JPH1169679A - Permanent magnet type motor - Google Patents

Permanent magnet type motor

Info

Publication number
JPH1169679A
JPH1169679A JP9228199A JP22819997A JPH1169679A JP H1169679 A JPH1169679 A JP H1169679A JP 9228199 A JP9228199 A JP 9228199A JP 22819997 A JP22819997 A JP 22819997A JP H1169679 A JPH1169679 A JP H1169679A
Authority
JP
Japan
Prior art keywords
permanent magnet
poles
angle
skew
harmonic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9228199A
Other languages
Japanese (ja)
Inventor
Mitsuyuki Yokoyama
光之 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9228199A priority Critical patent/JPH1169679A/en
Publication of JPH1169679A publication Critical patent/JPH1169679A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/06Magnetic cores, or permanent magnets characterised by their skew

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce torque unevenness by forming a structure in which number of poles of a rotor and the number of the salient poles of a stator are specified, while forming a skew graded within the range of a specific electrical angle to the axis of rotation on a boundary between the unlike poles of a permanent magnet. SOLUTION: The number of poles of a rotor 7 is desirably 4 and the number of the salient poles of a stator 1 is desirably 6, and permanent magnets 9 are formed in magnetizing structure, in which skews graded at a specified electrical angle to the axis of rotation are formed on boundary lines among N poles and S poles. In torque unevenness under the energization of an armature, a skew angle, where the square root of the square sum of the quinary high- harmonic component and septimal high-harmonic component of a air-gap magnetic flux density is reduced, regarding these high-harmonic components may be selected. The skew angle (the electric angle) of 60-80 deg is set desirably as the result of calculation. Accordingly, torque unevenness under the energization of an armature coil can be lowered optimally.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電機子コイル通電
下でのトルクむらを低減するのに好適なスキューをもつ
永久磁石形モータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent magnet type motor having a skew suitable for reducing torque unevenness when an armature coil is energized.

【0002】[0002]

【従来の技術】周知のように、永久磁石形モータ、中で
も突極構造を有するものにおいては、突極を有する電機
子鉄心と界磁部である永久磁石との間の相対的な幾何学
的位置関係によってリラクタンスが変化し、磁極各部に
作用する力が回転軸に対して対称とならないため、いわ
ゆるコギングトルクが発生し、それがトルクむらや振動
の原因となる。
2. Description of the Related Art As is well known, in a permanent magnet type motor, particularly a motor having a salient pole structure, a relative geometrical relationship between an armature core having salient poles and a permanent magnet as a field portion. The reluctance changes depending on the positional relationship, and the force acting on each part of the magnetic pole is not symmetric with respect to the rotation axis, so that a so-called cogging torque is generated, which causes torque unevenness and vibration.

【0003】こうしたコギングトルクを低減する一つの
方法として、従来より、回転子永久磁石の異極間の境界
にスキューを設け、突極と永久磁石との間の幾何学的位
置関係を軸方向に対し平均化することが行われている。
例えば、特開平1−8853号公報に示されるように、
固定子界磁鉄心の突極数を回転子永久磁石の磁極数の
1.5倍としたブラシレスモータにおいて、固定子界磁
鉄心の突極を形成するスロット間隔の1/2に相当する
角度のスキューを回転子永久磁石に設ける。これは、コ
ギングトルクの実測波形に、固定子界磁鉄心の突極数の
2倍にあたるピークが現れることに着目したものであ
る。
As one method of reducing such cogging torque, a skew has been conventionally provided at the boundary between different poles of the rotor permanent magnet, and the geometrical positional relationship between the salient poles and the permanent magnet has been changed in the axial direction. On the other hand, averaging is performed.
For example, as shown in JP-A-1-8853,
In a brushless motor in which the number of salient poles of the stator field iron core is 1.5 times the number of poles of the rotor permanent magnet, an angle corresponding to 1/2 of a slot interval forming salient poles of the stator field iron core is used. Skew is provided on the rotor permanent magnet. This focuses on the fact that a peak corresponding to twice the number of salient poles of the stator field iron core appears in the measured waveform of the cogging torque.

【0004】さらに、特開平2−74136号公報に
は、回転子の磁極数が4、固定子の突極数が6の永久磁
石形モータにおいて、回転子の永久磁石に中心軸方向か
ら機械角45[deg]のスキューを設ける手段が示さ
れている。これは、回転力が作用する磁束分布状態と固
定力が作用する磁束分布状態をバランスさせることに着
目したものである。
Japanese Patent Application Laid-Open No. 2-74136 discloses a permanent magnet type motor having a rotor having four magnetic poles and a stator having six salient poles. The means for providing a skew of 45 [deg] is shown. This focuses on balancing the magnetic flux distribution state in which the rotational force acts and the magnetic flux distribution state in which the fixing force acts.

【0005】[0005]

