JPH1164796A - Projection type display device - Google Patents

Projection type display device

Info

Publication number
JPH1164796A
JPH1164796A JP9244584A JP24458497A JPH1164796A JP H1164796 A JPH1164796 A JP H1164796A JP 9244584 A JP9244584 A JP 9244584A JP 24458497 A JP24458497 A JP 24458497A JP H1164796 A JPH1164796 A JP H1164796A
Authority
JP
Japan
Prior art keywords
light
optical system
color
projection
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9244584A
Other languages
Japanese (ja)
Other versions
JP3042460B2 (en
Inventor
Hirofumi Imaoka
裕文 今岡
Satoru Moriya
哲 守屋
Tetsuji Suzuki
鉄二 鈴木
Fujiko Koyama
扶二子 小山
Riyuusaku Takahashi
竜作 高橋
Yasuo Ishizaka
安雄 石坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP9244584A priority Critical patent/JP3042460B2/en
Priority to DE69819091T priority patent/DE69819091T2/en
Priority to EP98115641A priority patent/EP0899600B1/en
Priority to US09/139,622 priority patent/US6174060B1/en
Publication of JPH1164796A publication Critical patent/JPH1164796A/en
Application granted granted Critical
Publication of JP3042460B2 publication Critical patent/JP3042460B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To miniaturize the whole of a projection type display device obtained by hierarchically constituting a modulation, color synthesizing and projection optical system, a polarized light selection optical system and a color resolving and light guiding optical system by resolving color by two independent dichroic mirrors and constituting the light guiding optical system to be compact. SOLUTION: The color resolving and light guiding optical system is constituted of two dichroic mirrors 6 and 8, reflection mirrors 7G, 10 and 10' and correction lenses 9 and 9'. Then, a square area 31 for demarcating an area occupied by the respective optical elements in terms of a plane surface is made to fall in a square area for demarcating an area occupied by the modulation, color synthesizing and projection optical system in terms of the plane surface. The optical path length of red light (r) bypassed under a projection lens 16 becomes longer than those of blue light (b) and green light (g). However, since a sufficient space is secured in a bypassed optical path, the lenses 9 and 9' are made to intervene in the bypass optical path so as to make the optical path length of three primary colors substantially equal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は投写型表示装置に係
り、反射型空間光変調部を用いた3板式カラープロジェ
クタ等に適用され、その色分解・導光光学系に起因して
投写映像が劣化することを防止するための改善、及び装
置の小型化を図るための光学要素の配置構成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection type display device, and is applied to a three-plate color projector or the like using a reflection type spatial light modulator. The present invention relates to an improvement for preventing deterioration and an arrangement of optical elements for miniaturizing the apparatus.

【0002】[0002]

【従来の技術】3板式カラープロジェクタでは、メタル
ハライドランプ等の強力な光源から得られる白色光を3
原色に分解し、その色分解された各光を各対応色に係る
映像信号で駆動される液晶パネル等の空間光変調部へ導
いて変調し、各変調光を合成して投写する方式を採用し
ている。そして、その装置の色分解・導光光学系では、
高輝度な投写映像を得ると共に、色シェーディングの発
生を抑制するために、光源から各対応色の空間光変調部
までの光路長が等しくなるように設計することが一般的
である。
2. Description of the Related Art In a three-plate type color projector, white light obtained from a powerful light source such as a metal halide lamp is converted into three light beams.
Adopts a method of decomposing into primary colors, guiding each color-separated light to a spatial light modulator such as a liquid crystal panel driven by a video signal related to each corresponding color, modulating, combining each modulated light and projecting. doing. And in the color separation / light guide optical system of the device,
In general, in order to obtain a high-brightness projection image and to suppress the occurrence of color shading, it is common to design the light path length from the light source to the spatial light modulator of each corresponding color to be equal.

【0003】例えば、反射型の空間光変調部を用いた投
写型表示装置であって、色分解手段として2枚のダイク
ロイックミラーの反射面をX字状に交叉させた交叉型ダ
イクロイックミラーを用い、色分解・導光光学系を3原
色に関して対称性を持たせて光源から各空間光変調部ま
での光路長を等しく構成した装置(特願平9-10065号)
や、透過型の空間光変調部を用いた投写型表示装置であ
って、色分解手段として2枚の独立したダイクロイック
ミラーを用いて3原色の光路を非対称に構成するが、光
路長の長くなった色の光路中に光量損失を補正するため
の補正レンズを介装して光源から各空間光変調部までの
光路長を実質的に等しくした装置(国際公開番号:WO94/2
2042)が提案されている。
For example, in a projection display device using a reflection type spatial light modulator, a cross type dichroic mirror in which the reflection surfaces of two dichroic mirrors cross each other in an X-shape is used as color separation means. A device in which the color separation / light guiding optical system is symmetrical with respect to the three primary colors so that the optical path length from the light source to each spatial light modulator is equal (Japanese Patent Application No. 9-10065).
Also, in a projection display device using a transmissive spatial light modulator, two independent dichroic mirrors are used as color separation means, and the optical paths of the three primary colors are configured asymmetrically, but the optical path length increases. A device in which a correction lens for correcting the light quantity loss is provided in the optical path of the color of light, and the optical path length from the light source to each spatial light modulator is made substantially equal (International Publication Number: WO94 / 2
2042) has been proposed.

【0004】そして、前記の国際出願に係る装置の色分
解・導光光学系を反射型の空間光変調部を用いた装置に
応用した事例として、図7から図10に示されるような
投写型表示装置が考えられる。その装置の光学的構造
は、図7に示すように、下階層の色分解・導光光学系
と、中間階層の偏光選択光学系と、上階層の変調・色合
成・投射光学系とに大別でき、図8から図10はそれら
の各光学系を下側から見た平面図を表している。
As an example of applying the color separation / light guide optical system of the apparatus according to the international application to an apparatus using a reflection type spatial light modulator, a projection type optical system as shown in FIGS. A display device is conceivable. As shown in FIG. 7, the optical structure of the device is roughly divided into a lower layer color separation / light guide optical system, an intermediate layer polarization selection optical system, and an upper layer modulation / color synthesis / projection optical system. 8 to 10 show plan views of those optical systems as viewed from below.

【0005】各図において、1は光源、2はコリメータレ
ンズ、3は第1のインテグレータ、4は第2のインテグレ
ータ、5はコールドミラー、17は白色光をシアン光(緑光
と青光の混合色光:gb)と赤光rに分離するダイクロイ
ックミラー、18はシアン光を緑光gと青光bに分離する
ダイクロイックミラー、19B,19B',19R,20G,20B,20Rは反
射ミラー、9,9'は光量損失を補正する補正レンズ、11G,
11B,11Rは集光レンズ、12G,12B,12Rは第1の偏光ビーム
スプリッタ、13G,13B,13Rは第2の偏光ビームスプリッ
タ、14G,14B,14Rは液晶を用いた反射型の空間光変調
部、15は色合成用の交叉型ダイクロイックプリズム、16
は投射レンズである。なお、図8から図10において
は、反射ミラー20G,20B,20R、集光レンズと第1の偏光
ビームスプリッタのユニット11G・12G,11B・12B,11R・12
R、及び第2の偏光ビームスプリッタと空間光変調部の
ユニット13G・14G,13B・14B,13R・14Rについて、それぞれ
二点鎖線で示す矢印方向から見た側面図を参考図として
添えてあり、各階層内での光学的機能も併せて示してあ
る。
In each of the figures, 1 is a light source, 2 is a collimator lens, 3 is a first integrator, 4 is a second integrator, 5 is a cold mirror, 17 is white light, which is cyan light (mixed color light of green light and blue light). : gb) and a dichroic mirror that separates red light r, 18 is a dichroic mirror that separates cyan light into green light g and blue light b, 19B, 19B ', 19R, 20G, 20B and 20R are reflection mirrors and 9, 9' Is a correction lens for correcting light loss, 11G,
11B and 11R are condenser lenses, 12G, 12B and 12R are first polarizing beam splitters, 13G, 13B and 13R are second polarizing beam splitters, and 14G, 14B and 14R are reflection type spatial light modulation using liquid crystal. Section, 15 is a crossed dichroic prism for color synthesis, 16
Is a projection lens. 8 to 10, the reflecting mirrors 20G, 20B, 20R, the condensing lens and the first polarizing beam splitter units 11G, 12G, 11B, 12B, 11R, 12
R, and the second polarization beam splitter and the unit 13G / 14G, 13B / 14B, 13R / 14R of the spatial light modulator are attached as side views as viewed from the direction of the arrow indicated by the two-dot chain line, respectively. The optical functions within each level are also shown.

