の主アーク電圧平均
値Vav3nと検出期間中の溶接電流平均値Iavと主アーク
積算値検出期間T3nとの積の主アーク期間積算入熱量Q
ta3nを、数12よって算出する。 (F)この主アーク期間積算入熱量Qta3nが、予め設定
した主アーク期間全体の標準入熱量Qst38に達した時点
tnで押し込み工程を開始する。 Qta3n>=Qst38
(F6) The main arc period integrated heat input Q which is the product of the main arc voltage average value Vav3n during the entire detection period, the welding current average value Iav during the detection period, and the main arc integrated value detection period T3n.
ta3n is calculated by Expression 12. (F) At the time tn when the accumulated heat input Qta3n of the main arc period reaches the standard heat input Qst38 of the entire main arc period set in advance, the pushing process is started. Qta3n> = Qst38

【0180】[請求項7の実施例の説明]請求項7の方
法は、請求項4の検出間隔ごとの主ア−ク電圧平均値V
av(Δt)から算出した主アーク期間積算入熱量Qta3nと
補助ア−ク期間積算入熱量Qta12との和の補助・主アー
ク期間積算入熱量Qta1nが、補助・主アーク検出期間全
体の標準入熱量Qst18に達した時点tnで押し込み工程
を開始する方法である。以下、図2乃至図3を参照し
て、この方法について説明する。 (A7)溶接開始前に、正常な溶接時の補助ア−ク期間
Tp及び補助・主アーク検出期間全体の標準入熱量Qst
18を予め設定しておく。主アーク期間全体の標準入熱量
Qst38は、数1乃至数3によって算出する。
[Explanation of the embodiment of claim 7] The method of claim 7 is the method of claim 4, wherein the main arc voltage average value V for each detection interval is set.
The auxiliary / main arc period integrated heat input Qta1n, which is the sum of the main arc period integrated heat input Qta3n calculated from av (Δt) and the auxiliary arc period integrated heat input Qta12, is the standard heat input for the entire auxiliary / main arc detection period. This is a method of starting the pushing process at time tn when Qst18 is reached. Hereinafter, this method will be described with reference to FIGS. (A7) Before starting welding, the standard heat input Qst during the auxiliary arc period Tp and the auxiliary / main arc detection period during normal welding.
Set 18 in advance. The standard heat input amount Qst38 for the entire main arc period is calculated by Expressions 1 to 3.

【0182】(B)補助ア−ク電流通電開始時点t0に
おいて、溶接ガン2の起動スイッチ13を押して補助ア
−ク電流Ipの通電を開始するとともに、スタッド18
を被溶接材14から引き上げて補助ア−クを発生させ
る。 (B71)補助ア−ク電流・電圧検出開始時点t1か
ら、補助ア−ク電圧平均値Vav12を測定する。 (B72)この補助ア−ク電圧平均値Vav12と補助ア−
ク電流値Ipと補助ア−ク検出期間T12との積の補助ア
−ク期間積算入熱量Qta12を算出する。 Qta12=Vav12・Ip・T12
(B) At time t0 when the auxiliary arc current is started, the start switch 13 of the welding gun 2 is pressed to start the supply of the auxiliary arc current Ip and the stud 18 is started.
Is lifted from the workpiece 14 to generate an auxiliary arc. (B71) The auxiliary arc voltage average value Vav12 is measured from the start point t1 of the auxiliary arc current / voltage detection. (B72) The auxiliary arc voltage average value Vav12 and the auxiliary
An auxiliary arc period integrated heat input Qta12, which is the product of the arc current value Ip and the auxiliary arc detection period T12, is calculated. Qta12 = Vav12 ・ Ip ・ T12

【0184】(C)補助ア−ク期間Tpが経過した主ア
−ク電流通電開始時点t2で、補助ア−ク電流Ipから
主ア−ク電流Iaに切り換える。 (D)主アーク電流・電圧検出開始時点t3から、検出
間隔Δtごとに、検出間隔ごとの主ア−ク電圧平均値V
av(Δt)を測定する。
(C) The auxiliary arc current Ip is switched to the main arc current Ia at the main arc current energization start time t2 after the lapse of the auxiliary arc period Tp. (D) From the start time t3 of the main arc current / voltage detection, at every detection interval Δt, the main arc voltage average value V at each detection interval.
Measure av (Δt).

【0186】(E)この検出間隔ごとの主ア−ク電圧平
均値Vav(Δt)と検出期間中の溶接電流平均値Iavとの
積の検出間隔ごとの入熱量平均値ΔQavを積算して主ア
ーク期間積算入熱量Qta3nを、数4乃至数7のいずれか
によって算出する。 (F7)補助ア−ク期間積算入熱量Qta12と主アーク期
間積算入熱量Qta3nとの和の補助・主アーク期間積算入
熱量Qta1nが、予め設定した補助・主アーク検出期間全
体の標準入熱量Qst18に達した時点tnで押し込み工程
を開始する。 Qta1n=Qta12+Qta3n Qta3n>=Qst18 (G)なお、検出期間中の溶接電流平均値Iavは、請求
項12又は請求項13又は請求項14の方法で算出した
値である。
(E) The average value of the heat input amount ΔQav at each detection interval is integrated by multiplying the average of the product of the main arc voltage average value Vav (Δt) at each detection interval and the welding current average value Iav during the detection period. The arc period integrated heat input amount Qta3n is calculated by any one of Expressions 4 to 7. (F7) The auxiliary / main arc period integrated heat input Qta1n, which is the sum of the auxiliary arc period integrated heat input Qta12 and the main arc period integrated heat input Qta3n, is the standard heat input Qst18 for the entire auxiliary / main arc detection period set in advance. At the time point tn when the pressure reaches. Qta1n = Qta12 + Qta3n Qta3n> = Qst18 (G) The welding current average value Iav during the detection period is a value calculated by the method of claim 12, claim 13, or claim 14.

【0190】[請求項8の実施例の説明]請求項8の方
法は、補助・主アーク検出期間全体の標準入熱量Qst18
から補助ア−ク期間積算入熱量Qta12を減算して主アー
ク期間全体の標準入熱量Qst38を算出し、請求項5の主
アーク期間積算電圧値Vta3nが、この主アーク期間全体
の標準入熱量Qst38から算出した検出期間全体の主アー
ク電圧標準値Vst38に達した時点tnで押し込み工程を
開始する方法である。以下、図2乃至図3を参照して、
この方法について説明する。 (A7)溶接開始前に、正常な溶接時の補助ア−ク期間
Tp及び補助・主アーク検出期間全体の標準入熱量Qst
18を予め設定しておく。主アーク期間全体の標準入熱量
Qst38は、数1乃至数3によって算出する。
[Explanation of the embodiment of claim 8] The method of claim 8 relates to the standard heat input Qst18 for the entire auxiliary / main arc detection period.
The standard heat input Qst38 for the entire main arc period is calculated by subtracting the integrated heat input Qta12 for the auxiliary arc period from the following equation. This is a method in which the pushing process is started at time tn when the main arc voltage standard value Vst38 of the entire detection period calculated from is reached. Hereinafter, referring to FIGS. 2 and 3,
This method will be described. (A7) Before starting welding, the standard heat input Qst during the auxiliary arc period Tp and the auxiliary / main arc detection period during normal welding.
Set 18 in advance. The standard heat input amount Qst38 for the entire main arc period is calculated by Expressions 1 to 3.

【0192】(B)補助ア−ク電流通電開始時点t0に
おいて、溶接ガン2の起動スイッチ13を押して補助ア
−ク電流Ipの通電を開始するとともに、スタッド18
を被溶接材14から引き上げて補助ア−クを発生させ
る。 (B71)補助ア−ク電流・電圧検出開始時点t1か
ら、補助ア−ク電圧平均値Vav12を測定する。
(B) At the start of the auxiliary arc current energization time t0, the start switch 13 of the welding gun 2 is pressed to start the energization of the auxiliary arc current Ip and the stud 18
Is lifted from the workpiece 14 to generate an auxiliary arc. (B71) The auxiliary arc voltage average value Vav12 is measured from the start point t1 of the auxiliary arc current / voltage detection.

【0194】(B72)この補助ア−ク電圧平均値Vav
12と補助ア−ク電流値Ipと補助ア−ク検出期間T12と
の積の補助ア−ク期間積算入熱量Qta12を算出する。 Qta12=Vav12・Ip・T12 (B8)補助・主アーク検出期間全体の標準入熱量Qst
18から補助ア−ク期間積算入熱量Qta12を減算して主ア
−ク期間積算入熱量Qta3nを算出しておく。 Qta3n=Qst18−Qta12
(B72) The average value of the auxiliary arc voltage Vav
An auxiliary arc period integrated heat input Qta12 is calculated by multiplying the auxiliary arc current value Ip with the auxiliary arc detection period T12. Qta12 = Vav12 · Ip · T12 (B8) Standard heat input Qst during the entire auxiliary / main arc detection period
The auxiliary arc period integrated heat input Qta12 is subtracted from 18 to calculate the main arc period integrated heat input Qta3n. Qta3n = Qst18-Qta12

【0196】(C)補助ア−ク期間Tpが経過した主ア
−ク電流通電開始時点t2で、補助ア−ク電流Ipから
主ア−ク電流Iaに切り換える。 (D)主アーク電流・電圧検出開始時点t3から、検出
間隔Δtごとに、検出間隔ごとの主ア−ク電圧平均値V
av(Δt)を測定する。
(C) The auxiliary arc current Ip is switched to the main arc current Ia at the main arc current energization start time t2 after the lapse of the auxiliary arc period Tp. (D) From the start time t3 of the main arc current / voltage detection, at every detection interval Δt, the main arc voltage average value V at each detection interval.
Measure av (Δt).