【発明が解決しようとする課題】ところで、永久磁石形
モータを駆動する場合に発生するトルクむらには、上述
のコギングトルクの他に、電機子コイル通電下でのトル
クむらがある。この電機子コイル通電下でのトルクむら
は、3相Y結線を施した電機子巻線(電機子コイル)に
3相正弦波電流を流した駆動状態において、界磁部であ
る永久磁石がつくる空隙磁束密度が周方向に対して正弦
波分布とならず、その結果、空隙磁束密度が高調波成
分、特には第5次及び第7次の高調波成分を有するため
に生ずるものである。つまり、永久磁石形モータにおい
ては、固定子に巻回された電機子巻線に多相交流電流を
流すことにより発生する回転磁界と、回転子に配設され
た永久磁石の界磁との相互作用としての吸引力または反
発力によりトルクが発生するので、永久磁石がつくる空
隙磁束密度に高調波成分が存在すると、その高調波成分
に対応したトルクむらが発生する。この場合、空隙磁束
密度の第3n次高調波成分(nは1以上の整数)に対応
したトルクについては、3相電機子電流による回転磁界
との相互作用において打ち消されるため発生しない。
By the way, torque unevenness generated when a permanent magnet type motor is driven includes torque unevenness when an armature coil is energized, in addition to the cogging torque described above. In the drive state in which a three-phase sine wave current is applied to the armature winding (armature coil) with the three-phase Y connection, the permanent magnet which is the field part is formed. The air gap magnetic flux density does not form a sine wave distribution in the circumferential direction, and as a result, the air gap magnetic flux density has a higher harmonic component, particularly, the fifth and seventh harmonic components. In other words, in a permanent magnet type motor, the mutual relationship between the rotating magnetic field generated by passing a multi-phase alternating current through the armature winding wound on the stator and the field of the permanent magnet disposed on the rotor is generated. Since a torque is generated by an attractive force or a repulsive force as an action, if a harmonic component is present in the air gap magnetic flux density created by the permanent magnet, torque unevenness corresponding to the harmonic component is generated. In this case, a torque corresponding to the third n-th harmonic component (n is an integer of 1 or more) of the air gap magnetic flux density is not generated because the interaction with the rotating magnetic field due to the three-phase armature current cancels out.

【0006】こうした電機子コイル通電下でのトルクむ
らに対して、永久磁石がつくる空隙磁束密度を正弦波に
近づける手段として、従来から、永久磁石の半径方向の
厚みを周方向に対し順次変化させるなどの方法が用いら
れてきた。しかし、永久磁石を厚み方向に精度よく加工
するのは生産性の面で問題がある。また、コギングトル
クを減少させる目的から、永久磁石に上述したようなス
キューを設けると、コギングトルクのみならず電機子コ
イル通電下でのトルクむらもある程度低減させることが
できるが、従来用いられてきたスキューにおいては、こ
の電機子コイル通電下でのトルクむらは設計上考慮され
ていなかった。
As a means for making the air gap magnetic flux density created by the permanent magnet closer to a sine wave in response to such torque unevenness when the armature coil is energized, conventionally, the thickness of the permanent magnet in the radial direction is sequentially changed in the circumferential direction. Such methods have been used. However, processing the permanent magnet with high accuracy in the thickness direction has a problem in terms of productivity. In addition, if the above-described skew is provided to the permanent magnet for the purpose of reducing the cogging torque, not only the cogging torque but also the torque unevenness when the armature coil is energized can be reduced to some extent. In the skew, the torque unevenness when the armature coil is energized has not been considered in the design.

【0007】本発明は、上記の事情に鑑みてなされたも
ので、その目的は、電機子コイル通電下でのトルクむら
を低減するための最適なスキューをもつ永久磁石形モー
タを提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a permanent magnet motor having an optimum skew for reducing torque unevenness when an armature coil is energized. is there.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の永久磁石形モータは、周方向に配設した複
数個の突極に集中巻により3相電機子巻線を巻回してな
る固定子と、永久磁石を周方向に交互に異極が隣接する
ように配設した回転子から構成されるラジアル形モータ
であって、nを1以上の整数としたとき、前記回転子の
磁極数が2n、前記固定子の突極数が3nである構造を
なすと共に、前記永久磁石の異極間の境界に回転軸線に
対して電気角60[deg]ないし80[deg]の範
囲内で傾斜させたスキューを設けたことを特徴とする。
In order to achieve the above object, a permanent magnet type motor according to the present invention comprises a plurality of salient poles arranged in a circumferential direction, wherein a three-phase armature winding is wound by concentrated winding. Radial motor comprising a stator having permanent magnets and permanent magnets arranged such that different poles are alternately adjacent to each other in the circumferential direction, wherein n is an integer of 1 or more. The number of magnetic poles is 2n, the number of salient poles of the stator is 3n, and an electric angle of 60 [deg] to 80 [deg] with respect to a rotation axis at a boundary between different poles of the permanent magnet. A skew inclined in the inside is provided.

【0009】かかる構成の発明によれば、永久磁石のつ
くる空隙磁束密度の高調波成分のうち、第5次及び第7
次の高調波成分の2乗和の平方根を極小化することがで
き,発生トルクの減少分も小さいので、電機子コイル通
電下でのトルクむらを効率良く最適に低減することがで
きる。
According to the present invention, the fifth and seventh harmonic components among the harmonic components of the air gap magnetic flux density created by the permanent magnet are provided.
Since the square root of the sum of squares of the next harmonic component can be minimized and the decrease in the generated torque is small, torque unevenness when the armature coil is energized can be efficiently and optimally reduced.

【0010】[0010]

【発明の実施の形態】以下、本発明の第1実施例を図1
ないし図7に基づいて説明する。図2は永久磁石形モー
タの軸直角断面図を示している。永久磁石形モータの内
周側に位置し、図示しない静止部位に取り付けられた固
定子1は、等幅の6つの突極3を等間隔に備えた電機子
鉄心2と、突極3に集中巻で巻回され3相Y結線をなす
電機子巻線(電機子コイル)4とを有して構成されてい
る。そして、図示しない静止部位には軸受5を介して回
転軸6が挿通支承されており、この回転軸6には電機子
鉄心2を包囲する形態で回転子7が連結されている。
FIG. 1 shows a first embodiment of the present invention.
7 will be described with reference to FIG. FIG. 2 shows a cross section perpendicular to the axis of the permanent magnet type motor. The stator 1, which is located on the inner peripheral side of the permanent magnet type motor and is attached to a stationary part (not shown), has an armature core 2 provided with six equal-width salient poles 3 at equal intervals, and concentrated on the salient poles 3. And an armature winding (armature coil) 4 which is wound by winding and forms a three-phase Y connection. A rotating shaft 6 is inserted into and supported by a stationary portion (not shown) via a bearing 5, and a rotor 7 is connected to the rotating shaft 6 so as to surround the armature core 2.

