JPH1177258A - Electromagnetic braking device in continuous caster - Google Patents

Electromagnetic braking device in continuous caster

Info

Publication number
JPH1177258A
JPH1177258A JP23817097A JP23817097A JPH1177258A JP H1177258 A JPH1177258 A JP H1177258A JP 23817097 A JP23817097 A JP 23817097A JP 23817097 A JP23817097 A JP 23817097A JP H1177258 A JPH1177258 A JP H1177258A
Authority
JP
Japan
Prior art keywords
iron core
mold
electromagnetic
cross
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23817097A
Other languages
Japanese (ja)
Inventor
Masashi Kawamoto
正志 河本
Masao Tokiyoda
正夫 常世田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP23817097A priority Critical patent/JPH1177258A/en
Publication of JPH1177258A publication Critical patent/JPH1177258A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively utilize a space of the limited back surface of a mold, to enable holding of intense electromagnet capacity and to enable the fitting of the electromagnet device obtaining the necessary braking force at plural steps in a mold for casting at high speed in small size which conventionally is difficult to brake, by improving the constitution, shape, etc., of iron cores from an electromagnetic coil parts to a mold fixed part assembled in the mold, in an electromagnetic braking device applying the brake to molten steel flow in the mold. SOLUTION: In the electromagnetic device composed of the iron cores 13, electromagnetic coils 14 and yokes 15, the iron core 13 is constituted with a tip iron core part 13A, middle iron core part 13B and base end iron core part 13C. Further, the integral type deformed iron core 13 is formed by changing the direction in each part, cross sectional shape and cross sectional area so that the space of the limited back surface can effectively be utilized, and the intense electromagnet device can be obtd. by enlarging the electromagnetic coil 13 and also, the compact and intense electromagnet device can be made to arrange at many steps.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋼の連続鋳造にお
いて、鋳型内に溶鋼を注入する浸漬ノズルからの溶鋼流
に静磁場による制動(ブレーキ)を加え、溶鋼中の介在
物が流下して鋳片内に捕捉されるのを低減する電磁ブレ
ーキ装置に関し、特に鋳型長辺の背面に設置される電磁
石装置の改良に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting of steel, in which a molten steel flow from an immersion nozzle for injecting molten steel into a mold is subjected to braking (brake) by a static magnetic field so that inclusions in the molten steel flow down. TECHNICAL FIELD The present invention relates to an electromagnetic brake device that reduces capture in a cast slab, and more particularly to an improvement in an electromagnet device installed on the back side of a long side of a mold.

【0002】[0002]

【従来の技術】一般に、連続鋳造においては、レードル
内の溶鋼をタンディッシュに注入し、タンディッシュか
ら浸漬ノズルを用いて水冷鋳型内に鋳込み、この水冷鋳
型の1次冷却により溶鋼外周に凝固シェルを形成し、鋳
型下方に配列された多数の鋳片支持ロール間を通過させ
ながらスプレー冷却等により2次冷却して凝固シェルを
成長させ、完全凝固した鋳片を引き抜くことにより、鋳
片を連続的に製造している。
2. Description of the Related Art Generally, in continuous casting, molten steel in a ladle is poured into a tundish, cast into a water-cooled mold from the tundish using an immersion nozzle, and solidified around the molten steel by primary cooling of the water-cooled mold. The slab is continuously formed by growing a solidified shell by secondary cooling by spray cooling or the like while passing between a number of slab support rolls arranged below the mold, and pulling out the completely solidified slab. It is manufactured in a typical manner.

【0003】このような連続鋳造鋳片の介在物を低減す
る方法として、水冷鋳型に電磁ブレーキ装置を組み込む
技術があり、この方法では、浸漬ノズルからの溶鋼注入
流に対して電磁ブレーキ装置の静磁場により制動力を加
えて溶鋼注入流を減速し、これにより、溶鋼中に含まれ
る介在物が凝固シェル内の溶融部分に深く侵入して凝固
シェル界面にトラップされるのを防止している。
[0003] As a method of reducing the inclusions in such a continuous cast slab, there is a technique of incorporating an electromagnetic brake device in a water-cooled mold. A braking force is applied by the magnetic field to slow down the molten steel injection flow, thereby preventing inclusions contained in the molten steel from penetrating deeply into the molten portion in the solidified shell and being trapped at the solidified shell interface.

【0004】このような電磁ブレーキ装置を鋼の連続鋳
造に適用すること自体は、特公平2−20349号公報
などで開示され公知である。また、特公平4−5998
8号公報には、電磁ブレーキ装置の構造として、平面視
長方形断面の鋳型の長辺側に、電磁コイルとコアとヨー
クからなる電磁石装置を対向配置し、複数組の磁極間に
静磁場を発生させることにより、鋳型内の溶鋼にブレー
キをかける。通常、電磁ブレーキ装置では、磁界の形成
の効率を上げる点から溶鋼を挟んで対向するコアの間隔
を最小限とする必要があるために、前記電磁ブレーキ装
置では、鋳型の長辺銅板の背面の冷却箱に凹部を設け、
この凹部に電磁石およびコアを挿入する構造が採用され
ており、鋳型と電磁石装置とが一体構造となっている。
The application of such an electromagnetic brake device to continuous casting of steel is disclosed and known in Japanese Patent Publication No. 2-20349. In addition, Japanese Patent Publication 4-5998
No. 8 discloses a structure of an electromagnetic brake device in which an electromagnet device including an electromagnetic coil, a core, and a yoke is opposed to a long side of a mold having a rectangular cross section in a plan view to generate a static magnetic field between a plurality of pairs of magnetic poles. By doing so, a brake is applied to the molten steel in the mold. Normally, in the electromagnetic brake device, it is necessary to minimize the interval between the cores facing each other with the molten steel interposed from the viewpoint of increasing the efficiency of forming the magnetic field. Provide a recess in the cooling box,
A structure in which an electromagnet and a core are inserted into the recess is adopted, and the mold and the electromagnet device are integrated.