【0198】(E5)この検出間隔ごとの主ア−ク電圧
平均値Vav(Δt)を積算して主アーク期間積算電圧値Vt
a3nを、数8によって算出する。 (F8)主アーク期間積算入熱量Qta3nを検出期間中の
溶接電流平均値Iavで除算した検出期間全体の主アーク
電圧標準値Vst38を算出する。 Vst38=Qst38/Iav (G5)主アーク期間積算電圧値Vta3nが、検出期間全
体の主アーク電圧標準値Vst38に達した時点tnで押し
込み工程を開始する。 Vta3n>=Vst38
(E5) The main arc voltage average value Vav (Δt) for each detection interval is integrated to obtain a main arc period integrated voltage value Vt.
a3n is calculated by Expression 8. (F8) The main arc voltage standard value Vst38 for the entire detection period is calculated by dividing the accumulated heat input Qta3n of the main arc period by the average welding current value Iav during the detection period. Vst38 = Qst38 / Iav (G5) At the time tn when the integrated voltage value Vta3n of the main arc period reaches the main arc voltage standard value Vst38 for the entire detection period, the pushing process is started. Vta3n> = Vst38

【0200】[請求項9の実施例の説明]請求項9の方
法は、請求項6の検出期間全体の主アーク電圧平均値V
av3nから算出した主アーク期間積算入熱量Qta3nと補助
ア−ク期間積算入熱量Qta12との和の補助・主アーク期
間積算入熱量Qta1nが、補助・主アーク検出期間全体の
標準入熱量Qst18に達した時点tnで押し込み工程を開
始する方法である。参照して、この方法について説明す
る。 (A7)溶接開始前に、正常な溶接時の補助ア−ク期間
Tp及び補助・主アーク検出期間全体の標準入熱量Qst
18を予め設定しておく。主アーク期間全体の標準入熱量
Qst38は、数1乃至数3によって算出する。
[Explanation of the embodiment of claim 9] The method of claim 9 is the method of claim 6, wherein the main arc voltage average value V over the entire detection period is used.
The auxiliary / main arc period integrated heat input Qta1n, which is the sum of the main arc period integrated heat input Qta3n calculated from av3n and the auxiliary arc period integrated heat input Qta12, reaches the standard heat input Qst18 for the entire auxiliary / main arc detection period. This is a method of starting the pressing process at the time point tn. This method will be described with reference to FIG. (A7) Before starting welding, the standard heat input Qst during the auxiliary arc period Tp and the auxiliary / main arc detection period during normal welding.
Set 18 in advance. The standard heat input amount Qst38 for the entire main arc period is calculated by Expressions 1 to 3.

【0202】(B)補助ア−ク電流通電開始時点t0に
おいて、溶接ガン2の起動スイッチ13を押して補助ア
−ク電流Ipの通電を開始するとともに、スタッド18
を被溶接材14から引き上げて補助ア−クを発生させ
る。 (B71)補助ア−ク電流・電圧検出開始時点t1か
ら、補助ア−ク電圧平均値Vav12を測定する。 (B72)この補助ア−ク電圧平均値Vav12と補助ア−
ク電流値Ipと補助ア−ク検出期間T12との積の補助ア
−ク期間積算入熱量Qta12を算出する。 Qta12=Vav12・Ip・T12
(B) At time t0 when the auxiliary arc current is started, the start switch 13 of the welding gun 2 is pressed to start supplying the auxiliary arc current Ip, and the stud 18 is turned on.
Is lifted from the workpiece 14 to generate an auxiliary arc. (B71) The auxiliary arc voltage average value Vav12 is measured from the start point t1 of the auxiliary arc current / voltage detection. (B72) The auxiliary arc voltage average value Vav12 and the auxiliary
An auxiliary arc period integrated heat input Qta12, which is the product of the arc current value Ip and the auxiliary arc detection period T12, is calculated. Qta12 = Vav12 ・ Ip ・ T12

【0204】(C)補助ア−ク期間Tpが経過した主ア
−ク電流通電開始時点t2で、補助ア−ク電流Ipから
主ア−ク電流Iaに切り換える。 (D)主アーク電流・電圧検出開始時点t3から、検出
間隔Δtごとに、検出間隔ごとの主ア−ク電圧平均値V
av(Δt)を測定する。
(C) At time t2 when the main arc current starts to flow after the lapse of the auxiliary arc period Tp, the auxiliary arc current Ip is switched to the main arc current Ia. (D) From the start time t3 of the main arc current / voltage detection, at every detection interval Δt, the main arc voltage average value V at each detection interval.
Measure av (Δt).

【0206】(E61)この検出間隔ごとの主ア−ク電
圧平均値Vav(Δt)を積算して主アーク期間積算電圧値
Vta3nを、数8によって算出する。 (E62)この主アーク期間積算電圧値Vta3nを検出回
数nで除算して検出期間全体の主アーク電圧平均値Vav
3nを、数10によって算出する。
(E61) The main arc voltage average value Vav (Δt) for each detection interval is integrated to calculate a main arc period integrated voltage value Vta3n according to equation (8). (E62) This main arc period integrated voltage value Vta3n is divided by the number of detections n to obtain a main arc voltage average value Vav for the entire detection period.
3n is calculated by Expression 10.

【0208】(F6)検出期間全体の主アーク電圧平均
値Vav3nと検出期間中の溶接電流平均値Iavと主アーク
積算値検出期間T3nとの積の主アーク期間積算入熱量Q
ta3nを、数12よって算出する。 (G6)補助ア−ク期間積算入熱量Qta12と主アーク期
間積算入熱量Qta3nとの和の補助・主アーク期間積算入
熱量Qta1nが、予め設定した補助・主アーク検出期間全
体の標準入熱量Qst18に達した時点tnで押し込み工程
を開始する。 Qta1n>=Qst18
(F6) Main arc period integrated heat input Q which is the product of main arc voltage average value Vav3n during the entire detection period, welding current average value Iav during the detection period, and main arc integrated value detection period T3n.
ta3n is calculated by Expression 12. (G6) The auxiliary / main arc period integrated heat input Qta1n, which is the sum of the auxiliary arc period integrated heat input Qta12 and the main arc period integrated heat input Qta3n, is the standard heat input Qst18 for the entire auxiliary / main arc detection period set in advance. At the time point tn when the pressure reaches. Qta1n> = Qst18

【0210】[請求項10の実施例の説明]請求項10
の方法は、請求項4乃至請求項9の方法に加えて、短絡
回数Nsが予め設定した回数以上になると溶接不良を表
示する方法である。
[Explanation of Embodiment of Claim 10] Claim 10
This method is a method of displaying a welding defect when the number Ns of short circuits becomes equal to or more than a preset number, in addition to the methods of claims 4 to 9.

【0212】請求項10の方法は、請求項4乃至請求項
9の構成要件に加えて、つぎの3つの要件を追加してい
る。図6に示すように、溶接開始前に、 〓溶接部の欠陥になる可能性のある微小短絡の一回の発
生時間よりも短い数[mSec]の検出間隔Δt及び 〓検出間隔ごとの入熱量標準値ΔQst及び 〓正常な溶接時の主アーク期間全体の標準入熱量Qst38
を確保する標準入熱許容短絡回数Nstを予め設定してお
く。
The method of claim 10 adds the following three requirements in addition to the components of claims 4 to 9. As shown in FIG. 6, before the start of welding, 検 出 the number of detection intervals Δt shorter than the time of one occurrence of a micro short-circuit that may become a defect in the welded portion [mSec] and 〓 the amount of heat input per detection interval Standard value ΔQst and standard heat input Qst38 for the entire main arc period during normal welding
Is set in advance.

【0214】主アーク電流・電圧検出開始時点t3か
ら、検出間隔Δtごとに、検出間隔ごとの主ア−ク電圧
平均値Vav(Δt)を測定する。検出間隔ごとの主ア−ク
電圧平均値Vav(Δt)と検出期間中の溶接電流平均値Ia
vとの積の検出間隔ごとの入熱量平均値ΔQavを算出す
る。 ΔQav=Vav(Δt)・Iav この検出間隔ごとの入熱量平均値ΔQavが、検出間隔ご
との入熱量標準値ΔQ stよりも低下した短絡回数Nsを計数する。ΔQav<Δ
Qst この短絡回数Nsが予め設定した標準入熱許容短絡回数
Nst以上になると、溶接不良を表示する。Ns>Nst 上記の検出期間中の溶接電流平均値Iavは、請求項12
又は請求項13又は請求項14の方法で算出した値であ
る。
From the main arc current / voltage detection start time t3, the main arc voltage average value Vav (Δt) is measured at each detection interval Δt. Main arc voltage average value Vav (Δt) for each detection interval and welding current average value Ia during the detection period
The heat input average value ΔQav for each detection interval of the product of “v” is calculated. ΔQav = Vav (Δt) · Iav The number of short circuits Ns in which the average heat input amount ΔQav for each detection interval is lower than the standard heat input amount ΔQst for each detection interval is counted. ΔQav <Δ
Qst If the number Ns of short circuits is equal to or greater than the preset number Nst of allowable heat input short circuits, welding failure is displayed. Ns> Nst The welding current average value Iav during the detection period is defined by claim 12
Alternatively, it is a value calculated by the method of claim 13 or claim 14.

【0220】[請求項11の実施例の説明]請求項11
の方法は、請求項4乃至請求項9の方法に加えて、短絡
回数Nsが予め設定した標準入熱許容短絡回数Nst以上
になると予め設定した時間だけ主アーク電流Iaの通電
時間を追加する方法である。請求項10の方法が、短絡
回数Nsが予め設定した標準入熱許容短絡回数Nst以上
になると溶接不良を表示する方法であるのに対して、請
求項11の方法は、短絡回数Nsが予め設定した標準入
熱許容短絡回数Nst以上になると予め設定した時間だけ
主アーク電流Iaの通電時間を追加する方法である。請
求項10の方法その他の構成は、請求項11の方法と同
じなので説明は省略する。
[Explanation of Embodiment of Claim 11] Claim 11
In addition to the method of claim 4 to claim 9, the method of adding the energizing time of the main arc current Ia for a preset time when the number of short circuits Ns is equal to or more than the preset standard heat input allowable number of short circuits Nst. It is. The method of claim 10 is a method of displaying a welding defect when the number of short circuits Ns is equal to or greater than a preset standard allowable heat input short circuit number Nst, whereas the method of claim 11 is such that the number of short circuits Ns is preset. This is a method of adding the energizing time of the main arc current Ia for a preset time when the standard heat input allowable short circuit count Nst or more is reached. The method and other configurations of the tenth aspect are the same as those of the eleventh aspect, and thus description thereof is omitted.

【0230】請求項12の方法は、請求項4乃至は請求
項11の検出期間中の溶接電流平均値Iavとして、定電
流出力特性の溶接電源装置に設定した主ア−ク電流設定
値を採用している。
The method of claim 12 employs a main arc current set value set in a welding power supply device having a constant current output characteristic as the welding current average value Iav during the detection period of claims 4 to 11. doing.