【0011】この回転子7は、円筒状の回転子ヨーク8
と、その回転子ヨーク8の内周面に取着されている永久
磁石9とにより構成されている。この永久磁石9は、周
方向に交互に異極が隣接するように2つのN極と2つの
S極(磁極数4)とが等幅に着磁されており全体として
円環形状をなすと共に、その内周面と前記突極3との間
に空隙(ギャップ)10を有している。この場合、回転
子7の磁極数が4、固定子1の突極数が6であるので、
その比が2:3となる構造となっている。さらに、永久
磁石9の周方向への展開を示す図1を参照すると、永久
磁石9はN極とS極との間の境界線が回転軸線(その軸
線方向を軸方向と称する)に対して電気角70[de
g]の角度aを示すように傾斜させたスキューを設けた
着磁構造をなしている。
The rotor 7 has a cylindrical rotor yoke 8
And a permanent magnet 9 attached to the inner peripheral surface of the rotor yoke 8. The permanent magnet 9 has two N-poles and two S-poles (the number of magnetic poles: 4) magnetized at equal widths so that different poles are alternately arranged in the circumferential direction. And a gap 10 between the inner peripheral surface thereof and the salient pole 3. In this case, since the number of magnetic poles of the rotor 7 is 4 and the number of salient poles of the stator 1 is 6,
The ratio is 2: 3. Further, referring to FIG. 1, which shows the circumferential development of the permanent magnet 9, the boundary between the N pole and the S pole of the permanent magnet 9 is defined with respect to the rotation axis (the axis direction is referred to as the axial direction). Electric angle 70 [de
g], and has a magnetized structure provided with a skew inclined to indicate the angle a.

【0012】さて、上記構成の永久磁石形モータは、例
えば図3に示すインバータ回路等により駆動される。図
3において、直流電源11の正端子と負端子に接続され
た正側直流電源線12と負側直流電源線13との間に
は、例えばトランジスタ等のスイッチング素子14〜1
9を三相ブリッジ接続してなるスイッチング手段38が
接続されている。これらスイッチング素子14〜19に
は、夫々還流ダイオード20〜25が並列に接続されて
おり、さらに、夫々のベースにはベース駆動回路26〜
31がベース抵抗32〜37を介して接続されている。
これらベース駆動回路26〜31は、図示しない位置検
出手段、速度制御手段、通電制御手段等から構成される
駆動制御回路と接続されている。また、前記スイッチン
グ手段38の出力線39u、39v、39wには、永久
磁石形モータ40の3相Y結線された電機子巻線41
u、41v、41wが接続されている。これら41u、
41v、41wは、図2に示す前記電機子巻線4を構成
する。
The permanent magnet type motor having the above configuration is driven by, for example, an inverter circuit shown in FIG. In FIG. 3, switching elements 14 to 1 such as transistors, for example, are provided between a positive DC power supply line 12 and a negative DC power supply line 13 connected to a positive terminal and a negative terminal of a DC power supply 11.
9 is connected in a three-phase bridge connection. Reflux diodes 20 to 25 are connected in parallel to these switching elements 14 to 19, respectively.
31 is connected via base resistors 32-37.
These base drive circuits 26 to 31 are connected to a drive control circuit including a position detection unit (not shown), a speed control unit, a conduction control unit, and the like. The output lines 39u, 39v, 39w of the switching means 38 are connected to the three-phase Y-connected armature windings 41 of the permanent magnet type motor 40.
u, 41v, and 41w are connected. These 41u,
41v and 41w constitute the armature winding 4 shown in FIG.

【0013】なお、本発明の目的は、永久磁石形モータ
の電機子コイル通電下でのトルクむらの低減に最適なス
キュー角を設定することにあるので、トルクむらの他の
発生要素、例えば電機子電流自体が歪んでいるような場
合を除いて考慮する必要がある。そこで、以下において
は上記インバータ回路を用いて3相Y結線された電機子
巻線に3相正弦波電流を流して駆動した場合について説
明する。
It is an object of the present invention to set an optimum skew angle for reducing torque unevenness when a permanent magnet type motor is energized with an armature coil. It is necessary to take this into consideration except for the case where the daughter current itself is distorted. Therefore, hereinafter, a case will be described in which a three-phase sine-wave current is supplied to a three-phase Y-connected armature winding using the inverter circuit to drive the armature winding.

【0014】以下に、上記スキュー角を電気角70[d
eg]に設定した論拠について図4から図7を参照して
詳述する。まず、nを1以上の整数としたとき、図2に
示すように回転子の磁極数が2n、固定子の突極数が3
nである2:3構造を有し、永久磁石に希土類を用いた
永久磁石モータについて、スキュー角0[deg]のモ
ータモデルを設定する。そして、このモータモデルに対
し有限要素法を用いた磁界解析を行い空隙磁束密度を求
める。さらに、この空隙磁束密度に対して周波数分析を
行い、空隙磁束密度の各次高調波成分を算出すると下表
に示す結果が得られる。表に示す通り偶数次の高調波成
分は存在せず、また、第31次以上の高調波成分につい
てはその記載を省略した。
In the following, the skew angle is set to an electrical angle of 70 [d
[eg] will be described in detail with reference to FIGS. First, when n is an integer of 1 or more, the number of magnetic poles of the rotor is 2n and the number of salient poles of the stator is 3 as shown in FIG.
A motor model having a skew angle of 0 [deg] is set for a permanent magnet motor having a 2: 3 structure in which n is used and a rare-earth permanent magnet. Then, a magnetic field analysis is performed on the motor model using the finite element method to determine an air gap magnetic flux density. Further, when a frequency analysis is performed on the air gap magnetic flux density to calculate each harmonic component of the air gap magnetic flux density, the results shown in the following table are obtained. As shown in the table, there is no even-order harmonic component, and the description of the 31st or higher harmonic component is omitted.

【0015】[0015]

【表1】 [Table 1]

【0016】次に、上表1に示すスキュー角0[de
g]について得られた高調波成分を基に、スキューを設
けた場合の空隙磁束密度の各次高調波成分を計算する。
この計算に際しては、各軸方向位置における空隙磁束密
度の各次高調波成分の位相は、スキューによる磁極の周
方向の変位に相当する角度だけ順次ずれるものとし、製
造誤差や着磁誤差等については考慮していない。
Next, the skew angle 0 [de] shown in Table 1 above
g], the respective harmonic components of the air gap magnetic flux density when a skew is provided are calculated based on the harmonic components obtained.
In this calculation, it is assumed that the phase of each higher harmonic component of the air gap magnetic flux density at each axial position is sequentially shifted by an angle corresponding to the circumferential displacement of the magnetic pole due to skew. Not considered.

【0017】今、スキュー角0[deg]における空隙
磁束密度の第m次高調波成分をS0(m)とすれば、軸
方向位置z、角度位置θでのスキュー角0[deg]に
おける空隙磁束密度b(0,z,θ)は、式1に示す通
りである。
Assuming that the m-th harmonic component of the air gap magnetic flux density at a skew angle of 0 [deg] is S0 (m), the air gap magnetic flux at a skew angle of 0 [deg] at an axial position z and an angular position θ. The density b (0, z, θ) is as shown in Equation 1.

【0018】[0018]

【式1】 (Equation 1)

【0019】これに対し、スキュー角(機械角)a[d
eg]を設けた場合には、軸方向位置zでのスキューに
よる変位角度(電気角)をx[rad]とすれば、軸方
向位置z、角度位置θでの空隙磁束密度b(a,z,
θ)は式2に示すようになる。なお、スキューによる変
位角度(電気角)とは、スキューにより磁極が周方向に
変位した寸法を電気角で表したものである。
On the other hand, the skew angle (mechanical angle) a [d
When the displacement angle (electrical angle) due to skew at the axial position z is x [rad], the air gap magnetic flux density b (a, z) at the axial position z and the angular position θ is provided. ,
θ) is as shown in Expression 2. Note that the displacement angle (electric angle) due to skew is the dimension in which the magnetic pole is displaced in the circumferential direction due to skew, expressed as an electric angle.

【0020】[0020]

【式2】 (Equation 2)

【0021】この場合において、軸方向位置zでのスキ
ューによる変位角度(電気角)x[rad]とスキュー
角(機械角)a[deg]との間の関係を、図4と図5
を参照しながら説明する。図4には永久磁石の斜視図
が、図5にはその永久磁石の周方向への1極対分の展開
図が示してある。2つのN極と2つのS極を有した円環
形状の永久磁石は、その内周半径がr、有効軸方向寸法
がLで、異極間にはスキュー角(機械角)a[deg]
を設けた構造をなしている。図5に示す1極対の周方向
角度は電気角で2π[rad]で、その長さ寸法は磁極
数をPとして2πr・(2/P)で表される。従って、
軸方向位置zでのスキューによる変位角度(電気角)x
[rad]とその長さ寸法Xとの間には、X=x・(2
r/P)なる関係が成り立つ。この関係をスキュー角に
対する式であるtan(a)=X/zに適用すれば、次
の式3が得られる。
In this case, the relationship between the displacement angle (electrical angle) x [rad] due to skew at the axial position z and the skew angle (mechanical angle) a [deg] is shown in FIGS.
This will be described with reference to FIG. FIG. 4 is a perspective view of the permanent magnet, and FIG. 5 is a development view of one pole pair in the circumferential direction of the permanent magnet. An annular permanent magnet having two north poles and two south poles has an inner radius r, an effective axial dimension L, and a skew angle (mechanical angle) a [deg] between different poles.
Is provided. The circumferential angle of one pole pair shown in FIG. 5 is 2π [rad] in electrical angle, and its length is represented by 2πr · (2 / P) where P is the number of magnetic poles. Therefore,
Skew displacement angle (electric angle) x at axial position z
[Rad] and its length dimension X, X = x · (2
r / P) holds. If this relationship is applied to tan (a) = X / z, which is an expression for the skew angle, the following expression 3 is obtained.

【0022】[0022]

【式3】 (Equation 3)

【0023】スキューを設けたことにより軸方向に対し
平均化される空隙磁束密度の第m次高調波成分平均値B
m(ψ,θ)は、式2を軸方向位置zについて積分平均
すればよく、永久磁石の有効軸方向寸法位置Lにおける
スキューによる全体の変位角度(電気角)をψ[ra
d]とすれば、式2にx=ψ・(z/L)の関係を適用
して式4に示すように導出できる。
The average value B of the m-th harmonic component of the air gap magnetic flux density averaged in the axial direction by providing the skew
m (ψ, θ) may be obtained by integrating and averaging Equation 2 with respect to the axial position z, and calculating the total displacement angle (electric angle) due to skew at the effective axial dimension position L of the permanent magnet as ψ [ra
d], the relationship can be derived as shown in Expression 4 by applying the relationship of x = ψ · (z / L) to Expression 2.

【0024】[0024]

【式4】 (Equation 4)

【0025】さて、図6は、以上のようにして導出され
た空隙磁束密度の第m次高調波成分(平均値)Bm
(ψ,θ)とスキュー角との関係を示すものである。こ
の図6において、その縦軸は空隙磁束密度の高調波成分
を表し、その横軸はスキュー角(電気角)[deg]を
表す。図6には、からで指示する5本の線が描かれ
ており、これらはから順に空隙磁束密度の基本波成
分、第3次高調波成分、第5次高調波成分、第7次高調
波成分、および第5次高調波成分と第7次高調波成分の
2乗和の平方根を表している。この内からまでは左
側縦軸の磁束密度値を適用し、については右側縦軸の
磁束密度値を適用する。
FIG. 6 shows the m-th harmonic component (average value) Bm of the air gap magnetic flux density derived as described above.
The relationship between (の, θ) and the skew angle is shown. In FIG. 6, the vertical axis represents the harmonic component of the air gap magnetic flux density, and the horizontal axis represents the skew angle (electric angle) [deg]. FIG. 6 shows five lines indicated by, which are, in order, the fundamental component, the third harmonic component, the fifth harmonic component, and the seventh harmonic component of the air gap magnetic flux density. And the square root of the sum of squares of the fifth harmonic component and the seventh harmonic component. The magnetic flux density value on the left vertical axis is applied from here on, and the magnetic flux density value on the right vertical axis is applied.

【0026】電機子コイル通電下でのトルクむらは、前
述したように空隙磁束密度の第3n次高調波成分は影響
せず、また第11次以上の高調波成分は十分に小さいも
のとすれば、結局、空隙磁束密度の第5次高調波成分と
第7次高調波成分についてこれらの2乗和の平方根が小
さくなるスキュー角を選べば良い。図6において上記第
5次高調波成分と第7次高調波成分の2乗和の平方根が
最小となるのは、スキュー角(電気角)が約145〜1
50[deg]のときである。しかしながら、スキュー
角を大きくするとトルクを発生させる基本波成分も減少
し、上記145〜150[deg]のスキュー角では発
生トルクが30%近くも減少するので適当でない。そこ
で、第5次高調波成分と第7次高調波成分の2乗和の平
方根が極小となる60[deg]〜80[deg]、特
には70[deg]のスキュー角(電気角)を設定す
る。この70[deg]のスキュー角(電気角)におけ
る空隙磁束密度の高調波成分を下表に、また参考までに
磁束密度分布を図7に示す。このときにはスキュー角0
[deg]の場合に比べ、発生トルクは約94%を出力
でき、かつ、第5次高調波成分と第7次高調波成分の2
乗和の平方根は約1/10に減少するので、電機子コイ
ル通電下でのトルクむらを最適に低減することができ
る。
As described above, if the torque unevenness when the armature coil is energized is not affected by the third n-th harmonic component of the air gap magnetic flux density and the eleventh or higher harmonic component is sufficiently small, After all, the skew angle at which the square root of the sum of the squares of the fifth harmonic component and the seventh harmonic component of the air gap magnetic flux density becomes small may be selected. In FIG. 6, the square root of the sum of squares of the fifth harmonic component and the seventh harmonic component is the minimum when the skew angle (electrical angle) is about 145 to 1
This is at the time of 50 [deg]. However, if the skew angle is increased, the fundamental wave component that generates torque also decreases, and the generated torque decreases by nearly 30% at the skew angle of 145 to 150 [deg], which is not appropriate. Therefore, a skew angle (electric angle) of 60 [deg] to 80 [deg], particularly 70 [deg], at which the square root of the sum of squares of the fifth harmonic component and the seventh harmonic component is minimized, is set. I do. The harmonic components of the air gap magnetic flux density at the skew angle (electric angle) of 70 [deg] are shown in the table below, and the magnetic flux density distribution is shown in FIG. 7 for reference. In this case, the skew angle is 0
Compared to the case of [deg], the generated torque can output about 94%, and the second harmonic of the fifth harmonic component and the seventh harmonic component can be output.
Since the square root of the sum of squares is reduced to about 1/10, it is possible to optimally reduce torque unevenness when the armature coil is energized.

【0027】[0027]

【表2】 [Table 2]

【0028】次に、本発明の第2実施例を図8ないし図
10を参照して説明する。図8は回転子永久磁石9の周
方向への展開図で、磁性粉体により成形した加工容易な
永久磁石9は、N極とS極との間の境界に夫々回転軸線
に対して電気角60[deg]および80[deg]の
角度で傾斜させた2つのスキューを設け、これら2つの
スキューの間に挟まれた領域を無着磁領域Dとした着磁
構造をなしている。
Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 8 is a development view of the rotor permanent magnet 9 in the circumferential direction. The easily processed permanent magnet 9 formed of magnetic powder has electrical angles with respect to the rotation axis at the boundary between the N pole and the S pole. Two skews inclined at an angle of 60 [deg] and 80 [deg] are provided, and a region sandwiched between these two skews is a non-magnetized region D to form a magnetized structure.

【0029】図9は、スキュー角をパラメータとして、
空隙磁束密度の第5次高調波成分と第7次高調波成分の
2乗和の平方根の周方向分布を示したもので、その縦軸
は磁束密度を、横軸は周方向位置(電気角)を表してい
る。からで指示された線は、夫々、細実線が70
[deg]の単一のスキュー、一点鎖線が65[de
g]と75[deg]のスキュー、太実線が60[d
eg]と80[deg]のスキュー、破線が55[d
eg]と85[deg]のスキューを設けた場合の磁束
密度である。そして、夫々の線に対する指示位置は、磁
束密度が最大値を呈する点を表している。これら最大値
は、からの順に0.010291[T]、0.00
9441[T]、0.008325[T]、および0.
01067[T]であり、60[deg]と80[de
g]のスキューを設けたときが最も小さくなることが分
かる。この場合における空隙磁束密度の高調波成分を下
表に、また参考までに磁束密度分布を図10に示す。こ
のときには、70[deg]の単一のスキューを用いた
第1実施例に比べ発生トルクを減少させることなく、第
5次高調波成分と第7次高調波成分の2乗和の平方根が
さらに約20%減少するので、電機子コイル通電下での
トルクむらも同様に約20%低減することができる。
FIG. 9 shows a skew angle as a parameter.
This graph shows the circumferential distribution of the square root of the sum of squares of the fifth harmonic component and the seventh harmonic component of the air gap magnetic flux density. The vertical axis represents the magnetic flux density, and the horizontal axis represents the circumferential position (electrical angle). ). The lines indicated by are thin solid lines, respectively.
[Deg] single skew, dash-dot line is 65 [de]
g] and skew of 75 [deg], and the thick solid line is 60 [d].
eg] and skew of 80 [deg], and the broken line is 55 [d].
[deg] and 85 [deg] skew. The designated position with respect to each line represents a point where the magnetic flux density has the maximum value. These maximum values are in the order from 0.010291 [T], 0.00
9441 [T], 0.008325 [T], and 0.
01067 [T], 60 [deg] and 80 [de]
g] when the skew is provided. The harmonic component of the air gap magnetic flux density in this case is shown in the table below, and the magnetic flux density distribution is shown in FIG. 10 for reference. At this time, the square root of the sum of squares of the fifth harmonic component and the seventh harmonic component is further reduced without reducing the generated torque as compared with the first embodiment using a single skew of 70 [deg]. Since it is reduced by about 20%, the torque unevenness when the armature coil is energized can also be reduced by about 20%.