【0006】先ず、色分解・導光光学系において、楕円
反射鏡である光源1から発した白色光wはその反射鏡の
第2焦点に一旦集光した後、コリメータレンズ2で平行
光に変換されて次段の第1のインテグレータ3を照射す
る。ここに、第1のインテグレータ3及び第2のインテ
グレータ4はそれぞれ微小レンズ(レンズセグメント)が
縦横に配列されたものであり、第1のインテグレータ3
の各レンズセグメントを透過した光線は第2のインテグ
レータ4の対応するレンズセグメント上に集光し、第2
のインテグレータ4で光源像のもつ輝度分布が平均化さ
れて、結果的に各空間光変調部14G,14B,14Rに対する均
一な照度分布の読出し光が得られるようになっている。
また、第2のインテグレータ4を透過した白色光wはコ
ールドミラー5で反射され、その際に白色光w中に含ま
れている不要な赤外光が除去される。
First, in a color separation / light guide optical system, white light w emitted from a light source 1 which is an elliptical reflecting mirror is once focused on a second focal point of the reflecting mirror, and then converted into a parallel light by a collimator lens 2. Then, the first integrator 3 at the next stage is irradiated. Here, the first integrator 3 and the second integrator 4 are each formed by arranging minute lenses (lens segments) vertically and horizontally.
The light beam transmitted through each lens segment of the second integrator 4 is focused on the corresponding lens segment of the second integrator 4,
The luminance distribution of the light source image is averaged by the integrator 4, and as a result, readout light having a uniform illuminance distribution for each of the spatial light modulators 14G, 14B, and 14R can be obtained.
Further, the white light w transmitted through the second integrator 4 is reflected by the cold mirror 5, and at that time, unnecessary infrared light contained in the white light w is removed.

【0007】次に、コールドミラー5で反射されて水平
面内で90°方向変換された白色光wはダイクロイック
ミラー17に入射するが、ダイクロイックミラー17はその
波長選択性反射膜によって水平面内で90°方向変換さ
れた反射光のシアン光gbと透過光の赤光rに分離され
る。また、ダイクロイックミラー17で反射されたシアン
光gbは次のダイクロイックミラー18へ入射し、水平面
内で90°方向変換された反射光の緑光gと透過光の青
光bに分離される。従って、以上の導光光路で白色光w
は2枚のダイクロイックミラー17,18によって3原色光
に分離されている。
Next, the white light w reflected by the cold mirror 5 and changed in direction by 90 ° in the horizontal plane enters the dichroic mirror 17, and the dichroic mirror 17 is turned by 90 ° in the horizontal plane by its wavelength-selective reflection film. The reflected light is separated into the reflected cyan light gb and the transmitted red light r. The cyan light gb reflected by the dichroic mirror 17 is incident on the next dichroic mirror 18, and is separated into reflected green light g and transmitted light blue light b, which have been converted in the horizontal plane by 90 °. Therefore, the white light w
Is separated into three primary color lights by two dichroic mirrors 17 and 18.

【0008】そして、ダイクロイックミラー18で反射さ
れた緑光gは反射ミラー20Gに直接入射してその光路を
垂直に90°方向変換され、ダイクロイックミラー17を
透過した赤光rは反射ミラー19Rによって水平面内で9
0°方向変換された後に反射ミラー20Rで垂直方向へ9
0°方向変換され、それぞれ反射ミラー20G,20Rの直上
に配置されている集光レンズ11G,11Rへ入射する。一
方、ダイクロイックミラー18を透過した青光bは2枚の
補正レンズ9,9'による集光補正と2枚の反射ミラー19B,
19B'による水平面内での90°方向変換を受けて光路を
側方へ迂回させた態様で反射ミラー20Bに入射し、その
反射ミラー20Bで垂直方向へ90°方向変換されて直上
に配置された集光レンズ11Bへ入射する。
The green light g reflected by the dichroic mirror 18 is directly incident on the reflecting mirror 20G, and its optical path is vertically changed by 90 °. The red light r transmitted through the dichroic mirror 17 is reflected by a reflecting mirror 19R in a horizontal plane. At 9
After the direction is changed by 0 °, it is 9 in the vertical direction by the reflection mirror 20R.
The light is changed in the direction of 0 ° and enters the condenser lenses 11G and 11R disposed immediately above the reflection mirrors 20G and 20R, respectively. On the other hand, the blue light b transmitted through the dichroic mirror 18 is condensed by two correction lenses 9 and 9 ′ and is corrected by two reflection mirrors 19B and 19B.
In response to the 90 ° directional change in the horizontal plane by 19B ′, the light enters the reflecting mirror 20B in a mode in which the optical path is detoured to the side, and is turned 90 ° in the vertical direction by the reflecting mirror 20B and disposed immediately above. The light enters the condenser lens 11B.

【0009】次に、偏光選択光学系における集光レンズ
と第1の偏光ビームスプリッタからなる各ユニット11G・
12G,11B・12B,11R・12Rは、図9に示されるように、それ
ら3ユニットがコーナーを接する態様で投射方向に関し
て対称に配置されており、前記の色分解・導光光学系に
よって各集光レンズ11G,11B,11Rへ入射せしめられた各
原色光g,b,rは平行光に変換された後にそれぞれ第1
の偏光ビームスプリッタ12G,12B,12Rへ入射する。そし
て、各偏光ビームスプリッタ12G,12B,12Rは、屈折率の
異なる2種類の膜を交互に多数積層した偏光膜12g,12b,
12rによって不定偏光である各原色光g,b,rの内のP
偏光成分g(p),b(p),r(p)のみを透過させ、S偏光成
分g(s),b(s),r(s)を配設領域の外側方向へ反射させ
る。即ち、この段階で分離された各原色光g,b,rのP
偏光成分g(p),b(p),r(p)が利用光として選択され、
S偏光成分g(s),b(s),r(s)が系外へ捨てられる。従
って、各偏光ビームスプリッタ12G,12B,12Rによって選
択されたP偏光成分g(p),b(p),r(p)が直上に対応配
置されている第2の偏光ビームスプリッタ13G,13B,13R
へ入射することになる。
Next, each of the units 11G and 11G comprising the condenser lens and the first polarization beam splitter in the polarization selection optical system.
As shown in FIG. 9, the three units 12G, 11B, 12B, 11R, and 12R are arranged symmetrically with respect to the projection direction so that the three units are in contact with the corners. The primary color lights g, b, and r incident on the optical lenses 11G, 11B, and 11R are converted into parallel lights, respectively.
To the polarization beam splitters 12G, 12B, and 12R. Each of the polarizing beam splitters 12G, 12B, and 12R is a polarizing film 12g, 12b, in which a large number of two types of films having different refractive indexes are alternately stacked.
12r, P in each primary color light g, b, r
Only the polarization components g (p), b (p), and r (p) are transmitted, and the S polarization components g (s), b (s), and r (s) are reflected toward the outside of the arrangement region. That is, P of each primary color light g, b, r separated at this stage
The polarization components g (p), b (p), and r (p) are selected as use light,
The S polarized light components g (s), b (s), and r (s) are discarded outside the system. Therefore, the second polarization beam splitters 13G, 13B, 13B, 13P, 13G, 13B, and 13 (P) have the P polarization components g (p), b (p), r (p) selected by the respective polarization beam splitters 12G, 12B, 12R. 13R
Will be incident.