【0231】溶接電源装置の出力特性が定電流特性の場
合、溶接電源装置に故障が発生しない限り、溶接電源装
置に設定した値の検出期間中の溶接電流平均値Iavの電
流が流れる。したがって、請求項12の方法は、信号検
出用のリード線を接続して検出間隔ごとの主ア−ク電圧
平均値Vav(Δt)だけを測定すればよいので、大電流の
検出期間中の溶接電流平均値Iavを測定する溶接電流検
出器が不要である。溶接電源装置に故障が発生したとき
は、検出間隔ごとの主ア−ク電圧平均値Vav(Δt)に異
常が発生するので、この異常を表示させるか又は溶接電
源装置の動作を停止させることもできる。
When the output characteristic of the welding power supply device is a constant current characteristic, a current of the welding current average value Iav flows during the detection period of the value set in the welding power supply device unless a failure occurs in the welding power supply device. Therefore, in the method according to the twelfth aspect, it is only necessary to connect the signal detection lead wire and measure only the main arc voltage average value Vav (Δt) at each detection interval. There is no need for a welding current detector for measuring the current average value Iav. When a failure occurs in the welding power supply, an abnormality occurs in the main arc voltage average value Vav (Δt) at each detection interval. Therefore, the abnormality may be displayed or the operation of the welding power supply may be stopped. it can.

【0235】請求項13の方法は、請求項4乃至は請求
項11の検出期間中の溶接電流平均値Iavとして、主ア
ーク電流・電圧検出開始時点t3から後で測定した定電
流出力特性の溶接電源装置から出力する主ア−ク電流測
定値を採用している。
[0235] The method of claim 13 is characterized in that the welding current of the constant current output characteristic measured after the main arc current / voltage detection start time t3 as the welding current average value Iav during the detection period of claims 4 to 11 is determined. The main arc current measurement output from the power supply is employed.

【0236】溶接電源装置の出力特性が定電流特性の場
合に、出力電流が略一定に維持される。したがって、請
求項13の方法は、検出間隔Δtごとに、検出間隔ごと
の主ア−ク電流平均値Iav(Δt)を測定する必要がな
く、主アーク安定後に検出期間中の溶接電流平均値Iav
を少なくとも1回測定すればよいので、回路が簡単にな
る。
When the output characteristics of the welding power supply device are constant current characteristics, the output current is maintained substantially constant. Therefore, in the method according to the thirteenth aspect, it is not necessary to measure the main arc current average value Iav (Δt) for each detection interval Δt, and the welding current average value Iav during the detection period after the main arc is stabilized.
Is required to be measured at least once, so that the circuit is simplified.

【0240】請求項14の方法は、請求項4乃至は請求
項11の検出期間中の溶接電流平均値Iavとして、主ア
ーク電流・電圧検出開始時点t3から、検出間隔Δtご
とに算出した検出間隔ごとの主ア−ク電流平均値Iav
(Δt)を採用している。
[0240] The method of claim 14 is characterized in that the detection interval calculated from the main arc current / voltage detection start time t3 at every detection interval Δt as the welding current average value Iav during the detection period of claims 4 to 11. Main arc current average value Iav
(Δt) is adopted.

【0241】この請求項14の方法は、溶接電源装置の
出力特性が定電流特性でない場合であっても、検出間隔
Δtごとに、検出間隔ごとの主ア−ク電流平均値Iav
(Δt)及び検出間隔ごとの主ア−ク電圧平均値Vav(Δt)
を測定して主アーク期間積算入熱量Qta3nを算出するこ
とによって、小容量のエンジン発電機等の溶接電源装置
に供給する容量が小さい電源装置を用いて、大電流を必
要とする太径のスタッドを溶接する場合等で、溶接電源
の入力電力の不足によって溶接電源の出力電圧及び出力
電流が低下する場合でも、良好な溶接結果を得ることが
できる。
In the method according to the fourteenth aspect, even if the output characteristic of the welding power supply device is not a constant current characteristic, the main arc current average value Iav for each detection interval is detected for each detection interval Δt.
(Δt) and main arc voltage average value Vav (Δt) for each detection interval
Is measured and the main arc period integrated heat input Qta3n is calculated, so that a large-capacity stud that requires a large current by using a small-capacity power supply that supplies a small-capacity welding power supply such as an engine generator For example, when welding is performed, even when the output voltage and output current of the welding power supply decrease due to lack of input power of the welding power supply, a good welding result can be obtained.

【0245】請求項15の方法は、請求項7又は請求項
8又は請求項9の補助ア−ク電流値Ipとして、定電流
出力特性の溶接電源装置に設定した補助ア−ク電流設定
値を採用している。
According to a fifteenth aspect of the present invention, the auxiliary arc current set value set in the welding power supply device having a constant current output characteristic is used as the auxiliary arc current value Ip according to the seventh, eighth or ninth aspect. Has adopted.

【0246】溶接電源装置の出力特性が定電流特性の場
合に、溶接電源装置に故障が発生しない限り、溶接電源
装置に設定した値の補助ア−ク電流値Ipが流れる。し
たがって、請求項15の方法は、請求項7又は請求項8
又は請求項9の方法において、請求項12の方法と同様
に、信号検出用のリード線を接続して補助ア−ク電圧平
均値Vav12だけを測定すればよいので、補助ア−ク電流
値Ipを測定する溶接電流検出器が不要である。溶接電
源装置に故障が発生したときは、検出間隔ごとの主ア−
ク電圧平均値Vav(Δt)に異常が発生するので、この異
常を表示させるか又は溶接電源装置の動作を停止させる
こともできる。
When the output characteristic of the welding power supply is a constant current characteristic, the auxiliary arc current value Ip of the value set in the welding power supply flows unless a failure occurs in the welding power supply. Therefore, the method of claim 15 is the method of claim 7 or claim 8.
Alternatively, in the method according to the ninth aspect, similarly to the method according to the twelfth aspect, only the auxiliary arc voltage average value Vav12 needs to be measured by connecting a signal detection lead wire, so that the auxiliary arc current value Ip No welding current detector for measuring the temperature is required. If a failure occurs in the welding power supply, the main alarm at each detection interval
Since an abnormality occurs in the peak voltage average value Vav (Δt), the abnormality can be displayed or the operation of the welding power supply device can be stopped.

【0250】請求項16の方法は、請求項7又は請求項
8又は請求項9の補助ア−ク電流値Ipとして、補助ア
−ク電流・電圧検出開始時点t1から測定した定電流出
力特性の溶接電源装置から出力する補助ア−ク電流測定
値を採用している。
The method of claim 16 is characterized in that the auxiliary arc current value Ip according to claim 7 or claim 8 or claim 9 is a constant current output characteristic measured from the auxiliary arc current / voltage detection start time t1. Auxiliary arc current measurement output from the welding power supply is adopted.

【0251】溶接電源装置の出力特性が定電流特性の場
合に、出力電流が略一定に維持される。したがって、請
求項16の方法は、請求項7又は請求項8又は請求項9
の方法の方法において請求項13の方法と同様に、検出
間隔Δtごとに、補助ア−ク電流平均値Iav(Δt)を測
定する必要がなく、補助ア−ク安定後に補助ア−ク電流
値Ipを少なくとも1回測定すればよいので、回路が簡
単になる。
When the output characteristics of the welding power supply device are constant current characteristics, the output current is maintained substantially constant. Therefore, the method of claim 16 is the method of claim 7 or claim 8 or claim 9
Similarly to the method of the thirteenth aspect, there is no need to measure the auxiliary arc current average value Iav (Δt) for each detection interval Δt, and the auxiliary arc current value after the auxiliary arc is stabilized. Since Ip needs to be measured at least once, the circuit is simplified.

【0270】[図7の説明]図7は、本発明の方法をデ
ィジタル制御で実施するスタッド溶接装置の実施例を示
す図である。
[Explanation of FIG. 7] FIG. 7 is a diagram showing an embodiment of a stud welding apparatus for implementing the method of the present invention by digital control.

【0272】同図のスタッド溶接装置は、溶接電源装置
1と溶接ガン2と溶接制御装置3とから形成される。こ
の溶接電源装置1は、溶接ガン2に補助ア−ク電流Ip
と主ア−ク電流Iaとから成る溶接電流を出力し、後述
する溶接制御装置3から出力されるアナログ信号に応じ
て、出力電流Ioを制御する電流指令出力回路5と、そ
の電流指令に基づいて溶接電流を制御するサイリスタ等
の半導体スイッチング素子からなる溶接電流出力回路1
5と、2次ケーブル17を通ってスタッド18に出力さ
れる出力電流Ioを検出して溶接電流検出信号Icを出
力する溶接電流検出回路ICと、出力端子電圧値Vdを
検出して溶接電圧検出信号Vcを出力する溶接電圧検出
回路VCとから形成される。
The stud welding apparatus shown in the figure is composed of a welding power supply device 1, a welding gun 2, and a welding control device 3. This welding power supply device 1 supplies an auxiliary arc current Ip to a welding gun 2.
And a main arc current Ia. A current command output circuit 5 for controlling an output current Io in accordance with an analog signal output from a welding control device 3 described later, based on the current command. Current output circuit 1 comprising a semiconductor switching element such as a thyristor for controlling a welding current by welding
5, a welding current detection circuit IC that detects an output current Io output to the stud 18 through the secondary cable 17 and outputs a welding current detection signal Ic, and a welding voltage detection by detecting an output terminal voltage value Vd. And a welding voltage detection circuit VC that outputs a signal Vc.

【0274】溶接制御装置3は、溶接電流検出信号Ic
をディジタル溶接電流検出信号Iddに変換して演算処理
回路CPUに出力するA/D変換回路7と、溶接電圧検
出信号Vcをディジタル溶接電圧検出信号Vddに変換し
て演算処理回路CPUに出力するA/D変換回路8と、
ディジタル溶接電流検出信号Iddとディジタル溶接電圧
検出信号Vddとを入力して後述するディジタル出力信号
を出力する演算処理回路CPUと、演算処理回路CPU
のディジタル出力信号Iodをアナログ出力信号Ioaに変
換して電流指令出力回路5に出力するD/A変換回路6
と、検出値、演算値、溶接結果のデータ等を記憶する記
憶回路11と、これらを表示するディジタルパネル等の
表示回路12とからなる。このD/A変換回路6、A/
D変換回路7及びA/D変換回路8は演算処理回路CP
Uに内蔵してもよい。
The welding control device 3 outputs the welding current detection signal Ic
Is converted to a digital welding current detection signal Idd and output to the arithmetic processing circuit CPU. / D conversion circuit 8,
An arithmetic processing circuit CPU for receiving the digital welding current detection signal Idd and the digital welding voltage detection signal Vdd and outputting a digital output signal to be described later;
D / A conversion circuit 6 for converting the digital output signal Iod to the analog output signal Ioa and outputting it to the current command output circuit 5
And a storage circuit 11 for storing data such as detected values, calculated values, welding results, and the like, and a display circuit 12 such as a digital panel for displaying these. This D / A conversion circuit 6, A /
The D conversion circuit 7 and the A / D conversion circuit 8 are composed of an arithmetic processing circuit CP.
It may be built in U.