【0030】[0030]

【表3】 [Table 3]

【0031】以上述べたように、本実施例においては、
空隙磁束密度の高調波成分に起因して電機子コイル通電
下でのトルクむらをスキューを設けて最適に低減するた
め、スキューを設けない現状のモータモデル(磁極数
4、突極数6)の空隙磁束密度について磁界解析及び周
波数分析を行い、それから得られた空隙磁束密度に基づ
いて、スキューを設けた場合の空隙磁束密度を理論式に
より算出した。その結果、電機子コイル通電下でのトル
クむらの主要因である空隙磁束密度の第5次高調波成分
と第7次高調波成分の2乗和の平方根が極小となり、し
かも発生トルクの減少が小さいスキュー角(電気角)と
して60[deg]から80[deg]、特には70
[deg]が最適であることが明らかになった。そし
て、60[deg]および80[deg]の角度(電気
角)で傾斜させた2つのスキューを設け、これら2つの
スキューの間に挟まれた領域を無着磁領域とする着磁構
造とすれば、さらに約20%の電機子コイル通電下での
トルクむらの低減を図ることができる。
As described above, in this embodiment,
The current motor model (4 magnetic poles, 6 salient poles) without skew is used to optimally reduce the uneven torque due to the harmonic components of the air gap magnetic flux density while energizing the armature coil by providing skew. Magnetic field analysis and frequency analysis were performed on the air gap magnetic flux density, and based on the obtained air gap magnetic flux density, the air gap magnetic flux density when a skew was provided was calculated by a theoretical formula. As a result, the square root of the sum of squares of the fifth harmonic component and the seventh harmonic component of the air gap magnetic flux density, which is a main factor of torque unevenness when the armature coil is energized, is minimized, and the generated torque is reduced. A small skew angle (electrical angle) of 60 [deg] to 80 [deg], particularly 70 [deg]
[Deg] was found to be optimal. Then, two skews inclined at angles of 60 [deg] and 80 [deg] (electrical angle) are provided, and a region sandwiched between these two skews is defined as a non-magnetized region. If this is the case, it is possible to further reduce torque unevenness when the armature coil is energized by about 20%.

【0032】なお、本発明は上記し且つ図面に示す実施
例に限定されるものではなく、以下のような拡張または
変更が可能である。一般にコギングトルクを低減するた
め、空隙磁束密度の第3次高調波成分が0になる120
[deg]のスキュー角(電気角)(図6の参照)を
設けたり、その他の高調波成分まで含めて0に近くなる
90[deg]のスキュー角(電気角)を設けたりす
る。このような従来からのコギングトルク低減を目的と
したスキューの設定においても、本実施例において導出
した図6に従って、60[deg]ないし90[de
g]、又は120[deg]ないし180[deg]の
スキュー角(電気角)とすることにより、電機子コイル
通電下でのトルクむらも大幅に低減することができる。
The present invention is not limited to the embodiment described above and shown in the drawings, but can be extended or modified as follows. Generally, in order to reduce the cogging torque, the third harmonic component of the air gap magnetic flux density becomes zero.
A skew angle (electric angle) of [deg] (see FIG. 6) or a skew angle (electric angle) of 90 [deg] that is close to 0 including other harmonic components is provided. In such a conventional skew setting for the purpose of reducing the cogging torque, according to FIG. 6 derived in the present embodiment, 60 [deg] to 90 [de] are set.
g], or a skew angle (electrical angle) of 120 [deg] to 180 [deg], it is possible to greatly reduce torque unevenness when the armature coil is energized.

【0033】[0033]

【発明の効果】請求項1の発明では、磁極数と突極数の
比が2:3である永久磁石形モータにおいて、空隙磁束
密度の第5次高調波成分と第7次高調波成分の2乗和の
平方根が極小に近く、しかも発生トルクの減少分も小さ
いので、効率良く電機子コイル通電下でのトルクむらを
低減することができる。なお、この場合において、電機
子コイル通電下でのトルクむらだけでなく、コギングト
ルクも低減することができる。
According to the first aspect of the present invention, in a permanent magnet type motor having a ratio of the number of magnetic poles to the number of salient poles of 2: 3, the fifth and seventh harmonic components of the air gap magnetic flux density are reduced. Since the square root of the sum of squares is very small and the generated torque is reduced by a small amount, it is possible to efficiently reduce torque unevenness when the armature coil is energized. In this case, not only the torque unevenness when the armature coil is energized but also the cogging torque can be reduced.

【0034】請求項2の発明では、空隙磁束密度の第5
次高調波成分と第7次高調波成分の2乗和の平方根が極
小となり、スキューを設けないときに比べ電機子コイル
通電下でのトルクむらを約1/10に低減できる。ま
た、スキューに伴う発生トルクの減少分も6%程度に抑
えることができる。
According to the second aspect of the present invention, the air gap magnetic flux density of the fifth
The square root of the sum of squares of the seventh harmonic component and the seventh harmonic component is minimized, and the torque unevenness when the armature coil is energized can be reduced to about 1/10 as compared with the case where no skew is provided. Further, the decrease in the generated torque due to the skew can be suppressed to about 6%.

【0035】請求項3及び4の発明では、異なる角度を
有する2つのスキューを設けているので、1つのスキュ
ーを設けた場合に比べ、さらに約20%の電機子コイル
通電下でのトルクむらを低減できる。なお、この場合に
おいても、電機子コイル通電下でのトルクむらだけでな
く、コギングトルクも低減することができる。
According to the third and fourth aspects of the present invention, since two skews having different angles are provided, the torque unevenness when energizing the armature coil is further reduced by about 20% as compared with the case where one skew is provided. Can be reduced. In this case as well, not only the torque unevenness when the armature coil is energized but also the cogging torque can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を示す永久磁石の展開図FIG. 1 is a development view of a permanent magnet showing a first embodiment of the present invention.

【図2】永久磁石形モータの軸直角断面図FIG. 2 is a cross-sectional view perpendicular to the axis of a permanent magnet type motor.

【図3】永久磁石形モータ駆動回路の構成図FIG. 3 is a configuration diagram of a permanent magnet type motor drive circuit.

【図4】モータモデルの永久磁石の斜視図FIG. 4 is a perspective view of a permanent magnet of a motor model.

【図5】図4の永久磁石の展開図FIG. 5 is a development view of the permanent magnet of FIG. 4;

【図6】スキュー角と高調波成分との関係を示す図FIG. 6 is a diagram illustrating a relationship between a skew angle and a harmonic component.

【図7】スキュー角70[deg]における空隙磁束密
度分布図
FIG. 7 is a distribution diagram of air gap magnetic flux density at a skew angle of 70 [deg].

【図8】本発明の第2実施例を示す図1相当図FIG. 8 is a view corresponding to FIG. 1 showing a second embodiment of the present invention.

【図9】空隙磁束密度の第5次高調波成分と第7次高調
波成分の2乗和の平方根の周方向分布図
FIG. 9 is a circumferential distribution diagram of the square root of the sum of squares of the fifth harmonic component and the seventh harmonic component of the air gap magnetic flux density.

【図10】スキュー角60[deg]と80[deg]
における空隙磁束密度分布図
FIG. 10 shows skew angles of 60 [deg] and 80 [deg].
Of magnetic flux density distribution in air

【符号の説明】[Explanation of symbols]

図中、1は固定子、3は突極、4は電機子巻線(電機子
コイル)、7は回転子、9は永久磁石、11は直流電
源、14〜19はスイッチング素子、38はスイッチン
グ手段、40は永久磁石形モータである。
In the figure, 1 is a stator, 3 is a salient pole, 4 is an armature winding (armature coil), 7 is a rotor, 9 is a permanent magnet, 11 is a DC power supply, 14 to 19 are switching elements, and 38 is switching. The means 40 is a permanent magnet type motor.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 周方向に配設した複数個の突極に集中巻
により3相電機子巻線を巻回してなる固定子と、永久磁
石を周方向に交互に異極が隣接するよう配設した回転子
とから構成されるラジアル形モータであって、nを1以
上の整数としたとき、前記回転子の磁極数が2n、前記
固定子の突極数が3nである構造をなすと共に、前記永
久磁石の異極間の境界に回転軸線に対して電気角60
[deg]ないし80[deg]の範囲内で傾斜させた
スキューを設けたことを特徴とする永久磁石形モータ。
1. A stator in which three-phase armature windings are wound by concentrated winding around a plurality of salient poles arranged in the circumferential direction, and permanent magnets are alternately arranged in the circumferential direction so that different poles are adjacent to each other. A radial motor comprising: a rotor provided with a rotor having a magnetic pole number of 2n and a stator having a salient pole number of 3n, where n is an integer of 1 or more. An electrical angle of 60 with respect to the axis of rotation at the boundary between the different poles of the permanent magnet.
A permanent magnet type motor provided with a skew inclined in a range of [deg] to 80 [deg].
【請求項2】 スキューの傾斜角が電気角70[de
g]である請求項1記載の永久磁石形モータ。
2. An inclination angle of a skew is an electrical angle of 70 [de].
g].
【請求項3】 周方向に配設した複数個の突極に集中巻
により3相電機子巻線を巻回してなる固定子と、永久磁
石を周方向に交互に異極が隣接するよう配設した回転子
とから構成されるラジアル形モータであって、nを1以
上の整数としたとき、前記回転子の磁極数が2n、前記
固定子の突極数が3nである構造をなすと共に、前記永
久磁石の異極間の境界に夫々回転軸線に対して電気角6
0[deg]ないし80[deg]の範囲内で傾斜させ
た2つのスキューを設け、これら2つのスキューの間に
挟まれた領域を無着磁領域としたことを特徴とする永久
磁石形モータ。
3. A stator in which a three-phase armature winding is wound around a plurality of salient poles arranged in the circumferential direction by concentrated winding, and permanent magnets are arranged so that different poles are alternately adjacent to each other in the circumferential direction. A radial motor comprising: a rotor provided with a rotor having a magnetic pole number of 2n and a stator having a salient pole number of 3n, where n is an integer of 1 or more. The electrical angle of 6 at the boundary between the different poles of the permanent magnet with respect to the axis of rotation.
A permanent magnet type motor characterized in that two skews inclined in a range of 0 [deg] to 80 [deg] are provided, and a region sandwiched between these two skews is a non-magnetized region.
【請求項4】 2つのスキューの傾斜角が夫々電気角6
0[deg]と電気角80[deg]である請求項3記
載の永久磁石形モータ。
4. The inclination angle of each of the two skews is 6 electrical degrees.
The permanent magnet type motor according to claim 3, wherein the angle is 0 [deg] and the electric angle is 80 [deg].
JP9228199A 1997-08-25 1997-08-25 Permanent magnet type motor Pending JPH1169679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9228199A JPH1169679A (en) 1997-08-25 1997-08-25 Permanent magnet type motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9228199A JPH1169679A (en) 1997-08-25 1997-08-25 Permanent magnet type motor