【0010】次に、図10に示されているように、変調
・色合成・投射光学系における第2の偏光ビームスプリッ
タと空間光変調部からなる各ユニット13G・14G,13B・14B,
13R・14Rも交叉型ダイクロイックミラー15の入射面に対
向させた態様で投射方向に関して対称に配置されてい
る。そして、前記の第1の偏光ビームスプリッタ12G,12
B,12Rと同様に、この第2の偏光ビームスプリッタ13G,1
3B,13RもP偏光成分g(p),b(p),r(p)のみを透過させ
てS偏光成分g(s),b(s),r(s)を反射させる偏光膜13
g,13b,13rを有しているが、その偏光膜13g,13b,13rは対
応する第1の偏光ビームスプリッタ12G,12B,12R側の各
偏光膜12g,12b,12rとの関係で傾斜方向が90°捩れた
関係になっているため、第2の偏光ビームスプリッタ13
G,13B,13Rへ入射する各P偏光成分g(p),b(p),r(p)は
その偏光膜13g,13b,13rに対してはS偏光成分の振動方
向となる。従って、その偏光成分は第2の偏光ビームス
プリッタ13G,13B,13Rの偏光膜13g,13b,13rで反射せしめ
られ、垂直方向から水平方向へ90°方向変換されて対
応する空間光変調部14G,14B,14Rへ入射する。各空間光
変調部14G,14B,14Rでは3原色に係る映像信号に基づい
て液晶層の配向状態を画素単位で制御することにより入
射した偏光成分を変調して反射させるが、変調を受けた
反射光はその変調度に応じて入射光と反対の振動方向の
偏光成分に変化するため、その変調光g'(p),b'(p),
r'(p)が偏光膜13g,13b,13rへ入射する。ここで、偏光
膜13g,13b,13rは前記のようにS偏光成分のみを反射さ
せてP偏光成分は透過させるため、再入射した変調光
g'(p),b'(p),r'(p)は偏光膜13g,13b,13rを透過して
色合成用の交叉型ダイクロイックプリズム15へ入射する
ことになる。一方、図示していないが、非変調分の偏光
成分g'(s),b'(s),r'(s)については偏光膜13g,13b,13
rで反射された後に光路を逆進して光源1の方向への戻り
光となる。そして、交叉型ダイクロイックプリズム15は
青光bのみを反射させるダイクロイックミラー面15bと
赤光rのみを反射させるダイクロイックミラー面15rを
交叉させた構成を有しており、第2の偏光ビームスプリ
ッタ13B,13Rから入射する変調光b'(p),r'(p)をそれぞ
れ水平面内で90°方向変換すると共に第2の偏光ビー
ムスプリッタ13Gから入射する変調光g'(p)をそのまま
透過させる。従って、3原色に係る各変調光は合成され
て投射レンズ16へ入射し、投射レンズ16によって拡大さ
れたカラー画像がスクリーン(図示せず)に表示されるこ
とになる。
Next, as shown in FIG. 10, units 13G and 14G, 13B and 14B, each comprising a second polarizing beam splitter and a spatial light modulator in the modulation / color combining / projection optical system.
13R and 14R are also arranged symmetrically with respect to the projection direction so as to face the incident surface of the cross-type dichroic mirror 15. Then, the first polarization beam splitters 12G, 12G
B, 12R, this second polarization beam splitter 13G, 1
The polarizing films 13B and 13R also transmit only the P-polarized light components g (p), b (p) and r (p) and reflect the S-polarized light components g (s), b (s) and r (s).
g, 13b, and 13r, and the polarizing films 13g, 13b, and 13r have tilt directions in relation to the corresponding first polarizing beam splitters 12G, 12B, and 12R and the respective polarizing films 12g, 12b, and 12r. Have a 90 ° twist relationship, the second polarization beam splitter 13
Each of the P-polarized light components g (p), b (p), and r (p) incident on G, 13B, and 13R becomes the vibration direction of the S-polarized light component with respect to the polarizing films 13g, 13b, and 13r. Accordingly, the polarized light component is reflected by the polarizing films 13g, 13b, 13r of the second polarizing beam splitters 13G, 13B, 13R, is converted by 90 ° from the vertical direction to the horizontal direction, and is converted to the corresponding spatial light modulator 14G, Light enters 14B and 14R. Each of the spatial light modulators 14G, 14B, and 14R modulates and reflects an incident polarization component by controlling the alignment state of the liquid crystal layer on a pixel basis based on video signals related to the three primary colors. Since the light changes to a polarization component in the vibration direction opposite to the incident light according to the degree of modulation, the modulated light g ′ (p), b ′ (p),
r ′ (p) enters the polarizing films 13g, 13b, 13r. Here, since the polarizing films 13g, 13b, and 13r reflect only the S-polarized component and transmit the P-polarized component as described above, the re-entered modulated light g ′ (p), b ′ (p), r ′ (p) passes through the polarizing films 13g, 13b, and 13r and enters the crossed dichroic prism 15 for color synthesis. On the other hand, though not shown, the polarization films g ′ (s), b ′ (s), and r ′ (s) for the unmodulated components are polarized films 13g, 13b, and 13 ′.
After being reflected by r, the light travels backward in the optical path and returns to the light source 1. The cross type dichroic prism 15 has a configuration in which a dichroic mirror surface 15b that reflects only blue light b and a dichroic mirror surface 15r that reflects only red light r are crossed, and the second polarization beam splitter 13B, The modulated light b ′ (p) and r ′ (p) incident from 13R are respectively converted in the horizontal direction by 90 °, and the modulated light g ′ (p) incident from the second polarizing beam splitter 13G is transmitted as it is. Therefore, the modulated lights of the three primary colors are combined and incident on the projection lens 16, and the color image enlarged by the projection lens 16 is displayed on a screen (not shown).

【0011】[0011]

【発明が解決しようとする課題】ところで、上記の交叉
型ダイクロイックミラーを用いて色分解を行なう特願平
9-10065号の投写型表示装置の場合、3原色に係る光路
長を等しく構成できるために色シェーディングの問題は
生じないが、交叉型ダイクロイックミラーは波長選択性
反射膜を被着した2枚のガラスプレートを交叉させた態
様で構成されているため、その交叉部の近傍では入射光
がガラス中で多重反射して外部へ出力されずに投写映像
中の中心付近に暗い影が発生する。また、各空間光変調
部が反射型であるため、変調度に応じた非変調の偏光成
分が戻り光となって交叉型ダイクロイックミラーへ逆進
・入射する。その場合、交叉型ダイクロイックミラーを
透過したり内部で多重反射して他色の空間光変調部へ入
射してしまう傾向があり、投写映像中に不要な輝線や異
常色が発生して表示品質の劣化を招く。
By the way, Japanese Patent Application Laid-Open No. H10-157, in which color separation is performed by using the above-mentioned cross type dichroic mirror.
In the case of the projection display device of No. 9-10065, the problem of color shading does not occur because the optical path lengths for the three primary colors can be configured to be equal, but the cross type dichroic mirror has two wavelength-selective reflection films. Since it is configured in such a manner that the glass plates are crossed, the incident light is multiply reflected in the glass near the crossing portion and is not output to the outside, and a dark shadow is generated near the center in the projected image. Further, since each spatial light modulator is of a reflection type, a non-modulated polarized light component corresponding to the degree of modulation is returned and enters the crossed dichroic mirror as return light. In such a case, there is a tendency for the light to pass through the crossed dichroic mirror or to be internally reflected multiple times and to enter the spatial light modulator of another color. It causes deterioration.

【0012】一方、図7から図10に示した投写型表示
装置では、色分解手段に2枚の独立したダイクロイック
ミラー17,18を用いているために前記のような不具合は
発生しないが、図8に示されるように、色分解・導光光
学系が偏光選択光学系と変調・色合成・投射光学系の平面
的展開領域の外側に構成されるため、両側部及び後方に
大きな光学系の構成空間が必要になり、装置の小型化を
図れないという問題がある。即ち、偏光選択光学系と変
調・色合成光学系に関しては交叉型ダイクロイックプリ
ズム15を中心に各ユニットが対称性を有して配置されて
いるために比較的コンパクトに構成されるが、色分解・
導光光学系の平面的展開領域の拡がりによって装置全体
の占める空間容積が大きくなり、必然的に筐体全体を大
きく設計せざるを得ないことになる。
On the other hand, in the projection type display device shown in FIGS. 7 to 10, since the two independent dichroic mirrors 17 and 18 are used for the color separation means, the above-mentioned problem does not occur. As shown in FIG. 8, since the color separation / light guide optical system is configured outside the planar development region of the polarization selection optical system and the modulation / color synthesis / projection optical system, a large optical system is provided on both sides and behind. There is a problem that a configuration space is required, and the size of the device cannot be reduced. That is, the polarization selection optical system and the modulation / color combining optical system are relatively compact because the units are arranged symmetrically with respect to the cross-type dichroic prism 15, but are relatively compact.
The spatial volume occupied by the entire device increases due to the expansion of the planar deployment area of the light guide optical system, and the entire housing must necessarily be designed large.

【0013】そこで、本発明は、反射型の空間光変調部
を用いた3板式の投写型表示装置において、交叉型ダイ
クロイックミラーを用いないで2枚の独立したダイクロ
イックミラーを適用した色分解手段を構成し、且つ装置
全体の小型化を図ることが可能な光学的構成を提供する
ことを目的として創作された。
Accordingly, the present invention provides a color separation means in a three-panel projection display device using a reflection type spatial light modulator, in which two independent dichroic mirrors are applied without using a crossed dichroic mirror. It has been created for the purpose of providing an optical configuration that can be configured and that can reduce the size of the entire device.

【0014】[0014]

【課題を解決するための手段】本発明は、3原色の内の
異なる2色に係る波長選択性反射膜を交叉させた交叉型
ダイクロイックプリズムにおける出射面に投射レンズを
配置し、3面の入射面に対してそれぞれ出射面を対向さ
せた態様で偏光ビームスプリッタを配設すると共に、そ
の各偏光ビームスプリッタにおける前記交叉型ダイクロ
イックプリズムとの対向側と逆側の面にそれぞれ反射型
の空間光変調部を対向させて配設した変調・色合成・投射
光学系と、光源が発生する白色光を3原色光に分解して
前記変調・色合成・投射光学系の各偏光ビームスプリッタ
の入射面へ導く色分解・導光光学系とを階層別に構成し
た投写型表示装置において、前記変調・色合成・投射光学
系の各偏光ビームスプリッタをそれらの入射面が前記色
分解・導光光学系の階層側となるように偏光膜の方向を
設定して配設し、一方、前記色分解・導光光学系を2枚
の独立したダイクロイックミラーと複数枚の反射ミラー
で構成すると共に、それらのミラーを前記変調・色合成・
投射光学系が平面的に占める領域を画する方形領域に対
応した平面的領域内にほぼ収まる態様で配設せしめ、前
記光源の白色光を分解して得られる3原色光を前記の各
偏光ビームスプリッタの入射面へ導光することを特徴と
した投写型表示装置に係る。
According to the present invention, a projection lens is arranged on an exit surface of a cross-type dichroic prism in which wavelength-selective reflection films for two different colors out of three primary colors are crossed, and three planes of incidence are provided. The polarization beam splitters are arranged in such a manner that the emission surfaces are opposed to the surfaces, respectively, and reflection-type spatial light modulation is provided on the surface of each polarization beam splitter on the side opposite to the cross-type dichroic prism and on the opposite side. And a modulation / color synthesis / projection optical system arranged with the sections facing each other, and the white light generated by the light source is decomposed into three primary color lights to enter the entrance surfaces of the respective polarization beam splitters of the modulation / color synthesis / projection optical system. In a projection type display device in which a guiding color separation / light guiding optical system is configured for each layer, each of the polarization beam splitters of the modulation / color combining / projection optical system is provided with the color separation / light guiding optical system. The direction of the polarizing film is set and arranged so as to be on the hierarchical side of the scientific system, while the color separation / light guide optical system is composed of two independent dichroic mirrors and a plurality of reflection mirrors, These mirrors are used for the modulation, color synthesis,
The three primary color lights obtained by dissolving the white light of the light source are arranged so as to substantially fit in a planar area corresponding to a rectangular area that defines the area occupied by the projection optical system. The present invention relates to a projection display device characterized in that light is guided to an incident surface of a splitter.

【0015】この発明は、従来技術で説明した投写型表
示装置(図7から図10)と同様にその色分解・導光光学
系が2枚の独立したダイクロイックミラーによって色分
解を行なうため、交叉型ダイクロイックミラーを用いた
場合の不具合は生じない。一方、2枚の独立したダイク
ロイックミラーを用いると、交叉型ダイクロイックミラ
ーを用いた場合のような対称性のある導光系を構成でき
ず、3原色光の内の少なくとも1つの原色光の光路を引
き回す態様で変調・色合成・投射光学系の対応する偏光ビ
ームスプリッタへ導く必要があり、その結果、図8に示
したように色分解・導光光学系が占める階層方向の平面
領域が大きくなる。この発明では、変調・色合成・投射光
学系の各偏光ビームスプリッタをその入射面が色分解・
導光光学系の階層側になるように配設し、色分解・導光
光学系による光路の引き回しを平面的に見て変調・色合
成・投射光学系が平面的に占める領域を画する方形領域
内で行いながら、ダイクロイックミラー又は反射ミラー
によって前記の各偏光ビームスプリッタの入射面へ対応
する各原色光を入射させることができる。従って、色分
解・導光光学系が平面的に占める領域を画する方形領域
は変調・色合成・投射光学系のそれとほぼ同等に構成で
き、装置の小型化を実現できる。
According to the present invention, the color separation / light guide optical system performs color separation by two independent dichroic mirrors as in the projection type display device (FIGS. 7 to 10) described in the prior art. There is no problem when using the dichroic mirror. On the other hand, if two independent dichroic mirrors are used, a symmetrical light guide system cannot be formed as in the case of using a crossed dichroic mirror, and the optical path of at least one of the three primary color lights is reduced. It is necessary to guide the light to the corresponding polarization beam splitter of the modulation / color synthesis / projection optical system in a routing manner. As a result, as shown in FIG. 8, the plane area in the hierarchical direction occupied by the color separation / light guide optical system becomes large. . According to the present invention, each of the polarization beam splitters of the modulation, color synthesis, and projection optical systems is provided with a color separation /
Arranged on the layer side of the light guide optical system, a rectangle that defines the area occupied by the modulation, color synthesis, and projection optical systems when viewing the light path routing by the color separation / light guide optical system in a plane. While being performed in the region, the corresponding primary color light can be made incident on the incident surface of each of the polarization beam splitters by a dichroic mirror or a reflection mirror. Therefore, a rectangular area that defines the area occupied by the color separation / light guide optical system in a plane can be configured to be substantially the same as that of the modulation / color synthesis / projection optical system, and the device can be downsized.

【0016】ところで、従来技術の投写型表示装置の階
層構成を示す図7から明らかなように、変調・色合成・投
射光学系の投射レンズ16は前方へ突出しているためにそ
の下側には大きな空間が構成されている。そこで、この
発明の色分解・導光光学系において、3原色光の内の1
原色光をその空間を迂回させる態様で引き回して対応し
た偏光ビームスプリッタへ導光すればその迂回光路には
大きな物理的空間が確保でき、同光路中に補正レンズを
無理なく介装させることができる。
By the way, as is apparent from FIG. 7 showing the hierarchical structure of the projection type display device of the prior art, the projection lens 16 of the modulation / color synthesis / projection optical system projects forward, and A large space is configured. Therefore, in the color separation / light guide optical system of the present invention, one of the three primary color lights is used.
If the primary color light is routed in such a manner as to bypass the space and is guided to the corresponding polarizing beam splitter, a large physical space can be secured in the bypass optical path, and a correction lens can be easily interposed in the bypass optical path. .