【0280】[図8の説明]図8は、本発明の方法をア
ナログ制御で実施するスタッド溶接装置の実施例を示す
図である。
[Explanation of FIG. 8] FIG. 8 is a diagram showing an embodiment of a stud welding apparatus for performing the method of the present invention by analog control.

【0282】また、この図8の実施例では、図7の実施
例のようにマイクロコンピュータを用いた複雑な回路を
構成しなくても、電流、電圧検出信号を積分器、乗除算
器等のアナログ回路で構成した演算回路を用いて平均入
熱を算出し表示することもできる。また、標準値(アナ
ログ回路で構成)と比較して許容範囲からはずれた場合
に、異常ランプ、ブザー等で警報を発する。
Also, in the embodiment of FIG. 8, the current and voltage detection signals can be converted into an integrator, a multiplier and a divider without using a complicated circuit using a microcomputer as in the embodiment of FIG. The average heat input can be calculated and displayed by using an arithmetic circuit configured by an analog circuit. Further, when the value deviates from an allowable range as compared with a standard value (composed of an analog circuit), an alarm is issued by an abnormal lamp, a buzzer, or the like.

【0284】まず、起動スイッチ起動スイッチ13を押
すと、溶接シ−ケンス制御回路21に予め設定した補助
ア−ク電流が溶接電流出力回路15から出力し、スタッ
ド18が引き上げられ、補助ア−クが発生し、溶接シ−
ケンス制御回路21に予め設定されているパイロット時
間経過後、主ア−ク電流に移行する。この補助ア−ク電
流から溶接電流移行するとき計測時間設定回路28から
リセット信号が出力され、平滑回路22、平滑回路23
はリセットされるて、新たに溶接電流検出回路IC、溶
接電圧検出回路VCで検出される溶接電流及び溶接電圧
の時間積分を開始する。また、このリセット信号は、補
助ア−ク電流出力開始と同期させてもよい。
First, when the start switch 13 is pressed, an auxiliary arc current set in advance in the welding sequence control circuit 21 is output from the welding current output circuit 15, and the stud 18 is pulled up, so that the auxiliary arc is output. Is generated and the welding
After the elapse of the pilot time preset in the cans control circuit 21, the operation shifts to the main arc current. When shifting from the auxiliary arc current to the welding current, a reset signal is output from the measurement time setting circuit 28, and the smoothing circuit 22, the smoothing circuit 23
Is reset, and the time integration of the welding current and the welding voltage newly detected by the welding current detection circuit IC and the welding voltage detection circuit VC is newly started. The reset signal may be synchronized with the start of the output of the auxiliary arc current.

【0286】次に溶接シ−ケンス制御回路21に予め設
定されている溶接時間経過後に、溶接ガン2によりスタ
ッド18が押し込まれる。この押し込み動作の開始を計
測時間設定回路28が検出して、平滑回路22、平滑回
路23にホールド信号を出力する。このホールド信号に
よって、リセット信号から積分されてきた値を、平滑回
路22、平滑回路23にホールドする。このホールドさ
れた値は、時間積分された値であるので、それぞれを乗
算回路24によって乗算し、除算回路29を用いて溶接
シ−ケンス制御回路21で予め設定されている溶接時間
(アナログ値)で除算することによって、平均入熱量を
算出して、表示回路12に表示する。また、この算出し
た平均入熱量を標準入熱設定回路25で予め設定されて
いる平均入熱の標準値と比較回路26によって比較し、
許容範囲を超えた場合は、警報器27によって警報す
る。
Next, after the elapse of the welding time preset in the welding sequence control circuit 21, the stud 18 is pushed in by the welding gun 2. The measurement time setting circuit 28 detects the start of the pushing operation, and outputs a hold signal to the smoothing circuits 22 and 23. With this hold signal, the value integrated from the reset signal is held in the smoothing circuits 22 and 23. Since the held values are time-integrated values, they are multiplied by the multiplication circuit 24, and the welding time (analog value) set in advance by the welding sequence control circuit 21 using the division circuit 29. , The average heat input amount is calculated and displayed on the display circuit 12. Further, the calculated average heat input is compared with a standard value of the average heat input preset in the standard heat input setting circuit 25 by the comparison circuit 26,
If it exceeds the allowable range, an alarm is issued by the alarm 27.

【1000】[1000]

【発明の効果】本発明の共通の効果は次のとおりであ
る。本発明の方法は、積算入熱量Qtaと検出期間全体の
標準入熱量Qstとを検出するごとに比較し、積算入熱量
Qtaが検出期間全体の標準入熱量Qstに達した時点tn
で押し込み工程を開始するので、短絡が発生しても、適
切な入熱量を確保することができ、良好な溶接品質を得
ることができる。また、本発明は、良好な溶接品質を得
るとともに、各スタッドの溶接ごとに得られたデータは
各スタッドの溶接ごとに記憶させておき、このデータを
演算処理装置4又は外部記憶装置(例えばメモリカー
ド、フロッピーディスク等)又は直接にパソコン等に出
力することによって、パソコン等で各スタッドの溶接作
業の溶接品質を容易に確認することができる。また、こ
の各スタッドの溶接ごとに得られたデ−タを集計して統
計処理等を行って溶接品質の管理を行うことができる。
The common effects of the present invention are as follows. The method of the present invention compares the accumulated heat input Qta with the standard heat input Qst for the entire detection period each time it is detected, and determines the time tn when the accumulated heat input Qta reaches the standard heat input Qst for the entire detection period.
, The pressing step is started, so that even if a short circuit occurs, an appropriate amount of heat input can be secured, and good welding quality can be obtained. In addition, the present invention obtains good welding quality, stores data obtained for each stud welding for each stud welding, and stores this data in the arithmetic processing unit 4 or an external storage device (for example, a memory). By outputting the data to a personal computer or the like directly from a card, a floppy disk or the like), the welding quality of the welding work of each stud can be easily confirmed on the personal computer or the like. In addition, data obtained for each welding of each stud is totalized and statistical processing or the like is performed to control welding quality.

【1004】請求項4乃至請求項6の方法は、検出間隔
ごとの主ア−ク電圧平均値Vav(Δt)又は検出期間全体
の主アーク電圧平均値Vav3n又はこの電圧値から算出し
た主アーク期間積算入熱量Qta3nが、主アーク期間全体
の標準入熱量Qst38又はこの入熱量から算出した検出期
間全体の主アーク電圧標準値Vst38に達した時点tnで
押し込み工程を開始するので、短絡が発生しても、適切
な入熱量を確保することができ、良好な溶接品質を得る
ことができる。
[1004] The method according to claim 4 to claim 6, wherein the main arc voltage average value Vav (Δt) for each detection interval, the main arc voltage average value Vav3n for the entire detection period, or the main arc period calculated from this voltage value. When the accumulated heat input Qta3n reaches the standard heat input Qst38 for the entire main arc period or the standard arc voltage standard value Vst38 for the entire detection period calculated from the heat input, the pushing process starts at the time tn. Also, an appropriate heat input can be secured, and good welding quality can be obtained.

【1007】請求項7乃至請求項9の方法は、請求項4
乃至請求項6のそれぞれの方法の効果に加えて、補助ア
−ク期間Tpの補助ア−ク電流・電圧検出開始時点t1
から補助ア−ク電流値Ipを測定するとともに、補助ア
−ク電圧平均値Vav12を測定して補助ア−ク期間積算入
熱量Qta12を算出するので、入熱の測定精度が向上す
る。
The method of claim 7 to claim 9 is the method of claim 4
In addition to the effects of the above-described respective methods, an auxiliary arc current / voltage detection start time t1 of the auxiliary arc period Tp is added.
Since the auxiliary arc current value Ip is measured from the above, the auxiliary arc voltage average value Vav12 is measured to calculate the auxiliary arc period accumulated heat input Qta12, so that the accuracy of the heat input measurement is improved.

【1010】請求項10の方法は、請求項4乃至請求項
9のそれぞれの方法の効果に加えて、溶接部の欠陥にな
る可能性のある微小短絡の一回の発生時間よりも短い数
[mSec]の検出間隔Δtごとに算出した検出間隔ごとの
入熱量平均値ΔQavが、検出間隔ごとの入熱量標準値Δ
Qstよりも低下する短絡回数Nsを計数して、この短絡
回数Nsが予め設定した標準入熱許容短絡回数Nst以上
になると、溶接不良を表示する効果を有している。
[1010] In addition to the effects of the respective methods of the fourth to ninth aspects, the method of the tenth aspect has a number [ mSec], the average value of heat input ΔQav for each detection interval calculated for each detection interval Δt is the standard value of heat input for each detection interval Δ
The number of short circuits Ns that is lower than Qst is counted, and when the number of short circuits Ns is equal to or more than the preset standard number of allowable heat input short circuits Nst, an effect of displaying welding failure is provided.

【1011】請求項11の方法は、請求項4乃至請求項
9のそれぞれの方法の効果に加えて、請求項10と同様
に計数した短絡回数Nsが、予め設定した標準入熱許容
短絡回数Nst以上になると、予め設定した時間だけ主ア
ーク電流Iaの通電時間を追加することによって、溶接
不良を防止する効果を有している。
According to the method of claim 11, in addition to the effects of each of the methods of claims 4 to 9, the number of short circuits Ns counted in the same manner as in claim 10 is equal to the preset standard number of allowable heat input short circuits Nst As described above, by adding the energizing time of the main arc current Ia by a preset time, there is an effect of preventing poor welding.

【1012】請求項12の方法は、信号検出用のリード
線を接続して検出間隔ごとの主ア−ク電圧平均値Vav
(Δt)だけを測定すればよいので、大電流の検出期間中
の溶接電流平均値Iavを測定する溶接電流検出器が不要
である。溶接電源装置に故障が発生したときは、検出間
隔ごとの主ア−ク電圧平均値Vav(Δt)に異常が発生す
るので、この異常を表示させるか又は溶接電源装置の動
作を停止させることもできる。
[1012] According to a twelfth aspect of the present invention, the main arc voltage average value Vav for each detection interval is connected by connecting a signal detection lead wire.
Since only (Δt) needs to be measured, there is no need for a welding current detector for measuring the welding current average value Iav during the detection period of the large current. When a failure occurs in the welding power supply, an abnormality occurs in the main arc voltage average value Vav (Δt) at each detection interval. Therefore, the abnormality may be displayed or the operation of the welding power supply may be stopped. it can.