Publications (1)

Publication Number Publication Date
JPH1169679A true JPH1169679A (en) 1999-03-09

Family

ID=16872760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9228199A Pending JPH1169679A (en) 1997-08-25 1997-08-25 Permanent magnet type motor

Country Status (1)

Country Link
JP (1) JPH1169679A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2809547A1 (en) * 2000-05-25 2001-11-30 Mitsubishi Electric Corp PERMANENT MAGNET MOTOR
EP1487085A1 (en) * 2003-06-13 2004-12-15 DUCATI ENERGIA S.p.A. Permanent magnet generator
US6853105B2 (en) 2000-05-25 2005-02-08 Mitsubishi Denki Kabushiki Kaisha Permanent magnet motor
JP2006527578A (en) * 2003-06-10 2006-11-30 シーメンス アクチエンゲゼルシヤフト Permanent magnet excitation synchronous motor
WO2008031726A1 (en) * 2006-09-11 2008-03-20 Continental Automotive Gmbh Permanent-magnet synchronous machine
JP2008199894A (en) * 2008-05-22 2008-08-28 Mitsubishi Electric Corp Permanent-magnet rotating machine and electric power-steering apparatus
JP2008295207A (en) * 2007-05-24 2008-12-04 Jtekt Corp Ring magnet, motor, and electric power steering device
FR2943860A1 (en) * 2009-03-25 2010-10-01 Mitsubishi Electric Corp PERMANENT MAGNET ROTATING ELECTRIC MACHINE
JP2011062078A (en) * 2010-12-24 2011-03-24 Mitsubishi Electric Corp Permanent magnet rotary electric machine

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6462452B2 (en) 2000-05-25 2002-10-08 Mitsubishi Denki Kabushiki Kaisha Permanent magnet motor
US6853105B2 (en) 2000-05-25 2005-02-08 Mitsubishi Denki Kabushiki Kaisha Permanent magnet motor
US6876116B2 (en) 2000-05-25 2005-04-05 Mitsubishi Denki Kabushiki Kaisha Permanent magnet motor
FR2809547A1 (en) * 2000-05-25 2001-11-30 Mitsubishi Electric Corp PERMANENT MAGNET MOTOR
US7535149B2 (en) 2003-06-10 2009-05-19 Siemens Aktiengesellschaft Permanent-magnet excited synchronous motor
JP2006527578A (en) * 2003-06-10 2006-11-30 シーメンス アクチエンゲゼルシヤフト Permanent magnet excitation synchronous motor
EP1487085A1 (en) * 2003-06-13 2004-12-15 DUCATI ENERGIA S.p.A. Permanent magnet generator
US6943476B2 (en) 2003-06-13 2005-09-13 Ducati Energia S.P.A. Magneto generator for self-powered apparatuses
WO2008031726A1 (en) * 2006-09-11 2008-03-20 Continental Automotive Gmbh Permanent-magnet synchronous machine
JP2008295207A (en) * 2007-05-24 2008-12-04 Jtekt Corp Ring magnet, motor, and electric power steering device
JP2008199894A (en) * 2008-05-22 2008-08-28 Mitsubishi Electric Corp Permanent-magnet rotating machine and electric power-steering apparatus
JP4718580B2 (en) * 2008-05-22 2011-07-06 三菱電機株式会社 Permanent magnet type rotating electric machine and electric power steering device
FR2943860A1 (en) * 2009-03-25 2010-10-01 Mitsubishi Electric Corp PERMANENT MAGNET ROTATING ELECTRIC MACHINE
DE102009038268A1 (en) 2009-03-25 2010-10-07 Mitsubishi Electric Corp. Three-phase motor of permanent magnet type
US8680731B2 (en) 2009-03-25 2014-03-25 Mitsubishi Electric Corporation Permanent-magnetic type rotary electric machine
DE102009038268B4 (en) 2009-03-25 2019-01-17 Mitsubishi Electric Corp. Three-phase motor of permanent magnet type
JP2011062078A (en) * 2010-12-24 2011-03-24 Mitsubishi Electric Corp Permanent magnet rotary electric machine

Similar Documents

Publication Publication Date Title
JP4723118B2 (en) Rotating electric machine and pulley drive device using the rotating electric machine
US4280072A (en) Rotating electric machine
Bianchi et al. Design techniques for reducing the cogging torque in surface-mounted PM motors
JP4722309B2 (en) Rotating electric machine and pulley drive device using the rotating electric machine
JP3601757B2 (en) Permanent magnet motor
US4745312A (en) Stepping motor
JP2000134891A (en) Synchronous motor and controller therefor
JPH10127024A (en) Motor structure
JP2001339921A (en) Permanent-magnet motor
US20030122439A1 (en) Doubly salient machine with angled permanent magnets in stator teeth
JP3364562B2 (en) Motor structure
JPH1169679A (en) Permanent magnet type motor
JPH11136893A (en) Permanent magnet motor
JPH0638475A (en) Permanent magnet rotary electric machine, controlling method therefor, controller and electric motor vehicle using the same
JP2006109611A (en) Composite three-phase hybrid dynamo-electric machine
JP3410520B2 (en) Three-phase claw-pole permanent magnet type rotary electric machine with annular coil system
JP5619522B2 (en) 3-phase AC rotating machine
JP4823425B2 (en) DC motor
JPH1094202A (en) Permanent magnet motor and rotor magnetizing device
JP2003111360A (en) Permanent magnet for motor, magnetization method thereof, and motor
JP2002112479A (en) Permanent magnet motor and its control
JPH11332193A (en) Two-phase dc brushless motor
JP3372047B2 (en) Brushless motor
JP2606214B2 (en) Permanent magnet rotating machine
JPH0810970B2 (en) Multi-phase permanent magnet type synchronous machine