【0005】さらに、最近では、特開平5−27764
5号公報、あるいは本発明者による特願平8−1615
86号等のように、鋳型と電磁石装置とを分離可能とし
た電磁ブレーキ装置も提案されている。
Further, recently, Japanese Patent Application Laid-Open No. Hei 5-27764 has been proposed.
No. 5 or Japanese Patent Application No. 8-1615 by the present inventor.
No. 86, etc., an electromagnetic brake device capable of separating a mold and an electromagnet device has also been proposed.

【0006】[0006]

【発明が解決しようとする課題】[Problems to be solved by the invention]

(1) 前述の特公平4−59988号公報に記載されてい
るような鋳型と電磁石装置が一体となった電磁ブレーキ
装置では、鋳型の大きさ(鋳型長辺方向の幅と高さ)に
よって、電磁石装置の大きさおよび制動容量が物理的に
決まってしまう問題がある。
(1) In an electromagnetic brake device in which a mold and an electromagnet device are integrated as described in Japanese Patent Publication No. 4-59988, the size of the mold (width and height in the long side direction of the mold) depends on the size of the mold. There is a problem that the size and braking capacity of the electromagnet device are physically determined.

【0007】(2) 最近の高速鋳込連鋳機(高生産連鋳
機)においては、浸漬ノズルからの溶鋼注入流を制御す
るに必要な制動力が出ない問題がある。十分な制動力が
得られない場合には、 前述の溶鋼注入流の減速が不
十分となり、溶鋼中の介在物が凝固シェル内の溶融部分
に深く入り込んでしまう。 浸漬ノズルより吐出され
た溶鋼注入流が鋳型短辺壁に衝突し、この溶鋼流が凝固
シェルの再溶解を生じせしめ、ブレークアウトの原因と
なる。
(2) In a recent high-speed continuous casting machine (high-production continuous casting machine), there is a problem that a braking force necessary for controlling a molten steel injection flow from an immersion nozzle is not provided. If a sufficient braking force cannot be obtained, the above-described deceleration of the molten steel injection flow becomes insufficient, and inclusions in the molten steel penetrate deeply into the molten portion in the solidified shell. The molten steel injection flow discharged from the immersion nozzle collides with the short side wall of the mold, and this molten steel flow causes re-melting of the solidified shell, which causes a breakout.

【0008】(3) 以上のように、高速鋳込連鋳機(鋳込
み速度が速く、従って単位時間当りの注入溶鋼量の多い
もの)では、鋳型の大きさと、必要な電磁石制動力がア
ンマッチとなってきた。また、直近では、鋳型の背面に
上下に複数段の電磁石装置を設けたものがあり、鋳型の
上段・中段・下段を制動制御する方法となってきた。こ
のような場合、従来の電磁石装置では、必要な制動機能
が得られなくなった。
(3) As described above, in a high-speed continuous casting machine (a casting machine having a high casting speed and therefore a large amount of molten steel per unit time), the size of the mold and the required electromagnet braking force are unmatched. It has become. Recently, there has been a method in which a plurality of electromagnet devices are provided above and below the back of a mold, and a method of controlling the upper, middle, and lower stages of the mold by braking has been used. In such a case, the required braking function cannot be obtained with the conventional electromagnet device.

【0009】本発明は、前述のような問題点を一挙に解
消すべくなされたもので、その目的は、電磁コイル部か
ら鋳型に組み込まれる鋳型固定部までの鉄芯の構成、形
状等を工夫することにより、限られた鋳型背面の空間を
有効利用し、強力な電磁石能力を持たせることができる
と共に、従来困難であった小型・高速鋳込用鋳型におい
て複数段で、かつ必要な制動力が得られる電磁石装置の
取付けが可能となる連続鋳造機の電磁ブレーキ装置を提
供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems at a glance, and has as its object to devise the configuration and shape of the iron core from the electromagnetic coil section to the mold fixing section incorporated in the mold. By doing so, it is possible to effectively utilize the limited space on the back of the mold and to have a strong electromagnet capability, and at the same time, in multiple stages and the necessary braking force in a small and high-speed casting mold, which was difficult in the past. It is an object of the present invention to provide an electromagnetic brake device of a continuous casting machine that can be mounted with an electromagnet device that can obtain the above.

【0010】[0010]

【課題を解決するための手段】本発明は、連続鋳造機の
鋳型背面に、鉄芯と電磁コイルを備えた電磁石装置を設
け、鋳型内の溶鋼流に制動を加える電磁ブレーキ装置に
おいて、鉄芯を磁路方向のそれぞれの部分で、方向、断
面形状、断面積のうちの少なくとも1つを互いに異なら
せてなる一体型変形鉄芯を備えていることを特徴とす
る。
SUMMARY OF THE INVENTION The present invention is directed to an electromagnetic brake device provided with an electromagnet device having an iron core and an electromagnetic coil on the back of a mold of a continuous casting machine to apply a brake to a molten steel flow in the mold. Are provided with an integral deformed iron core in which at least one of the direction, the cross-sectional shape, and the cross-sectional area is different from each other in each part in the magnetic path direction.