【1013】請求項13の方法は、検出間隔Δtごと
に、検出間隔ごとの主ア−ク電流平均値Iav(Δt)を測
定する必要がなく、主アーク安定後に検出期間中の溶接
電流平均値Iavを少なくとも1回測定すればよいので、
回路が簡単になる。
In the method according to the thirteenth aspect, it is not necessary to measure the main arc current average value Iav (Δt) for each detection interval Δt, and the welding current average value during the detection period after the main arc is stabilized. Since Iav needs to be measured at least once,
The circuit becomes simple.

【1014】請求項14の方法は、溶接電源装置の出力
特性が定電流特性でない場合であっても、検出間隔Δt
ごとに、検出間隔ごとの主ア−ク電流平均値Iav(Δt)
及び検出間隔ごとの主ア−ク電圧平均値Vav(Δt)を測
定して主アーク期間積算入熱量Qta3nを算出することに
よって、小容量のエンジン発電機等の溶接電源装置に供
給する容量が小さい電源装置を用いて、大電流を必要と
する太径のスタッドを溶接する場合等で、溶接電源の入
力電力の不足によって溶接電源の出力電圧及び出力電流
が低下する場合でも、良好な溶接結果を得ることができ
る。
[1014] The method according to claim 14, wherein even if the output characteristic of the welding power supply device is not a constant current characteristic, the detection interval Δt
And the main arc current average value Iav (Δt) for each detection interval.
By measuring the main arc voltage average value Vav (Δt) at each detection interval to calculate the main arc period integrated heat input Qta3n, the capacity supplied to the welding power supply such as a small-capacity engine generator is small. When welding large diameter studs that require a large current using a power supply device, good welding results can be obtained even when the output voltage and output current of the welding power supply decrease due to insufficient input power of the welding power supply. Obtainable.

【1015】請求項15の方法は、請求項7又は請求項
8又は請求項9の方法において、請求項12の方法と同
様に、信号検出用のリード線を接続して補助ア−ク電圧
平均値Vav12だけを測定すればよいので、補助ア−ク電
流値Ipを測定する溶接電流検出器が不要である。溶接
電源装置に故障が発生したときは、検出間隔ごとの主ア
−ク電圧平均値Vav(Δt)に異常が発生するので、この
異常を表示させるか又は溶接電源装置の動作を停止させ
ることもできる。
The method of claim 15 is the same as the method of claim 7, 8 or 9, except that a signal detection lead wire is connected to the auxiliary arc voltage averaging circuit as in the method of claim 12. Since only the value Vav12 needs to be measured, there is no need for a welding current detector for measuring the auxiliary arc current value Ip. When a failure occurs in the welding power supply, an abnormality occurs in the main arc voltage average value Vav (Δt) at each detection interval. Therefore, the abnormality may be displayed or the operation of the welding power supply may be stopped. it can.

【1016】請求項16の方法は、請求項7又は請求項
8又は請求項9の方法の方法において請求項13の方法
と同様に、検出間隔Δtごとに、補助ア−ク電流平均値
Iav(Δt)を測定する必要がなく、補助ア−ク安定後に
補助ア−ク電流値Ipを少なくとも1回測定すればよい
ので、回路が簡単になる。
The method of claim 16 is the same as the method of claim 13 in the method of claim 7 or claim 8 or claim 9, wherein the auxiliary arc current average value Iav ( It is not necessary to measure Δt), and the auxiliary arc current value Ip may be measured at least once after the auxiliary arc is stabilized, so that the circuit is simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、溶接電圧、溶接電流及び主アーク電流
期間を監視する従来方法を実施するスタッド溶接装置の
ブロック図である。
FIG. 1 is a block diagram of a stud welding apparatus implementing a conventional method for monitoring welding voltage, welding current and main arc current period.

【図2】図2(A)は、正常な溶接時の主アーク期間全
体の出力電流Ioから検出期間中の溶接電流平均値Iav
を算出する説明図であり、同図(B)は、正常な溶接時
の主アーク期間全体の出力端子電圧Vdから検出間隔Δ
tごとに検出間隔ごとの主ア−ク電圧平均値Vav(Δt)
を算出する説明図であり、同図(C)は正常な溶接時の
スタッド引き上げ距離を示す図である。
FIG. 2A is a graph showing a relationship between an output current Io during the main arc period during normal welding and a welding current average value Iav during the detection period;
FIG. 8B is a diagram illustrating the detection interval Δ from the output terminal voltage Vd during the entire main arc period during normal welding.
Main arc voltage average value Vav (Δt) for each detection interval at every t
(C) is a diagram showing the stud pull-up distance during normal welding.

【図3】図3(A)は、各溶接中の主アーク期間全体の
出力電流Ioから検出期間中の溶接電流平均値Iavを算
出する説明図であり、同図(B)は、各溶接中の主アー
ク期間全体の出力端子電圧Vdから検出間隔Δtごとに
検出間隔ごとの主ア−ク電圧平均値Vav(Δt)を算出す
る説明図である。
FIG. 3A is an explanatory diagram of calculating a welding current average value Iav during a detection period from an output current Io of the entire main arc period during each welding, and FIG. FIG. 9 is an explanatory diagram for calculating a main arc voltage average value Vav (Δt) for each detection interval Δt from the output terminal voltage Vd during the entire main arc period.

【図4】図4(A)は、各溶接中の主アーク期間全体の
出力電流Ioから検出間隔ごとの主ア−ク電流平均値I
av(Δt)を算出する説明図であり、同図(B)は、各溶
接中の主アーク期間全体の出力端子電圧Vdから検出間
隔Δtごとに検出間隔ごとの主ア−ク電圧平均値Vav
(Δt)を算出する説明図である。
FIG. 4 (A) is a graph showing the main arc current average value I for each detection interval from the output current Io for the entire main arc period during each welding.
FIG. 6B is a diagram for explaining the calculation of av (Δt). FIG. 6B shows the main arc voltage average value Vav for each detection interval from the output terminal voltage Vd during the entire main arc period during each welding.
FIG. 9 is an explanatory diagram for calculating (Δt).

【図5】図5は、主アーク期間Ta中に、引き上げ不
良、異常アーク現象による片溶け等によって、スタッド
18が、一時的に、溶融プールに短絡した場合の溶接電
圧波形及び溶接電流波形を示す図である。
FIG. 5 is a diagram showing a welding voltage waveform and a welding current waveform when the stud 18 is temporarily short-circuited to the molten pool during a main arc period Ta due to poor pulling, partial melting due to an abnormal arc phenomenon, or the like. FIG.

【図6】図6(A)は、主アーク期間Ta中に微小短絡
が発生した場合の出力電流Ioの波形を示す溶接電流波
形図であり、同図(B)は、主アーク期間Ta中に短絡
が発生した場合の出力端子電圧Vdの波形を示す図であ
る。
FIG. 6A is a welding current waveform diagram showing a waveform of an output current Io when a micro short circuit occurs during a main arc period Ta, and FIG. 6B is a diagram showing a welding current waveform during a main arc period Ta; FIG. 5 is a diagram showing a waveform of an output terminal voltage Vd when a short circuit occurs in FIG.

【図7】図7は、本発明の方法をディジタル制御で実施
するスタッド溶接装置の実施例を示す図である。
FIG. 7 is a diagram showing an embodiment of a stud welding apparatus for performing the method of the present invention by digital control.

【図8】図8は、本発明の方法をアナログ制御で実施す
るスタッド溶接装置の実施例を示す図である。
FIG. 8 is a diagram showing an embodiment of a stud welding apparatus for performing the method of the present invention by analog control.

【符号の説明】[Explanation of symbols]