【0017】[0017]

【発明の実施の形態】以下、本発明の投写型表示装置の
実施形態を図1から図6を用いて詳細に説明する。但
し、図1から図3はそれぞれ視点を斜め上方と斜め側方
と斜め下方に設定して装置の各光学要素の配置関係を斜
視図として示したものであり、図4は光源部と色分解・
導光光学系の階層を下側から見た平面図、図5は偏光選
択光学系を下側から見た平面図、図6は変調・色合成・投
射光学系を下側から見た平面図である。尚、図4から図
6については、図8から図10の場合と同様に、平面図
では理解し難い各光学要素に関してそれぞれ二点鎖線で
示す矢印方向から見た側面図を参考図として添えてあ
り、各階層内での光学的機能も併せて示してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the projection display apparatus of the present invention will be described below in detail with reference to FIGS. FIGS. 1 to 3 show perspective views of the arrangement of each optical element of the apparatus with the viewpoint set to diagonally upward, diagonally laterally and diagonally downward, respectively. FIG. 4 shows a light source unit and color separation.・
5 is a plan view of the hierarchy of the light guide optical system as viewed from below, FIG. 5 is a plan view of the polarization selection optical system as viewed from below, and FIG. 6 is a plan view of the modulation, color synthesis, and projection optical system as viewed from below. It is. 4 to 6, as in FIGS. 8 to 10, side views of each optical element which is difficult to understand in a plan view as viewed from the direction of an arrow indicated by a two-dot chain line are attached as reference figures. Yes, the optical functions within each layer are also shown.

【0018】この装置は、従来技術で示した投写型表示
装置と同様に、下階層の色分解・導光光学系と、中間階
層の偏光選択光学系と、上階層の変調・色合成・投射光学
系で構成されている。各図において、図7から図10で
示した符号と同一符号で示されている各光学要素は同一
のものであり、ここではそれらの説明を省略する。ま
た、図5と図9及び図6と図10を対比させると明らか
なように、偏光選択光学系と変調・色合成・投射光学系に
関しては従来技術に係る装置と同様の基本的構成と光学
的機能を有しており、青光と赤光を扱う各光学要素が投
射レンズ16の光軸を通過する面に関して逆の関係に配置
されている点で異なるだけである。
This device, like the projection display device shown in the prior art, has a lower layer color separation / light guide optical system, an intermediate layer polarization selection optical system, and an upper layer modulation / color synthesis / projection. It is composed of an optical system. In each drawing, the optical elements indicated by the same reference numerals as those shown in FIGS. 7 to 10 are the same, and the description thereof is omitted here. As is clear from comparison between FIGS. 5 and 9 and FIGS. 6 and 10, the polarization selection optical system and the modulation / color synthesis / projection optical system have the same basic configuration and optical system as those of the prior art. The only difference is that each optical element that handles blue light and red light is arranged in an inverse relationship with respect to a plane passing through the optical axis of the projection lens 16.

【0019】この実施形態に係る装置の特徴は、図2及
び図3、及び特に図4に示される色分解・導光光学系の
構成とその光学要素の配設にある。各図において、6は
白色光をマゼンタ光(赤光と青光の混合色光:rb)と緑
光gに分離するダイクロイックミラー、8はマゼンタ光
を赤光rと青光bに分離するダイクロイックミラー、7
G,7Rはそれぞれ反射ミラーを示す。先ず、光源1から発
した白色光はコリメータレンズ2と第1及び第2のイン
テグレータ3,4とコールドミラー5によって赤外光が除去
された均一な照度分布の読出し光とされ、コールドミラ
ー5で水平面内で90°方向変換されるが、その方向変
換後の白色光wの光軸は、変調・色合成・投射光学系の投
射レンズ16の光軸と平行で、偏光選択光学系(図5)にお
ける集光レンズ11Bの光軸と垂直に交叉する方向に設定
されている。
The features of the apparatus according to this embodiment reside in the configuration of the color separation / light guide optical system shown in FIGS. 2 and 3, and particularly in FIG. 4, and the arrangement of the optical elements. In each figure, 6 is a dichroic mirror that separates white light into magenta light (mixed color light of red light and blue light: rb) and green light g, 8 is a dichroic mirror that separates magenta light into red light r and blue light b, 7
G and 7R each indicate a reflection mirror. First, white light emitted from the light source 1 is converted into read light having a uniform illuminance distribution from which infrared light has been removed by the collimator lens 2, the first and second integrators 3 and 4, and the cold mirror 5. Although the direction is changed by 90 ° in the horizontal plane, the optical axis of the white light w after the direction change is parallel to the optical axis of the projection lens 16 of the modulation / color synthesis / projection optical system, and the polarization selection optical system (FIG. 5). ) Is set in the direction perpendicular to the optical axis of the condenser lens 11B.

【0020】そして、その白色光wはその光軸に対して
45°傾斜させて配置されているダイクロイックミラー
6に入射し、ダイクロイックミラー6はマゼンタ光rbを
そのまま透過させるが緑光gを反射させて水平面内で9
0°方向変換する。尚、ダイクロイックミラー6は反射
させた緑光gの光軸が集光レンズ11Gの光軸と垂直に交
叉する位置に配置されている。
The dichroic mirror is arranged such that the white light w is inclined at 45 ° to the optical axis.
6, the dichroic mirror 6 transmits the magenta light rb as it is, but reflects the green light g and
The direction is changed by 0 °. The dichroic mirror 6 is arranged at a position where the optical axis of the reflected green light g crosses the optical axis of the condenser lens 11G perpendicularly.

【0021】ダイクロイックミラー6で反射した緑光g
は、その光軸に対して45°傾斜させた態様で前記の集
光レンズ11Gの直下に配置されている反射ミラー7Gへ入
射し、その反射ミラー7Gで反射されることによって垂直
方向へ90°方向変換されて集光レンズ11Gへ入射せし
められる。また、ダイクロイックミラー6を透過したマ
ゼンタ光rbは、その光軸に対して45°傾斜させた態
様で前記の集光レンズ11Bの直下に配置されているダイ
クロイックミラー8へ入射する。
Green light g reflected by the dichroic mirror 6
Is incident on a reflection mirror 7G disposed immediately below the condenser lens 11G in a form inclined at 45 ° with respect to the optical axis, and is reflected by the reflection mirror 7G so as to be 90 ° in the vertical direction. The direction is changed and made incident on the condenser lens 11G. Further, the magenta light rb transmitted through the dichroic mirror 6 is incident on the dichroic mirror 8 disposed immediately below the condenser lens 11B in a state of being inclined by 45 ° with respect to the optical axis.

【0022】ダイクロイックミラー8は入射したマゼン
タ光rbの内の赤光rをそのまま透過させるが青光bを
反射して垂直方向へ90°方向変換させる。従って、青
光bは偏光選択光学系(図5)における集光レンズ11Bへ
入射することになる。そして、図4に示されるように、
光源1から反射ミラー7Gまでの光路長と光源1からダイク
ロイックミラー8までの光路長は等しくなっており、且
つこの色分解・導光光学系の上側に構成されている偏光
選択光学系と変調・色合成・投射光学系は各原色光に対し
て対称性を有した光学系になっているため、光源1から
変調・色合成・投射光学系の緑光gと青光bに係る空間光
変調部14G,14Bまでの光路長は等しくなっている。
The dichroic mirror 8 transmits the red light r of the incident magenta light rb as it is, but reflects the blue light b and changes the direction by 90 ° in the vertical direction. Therefore, the blue light b enters the condenser lens 11B in the polarization selection optical system (FIG. 5). And, as shown in FIG.
The optical path length from the light source 1 to the reflection mirror 7G is equal to the optical path length from the light source 1 to the dichroic mirror 8, and the optical path length of the polarization separation optical system and the modulation / optical Since the color synthesis / projection optical system is an optical system having symmetry with respect to each primary color light, the spatial light modulator for the green light g and blue light b of the modulation / color synthesis / projection optical system from the light source 1 The optical path lengths up to 14G and 14B are equal.

【0023】一方、ダイクロイックミラー8を透過した
赤光rはその透過光の光軸上に配置されている補正レン
ズ9へ入射し、同レンズ9で所定の集光作用を受けた後、
反射ミラー10によって水平面内で90°方向変換され、
その方向変換後の光軸上に配置されている別の補正レン
ズ9'で所定の集光作用を受け、更に反射ミラー10'によ
って水平面内で90°方向変換され、その光軸に対して
45°傾斜させた態様で偏光選択光学系(図5)における
集光レンズ11Rの直下に配置されている反射ミラー7Rに
入射する。そして、その反射ミラー7Rで反射された赤光
rが集光レンズ11Rへ入射せしめられる。即ち、赤光r
については、変調・色合成・投射光学系の投射レンズ16の
下方に構成されている空間側に迂回光路を構成して対応
色に係る集光レンズ11Rまで導光しており、光源1から赤
光rに係る空間光変調部14Rまでの光路長が緑光gと青
光bに係る前記の光路長より長くなって色シェーディン
グが発生することを前記の迂回光路中に補正レンズ9,9'
を介在させて防止している。
On the other hand, the red light r transmitted through the dichroic mirror 8 is incident on a correction lens 9 arranged on the optical axis of the transmitted light, and after being subjected to a predetermined light collecting action by the lens 9,
The direction is changed by 90 ° in the horizontal plane by the reflection mirror 10,
The light is subjected to a predetermined light condensing action by another correction lens 9 ′ disposed on the optical axis after the direction change, and further, is changed in direction by 90 ° in a horizontal plane by a reflection mirror 10 ′. The light enters the reflection mirror 7R disposed directly below the condenser lens 11R in the polarization selection optical system (FIG. 5) in an inclined manner. Then, the red light r reflected by the reflection mirror 7R is made incident on the condenser lens 11R. That is, red light r
With respect to, a detour optical path is formed on the space side formed below the projection lens 16 of the modulation / color synthesis / projection optical system to guide light to the condenser lens 11R for the corresponding color, and the light source 1 emits red light. Correction lenses 9, 9 'in the bypass light path that the light path length to the spatial light modulator 14R for the light r is longer than the light path length for the green light g and the blue light b and color shading occurs.
To prevent this.

【0024】ところで、この実施形態の投写型表示装置
の場合、色分解・導光光学系が平面的に占める領域を画
する方形領域は図4において点線で囲まれた領域31に相
当し、変調・色合成・投射光学系が平面的に占める領域を
画する方形領域は図6において点線で囲まれた領域32に
相当するため、平面的に見て前者の領域31は後者の領域
32に含まれている。従って、装置の外部筐体は[(領域32
と光源部の領域1〜5)×(3階層分の高さ)]で与えられる
容積を目安として設計すればよいことになる。
Incidentally, in the case of the projection type display device of this embodiment, the rectangular area defining the area occupied by the color separation / light guide optical system in a plane corresponds to the area 31 surrounded by the dotted line in FIG. The square area defining the area occupied by the color combining / projecting optical system in a plane corresponds to the area 32 surrounded by the dotted line in FIG.
32 included. Therefore, the external housing of the device is [(region 32
And the light source unit area 1 to 5) × (height for three layers)].

【0025】一方、従来技術で示した投写型表示装置
(図7)の場合、色分解・導光光学系が平面的に占める領
域を画する方形領域は図8において点線で囲まれた領域
33に相当し、変調・色合成・投射光学系が平面的に占める
領域を画する方形領域は図10において点線で囲まれた
領域34(前記領域32と同等)に相当する。そして、この場
合の領域33は領域34に含まれておらず、領域34に対して
ミラー17,19R,19B',19Bの配設領域分だけ両側方へ大き
く拡がっており、また、図7からも明らかなようにミラ
ー17,18,19Bの配設領域分だけ後方へ大きく拡がってい
る。従って、外部筐体の設計に際して、[(領域33と領域
34が平面的に占める領域を画する方形領域と光源部の領
域1〜5)×(3階層分の高さ)]で与えられる容積を目安に
した場合には極めて大きな筐体となり、仮に、容積を小
さくするために各光学要素の外側に沿って壁面を構成す
るような筐体を設計しても、平面的に占める面積は実施
形態の場合と比較して遥かに大きなものになると共に筐
体の形状が複雑化し、何れにしても装置の大型化や製造
コストのアップを招くことになる。
On the other hand, a projection display device shown in the prior art
In the case of (FIG. 7), a rectangular area defining the area occupied by the color separation / light guide optical system in a plane is an area surrounded by a dotted line in FIG.
A rectangular area corresponding to the area 33 and defining the area occupied by the modulation / color synthesis / projection optical system in a plane corresponds to an area 34 (equivalent to the area 32) surrounded by a dotted line in FIG. In this case, the region 33 is not included in the region 34, and greatly expands to both sides with respect to the region 34 by the arrangement region of the mirrors 17, 19R, 19B ', and 19B. As is clear from FIG. 7, the mirrors 17, 18, and 19 B greatly extend rearward by the arrangement area. Therefore, when designing the outer housing, [(region 33 and region
If the volume given by the rectangular area defining the area occupied by 34 and the area of the light source section 1 to 5) × (height of three layers) is a guide, it will be an extremely large housing, Even if the housing is designed so that the wall is formed along the outside of each optical element to reduce the volume, the area occupied in a plane is much larger than that of the embodiment and the housing is larger. The shape of the body becomes complicated, and in any case, the size of the apparatus is increased and the manufacturing cost is increased.

【0026】換言すれば、この実施形態の装置による
と、色分解・導光光学系を2枚のダイクロイックミラー
6,8と反射ミラー7G,7R,10,10'と補正レンズ9,9'を最小
平面領域内に構成して各原色光を偏光選択光学系へ導く
ようにしており、装置を極めてコンパクトに構成するこ
とが可能になっている。また、従来技術で示した投写型
表示装置では6枚の反射ミラー19R,20R,20G,19B,19B',2
0Bを用いているが、この実施形態の装置では4枚の反射
ミラー7G,7R,10,10'しか必要とせず、部品点数の削減も
図れている。
In other words, according to the apparatus of this embodiment, the color separation / light guide optical system is composed of two dichroic mirrors.
6, 8 and reflection mirrors 7G, 7R, 10, 10 'and correction lenses 9, 9' are configured in the minimum plane area to guide each primary color light to the polarization selection optical system, making the device extremely compact. It is possible to configure. In the projection display device shown in the prior art, six reflection mirrors 19R, 20R, 20G, 19B, 19B ', 2
Although 0B is used, the apparatus of this embodiment requires only four reflection mirrors 7G, 7R, 10, and 10 ', and the number of parts can be reduced.

【0027】尚、従来技術で示した装置及びこの実施形
態の装置では双方とも中間階層として偏光選択光学系を
介在させているが、その偏光選択光学系は必須の光学系
ではない。何故なら、偏光選択機能は変調・色合成・投射
光学系の各偏光ビームスプリッタ13G,13B,13Rに持たせ
ることができるからであり、あえて偏光選択光学系を介
在させているのは、予め偏光成分を選択しておくことで
コントラスト比の高い高品質な映像表示が可能になるか
らである。
In both the device shown in the prior art and the device of this embodiment, a polarization selection optical system is interposed as an intermediate layer, but the polarization selection optical system is not an essential optical system. This is because the polarization selection function can be provided in each of the polarization beam splitters 13G, 13B, and 13R of the modulation, color synthesis, and projection optical systems. This is because by selecting the components, it is possible to display a high-quality image with a high contrast ratio.

【0028】[0028]

【発明の効果】本発明の投写型表示装置は、以上の構成
を有していることにより、次のような効果を奏する。請
求項1の発明は、色分解・導光光学系と変調・色合成・投
射光学系とを階層別に構成した投写型表示装置におい
て、色分解・導光光学系を2枚の独立したダイクロイッ
クミラーと複数の反射ミラーで構成することにより、交
叉型ダイクロイックミラーを用いた場合のように投射映
像中にその交叉部の影や不要な輝線や異常色が発生する
ことを防止する。一方、色分解・導光光学系を前記の構
成にすると、3原色光の内の少なくとも1原色光の光路
を迂回させる態様で引き回さなければならないが、色分
解・導光光学系の光学要素を変調・色合成・投射光学系が
平面的に占める領域を画する方形領域に対応した平面的
領域内にほぼ収まる態様で配設することにより、装置の
大幅な小型化を実現する。請求項2の発明は、前記の迂
回光路を変調・色合成・投射光学系の投射レンズの配置側
に構成される空間を利用して構成し、その迂回光路中に
補正レンズを無理なく介装させて各原色光の光路長を実
質的に等しくすることにより、装置の小型化を図る目的
と色シェーディング発生の抑制対策を併立させる。請求
項3の発明は、変調・色合成・投射光学系と色分解・導光
光学系の各階層間に偏光選択光学系を介在させることに
よりコントラスト比の高い高品質な映像表示を実現す
る。尚、偏光選択光学系の介在によって装置が縦方向に
その階層分だけ大きくなるが、全体としてみればそれほ
ど大型化を招くものではなく、また平面方向については
大型化を招く要因にならない。
According to the projection display apparatus of the present invention having the above configuration, the following effects can be obtained. According to a first aspect of the present invention, there is provided a projection display device in which a color separation / light guiding optical system and a modulation / color combining / projection optical system are configured for respective layers, wherein the color separation / light guiding optical system comprises two independent dichroic mirrors. And a plurality of reflection mirrors, it is possible to prevent the shadow of the intersection, unnecessary bright lines, and abnormal colors from being generated in the projected image as in the case of using an intersection type dichroic mirror. On the other hand, if the color separation / light guide optical system is configured as described above, it must be routed in such a manner as to bypass the optical path of at least one of the three primary color lights. By arranging the elements almost in a planar area corresponding to a rectangular area that defines the area occupied by the modulation / color combining / projection optical system in a planar manner, the size of the apparatus can be significantly reduced. According to a second aspect of the present invention, the bypass optical path is configured using a space formed on the side of the modulation / color combining / projection optical system on which the projection lens is disposed, and a correction lens is easily interposed in the bypass optical path. By making the optical path lengths of the primary color lights substantially equal, the purpose of reducing the size of the device and the measure for suppressing the occurrence of color shading are achieved at the same time. The third aspect of the present invention realizes a high-quality image display with a high contrast ratio by interposing a polarization selection optical system between each layer of the modulation / color synthesis / projection optical system and the color separation / light guide optical system. It should be noted that the device becomes larger in the vertical direction by that level due to the interposition of the polarization selection optical system. However, the size of the device is not so large as a whole.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る投写型表示装置を斜め
上方から見てその光学要素の配置関係を示した斜視図で
ある。
FIG. 1 is a perspective view showing an arrangement relationship of optical elements of a projection display device according to an embodiment of the present invention when viewed obliquely from above.

【図2】投写型表示装置を斜め側方から見てその光学要
素の配置関係を示した斜視図である。
FIG. 2 is a perspective view showing an arrangement relationship of optical elements of the projection display device as viewed from an oblique side.

【図3】投写型表示装置を斜め下方から見てその光学要
素の配置関係を示した斜視図である。
FIG. 3 is a perspective view showing an arrangement relationship of optical elements of the projection display device as viewed obliquely from below.

【図4】光源部と色分解・導光光学系の階層を下側から
見た平面図である。
FIG. 4 is a plan view of the hierarchy of the light source unit and the color separation / light guide optical system as viewed from below.

【図5】偏光選択光学系の階層を下側から見た平面図で
ある。
FIG. 5 is a plan view of the hierarchy of the polarization selection optical system as viewed from below.

【図6】変調・色合成・投射光学系の階層を下側から見た
平面図である。
FIG. 6 is a plan view of the hierarchy of the modulation / color synthesis / projection optical system as viewed from below.

【図7】従来技術に係る投写型表示装置の側面図であ
る。
FIG. 7 is a side view of a projection display device according to the related art.

【図8】光源部と色分解・導光光学系の階層を下側から
見た平面図である。
FIG. 8 is a plan view of the hierarchy of the light source unit and the color separation / light guide optical system as viewed from below.

【図9】偏光選択光学系の階層を下側から見た平面図で
ある。
FIG. 9 is a plan view of the hierarchy of the polarization selection optical system as viewed from below.

【図10】変調・色合成・投射光学系の階層を下側から見
た平面図である。
FIG. 10 is a plan view of the hierarchy of the modulation / color synthesis / projection optical system as viewed from below.

【符号の説明】[Explanation of symbols]

1…光源、2…コリメータレンズ、3,4…インテグレー
タ、5…コールドミラー、6,8,17,18…ダイクロイックミ
ラー、7G,7R,10,10',19B,19B',19R,20B,20G,20R…反射
ミラー、9,9'…補正レンズ、11G,11B,11R…集光レン
ズ、12G,12B,12R,13G,13B,13R…偏光ビームスプリッ
タ、12b,12g,12r,13b,13g,13r…偏光膜、14G,14B,14R…
反射型の空間光変調部、15…色合成用の交叉型ダイクロ
イックプリズム、15b,15r…ダイクロイックミラー面、1
6…投射レンズ、31,33…色分解・導光光学系が平面的に
占める領域を画する方形領域、32,34…変調・色合成・投
射光学系が平面的に占める領域を画する方形領域。
1 ... Light source, 2 ... Collimator lens, 3,4 ... Integrator, 5 ... Cold mirror, 6,8,17,18 ... Dichroic mirror, 7G, 7R, 10,10 ', 19B, 19B', 19R, 20B, 20G , 20R… Reflection mirror, 9,9 ′… Correction lens, 11G, 11B, 11R… Condenser lens, 12G, 12B, 12R, 13G, 13B, 13R… Polarization beam splitter, 12b, 12g, 12r, 13b, 13g, 13r… Polarizing film, 14G, 14B, 14R…
Reflective spatial light modulator, 15 ... crossed dichroic prism for color synthesis, 15b, 15r ... dichroic mirror surface, 1
6 ... Projection lens, 31,33 ... Square area that defines the area occupied by the color separation / light guide optical system in a plane, 32,34 ... Square area that defines the area occupied by the modulation, color synthesis, and projection optical system in a plane region.

フロントページの続き (51)Int.Cl.6 識別記号 FI H04N 9/31 H04N 9/31 C (72)発明者 鈴木 鉄二 神奈川県横浜市神奈川区守屋町3丁目12番 地 日本ビクター株式会社内 (72)発明者 小山 扶二子 神奈川県横浜市神奈川区守屋町3丁目12番 地 日本ビクター株式会社内 (72)発明者 高橋 竜作 神奈川県横浜市神奈川区守屋町3丁目12番 地 日本ビクター株式会社内 (72)発明者 石坂 安雄 神奈川県横浜市神奈川区守屋町3丁目12番 地 日本ビクター株式会社内Continued on the front page (51) Int.Cl. 6 Identification symbol FI H04N 9/31 H04N 9/31 C (72) Inventor Tetsuji Suzuki 3-12 Moriyacho, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture Inside Victor Company of Japan, Ltd. 72) Inventor Fujiko Koyama 3-12-12 Moriyacho, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture Inside the Victor Company of Japan (72) Inventor Tatsusaku Takahashi 3-12-12 Moriyacho, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture Inside Victor Company of Japan (72) Inventor Yasuo Ishizaka 3-12-12 Moriyacho, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture Inside Victor Company of Japan

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 3原色の内の異なる2色に係る波長選択
性反射膜を交叉させた交叉型ダイクロイックプリズムに
おける出射面に投射レンズを配置し、3面の入射面に対
してそれぞれ出射面を対向させた態様で偏光ビームスプ
リッタを配設すると共に、その各偏光ビームスプリッタ
における前記交叉型ダイクロイックプリズムとの対向側
と逆側の面にそれぞれ反射型の空間光変調部を対向させ
て配設した変調・色合成・投射光学系と、光源が発生する
白色光を3原色光に分解して前記変調・色合成・投射光学
系の各偏光ビームスプリッタの入射面へ導く色分解・導
光光学系とを階層別に構成した投写型表示装置におい
て、前記変調・色合成・投射光学系の各偏光ビームスプリ
ッタをそれらの入射面が前記色分解・導光光学系の階層
側となるように偏光膜の方向を設定して配設し、一方、
前記色分解・導光光学系を2枚の独立したダイクロイッ
クミラーと複数枚の反射ミラーで構成すると共に、それ
らのミラーを前記変調・色合成・投射光学系が平面的に占
める領域を画する方形領域に対応した平面的領域内にほ
ぼ収まる態様で配設せしめ、前記光源の白色光を分解し
て得られる3原色光を前記の各偏光ビームスプリッタの
入射面へ導光することを特徴とした投写型表示装置。
1. A projection lens is disposed on an exit surface of a cross-type dichroic prism in which wavelength-selective reflection films for two different colors of the three primary colors are crossed, and the exit surfaces are respectively provided for the three entrance surfaces. The polarization beam splitters were disposed in a manner of facing each other, and the reflection-type spatial light modulators were disposed facing each other on the surface of each of the polarization beam splitters on the side opposite to the cross-type dichroic prism. A modulation / color synthesis / projection optical system, and a color separation / light guide optical system which separates white light generated by a light source into three primary color lights and guides the white light to an entrance surface of each polarization beam splitter of the modulation / color synthesis / projection optical system. In the projection display device configured for each layer, the respective polarization beam splitters of the modulation / color synthesis / projection optical system are arranged such that their incident surfaces are on the layer side of the color separation / light guide optical system. Set the direction of the polarizing film and arrange it,
The color separation / light guide optical system is composed of two independent dichroic mirrors and a plurality of reflection mirrors, and these mirrors define a rectangular area which is occupied by the modulation / color synthesis / projection optical system in a plane. The light source is disposed so as to substantially fit within a planar area corresponding to the area, and the three primary color lights obtained by decomposing the white light of the light source are guided to the incident surfaces of the respective polarizing beam splitters. Projection display device.
【請求項2】 前記色分解・導光光学系が、3原色光の
内の第1及び第2の原色光については前記変調・色合成・
投射光学系の交叉型ダイクロイックプリズムの隣接した
入射面に対向している各偏光ビームスプリッタへ光源か
らの光路長を等しく設定して入射させ、第3の原色光に
ついては前記変調・色合成・投射光学系の投射レンズの配
置側に構成される空間を迂回させる態様で光路を構成し
て他の偏光ビームスプリッタへ入射させる光学的構成を
有し、且つ前記迂回光路中に第3の原色光に係る光源か
ら偏光ビームスプリッタまでの光路長と第1及び第2の
原色光に係る前記光路長とを実質的に等しくするための
補正レンズを介装することとした請求項1の投写型表示
装置。
2. The color separation / light guide optical system according to claim 1, wherein said first primary color light and said second primary color light out of three primary color lights are subjected to said modulation / color synthesis / light synthesis.
The optical path length from the light source is set to be equal to each of the polarizing beam splitters facing the adjacent incident surface of the cross type dichroic prism of the projection optical system, and the modulation, color synthesis, and projection are performed on the third primary color light. The optical system has an optical configuration in which an optical path is configured to bypass a space formed on the side where the projection lens of the optical system is disposed and is incident on another polarization beam splitter, and a third primary color light is included in the bypass optical path. 2. The projection display apparatus according to claim 1, further comprising a correction lens for making the optical path length from the light source to the polarization beam splitter substantially equal to the optical path lengths of the first and second primary color lights. .
【請求項3】 前記変調・色合成・投射光学系と前記色分
解・導光光学系の各階層間に偏光選択光学系を介在さ
せ、その偏光選択光学系は前記変調・色合成・投射光学系
の各偏光ビームスプリッタの入射面にそれぞれ対向させ
て配設した3個の偏光ビームスプリッタからなり、各原
色光の一方の偏光成分を透過させて前記変調・色合成・投
射光学系の各偏光ビームスプリッタへ入射させ、他方の
偏光成分を階層方向へ放出するものである請求項1又は
請求項2の投写型表示装置。
3. A polarization selecting optical system is interposed between each layer of the modulation / color synthesizing / projection optical system and the color separation / light guiding optical system, and the polarization selecting optical system includes the modulation / color synthesizing / projection optical system. The system comprises three polarizing beam splitters disposed so as to be opposed to the incident surfaces of the respective polarizing beam splitters of the system, and transmits one polarized component of each primary color light to transmit each polarized light of the modulation / color synthesis / projection optical system. 3. The projection type display device according to claim 1, wherein the light is incident on a beam splitter and the other polarized light component is emitted in a hierarchical direction.
JP9244584A 1997-08-26 1997-08-26 Projection display device Expired - Lifetime JP3042460B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9244584A JP3042460B2 (en) 1997-08-26 1997-08-26 Projection display device
DE69819091T DE69819091T2 (en) 1997-08-26 1998-08-19 Projection display device with lighting device and polarization beam splitters
EP98115641A EP0899600B1 (en) 1997-08-26 1998-08-19 Projection-type display apparatus having polarized beam splitters and an illuminating device
US09/139,622 US6174060B1 (en) 1997-08-26 1998-08-25 Projection-type display apparatus having polarized beam splitters and an illuminating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9244584A JP3042460B2 (en) 1997-08-26 1997-08-26 Projection display device

Publications (2)

Publication Number Publication Date
JPH1164796A true JPH1164796A (en) 1999-03-05
JP3042460B2 JP3042460B2 (en) 2000-05-15

Family

ID=17120901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9244584A Expired - Lifetime JP3042460B2 (en) 1997-08-26 1997-08-26 Projection display device

Country Status (1)

Country Link
JP (1) JP3042460B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004341529A (en) * 2003-05-14 2004-12-02 Lg Electron Inc Reflection type illumination optical system
JP2007292998A (en) * 2006-04-25 2007-11-08 Cinetron Technology Inc Modularized light compositing projection system and light compositing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004341529A (en) * 2003-05-14 2004-12-02 Lg Electron Inc Reflection type illumination optical system
JP2007292998A (en) * 2006-04-25 2007-11-08 Cinetron Technology Inc Modularized light compositing projection system and light compositing method therefor

Also Published As

Publication number Publication date
JP3042460B2 (en) 2000-05-15

Similar Documents

Publication Publication Date Title
US5621486A (en) Efficient optical system for a high resolution projection display employing reflection light valves
KR100241641B1 (en) Efficient optical system for a high resolution projection display employing reflection light valves
US7824037B2 (en) Color separation device, imaging optical engine, and projection apparatus
JP3557317B2 (en) Projector device and color separation / synthesis device
US5786873A (en) Efficient optical system for a high resolution projection display employing reflection light valves
EP0734182A2 (en) Efficient optical system for a high resolution projection display employing reflection light valves
US6174060B1 (en) Projection-type display apparatus having polarized beam splitters and an illuminating device
JP2006145644A (en) Polarization splitter and projection display apparatus using the same
JPH09230301A (en) Projection type display device
JP3042460B2 (en) Projection display device
JP3365618B2 (en) Projector device
JP2003241304A (en) Projector
JP2003075769A (en) Optical unit and video display device using the same
JP2004286767A (en) Projection display device
JP3713969B2 (en) Projection display
JP2001051347A (en) Rear projection type display device
JPH03249639A (en) Liquid crystal projector
JP4158789B2 (en) projector
JPH10260474A (en) Rear projection type display device
JP2768345B2 (en) LCD projector
JP4432602B2 (en) Projection display
JP3575244B2 (en) Lighting device and projection display device
JP2001174756A (en) Optical device and video display device using it
JP2001103400A (en) Projection type display device
JP2002196118A (en) Optical element and projector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 12

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 12

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 14

EXPY Cancellation because of completion of term