【0011】具体的には、次の通りである。図1(電磁
コイルを外側の基端鉄芯部に装着している)、図3(電
磁コイルを中間鉄芯部に装着している)は、鋳型背面に
電磁石装置を上段・中段・下段に配設した鋳型の例であ
り、鉄芯は、鋳型の銅板4の背面に固定され鋳型の強度
メンバーとして鋳型の一部となっている固定鉄芯12
(制動制御したい溶鋼流部に設置)と、鋳型フレーム
(冷却箱)7に取付けられる一体型変形鉄芯13から構
成されている。
[0011] Specifically, it is as follows. Fig. 1 (the electromagnetic coil is mounted on the outer base iron core) and Fig. 3 (the electromagnetic coil is mounted on the intermediate iron core). This is an example of the mold provided, and the iron core is fixed to the back surface of the copper plate 4 of the mold and is a fixed iron core 12 which is a part of the mold as a strength member of the mold.
(Set in the molten steel flow section where braking control is desired) and an integrated deformable iron core 13 attached to a mold frame (cooling box) 7.

【0012】(1) 一体型変形鉄芯の外観形状(各部分の
方向) 上段および下段に配設される一体型変形鉄芯13−1、
13−3は、冷却箱7内に挿入され固定鉄芯12に接続
される先端鉄芯部13Aと、この先端鉄芯部13Aに一
体的に連続する中間鉄芯部13Bと、この中間鉄芯部1
3Bに一体的に連続する基端鉄芯部13Cとから構成さ
れ、先端鉄芯部13Aに対して基端鉄芯部13Cを水平
方向外側および上下方向外側に平行に偏位させ、平面視
と側面視の両方共に直角に折曲した外観形状としてい
る。なお、中間鉄芯部13Bの水平方向の長さは、鋳型
の大きさと、溶鋼流の通過位置(制動制御したい位置、
すなわち固定鉄芯12の設置位置)によって決定され
る。
(1) Appearance Shape of Integrated Modified Iron Core (Direction of Each Part) The integrated deformed iron cores 13-1 provided in the upper and lower stages,
Reference numeral 13-3 denotes a tip iron core 13A inserted into the cooling box 7 and connected to the fixed iron core 12, an intermediate iron core 13B integrally continuous with the tip iron core 13A, and an intermediate iron core 13B. Part 1
3B, the base iron core 13C is formed integrally with the base iron core 13C, and the base iron core 13C is displaced horizontally and vertically outward with respect to the distal iron core 13A. Both sides have an external shape that is bent at a right angle. The length of the intermediate iron core 13B in the horizontal direction is determined by the size of the mold and the passing position of the molten steel flow (the position at which braking control is desired,
That is, it is determined by the position of the fixed iron core 12).

【0013】中段に配設される一体型変形鉄心13−2
は、真直ぐ後方に延在する直線状の外観形状としてい
る。これに限らず、水平方向に関しては、上段および下
段と同様に外側に折曲させたり、あるいは中央側へ折曲
させることも考えられる。なお、鋳型を設計する時の強
度メンバーの一部となる固定鉄芯12と先端鉄芯部13
Aとの連結は、1個の位置決めピンで位置決めすればよ
い。
An integrated deformed iron core 13-2 provided in the middle stage
Has a linear external shape that extends straight rearward. However, the present invention is not limited to this, and in the horizontal direction, as in the case of the upper stage and the lower stage, it may be possible to bend outward or to the center. It should be noted that the fixed iron core 12 and the tip iron core 13 which are a part of the strength member when designing the mold are used.
The connection with A may be determined by one positioning pin.

【0014】(2) 一体型変形鉄芯の断面形状・断面積 上段および下段に配設される一体型変形鉄芯13−1、
13−3においては、電磁コイル14が装着される基端
鉄芯部13C(図1の場合)の断面形状は、四角形でも
よいが、コイル部における機能を最大限に発揮し、か
つ、コイル巻き作業を簡単かつ最小面積にすべく、円ま
たは楕円形状とする。また、一方で中間鉄芯部13Bの
断面形状は、限られた鋳型背面の物理的許容空間を最大
限に有効活用すべく、例えば縦長の薄型四辺形とする
(これは1例であって、鋳型の大きさによって種々の断
面形状を採用することができる)。この時の中間鉄芯部
13Bの断面積は、コイル部である基端鉄芯部13Cの
断面積と同等とするか、または電磁コイル14によって
生じた磁束密度が飽和状態になる直前の小断面積とす
る。先端鉄芯部13Aは、磁束密度Bを高めるため断面
積を小さくした固定鉄芯12より、大きめの断面積とす
る。
(2) Cross-sectional shape and cross-sectional area of the integrated deformed iron core The integrated deformed iron core 13-1 provided in the upper and lower stages,
In 13-3, the cross-sectional shape of the base iron core 13 </ b> C (in the case of FIG. 1) on which the electromagnetic coil 14 is mounted may be square, but the function of the coil is maximized, and A circular or elliptical shape is used to simplify the work and minimize the area. On the other hand, the cross-sectional shape of the intermediate iron core portion 13B is, for example, a vertically long thin quadrilateral in order to make the most of the limited physical permissible space on the back of the mold (this is an example, Various cross-sectional shapes can be adopted depending on the size of the mold). At this time, the cross-sectional area of the intermediate iron core 13B is equal to the cross-sectional area of the base iron core 13C, which is a coil part, or the cross-sectional area immediately before the magnetic flux density generated by the electromagnetic coil 14 becomes saturated. Area. The tip iron core 13A has a larger cross-sectional area than the fixed iron core 12 whose cross-sectional area is reduced in order to increase the magnetic flux density B.

【0015】図3の場合には、中間鉄芯部13Bに電磁
コイル14が装着されるため、この中間鉄芯部13Bの
断面形状は、前述の電磁コイルの性能や鋳型の大きさに
よる許容空間などを考慮して、円、楕円形状、薄型四辺
形などの中から適宜選択すればよい。
In the case of FIG. 3, since the electromagnetic coil 14 is mounted on the intermediate iron core 13B, the sectional shape of the intermediate iron core 13B depends on the performance of the electromagnetic coil and the allowable space depending on the size of the mold. In consideration of the above, the shape may be appropriately selected from a circle, an ellipse, a thin quadrilateral, and the like.

【0016】中段に配設される一体型変形鉄芯13−2
は、図1に示すように、断面積を一定としてもよいし、
図2に示すように、コイル部である基端鉄芯部13Cの
断面積を先端鉄芯部13Aの断面積より小さくしてもよ
い。
An integrated deformed iron core 13-2 disposed in the middle stage
May have a constant cross-sectional area, as shown in FIG.
As shown in FIG. 2, the cross-sectional area of the base iron core 13C, which is the coil part, may be smaller than the cross-sectional area of the distal iron core 13A.

【0017】以上のような構成において、電磁コイル部
から鋳型固定鉄芯部までの1本の鉄芯を磁路方向のそれ
ぞれの部分で、方向、断面形状、断面積を互いに異なら
せることにより、限られた空間の中で電磁コイル14の
起磁力F(励磁電流Iまたは電磁コイル巻数N)を大き
くすることができ、さらに磁束密度Bを減ずることなく
効率良く溶鋼流面に伝えることができ、強力な電磁石装
置を得ることができる。具体的には、溶鋼流制動に必要
な強力電磁石能力を有する電磁石装置をコンパクトな構
成とすることができ、従来困難であった小型・高速鋳込
用鋳型において複数段の電磁ブレーキ装置の取付けが可
能となる。
In the above configuration, the direction, cross-sectional shape, and cross-sectional area of one iron core from the electromagnetic coil portion to the mold fixed iron core portion are different from each other at each portion in the magnetic path direction. The magnetomotive force F (the exciting current I or the number of turns N of the electromagnetic coil) of the electromagnetic coil 14 can be increased in the limited space, and the magnetic flux B can be efficiently transmitted to the molten steel flow surface without reducing the magnetic flux density B. A powerful electromagnetic device can be obtained. Specifically, it is possible to make an electromagnet device having the strong electromagnet capability required for molten steel flow braking into a compact configuration, and it is possible to mount multiple stages of electromagnetic brake devices in a small and high-speed casting mold that was difficult in the past. It becomes possible.

【0018】以上のように、本発明では、限られた容積
の空間の中で、鉄芯の外観形状、断面形状、あるいは断
面積の変更により、最大の磁石機能を発揮させることの
できる電磁石装置を得ることができるが、図5に示す電
磁ブレーキ装置において、このような鉄芯の長さ変化お
よび鉄芯の断面積変化が、磁束密度減衰に与える影響に
ついて、以下に説明する。
As described above, according to the present invention, an electromagnet device capable of exhibiting the maximum magnet function by changing the outer shape, cross-sectional shape, or cross-sectional area of an iron core in a space having a limited volume. In the electromagnetic brake device shown in FIG. 5, the effect of such a change in the length of the iron core and a change in the cross-sectional area of the iron core on the magnetic flux density attenuation will be described below.

【0019】(1) 鉄芯の長さが与える影響(1) Influence of iron core length

【0020】[0020]

【数1】 (Equation 1)

【0021】前記(4)式から、有効磁路長l1 が図3
の従来型の鉄芯より2〜3倍長くなったとしても、μS
≫l1 で、かつμS ≫μ0 であるため、溶鋼中の磁束密
度Bの変化は、殆ど無視できることがわかる。従って、
本発明のように、鉄芯の長さが少々長くなっても、磁束
密度Bの影響は実用上無視することができる。
From the above equation (4), the effective magnetic path length l 1 is
Even now two to three times longer than conventional iron core of, μ S
Since ≫l 1 and μ s ≫μ 0 , it can be seen that the change in the magnetic flux density B in the molten steel can be almost ignored. Therefore,
Even if the length of the iron core is slightly increased as in the present invention, the effect of the magnetic flux density B can be ignored in practical use.

【0022】(2) 鉄芯の断面積について 鉄芯中では、発生磁束Φは、断面積いっぱいに任意に広
がる。図4において、次に示す式が成り立つ。
(2) Cross-sectional area of iron core In the iron core, generated magnetic flux Φ arbitrarily spreads over the entire cross-sectional area. In FIG. 4, the following equation holds.

【0023】[0023]

【数2】 (Equation 2)

【0024】従って、鉄芯が磁気飽和をしない範囲でI
またはNを増やすことにより、溶鋼流に効率良く磁束を
作用させることができる。なお、磁束の飽和は、鉄芯の
材質と断面積の大きさによって決まるものであり、単に
上式のI・Nを増加すればよいというものではない(I
・Nには限界がある)。磁束密度Bと鉄芯断面積S1
の関係を図4に示す。経過を次に示す。
Therefore, the range of I is within the range where the iron core does not cause magnetic saturation.
Alternatively, the magnetic flux can be efficiently applied to the molten steel flow by increasing N. Note that the saturation of the magnetic flux is determined by the material of the iron core and the size of the cross-sectional area, and it is not necessary to simply increase I · N in the above equation (I
・ N has a limit). The relationship between the magnetic flux density B and Tetsushindan area S 1 shown in FIG. The progress is shown below.

【0025】[0025]

【数3】 (Equation 3)

【0026】従って、図4(b) に示すグラフとなる。鉄
芯材料および電磁石装置の構成により磁気飽和を起こさ
ない最小断面積が決まり、本発明の一体型変形鉄芯の各
部分の断面積はこの最小断面積より大きく設定すればよ
い。
Accordingly, a graph shown in FIG. The minimum cross-sectional area that does not cause magnetic saturation is determined by the configuration of the iron core material and the electromagnet device, and the cross-sectional area of each portion of the integrated deformed iron core of the present invention may be set to be larger than this minimum cross-sectional area.

【0027】[0027]

【発明の実施の形態】以下、本発明を図示する実施例に
基づいて詳細に説明する。これは、スラブの連続鋳造に
適用した例であり、図1は本発明の電磁ブレーキ装置を
鋳型の長辺側に組み込んだ鋳型の平面図および縦断面
図、図2はその部分詳細縦断面図および斜視図である。
図3は、本発明の電磁ブレーキ装置の変形例である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings. This is an example applied to continuous casting of a slab. FIG. 1 is a plan view and a longitudinal sectional view of a mold in which the electromagnetic brake device of the present invention is incorporated on the long side of the mold, and FIG. And a perspective view.
FIG. 3 is a modification of the electromagnetic brake device of the present invention.

【0028】図1において、図示しないタンディッシュ
内の溶鋼Aが浸漬ノズル2により水冷鋳型1内に鋳込ま
れ、水冷鋳型1の1次冷却により溶鋼表面に凝固シェル
が形成された鋳片を鋳片支持ロール3により案内支持し
ながらスプレー冷却等の2次冷却により凝固を促進し、
完全凝固した鋳片を引き抜くことにより、鋳片を連続的
に製造している。
In FIG. 1, molten steel A in a tundish (not shown) is cast into a water-cooled mold 1 by an immersion nozzle 2, and a cast piece having a solidified shell formed on the molten steel surface by primary cooling of the water-cooled mold 1 is cast. Solidification is promoted by secondary cooling such as spray cooling while being guided and supported by the one-sided support roll 3,
The slab is continuously manufactured by extracting the completely solidified slab.

【0029】水冷鋳型1は、一対の長辺銅板4間に一対
の短辺銅板5を移動可能に配置したスラブ幅可変の組立
鋳型であり、長辺銅板4の背面にはSUS製のバックア
ッププレート6が取付けられ、給水管8から冷却箱7に
導入されバックアッププレート6を通って排水管(図示
省略)から排出される冷却水により長辺銅板4が冷却保
持される。短辺銅板5の背面にも、SUS製のバックア
ッププレート9が取付けられており、このバックアップ
プレート9に冷却水の給水・排水管10および短辺銅板
5を移動させる幅調整装置11が接続されている。
The water-cooled mold 1 is an assembly mold having a variable slab width in which a pair of short-side copper plates 5 are movably arranged between a pair of long-side copper plates 4, and a SUS backup plate is provided on the back of the long-side copper plate 4. The long side copper plate 4 is cooled and held by cooling water introduced from the water supply pipe 8 into the cooling box 7 and discharged from the drain pipe (not shown) through the backup plate 6. A SUS backup plate 9 is also attached to the back surface of the short side copper plate 5, and a water supply / drain pipe 10 for cooling water and a width adjusting device 11 for moving the short side copper plate 5 are connected to the backup plate 9. I have.

【0030】この実施例では、鋳型の背面に上段・中段
・下段の3段の電磁石装置を設置して電磁ブレーキ装置
を構成しており、図3に示す従来型の電磁石装置では、
鋳型の大きさに対して電磁石装置が大きくなり、鋳型の
背面に取付けるのが不可能となる。そこで、本発明で
は、鉄芯にコイルを巻き付け、必要な磁束を得るべく、
電磁コイル14の大きさを決め、その発生磁束を飽和さ
せないように鉄芯断面積を保持しながら、鉄芯の各部分
の方向、断面形状、断面積を変化させて、一体型変形鉄
芯13の形状を決定する。
In this embodiment, an electromagnetic brake device is constructed by installing three stages of upper, middle and lower electromagnet devices on the back of the mold. In the conventional electromagnet device shown in FIG.
The size of the electromagnet device becomes large relative to the size of the mold, making it impossible to mount it on the back of the mold. Therefore, in the present invention, in order to obtain a required magnetic flux by winding a coil around the iron core,
The size, the cross-sectional shape, and the cross-sectional area of each part of the iron core are changed while determining the size of the electromagnetic coil 14 and maintaining the iron core cross-sectional area so as not to saturate the generated magnetic flux. Is determined.

【0031】即ち、図1、図2に示すように、水冷鋳型
1の背面全範囲を有効に利用できるように、上段および
下段に配設される一体型変形鉄芯13−1、13−3
は、冷却箱7内に挿入され固定鉄芯12に接続される先
端鉄芯部13Aと、この先端鉄芯部13Aに一体的に連
続する中間鉄芯部13Bと、この中間鉄芯部13Bに一
体的に連続する基端鉄芯部13Cとから構成し、先端鉄
芯部13Aに対して基端鉄芯部13Cを水平方向外側お
よび上下方向外側に平行に偏位させ、平面視と側面視の
両方共に折曲した外観形状とする。中間鉄芯部13B
は、図2(b) に示すように、断面積を一定に保ったまま
上下方向に段違いの形状となる。
That is, as shown in FIGS. 1 and 2, the integrated deformed iron cores 13-1 and 13-3 disposed on the upper and lower stages so that the entire rear surface of the water-cooled mold 1 can be effectively used.
Are connected to the fixed iron core 12 and inserted into the cooling box 7, an intermediate iron core 13 </ b> B integrated with the distal iron core 13 </ b> A, and an intermediate iron core 13 </ b> B. A base iron core 13C that is integrally continuous with the base iron core 13C. The base iron core 13C is displaced parallel to the outer side in the horizontal direction and the outer side in the vertical direction with respect to the distal iron core 13A. Both have a bent appearance shape. Intermediate iron core 13B
As shown in FIG. 2 (b), the cross section has a step shape in the vertical direction while keeping the cross-sectional area constant.

【0032】また、基端鉄芯部13Cの断面形状は円ま
たは楕円形状として、電磁コイル14における機能を最
大限に発揮し、またコイル巻き作業が簡単に、コイルが
最小面積となるようにしている。中間鉄芯部13Bは、
縦長の薄型四辺形とし、鋳型の背面空間を有効に利用で
きるようにしている。中間鉄芯部13Bの断面積は、基
端鉄芯部13Cの断面積と同等か、あるいは磁気飽和を
起こさない小断面積としている。先端鉄芯部13Aの断
面積は、鋳型固定鉄芯12の断面積と同等としている。
The sectional shape of the base iron core 13C is a circle or an ellipse so that the function of the electromagnetic coil 14 is maximized, the coil winding operation is simple, and the coil has a minimum area. I have. The intermediate iron core 13B is
It has a vertically long thin quadrilateral shape so that the space behind the mold can be used effectively. The cross-sectional area of the intermediate iron core 13B is equal to the cross-sectional area of the base iron core 13C or a small cross-sectional area that does not cause magnetic saturation. The cross-sectional area of the tip iron core 13A is equal to the cross-sectional area of the mold fixed iron core 12.

【0033】中段に配設される一体型変形鉄心13−2
は、真直ぐ後方に延在する直線状の外観形状とし、基端
鉄芯部13Cは円または楕円形状とし、先端鉄芯部13
Aに対して断面積を減少させている。なお、各段におい
て、左右の基端鉄芯部13Cの端面同士はヨーク15で
連結している。
An integrated deformed iron core 13-2 provided in the middle stage
Has a straight external shape extending straight rearward, the base iron core 13C has a circular or elliptical shape,
The cross-sectional area is reduced with respect to A. In each stage, the end faces of the left and right proximal iron core portions 13C are connected by a yoke 15.

【0034】必要に応じて、上段・中段・下段とも、各
々形状と大きさの異なった一体型変形鉄芯を使うことも
可能であるが、この実施例では、上段と下段は上下方向
が勝手違いの一体型変形鉄芯とした。また、中段は真後
に断面積のみが変化する一体型変形鉄芯とした。また、
図3に示す本発明の変形例は、図1と同様の一体型変形
鉄芯を使用し、上段および下段の一体型変形鉄芯13−
1、13−3では、電磁コイル14を中間鉄芯部13B
に装着している。中段の一体型変形鉄芯13−2では、
図1と同様に基端鉄芯部3Cに電磁コイル14を装着し
ている。
If necessary, the upper, middle and lower stages may each be formed of an integrated deformed iron core having a different shape and size. However, in this embodiment, the upper and lower stages are arranged vertically. The difference is an integrated iron core. Further, the middle stage was an integrated deformed iron core in which only the cross-sectional area changes immediately after. Also,
The modified example of the present invention shown in FIG. 3 uses an integrated deformed iron core similar to that of FIG.
1 and 13-3, the electromagnetic coil 14 is connected to the intermediate iron core 13B.
It is attached to. In the middle integrated deformed iron core 13-2,
An electromagnetic coil 14 is mounted on the base iron core 3C as in FIG.

【0035】このように、上段は、鋳型固定鉄芯12の
真後およびそれより上の上部範囲と鋳片厚方向・鋳片幅
方向範囲を有効に活用でき、中段は、鋳型固定鉄芯12
の真後および鋳型幅方向範囲を有効に活用することがで
きる。下段も、鋳型固定鉄芯12の真後およびそれより
下の下部範囲と鋳片厚方向・鋳片幅方向範囲を有効に活
用できる。これにより、電磁コイル14を限られた空間
内で大きくすることができ、鉄芯が磁気飽和しない範囲
で励磁電流Iまたは電磁コイル巻数Nを増やすことによ
り溶鋼流に効率良く磁束を作用させることができ、強力
な電磁石装置を得ることができる。
As described above, the upper part can effectively utilize the upper part immediately after and above the mold fixed iron core 12 and the range of the slab thickness direction and the slab width direction.
And the range in the mold width direction can be effectively utilized. The lower stage can also effectively utilize the lower range immediately after and below the mold fixed iron core 12 and the range in the slab thickness direction and slab width direction. Thus, the electromagnetic coil 14 can be enlarged in a limited space, and the magnetic flux can be efficiently applied to the molten steel flow by increasing the exciting current I or the number of turns N of the electromagnetic coil within a range where the iron core is not magnetically saturated. And a strong electromagnet device can be obtained.

【0036】以上により、従来困難であった限られた鋳
型背面空間中に強力な電磁石装置を上段・中段・下段に
取付けることが可能となる。この3段制動制御により、
介在物の完全浮上を達成し、溶鋼流(上昇流・短辺
鋳型への衝突流・下降流)の任意な速度制御が可能とな
り、鋳型内上面での溶鋼湯面変動レベルを低下させる
ことにより、スラグベア巻込み原因のブレークアウトを
減少させることができる。
As described above, a powerful electromagnet device can be mounted in the upper, middle, and lower stages in the limited space behind the mold, which has been difficult in the past. With this three-stage braking control,
By achieving complete levitation of inclusions, it is possible to control the velocity of the molten steel flow (upflow, collision flow to the short side mold, downflow) at any speed, and by lowering the level of molten steel surface fluctuation on the upper surface inside the mold Therefore, it is possible to reduce breakout caused by slag bear entrainment.

【0037】なお、以上は3段電磁ブレーキ装置につい
て説明したが、これに限らず、2段、4段などの複数段
の電磁ブレーキ装置、さらに1段の電磁ブレーキ装置に
も本発明の一体型変形鉄芯を適用できることはいうまで
もない。
Although the three-stage electromagnetic brake device has been described above, the present invention is not limited to the three-stage electromagnetic brake device, but may be applied to a two-stage or four-stage electromagnetic brake device, and further to a one-stage electromagnetic brake device. It goes without saying that a deformed iron core can be applied.

【0038】[0038]

【発明の効果】前述の通り、本発明は、連続鋳造機の鋳
型背面に、鉄芯と電磁コイルを備えた電磁石装置を設
け、鋳型内の溶鋼流に制動を加える電磁ブレーキ装置に
おいて、鉄芯を磁路方向のそれぞれの部分で、方向、断
面形状、断面積のうちの少なくとも1つを互いに異なら
せてなる一体型変形鉄芯を設けるようにしたため、次の
ような効果を奏する。
As described above, according to the present invention, there is provided an electromagnetic brake device in which an electromagnet device having an iron core and an electromagnetic coil is provided on the back of a mold of a continuous casting machine to apply a brake to molten steel flow in the mold. Is provided in each part in the direction of the magnetic path, at least one of the direction, the cross-sectional shape, and the cross-sectional area is different from each other, so that the following effects are obtained.

【0039】(1) 電磁コイル部から鋳型に組み込まれる
鋳型固定部までの鉄芯の構成、形状等を工夫することに
より、限られた鋳型背面の空間を有効利用し、強力な電
磁石能力を持つ電磁ブレーキ装置を得ることができ、高
速鋳込連鋳機においても、溶鋼流に対して十分な制動力
を与えることができる。これにより、高速鋳込みにおい
ても、溶鋼中介在物の完全浮上を達成し、溶鋼流の凝固
シェル再溶解によるブレークアウトの減少を図ることが
できる。
(1) By devising the configuration, shape, and the like of the iron core from the electromagnetic coil section to the mold fixing section incorporated in the mold, the limited space on the back of the mold can be used effectively, and a strong electromagnet capability can be obtained. An electromagnetic brake device can be obtained, and a sufficient braking force can be applied to the molten steel flow even in a high-speed continuous casting machine. As a result, even during high-speed casting, complete levitation of inclusions in the molten steel can be achieved, and breakout due to re-melting of the solidified shell of the molten steel flow can be reduced.

【0040】(2) 電磁石装置をコンパクトで強力な装置
とすることができるため、従来困難であった小型・高速
鋳込用鋳型において複数段の電磁石装置の取付けが可能
となる。複数段電磁ブレーキ装置が可能となることによ
り、溶鋼中介在物の完全浮上を達成し、溶鋼流の任意の
速度制御が可能となり、スラグベア巻込み原因のブレー
クアウトの減少を図ることができる。
(2) Since the electromagnet device can be made compact and powerful, a plurality of stages of electromagnet devices can be mounted on a small and high-speed casting mold, which has been difficult in the past. By enabling a multi-stage electromagnetic brake device, complete levitation of inclusions in molten steel can be achieved, arbitrary speed control of molten steel flow can be performed, and breakout due to slag bear entrainment can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電磁ブレーキ装置を組み込んだ鋳型を
示す(a) は平面図、(b) は縦断面図である。
1A and 1B are a plan view and a longitudinal sectional view, respectively, showing a mold incorporating an electromagnetic brake device of the present invention.

【図2】図1の詳細であり、(a) は電磁石装置の縦断面
図、(b) は上段・下段の一体型変形鉄芯の斜視図であ
る。
FIGS. 2A and 2B are details of FIG. 1, wherein FIG. 2A is a longitudinal sectional view of the electromagnet device, and FIG. 2B is a perspective view of an upper and lower integrated deformed iron core.

【図3】本発明の電磁ブレーキ装置の変形例と、従来型
の電磁ブレーキ装置であり、(a) は平面図、(b) は縦断
面図である。
3A and 3B are a modified example of the electromagnetic brake device of the present invention and a conventional electromagnetic brake device, wherein FIG. 3A is a plan view and FIG. 3B is a longitudinal sectional view.

【図4】(a) は従来型の電磁ブレーキ装置における磁路
を示す平面図、(b) は磁束密度と鉄芯断面積の関係を示
すグラフである。
FIG. 4A is a plan view showing a magnetic path in a conventional electromagnetic brake device, and FIG. 4B is a graph showing a relationship between a magnetic flux density and an iron core cross-sectional area.

【図5】本発明の電磁ブレーキ装置における磁路を示す
平面図である。
FIG. 5 is a plan view showing a magnetic path in the electromagnetic brake device of the present invention.

【符号の説明】[Explanation of symbols]

1…水冷鋳型 2…浸漬ノズル 3…鋳片支持ロール 4…長辺銅板 5…短辺銅板 6…バックアッププレート 7…冷却箱 8…給水管 9…バックアッププレート 10…給・排水管 11…幅調整装置 12…フレーム付固定鉄芯 13…一体型変形鉄芯 13A…先端鉄芯部 13B…中間鉄芯部 13C…基端鉄芯部 14…電磁コイル 15…ヨーク 16…給電ケーブル DESCRIPTION OF SYMBOLS 1 ... Water-cooled mold 2 ... Immersion nozzle 3 ... Slab support roll 4 ... Long side copper plate 5 ... Short side copper plate 6 ... Backup plate 7 ... Cooling box 8 ... Water supply pipe 9 ... Backup plate 10 ... Supply / drain pipe 11 ... Width adjustment Device 12: Fixed iron core with frame 13: Integrated deformed iron core 13A: Tip iron core 13B: Intermediate iron core 13C: Base iron core 14: Electromagnetic coil 15: Yoke 16: Power supply cable

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 連続鋳造機の鋳型背面に、鉄芯と電磁コ
イルを備えた電磁石装置を設け、鋳型内の溶鋼流に制動
を加える電磁ブレーキ装置において、 鉄芯を磁路方向のそれぞれの部分で、方向、断面形状、
断面積のうちの少なくとも1つを互いに異ならせてなる
一体型変形鉄芯を備えていることを特徴とする連続鋳造
機の電磁ブレーキ装置。
1. An electromagnetic brake device provided with an iron core and an electromagnetic coil on the back of a mold of a continuous casting machine to apply a brake to molten steel flow in the mold. In the direction, cross-sectional shape,
An electromagnetic brake device for a continuous casting machine, comprising an integrated deformed iron core having at least one of different cross-sectional areas different from each other.
JP23817097A 1997-09-03 1997-09-03 Electromagnetic braking device in continuous caster Pending JPH1177258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23817097A JPH1177258A (en) 1997-09-03 1997-09-03 Electromagnetic braking device in continuous caster

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23817097A JPH1177258A (en) 1997-09-03 1997-09-03 Electromagnetic braking device in continuous caster

Publications (1)

Publication Number Publication Date
JPH1177258A true JPH1177258A (en) 1999-03-23

Family

ID=17026227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23817097A Pending JPH1177258A (en) 1997-09-03 1997-09-03 Electromagnetic braking device in continuous caster

Country Status (1)

Country Link
JP (1) JPH1177258A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246457A (en) * 2004-03-08 2005-09-15 Nippon Steel Corp Mold for continuous casting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246457A (en) * 2004-03-08 2005-09-15 Nippon Steel Corp Mold for continuous casting
JP4546748B2 (en) * 2004-03-08 2010-09-15 新日本製鐵株式会社 Continuous casting mold

Similar Documents

Publication Publication Date Title
JP3763582B2 (en) Equipment for casting in molds
US5664619A (en) Device in continuous casting in a mould
AU778670C (en) Method for vertical continuous casting of metals using electromagnetic fields and casting installation therefor
KR101086664B1 (en) Electromagnetic braking device for molten steel that flows into a continuous casting mould
JPH1177258A (en) Electromagnetic braking device in continuous caster
JP3131762B2 (en) Electromagnetic brake device for continuous casting mold
JPH03258442A (en) Electromagnetic braking device for continuous casting mold
JP3304884B2 (en) Molten metal braking device and continuous casting method
JP3417861B2 (en) Control method of molten steel flow in mold in continuous casting
JP7180383B2 (en) continuous casting machine
JP3253012B2 (en) Electromagnetic brake device for continuous casting mold and continuous casting method using the same
JP3873026B2 (en) Electromagnetic brake
US7156154B2 (en) Device for continuous or semi-continuous casting of metal material
JP7119684B2 (en) continuous casting machine
JP2577159B2 (en) Electromagnetic brake device for continuous casting mold
JPS6057933B2 (en) Mold in continuous casting equipment
JPH0957401A (en) Electromagnetic brake device for continuous casting mold
JPH04104251U (en) Electromagnetic brake device for continuous casting equipment
JP2000197951A (en) Apparatus for continuously casting steel using static magnetic field
JP3700356B2 (en) Method and apparatus for continuously casting molten metal
JP2594778Y2 (en) Electromagnetic brake device for continuous casting mold
JP3659329B2 (en) Molten steel flow control device
JPH04147754A (en) Device for controlling molten steel stream in continuous casting equipment
JP2944473B2 (en) Electromagnetic brake device for continuous casting mold
JPH08229647A (en) Method for continuously casting steel

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010327