1…溶接電源装置 2…溶接ガン 3…溶接制御装置 4…演算処理回路 5…電流指令出力回路 6…D/A変換回路 7、8…A/D変換回路 11…記憶回路 12…表示回路 13…起動スイッチ 14…被溶接材 15…溶接電流出力回路 16…制御ケーブル 17…2次ケーブル 18…スタッド 20…入熱演算回路 21…溶接シ−ケンス制御回路 22、23…平滑回路 24…乗算回路 25…標準入熱設定回路 26…比較回路 27…警報器 28…計測時間設定回路 29…除算回路 30…三相電源 36、44…フィルタ回路 37、45…増幅回路 39…基準溶接電圧設定回路 40…比較器 41…警報器 42、43…接続線 CPU…演算処理回路 I1(t)…時刻tの溶接電流値 Ia…主ア−ク電流/主ア−ク電流値 IC…溶接電流検出回路 Ic…溶接電流検出信号 Io…出力電流/出力電流値 Ip…補助ア−ク電流/補助ア−ク電流値 Is…短絡電流 Ias(Δt)…検出間隔ごとの短絡発生時の出力電流平均
値 Iav…検出期間中の溶接電流平均値 Iav(Δt)…検出間隔ごとの主ア−ク電流平均値 Ita3n…主アーク期間積算電流値 Ns…短絡回数 Nst…標準入熱許容短絡回数 n …(検出間隔Δtの)検出回数 Qr…所要の入熱 Qst…検出期間全体の標準入熱量 Qta…積算入熱量 Qta12…補助ア−ク期間積算入熱量 Qst18…(予め設定した)補助・主アーク検出期間全体
の標準入熱量 Qst38…(予め設定した)主アーク期間全体の標準入熱
量 Qta1n…補助・主アーク期間積算入熱量 Qta3n…主アーク期間積算入熱量 ΔQas…検出間隔ごとの短絡発生時の入熱量平均値 ΔQav…検出間隔ごとの入熱量平均値 ΔQst…検出間隔ごとの入熱量標準値 T12…補助ア−ク検出期間 T38…主アーク入熱標準値設定期間 T3n…主アーク積算値検出期間 t0…補助ア−ク電流通電開始時点 t1…補助ア−ク電流・電圧検出開始時点 t2…主ア−ク電流通電開始時点 t3…主ア−ク電流・電圧検出開始時点 t8…主ア−ク電流・電圧検出終了時点 t9…主ア−ク電流通電終了時点/短絡電流通電開始時
点 t10…出力電流通電終了時点/短絡電流通電終了時点 t01乃至t0n…各検出間隔Δtの検出開始時点 Ta…主アーク期間 Tp…補助ア−ク期間 Ts…短絡期間 tn…積算入熱量Qtaが予め設定した検出期間全体の標
準入熱量Qstに達した時点 又は主アーク期間積算電圧値Vta3nが予め設定した検出
期間全体の主アーク電圧標準値Vst38に達した時点 Δt…検出間隔 Δt=1乃至Δt=n…1回目乃至N回目の検出 Δt・n…主アーク検出期間 V1(t)…時刻tの溶接電圧値 Vav…検出期間中の溶接電圧平均値 Vav12…補助ア−ク電圧平均値 Vas(Δt)…検出間隔ごとの短絡発生時の出力端子電圧
平均値 Vav(Δt)…検出間隔ごとの主ア−ク電圧平均値 VC…溶接電圧検出回路 Vc…溶接電圧検出信号 Vd…出力端子電圧/出力端子電圧値 Ve…適正溶接電圧平均値 Vst38…検出期間全体の主アーク電圧標準値 Vav3n…検出期間全体の主アーク電圧平均値 Vta3n…主アーク期間積算電圧値 ΔVe…適正溶接電圧範囲の許容値
REFERENCE SIGNS LIST 1 welding power supply device 2 welding gun 3 welding control device 4 arithmetic processing circuit 5 current command output circuit 6 D / A conversion circuit 7 and 8 A / D conversion circuit 11 storage circuit 12 display circuit 13 ... Starting switch 14 ... Welded material 15 ... Welding current output circuit 16 ... Control cable 17 ... Secondary cable 18 ... Stud 20 ... Heat input operation circuit 21 ... Welding sequence control circuit 22, 23 ... Smoothing circuit 24 ... Multiplication circuit 25 ... Standard heat input setting circuit 26 ... Comparison circuit 27 ... Alarm 28 ... Measurement time setting circuit 29 ... Division circuit 30 ... Three-phase power supply 36,44 ... Filter circuit 37,45 ... Amplification circuit 39 ... Reference welding voltage setting circuit 40 ... Comparator 41 ... Alarm 42,43 ... Connection line CPU ... Calculation processing circuit I1 (t) ... Welding current value at time t Ia ... Main arc current / Main arc current value IC ... Welding current detection circuit c: welding current detection signal Io: output current / output current value Ip: auxiliary arc current / auxiliary arc current value Is: short-circuit current Ias (Δt): average output current value when a short-circuit occurs at each detection interval Iav ... Average welding current value during detection period Iav (Δt) ... Average value of main arc current at each detection interval Ita3n ... Integrated current value of main arc period Ns ... Number of short circuits Nst ... Number of allowable standard heat input short circuits n ... (Detection interval Δt) Number of detections Qr: required heat input Qst: standard heat input during the entire detection period Qta: integrated heat input Qta12: integrated heat input during the auxiliary arc period Qst18: (preset) auxiliary / main arc detection period Standard heat input Qst38: Standard heat input for the entire main arc period (pre-set) Qta1n: Auxiliary / main arc period integrated heat input Qta3n: Main arc period integrated heat input ΔQas: Average heat input when a short circuit occurs at each detection interval ΔQav: For each detection interval Heat value average value ΔQst: Heat input standard value for each detection interval T12: Auxiliary arc detection period T38: Main arc heat input standard value setting period T3n: Main arc integrated value detection period t0: Starting point of energizing auxiliary arc current t1 ... Auxiliary arc current / voltage detection start time t2 ... Main arc current energization start time t3 ... Main arc current / voltage detection start time t8 ... Main arc current / voltage detection end time t9 ... Main arc End time of arc current energization / Start time of short-circuit current energization t10 ... End time of output current energization / End time of short-circuit current energization t01 to t0n ... Detection start time of each detection interval Δt Ta ... Main arc period Tp ... Auxiliary arc period Ts ... Short circuit period tn: When the accumulated heat input Qta reaches the standard heat input Qst for the entire preset detection period or when the main arc period accumulated voltage value Vta3n reaches the preset main arc voltage standard value Vst38 for the entire detection period. Δt: detection interval Δt = 1 to Δt = n: first to Nth detections Δt · n: main arc detection period V1 (t): welding voltage value at time t Vav: welding voltage average value during the detection period Vav12 ... Auxiliary arc voltage average value Vas (Δt): average output terminal voltage value at occurrence of short circuit at each detection interval Vav (Δt): main arc voltage average value at each detection interval VC: welding voltage detection circuit Vc: welding Voltage detection signal Vd: output terminal voltage / output terminal voltage value Ve: appropriate welding voltage average value Vst38: main arc voltage standard value for the entire detection period Vav3n: main arc voltage average value for the entire detection period Vta3n: main arc period integrated voltage value ΔVe: allowable value of proper welding voltage range

───────────────────────────────────────────────────── フロントページの続き (72)発明者 原田 章二 大阪市北区南森町1丁目1番29号 ダイヘ ンスタッド株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shoji Harada 1-1-29 Minamimori-cho, Kita-ku, Osaka Inside Daihen Stud Co., Ltd.

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 スタッドを被溶接材から引き上げてアー
クを発生させた後に、スタッドを被溶接材に所定の押し
込み量だけ押し込んで溶接するスタッド溶接において、
検出間隔ごとの主ア−ク電圧平均値から算出した主アー
ク期間積算入熱量が、予め設定した主アーク期間全体の
標準入熱量に達した時点で押し込み工程を開始するスタ
ッド溶接の入熱積算押し込み制御方法。
1. A stud welding method in which an arc is generated by lifting a stud from a material to be welded, and then the stud is welded by pushing the stud into the material to be welded by a predetermined amount.
When the integrated heat input amount of the main arc period calculated from the average value of the main arc voltage at each detection interval reaches the standard heat input amount of the entire main arc period, the press-in process starts when the integrated heat input of stud welding is started. Control method.
【請求項2】 スタッドを被溶接材から引き上げてアー
クを発生させた後に、スタッドを被溶接材に所定の押し
込み量だけ押し込んで溶接するスタッド溶接において、
主アーク期間積算電圧値が、予め設定した主アーク期間
全体の標準入熱量から算出した検出期間全体の主アーク
電圧標準値に達した時点で押し込み工程を開始するスタ
ッド溶接の入熱積算押し込み制御方法。
2. A stud welding method wherein an arc is generated by pulling up a stud from a material to be welded, and then the stud is pushed into the material to be welded by a predetermined pushing amount to perform welding.
A method for controlling the integrated heat input and press-in of stud welding, in which the indentation process is started when the integrated voltage value of the main arc period reaches the standard value of the main arc voltage for the entire detection period calculated from the standard heat input for the entire main arc period set in advance. .
【請求項3】 スタッドを被溶接材から引き上げてアー
クを発生させた後にスタッドを被溶接材に所定の押し込
み量だけ押し込んで溶接するスタッド溶接において、検
出期間全体の主アーク電圧平均値から算出した主アーク
期間積算入熱量が、予め設定した主アーク期間全体の標
準入熱量に達した時点で押し込み工程を開始するスタッ
ド溶接の入熱積算押し込み制御方法。
3. In stud welding in which an arc is generated by lifting a stud from a material to be welded and then pushing the stud into the material to be welded by a predetermined pushing amount, the stud welding is calculated from an average value of a main arc voltage in the entire detection period. A method for controlling cumulative heat input and press-in of stud welding, in which the press-in process is started when the cumulative heat input of the main arc period reaches a preset standard heat input for the entire main arc period.
【請求項4】 スタッドを被溶接材から引き上げてアー
クを発生させた後に、スタッドを被溶接材に所定の押し
込み量だけ押し込んで溶接するスタッド溶接において、
正常な溶接時の主アーク期間全体の標準入熱量を予め設
定しておき、補助ア−ク電流から主ア−ク電流に切り換
えて、主アーク電流・電圧検出開始時点から、検出間隔
ごとに、検出間隔ごとの主ア−ク電圧平均値を測定し、
前記検出間隔ごとの主ア−ク電圧平均値と検出期間中の
溶接電流平均値との積の検出間隔ごとの入熱量平均値を
積算して主アーク期間積算入熱量を算出し、前記主アー
ク期間積算入熱量が、前記予め設定した主アーク期間全
体の標準入熱量に達した時点で押し込み工程を開始する
スタッド溶接の入熱積算押し込み制御方法。
4. A stud welding method in which after a stud is pulled up from a material to be welded and an arc is generated, the stud is pushed into the material to be welded by a predetermined pushing amount to perform welding.
The standard heat input for the entire main arc period during normal welding is set in advance, the auxiliary arc current is switched to the main arc current, and from the start of the main arc current / voltage detection, at each detection interval, Measure the main arc voltage average value at each detection interval,
The average heat input for each detection interval is integrated by calculating the product of the average value of the main arc voltage for each detection interval and the average value of the welding current during the detection period to calculate the integrated heat input for the main arc period. A stud welding integrated heat input press-in control method for starting a press-in process when the integrated heat input during the period reaches the standard heat input during the preset main arc period.
【請求項5】 スタッドを被溶接材から引き上げてアー
クを発生させた後に、スタッドを被溶接材に所定の押し
込み量だけ押し込んで溶接するスタッド溶接において、
溶接開始前に、正常な溶接時の主アーク期間全体の標準
入熱量を予め設定しておき、補助ア−ク電流から主ア−
ク電流に切り換えて、主アーク電流・電圧検出開始時点
から、検出間隔ごとに、検出間隔ごとの主ア−ク電圧平
均値を測定し、前記検出間隔ごとの主ア−ク電圧平均値
を積算して主アーク期間積算電圧値を算出し、前記主ア
ーク期間積算電圧値が、前記予め設定した主アーク期間
全体の標準入熱量を検出期間中の溶接電流平均値で除算
した検出期間全体の主アーク電圧標準値に達した時点で
押し込み工程を開始するスタッド溶接の入熱積算押し込
み制御方法。
5. A stud welding method in which, after an arc is generated by pulling up a stud from a material to be welded, the stud is pushed into the material to be welded by a predetermined pushing amount to perform welding.
Before starting welding, the standard heat input for the entire main arc period during normal welding is set in advance, and the main arc current is calculated from the auxiliary arc current.
The main arc voltage average value at each detection interval is measured at each detection interval from the start of main arc current / voltage detection, and the main arc voltage average value at each detection interval is integrated. The main arc period integrated voltage value is calculated, and the main arc period integrated voltage value is calculated by dividing the preset standard heat input amount of the entire main arc period by the welding current average value during the detection period. A method of controlling the cumulative heat input press-in of stud welding, which starts the press-in process when the arc voltage standard value is reached.
【請求項6】 スタッドを被溶接材から引き上げてアー
クを発生させた後に、スタッドを被溶接材に所定の押し
込み量だけ押し込んで溶接するスタッド溶接において、
溶接開始前に、正常な溶接時の主アーク期間全体の標準
入熱量を予め設定しておき、補助ア−ク電流から主ア−
ク電流に切り換えて、主アーク電流・電圧検出開始時点
から、検出間隔ごとに、検出間隔ごとの主ア−ク電圧平
均値を測定し、前記検出間隔ごとの主ア−ク電圧平均値
を積算して主アーク期間積算電圧値を算出し、前記主ア
ーク期間積算電圧値を検出回数で除算して検出期間全体
の主アーク電圧平均値を算出し、前記検出期間全体の主
アーク電圧平均値と検出期間中の溶接電流平均値と主ア
ーク積算値検出期間との積の主アーク期間積算入熱量を
算出し、前記主アーク期間積算入熱量が、前記予め設定
した主アーク期間全体の標準入熱量に達した時点で押し
込み工程を開始するスタッド溶接の入熱積算押し込み制
御方法。
6. A stud welding method in which an arc is generated by pulling up a stud from a material to be welded, and then the stud is pushed into the material to be welded by a predetermined pushing amount to perform welding.
Before starting welding, the standard heat input for the entire main arc period during normal welding is set in advance, and the main arc current is calculated from the auxiliary arc current.
The main arc voltage average value at each detection interval is measured at each detection interval from the start of main arc current / voltage detection, and the main arc voltage average value at each detection interval is integrated. Calculate the main arc period integrated voltage value, calculate the main arc voltage average value of the entire detection period by dividing the main arc period integrated voltage value by the number of detections, and calculate the main arc voltage average value of the entire detection period. The main arc period integrated heat input of the product of the welding current average value and the main arc integrated value detection period during the detection period is calculated, and the main arc period integrated heat input is the standard heat input over the entire main arc period set in advance. A method of controlling the total heat input and press-in of stud welding, which starts the press-in process when it reaches.
【請求項7】 スタッドを被溶接材から引き上げてアー
クを発生させた後に、スタッドを被溶接材に所定の押し
込み量だけ押し込んで溶接するスタッド溶接において、
溶接開始前に、正常な溶接時の補助ア−ク期間及び補助
・主アーク検出期間全体の標準入熱量を予め設定してお
き、補助アーク電流・電圧検出開始時点から、補助ア−
ク電圧平均値を測定して、前記補助ア−ク電圧平均値と
補助ア−ク電流値と補助ア−ク検出期間との積の補助ア
−ク期間積算入熱量を算出し、次に補助ア−ク電流から
主ア−ク電流に切り換えて、主アーク電流・電圧検出開
始時点から、検出間隔ごとに、検出間隔ごとの主ア−ク
電圧平均値を測定し、前記検出間隔ごとの主ア−ク電圧
平均値と検出期間中の溶接電流平均値との積の検出間隔
ごとの入熱量平均値を、検出回数回まで積算して主アー
ク期間積算入熱量を算出し、補助ア−ク期間積算入熱量
と主アーク期間積算入熱量との和の補助・主アーク期間
積算入熱量が、前記予め設定した補助・主アーク検出期
間全体の標準入熱量に達した時点で押し込み工程を開始
するスタッド溶接の入熱積算押し込み制御方法。
7. A stud welding method in which an arc is generated by pulling up a stud from a material to be welded, and then the stud is pushed into the material to be welded by a predetermined pushing amount to perform welding.
Prior to the start of welding, the standard heat input for the auxiliary arc period and the auxiliary / main arc detection period during normal welding is set in advance.
The average voltage of the auxiliary arc is measured, and the integrated heat input of the auxiliary arc period is calculated by multiplying the average value of the auxiliary arc voltage, the auxiliary arc current value, and the auxiliary arc detection period. The main arc current is switched from the arc current to the main arc current. From the start of the main arc current / voltage detection, the main arc voltage average value at each detection interval is measured at each detection interval. The average heat input value for each detection interval of the product of the arc voltage average value and the welding current average value during the detection period is integrated up to the number of times of detection to calculate the integrated heat input amount in the main arc period, and the auxiliary arc is calculated. The pushing process is started when the auxiliary / main arc period integrated heat input amount of the sum of the period integrated heat input amount and the main arc period integrated heat input amount reaches the standard heat input amount of the preset auxiliary / main arc detection period as a whole. A method of controlling the cumulative heat input of stud welding.
【請求項8】 スタッドを被溶接材から引き上げてアー
クを発生させた後に、スタッドを被溶接材に所定の押し
込み量だけ押し込んで溶接するスタッド溶接において、
溶接開始前に、正常な溶接時の補助ア−ク期間及び補助
・主アーク検出期間全体の標準入熱量を予め設定してお
き、補助ア−ク電流・電圧検出開始時点から、補助ア−
ク電圧平均値を測定して、前記補助ア−ク電圧平均値と
補助ア−ク電流値と補助ア−ク検出期間との積の補助ア
−ク期間積算入熱量を算出し、前記予め設定した補助・
主アーク検出期間全体の標準入熱量から補助ア−ク期間
積算入熱量を減算して主ア−ク期間積算入熱量を算出し
ておき、次に補助ア−ク電流から主ア−ク電流に切り換
えて、主アーク電流・電圧検出開始時点から、検出間隔
ごとに、検出間隔ごとの主ア−ク電圧平均値を測定し、
前記検出間隔ごとの主ア−ク電圧平均値を積算して主ア
ーク期間積算電圧値を算出し、前記主アーク期間積算電
圧値が、前記主アーク期間積算入熱量を検出期間中の溶
接電流平均値で除算した検出期間全体の主アーク電圧標
準値に達した時点で押し込み工程を開始するスタッド溶
接の入熱積算押し込み制御方法。
8. A stud welding method in which an arc is generated by pulling up a stud from a material to be welded, and then the stud is pushed into the material to be welded by a predetermined pushing amount to perform welding.
Before the start of welding, the standard heat input for the auxiliary arc period and the auxiliary / main arc detection period during normal welding is set in advance, and the auxiliary arc current / voltage detection start time is set to the auxiliary arc.
The average of the auxiliary voltage during the auxiliary arc period is calculated by measuring the average of the auxiliary voltage and the product of the average of the auxiliary arc voltage, the auxiliary arc current value and the auxiliary arc detection period. Assistance
The accumulated heat input of the main arc period is calculated by subtracting the accumulated heat input of the auxiliary arc period from the standard heat input of the entire main arc detection period, and then the auxiliary arc current is converted to the main arc current. Switch, and from the start of main arc current / voltage detection, measure the main arc voltage average value for each detection interval for each detection interval,
The main arc period integrated voltage value is calculated by integrating the main arc voltage average value for each of the detection intervals, and the main arc period integrated voltage value is used as the welding current average during the detection period of the main arc period integrated heat input. A method for controlling the integrated heat input and press-in of stud welding, in which the press-in process is started when the main arc voltage standard value of the entire detection period divided by the value is reached.
【請求項9】 スタッドを被溶接材から引き上げてアー
クを発生させた後に、スタッドを被溶接材に所定の押し
込み量だけ押し込んで溶接するスタッド溶接において、
溶接開始前に、正常な溶接時の補助ア−ク期間及び補助
・主アーク検出期間全体の標準入熱量を予め設定してお
き、補助ア−ク電流・電圧検出開始時点から、補助ア−
ク電圧平均値を測定して、前記補助ア−ク電圧平均値と
補助ア−ク電流値と補助ア−ク検出期間との積の補助ア
−ク期間積算入熱量を算出し、次に補助ア−ク電流から
主ア−ク電流に切り換えて、主アーク電流・電圧検出開
始時点から、検出間隔ごとに、検出間隔ごとの主ア−ク
電圧平均値を測定し、前記検出間隔ごとの主ア−ク電圧
平均値を積算して主アーク期間積算電圧値を算出し、前
記主アーク期間積算電圧値を検出回数で除算して検出期
間全体の主アーク電圧平均値を算出し、前記検出期間全
体の主アーク電圧平均値と検出期間中の溶接電流平均値
と主アーク積算値検出期間との積の主アーク期間積算入
熱量を算出し、補助ア−ク期間積算入熱量と主アーク期
間積算入熱量との和の補助・主アーク期間積算入熱量
が、前記予め設定した補助・主アーク検出期間全体の標
準入熱量に達した時点で押し込み工程を開始するスタッ
ド溶接の入熱積算押し込み制御方法。
9. A stud welding method in which a stud is pulled up from a material to be welded to generate an arc, and then the stud is pushed into the material to be welded by a predetermined amount to be welded.
Before the start of welding, the standard heat input for the auxiliary arc period and the auxiliary / main arc detection period during normal welding is set in advance, and the auxiliary arc current / voltage detection start time is set to the auxiliary arc.
The average voltage of the auxiliary arc is measured, and the integrated heat input of the auxiliary arc period is calculated by multiplying the average value of the auxiliary arc voltage, the auxiliary arc current value, and the auxiliary arc detection period. The main arc current is switched from the arc current to the main arc current. From the start of the main arc current / voltage detection, the main arc voltage average value at each detection interval is measured at each detection interval. The main arc period integrated voltage value is calculated by integrating the arc voltage average value, and the main arc period integrated voltage value is divided by the number of detections to calculate a main arc voltage average value for the entire detection period. The main arc period integrated heat input amount of the product of the overall main arc voltage average value, the welding current average value during the detection period, and the main arc integrated value detection period is calculated, and the auxiliary arc period integrated heat input amount and the main arc period integration are calculated. The sum of the heat input and the auxiliary heat input during the main arc period is Heat input integration push controlling method of stud welding starting the process pushing Once at the standard heat input across the auxiliary-main arc detection period.
【請求項10】 請求項4又は請求項5又は請求項6又
は請求項7又は請求項8又は請求項9の方法において、
溶接開始前に、溶接部の欠陥になる可能性のある微小短
絡の一回の発生時間よりも短い検出間隔及び短絡が発生
しないときの検出間隔ごとの入熱量標準値及び主アーク
期間全体の標準入熱量を確保する標準入熱許容短絡回数
を予め設定しておき、主アーク電流・電圧検出開始時点
から、検出間隔ごとに、検出間隔ごとの主ア−ク電圧平
均値を測定して、検出間隔ごとの主ア−ク電圧平均値と
検出期間中の溶接電流平均値との積の検出間隔ごとの入
熱量平均値を算出し、前記検出間隔ごとの入熱量平均値
が検出間隔ごとの入熱量標準値よりも低下した短絡回数
を計数して、前記短絡回数が前記予め設定した標準入熱
許容短絡回数以上になると溶接不良を表示するスタッド
溶接の入熱積算押し込み制御方法。
10. The method according to claim 4 or claim 5, claim 6, claim 6, claim 7, claim 8, or claim 9,
Before the start of welding, the standard value of the heat input amount and the standard value of the entire main arc period for each detection interval shorter than the single occurrence time of a micro short-circuit that may become a defect of the weld and the detection interval when the short-circuit does not occur The standard allowable number of heat input short circuits to secure the heat input is set in advance, and from the start of main arc current / voltage detection, the average value of the main arc voltage at each detection interval is measured at each detection interval and detected. The average heat input amount at each detection interval is calculated as the product of the main arc voltage average value at each interval and the welding current average value during the detection period, and the average heat input amount at each detection interval is calculated at each detection interval. A heat input cumulative push-in control method for stud welding, in which the number of short circuits falling below a standard calorie value is counted, and if the number of short circuits becomes equal to or greater than the preset standard heat input allowable short circuit frequency, welding failure is displayed.
【請求項11】 請求項4又は請求項5又は請求項6又
は請求項7又は請求項8又は請求項9の方法において、
溶接開始前に、溶接部の欠陥になる可能性のある微小短
絡の一回の発生時間よりも短い検出間隔及び短絡が発生
しない検出間隔の適正な検出間隔ごとの入熱量標準値及
び主アーク期間全体の標準入熱量を確保する標準入熱許
容短絡回数を予め設定しておき、主アーク電流・電圧検
出開始時点から、検出間隔ごとに、検出間隔ごとの主ア
−ク電圧平均値を測定して、検出間隔ごとの主ア−ク電
圧平均値と検出期間中の溶接電流平均値との積の検出間
隔ごとの入熱量平均値を算出し、前記検出間隔ごとの入
熱量平均値が検出間隔ごとの入熱量標準値よりも低下し
た短絡回数を計数して、前記短絡回数が前記予め設定し
た標準入熱許容短絡回数以上になると、さらに予め設定
した時間だけ主アーク電流の通電時間を追加するスタッ
ド溶接の入熱積算押し込み制御方法。
11. The method according to claim 4 or claim 5, claim 6, claim 6, claim 7, claim 8, or claim 9,
Prior to the start of welding, the standard value of heat input and the main arc period for each appropriate detection interval that are shorter than the single occurrence time of a micro short-circuit that may become a defect in the weld and that no short-circuit occurs The standard number of allowable heat input short-circuits to secure the entire standard heat input is set in advance, and the main arc voltage average value for each detection interval is measured for each detection interval from the start of main arc current / voltage detection. The average heat input amount at each detection interval is calculated by multiplying the average value of the main arc voltage at each detection interval by the average welding current value during the detection period. The number of short-circuits that have fallen below the standard heat input amount for each is counted, and when the number of short-circuits is equal to or greater than the preset standard number of allowable heat input short-circuits, the energizing time of the main arc current is further added for a preset time. Heat input integration of stud welding And included a control method.
【請求項12】 請求項4又は請求項5又は請求項6又
は請求項7又は請求項8又は請求項9又は請求項10又
は請求項11の検出期間中の溶接電流平均値が、定電流
出力特性の溶接電源装置に設定した主ア−ク電流設定値
であるスタッド溶接の入熱積算押し込み制御方法。
12. The welding current average value during the detection period of claim 4, claim 5, claim 6, claim 6, claim 7, claim 8, claim 9, claim 10, or claim 11 is a constant current output. A method for controlling the integrated heat input and press-in of stud welding, which is a main arc current set value set in a welding power supply device having characteristics.
【請求項13】請求項4又は請求項5又は請求項6又は
請求項7又は請求項8又は請求項9又は請求項10又は
請求項11の検出期間中の溶接電流平均値が、主アーク
電流・電圧検出開始時点から後で測定した定電流出力特
性の溶接電源装置から出力する主ア−ク電流測定値であ
るスタッド溶接の入熱積算押し込み制御方法。
13. The welding current average value during the detection period of claim 4, claim 5, claim 6, claim 6, claim 7, claim 8, claim 9, claim 10, or claim 11 is the main arc current. A method for controlling the cumulative heat input and press-in of stud welding, which is the main arc current measurement value output from the welding power supply unit having a constant current output characteristic measured after the voltage detection start time.
【請求項14】請求項4又は請求項5又は請求項6又は
請求項7又は請求項8又は請求項9又は請求項10又は
請求項11の検出期間中の溶接電流平均値が、主アーク
電流・電圧検出開始時点から、検出間隔ごとに算出した
検出間隔ごとの主ア−ク電流平均値を積算して算出した
値であるスタッド溶接の入熱積算押し込み制御方法。
14. The average value of the welding current during the detection period of claim 4, claim 5, claim 6, claim 6, claim 7, claim 8, claim 9, claim 10, or claim 11 is the main arc current. A stud welding heat input integrated press-in control method which is a value calculated by integrating the average value of the main arc current for each detection interval calculated for each detection interval from the start of voltage detection.
【請求項15】請求項7又は請求項8又は請求項9の補
助ア−ク電流値が、定電流出力特性の溶接電源装置に設
定した補助ア−ク電流設定値であるスタッド溶接の入熱
積算押し込み制御方法。
15. The heat input of stud welding, wherein the auxiliary arc current value according to claim 7, 8 or 9 is a set auxiliary arc current value set in a welding power supply device having a constant current output characteristic. Integral push control method.
【請求項16】請求項7又は請求項8又は請求項9の補
助ア−ク電流値が補助ア−ク電流・電圧検出開始時点か
ら測定した定電流出力特性の溶接電源装置から出力する
補助ア−ク電流測定値であるスタッド溶接の入熱積算押
し込み制御方法。
16. An auxiliary arc output from a welding power supply having a constant current output characteristic, wherein the auxiliary arc current value is measured from the start of the auxiliary arc current / voltage detection. A method for controlling the cumulative heat input indentation of stud welding, which is the measured current value.
JP24938497A 1997-08-30 1997-08-30 Stud welding integrated heat input push-in control method Expired - Fee Related JP4657391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24938497A JP4657391B2 (en) 1997-08-30 1997-08-30 Stud welding integrated heat input push-in control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24938497A JP4657391B2 (en) 1997-08-30 1997-08-30 Stud welding integrated heat input push-in control method

Publications (2)

Publication Number Publication Date
JPH1177311A true JPH1177311A (en) 1999-03-23
JP4657391B2 JP4657391B2 (en) 2011-03-23

Family

ID=17192210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24938497A Expired - Fee Related JP4657391B2 (en) 1997-08-30 1997-08-30 Stud welding integrated heat input push-in control method

Country Status (1)

Country Link
JP (1) JP4657391B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004535936A (en) * 2001-07-23 2004-12-02 ニューフレイ リミテッド ライアビリティ カンパニー Short-time arc welding and method of short-time arc welding system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490040A (en) * 1977-12-23 1979-07-17 Nippon Kokan Kk <Nkk> Magnetic driving arc welding
JPS558316A (en) * 1978-07-03 1980-01-21 Nippon Doraibuitsuto Kk Welding monitor apparatus of arc stud welder
JPS584279U (en) * 1982-06-10 1983-01-12 日本ドライブイツト株式会社 Electronic control circuit for arc welding equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490040A (en) * 1977-12-23 1979-07-17 Nippon Kokan Kk <Nkk> Magnetic driving arc welding
JPS558316A (en) * 1978-07-03 1980-01-21 Nippon Doraibuitsuto Kk Welding monitor apparatus of arc stud welder
JPS584279U (en) * 1982-06-10 1983-01-12 日本ドライブイツト株式会社 Electronic control circuit for arc welding equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004535936A (en) * 2001-07-23 2004-12-02 ニューフレイ リミテッド ライアビリティ カンパニー Short-time arc welding and method of short-time arc welding system
JP4851686B2 (en) * 2001-07-23 2012-01-11 ニューフレイ リミテッド ライアビリティ カンパニー Method of short-time arc welding and short-time arc welding system

Also Published As

Publication number Publication date
JP4657391B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
JPH11156542A (en) Cable voltage lowering compensation method for stud welding
WO1993001017A1 (en) Wirecut electric discharge machining system
US9421626B2 (en) Apparatus and method for electrical discharge machining modulation control
EP3068197B1 (en) Unignited plasma state detection device and unignited plasma state detection method
WO1982002621A1 (en) Method for bonding a contact
KR20140141458A (en) Constriction detection control method of welding power supply
JP2001259859A (en) Method of joining metallic members and method of reflow soldering
KR0133151B1 (en) Consumable electrode dc arc welder
US3433921A (en) Apparatus and method for indicating defective welds
JPH1177311A (en) Method for controlling heat input integration and indentation in stud welding
JP3259012B2 (en) Inverter type resistance welding control device
JPH1119773A (en) Method for controlling short-circuit in pulling-up period of stud welding
JP3777017B2 (en) Stud welding quality control method
JP4112665B2 (en) Defect cause removal method of stud welding
JP6338420B2 (en) Control method and control apparatus for resistance welding machine
JP4992304B2 (en) Electric resistance welder and its restart control method
JP2012091221A (en) Arc start quality determination method
JP5451158B2 (en) Heater chip, thermocompression bonding apparatus, and thermocompression bonding method
KR101530144B1 (en) Welding Current Measuring Apparatus and the Method thereof
JP3259013B2 (en) Inverter type resistance welding power supply
JP5410126B2 (en) Power supply for plasma welding and plasma welding equipment
US20130186868A1 (en) System and method for performing resistance spot welding
JP2919816B2 (en) Pulse heating type bonding apparatus and its control method
JP6529232B2 (en) Welding current measuring device, resistance welding monitoring device and resistance welding control device
JP3679840B2 (en) Power supply for sputtering equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040524

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040524

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050407

RD04 Notification of resignation of power of attorney

Effective date: 20050407

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A131 Notification of reasons for refusal

Effective date: 20080108

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Effective date: 20100408

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20101221

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101222

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees