JPH1164409A - Sensor for measuring phase ratio of each component of mixture - Google Patents

Sensor for measuring phase ratio of each component of mixture

Info

Publication number
JPH1164409A
JPH1164409A JP21656297A JP21656297A JPH1164409A JP H1164409 A JPH1164409 A JP H1164409A JP 21656297 A JP21656297 A JP 21656297A JP 21656297 A JP21656297 A JP 21656297A JP H1164409 A JPH1164409 A JP H1164409A
Authority
JP
Japan
Prior art keywords
mixture
electrode group
capacitance
component
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21656297A
Other languages
Japanese (ja)
Inventor
Manabu Fueki
学 笛木
Daisuke Yamazaki
大輔 山崎
Shuichi Haruyama
周一 春山
Hitoaki Tanaka
仁章 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teikoku Oil Co Ltd
Japan Petroleum Exploration Co Ltd
JFE Engineering Corp
Yokogawa Electric Corp
SEKIYU SHIGEN KAIHATSU KK
Original Assignee
Teikoku Oil Co Ltd
Japan Petroleum Exploration Co Ltd
Yokogawa Electric Corp
SEKIYU SHIGEN KAIHATSU KK
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikoku Oil Co Ltd, Japan Petroleum Exploration Co Ltd, Yokogawa Electric Corp, SEKIYU SHIGEN KAIHATSU KK, NKK Corp, Nippon Kokan Ltd filed Critical Teikoku Oil Co Ltd
Priority to JP21656297A priority Critical patent/JPH1164409A/en
Publication of JPH1164409A publication Critical patent/JPH1164409A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sensor for measuring a phase ratio of each component of a mixture capable of preventing an error, based on the non-uniform distribution of a mixture. SOLUTION: This sensor is constituted of plural electrodes 3a-3p mutually insulated and arranged so as to surround the periphery of a pipe line 2 where the mixture 1 fowls, a driving electrode group 131 for AC voltage driving the plural electrodes, a measurement electrode group 132 at a position opposite to the driving electrode group 131 and a dummy electrode group 133 positioned on both sides of the measurement electrode group 132. The combination of the respective electrode groups is electrically switched so as to rotate the respective electrode groups around the pipe line 2 once corresponding to the number of the plural electrodes, capacitance between the driving electrode group 131 and the measurement electrode group 132 is measured for each changeover and the phase ratios of respective components are found from the measured capacitance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水と油等から成る
混合物の各成分の割合(相割合)を測定するセンサに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sensor for measuring the ratio (phase ratio) of each component of a mixture comprising water and oil.

【0002】[0002]

【従来の技術】図20は、静電容量を利用した従来の混
合物相割合測定センサの構成図である。このセンサによ
れば、混合物100が流れる管路110の周囲に、駆動
電極111と測定電極112を対向させて配置し、駆動
電極111に交流電圧を与えて、駆動電極111と測定
電極112の間の、即ち管路110内部の混合物100
の静電容量を静電容量測定回路113で測定する。例え
ば、水、油及び空気の混合物の場合、水の比誘電率は約
80、油の比誘電率は約2〜3、気体の比誘電率は1で
あり、温度に対する依存性は少ないため、各成分の静電
容量はそれらの各成分の相割合と各比誘電率と係数とを
掛けることで求めることができるとして、混合物中の成
分の割合(相割合)を決定している。このような従来技
術の例としては、例えば、米国特許公報4899101
号がある。
2. Description of the Related Art FIG. 20 is a block diagram of a conventional mixture phase ratio measuring sensor utilizing capacitance. According to this sensor, the drive electrode 111 and the measurement electrode 112 are arranged around the conduit 110 through which the mixture 100 flows, and an AC voltage is applied to the drive electrode 111 so that a gap between the drive electrode 111 and the measurement electrode 112 is generated. The mixture 100 inside the line 110
Is measured by the capacitance measuring circuit 113. For example, in the case of a mixture of water, oil and air, the relative permittivity of water is about 80, the relative permittivity of oil is about 2-3, the relative permittivity of gas is 1, and the dependence on temperature is small. Assuming that the capacitance of each component can be obtained by multiplying the phase ratio of each component by each relative dielectric constant and a coefficient, the ratio (phase ratio) of the components in the mixture is determined. Examples of such prior art include, for example, U.S. Pat.
There is a number.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
方法では、例えば水の分布が一様でない場合には、その
分布に影響されて相割合の正確な測定ができない。それ
は、測定対象が他の物質であっても同様である。この理
由は、電極間に存在する複数の物質が電気回路における
並列コンデンサを形成するか、直列コンデンサを形成す
るか、あるいはそれらが組み合わされたコンデンサが形
成されるかという問題となるからである。電極形状を工
夫してそれらの問題を改善することも図られているが、
まだ不均一分布の影響を充分に除去できるものとはなっ
ていない。本願発明は、これらの課題を解決するために
なされたもので、混合物の不均一分布に基づく誤差を防
止し得る混合物相割合測定センサを提供することを目的
とする。
However, in the above-mentioned method, for example, when the distribution of water is not uniform, it is not possible to measure the phase ratio accurately due to the influence of the distribution. The same is true even if the measurement target is another substance. The reason is that a plurality of substances existing between the electrodes form a parallel capacitor in an electric circuit, a series capacitor, or a combination of them to form a capacitor. It is also attempted to improve these problems by devising the electrode shape,
The effects of the non-uniform distribution have not yet been sufficiently removed. The present invention has been made to solve these problems, and an object of the present invention is to provide a mixture phase ratio measurement sensor capable of preventing an error based on a non-uniform distribution of a mixture.

【0004】[0004]

【課題を解決するための手段】請求項1に係る発明は、
複数の相から成る混合物が流れる管路に設けた電圧駆動
電極と測定電極との間の静電容量を測定することにより
前記混合物の相割合を決定する混合物相割合測定センサ
において、前記管路の周囲を取り囲むように相互に絶縁
されて配置された複数の電極と、前記複数の電極を、交
流電圧駆動する駆動電極群と、該駆動電極群と対向する
位置にある測定電極群と、該測定電極群の両側に位置す
るダミー電極群とに構成するとともに、該電極の数に対
応して前記各電極群が前記管路の周囲を一回転するよう
に各電極群の組み合わせを電気的に切り替えるスイッチ
ング装置と、前記ダミー電極群に測定電極群と同じ電位
を与える電位供給装置と、前記駆動電極群と測定電極群
との間の静電容量を、前記スイッチング装置の切り替え
毎に測定する静電容量測定装置と、測定された静電容量
から各成分の相割合を求める相割合演算装置とを備えた
混合物相割合測定センサである。
The invention according to claim 1 is
In a mixture phase ratio measurement sensor for determining a phase ratio of the mixture by measuring a capacitance between a voltage driving electrode and a measurement electrode provided in a conduit through which a mixture composed of a plurality of phases flows, A plurality of electrodes arranged so as to be insulated from each other so as to surround the periphery; a drive electrode group for driving the plurality of electrodes with an AC voltage; a measurement electrode group at a position opposed to the drive electrode group; A dummy electrode group is arranged on both sides of the electrode group, and a combination of the electrode groups is electrically switched so that each of the electrode groups makes one rotation around the pipeline in accordance with the number of the electrodes. A switching device, a potential supply device that applies the same potential as the measurement electrode group to the dummy electrode group, and an electrostatic capacitance that measures the capacitance between the drive electrode group and the measurement electrode group each time the switching device is switched. And quantity measuring device, a mixture phase ratio measuring sensor with the measured capacitance and a phase fraction calculation device for determining the phase ratio of each component.

【0005】請求項2に係る発明は、請求項1に係る発
明において、前記静電容量測定装置から得られた静電容
量から求まる前記混合物の平均誘電率εm と、該混合物
の第1の成分の誘電率εw と、該混合物の第2の成分の
誘電率εo と、前記スイッチング装置の切り替え毎によ
る静電容量の変動値から求められる混合物の混合係数Y
とを用いて、前記第1の成分の相割合φを、 φ=1−{(εm −εw )/(εo −εw )}・(εo
/εm Y として求める。
According to a second aspect of the present invention, in the first aspect of the present invention, the average dielectric constant ε m of the mixture obtained from the capacitance obtained from the capacitance measuring device, and the first dielectric constant of the mixture The mixing coefficient Y of the mixture obtained from the dielectric constant ε w of the component, the dielectric constant ε o of the second component of the mixture, and the value of the change in capacitance with each switching of the switching device.
, The phase ratio φ of the first component is determined by the following equation: φ = 1 − {(ε m −ε w ) / (ε o −ε w )} · (ε o
/ Ε m ) Determined as Y.

【0006】請求項3に係る発明は、請求項1に係る発
明において、前記駆動電極群と測定電極群の間の電気抵
抗を前記スイッチング装置の切り替え毎に測定する電気
抵抗測定装置を備え、前記静電容量測定装置から得られ
た静電容量から求まる前記混合物の平均誘電率εm と、
該混合物の第1の成分の誘電率εw と、該混合物の第2
の成分の誘電率εo と、前記電気抵抗測定装置から得ら
れた電気抵抗の変動値から求められる混合物の混合係数
Yとを用いて、前記第1の成分の相割合φを、 φ=1−{(εm −εw )/(εo −εw )}・(εo
/εm Y として求める。
The invention according to claim 3 is the invention according to claim 1, further comprising an electric resistance measuring device for measuring electric resistance between the driving electrode group and the measuring electrode group every time the switching device is switched. and average dielectric constant epsilon m of the mixture obtained from the capacitance obtained from the capacitance measuring device,
The dielectric constant ε w of the first component of the mixture and the second
Using the dielectric constant ε o of the component and the mixing coefficient Y of the mixture obtained from the fluctuation value of the electric resistance obtained from the electric resistance measuring device, the phase ratio φ of the first component is defined as φ = 1 − {(Ε m −ε w ) / (ε o −ε w )} · (ε o
/ Ε m ) Determined as Y.

【0007】請求項4に係る発明は、請求項1に係る発
明において、前記混合物の流速を測定する流速測定装置
を備え、前記静電容量測定装置から得られた静電容量か
ら求まる前記混合物の平均誘電率εm と、該混合物の第
1の成分の誘電率εw と、該混合物の第2の成分の誘電
率εo と、前記流速測定装置から得られた流速から求め
られる混合物の混合係数Yとを用いて、前記第1の成分
の相割合φを、 φ=1−{(εm −εw )/(εo −εw )}・(εo
/εm Y として求める。
The invention according to a fourth aspect is the invention according to the first aspect, further comprising a flow velocity measuring device for measuring a flow velocity of the mixture, wherein the flow rate of the mixture obtained from the capacitance obtained from the capacitance measuring device is measured. Mixing of the mixture determined from the average dielectric constant ε m , the dielectric constant ε w of the first component of the mixture, the dielectric constant ε o of the second component of the mixture, and the flow velocity obtained from the flow velocity measuring device Using the coefficient Y, the phase ratio φ of the first component is calculated as follows: φ = 1 − {(ε m −ε w ) / (ε o −ε w )} · (ε o
/ Ε m ) Determined as Y.

【0008】請求項5に係る発明は、請求項1に係る発
明において、前記管路内の圧力を測定する圧力測定装置
を備え、前記静電容量測定装置から得られた静電容量か
ら求まる前記混合物の平均誘電率εm と、該混合物の第
1の成分の誘電率εw と、該混合物の第2の成分の誘電
率εo と、前記圧力測定装置から得られた圧力の変動値
から求められる混合物の混合係数Yとを用いて、前記第
1の成分の相割合φを、 φ=1−{(εm −εw )/(εo −εw )}・(εo
/εm Y として求める。
According to a fifth aspect of the present invention, in the first aspect of the present invention, there is provided a pressure measuring device for measuring a pressure in the pipeline, wherein the pressure is obtained from the capacitance obtained from the capacitance measuring device. From the average dielectric constant ε m of the mixture, the dielectric constant ε w of the first component of the mixture, the dielectric constant ε o of the second component of the mixture, and the pressure variation obtained from the pressure measuring device, Using the obtained mixture coefficient Y of the mixture, the phase ratio φ of the first component is calculated as follows: φ = 1 − {(ε m −ε w ) / (ε o −ε w )} · (ε o
/ Ε m ) Determined as Y.

【0009】請求項6に係る発明は、請求項2から5に
係る発明において、前記混合係数をニューラルネットワ
ークを利用して算出する。
According to a sixth aspect of the present invention, in the invention of the second to fifth aspects, the mixing coefficient is calculated using a neural network.

【0010】[0010]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.図1は本発明の相割合測定センサの構成
図であり、測定流体である混合物1の流れる管路2の周
囲全体にわたって相互に絶縁されて配置された複数の電
極3と、制御及び演算を行う複数の装置とからなる。図
2、図3は管路2と複数の電極3と関係を具体的に示す
それぞれ斜視図と側面図である。また、図4は、複数の
電極3を駆動電極群、測定電極群およびダミー電極群と
して使用する場合の、各電極群の配置例を示す電極群構
成図である。
Embodiment 1 FIG. FIG. 1 is a block diagram of a phase ratio measurement sensor according to the present invention, which performs control and calculation with a plurality of electrodes 3 arranged insulated from each other over the entire circumference of a pipe 2 through which a mixture 1 as a measurement fluid flows. Consists of multiple devices. 2 and 3 are a perspective view and a side view, respectively, specifically showing the relationship between the conduit 2 and the plurality of electrodes 3. FIG. 4 is an electrode group configuration diagram showing an arrangement example of each electrode group when a plurality of electrodes 3 are used as a drive electrode group, a measurement electrode group, and a dummy electrode group.

【0011】ここでは、電極3は管路2の周囲に16個
(3a〜3p)設けられており、それらは、スイッチン
グ装置18によって駆動電極群131と、測定電極群1
32と、ダミー電極群133に設定される。図4の例
は、管路2の周囲の180度の範囲にある電極3a〜3
hを駆動電極群131とし、駆動電極群131に対向し
て管路2の周囲の90度の範囲にある電極3k〜3nを
測定電極群132とし、さらに駆動電極群131と測定
電極群132との間にある電極3i、3j、3o、3p
をダミー電極群133としている。ダミー電極群133
は電位供給装置19により測定電極群132と同電位と
される。駆動電極群131と測定電極群132との間の
静電容量は、静電容量測定装置16により測定される。
この測定された静電容量を基に、演算処理装置17は、
下記のような関係から混合物の相割合を算出する。な
お、電極の数や、各電極群が含まれることになる角度範
囲については、この例に限定される必要はない。
In this case, 16 electrodes 3 (3a to 3p) are provided around the pipe line 2, and they are connected to the driving electrode group 131 and the measurement electrode group 1 by the switching device 18.
32 and the dummy electrode group 133. In the example of FIG. 4, the electrodes 3 a to 3 in the range of 180 degrees around the pipe 2 are shown.
h is a drive electrode group 131, electrodes 3k to 3n facing the drive electrode group 131 and within a range of 90 degrees around the pipe line 2 are a measurement electrode group 132, and the drive electrode group 131 and the measurement electrode group 132 Electrodes 3i, 3j, 3o, 3p between
Are the dummy electrode group 133. Dummy electrode group 133
Are set to the same potential as the measurement electrode group 132 by the potential supply device 19. The capacitance between the drive electrode group 131 and the measurement electrode group 132 is measured by the capacitance measurement device 16.
Based on the measured capacitance, the arithmetic processing unit 17
The phase ratio of the mixture is calculated from the following relationship. Note that the number of electrodes and the angle range in which each electrode group is included need not be limited to this example.

【0012】例えば、混合物が、水と油と空気とからな
る場合、εw を水の誘電率、εo を油の誘電率、そして
εa を空気の誘電率とすると、静電容量Cは、 C=Hw・Kw・εw +Ho・Kp・εo +Ha・Ka・εa (1) の関係がある。ここで、Hw、Ho、Haは、それぞれ
水、油、空気の相割合、Kw、Ko、Kaは定数であ
る。また、異なる周波数f1、f2における静電容量の
変化分△Cは、 △C=K{εm (f1)−εm (f2)} (2) で表せる。ここで、Kは定数、εm は混合物の平均誘電
率である。さらに、ρm を混合物の平均密度、ρw を水
の密度、ρo を油の密度、そしてρa を空気の密度とす
ると、 ρm =Hw・ρw +Ho・ρo +Ha・ρa (3) であり、 1=Hw+Ho+Ha (4) という関係がある。
For example, if the mixture is composed of water, oil and air, and ε w is the permittivity of water, ε o is the permittivity of oil, and ε a is the permittivity of air, the capacitance C is , a relationship of C = Hw · Kw · ε w + Ho · Kp · ε o + Ha · Ka · ε a (1). Here, Hw, Ho, and Ha are phase ratios of water, oil, and air, respectively, and Kw, Ko, and Ka are constants. Further, variation △ C for capacitance at different frequencies f1, f2 can be expressed by △ C = K {ε m ( f1) -ε m (f2)} (2). Where K is a constant and ε m is the average dielectric constant of the mixture. Further, if ρ m is the average density of the mixture, ρ w is the density of water, ρ o is the density of oil, and ρ a is the density of air, ρ m = Hw · ρ w + Ho · ρ o + Ha · ρ a ( 3) and 1 = Hw + Ho + Ha (4)

【0013】次に、このセンサの動作を水(w)と油
(o)の混合物を例に説明する。図5は、水が油の周り
にある場合で、駆動電極群131から測定電極群132
とダミー電極群133に向かって電気力線が走るが、こ
れは図6のような水と油を用いたコンデンサの等価回路
で表すことができる。一方、図7は、図5と同じ相割合
(水分率)であって、油の中に水がある場合で、これは
図8のような水と油を用いたコンデンサの等価回路で表
すことができる。これら2つのケースで、測定電極群1
32とダミー電極群133の出力を全て出力値として測
定すると、同じ相割合でありながら、出力される静電容
量の値が大きく違い、図5の水が周りにある方が、図7
の油が周りにある場合より大きな静電容量値となる。し
かし、測定電極の両側にあるダミー電極群133の出力
を測定値として取らないとすると、上記の2つのケース
において測定されるそれぞれの静電容量値が近くなり、
混合物の分布の影響を小さくできる。本発明はこれを利
用するものである。
Next, the operation of this sensor will be described using a mixture of water (w) and oil (o) as an example. FIG. 5 shows a case where water is around the oil, and the drive electrode group 131 to the measurement electrode group 132
And lines of electric force run toward the dummy electrode group 133, which can be represented by an equivalent circuit of a capacitor using water and oil as shown in FIG. On the other hand, FIG. 7 shows the same phase ratio (moisture percentage) as in FIG. 5 when water is present in the oil, which can be represented by an equivalent circuit of a capacitor using water and oil as shown in FIG. Can be. In these two cases, measuring electrode group 1
When all outputs of the dummy electrode group 32 and the dummy electrode group 133 are measured as output values, the output capacitance values are significantly different while having the same phase ratio.
Is larger than when surrounding oil is present. However, if the output of the dummy electrode group 133 on both sides of the measurement electrode is not taken as a measurement value, the respective capacitance values measured in the above two cases become close,
The influence of the distribution of the mixture can be reduced. The present invention utilizes this.

【0014】図4の配置での構成で、静電容量の測定が
終了すると、次に、スイッチング装置18によって、電
気的に電極を1個づつずらして、再び各電極群を構成す
る。例えば、時計回りにずらすとして、電極3b〜3i
を駆動電極群131に、電極3l〜3oを測定電極群1
32に、電極3j、3k、3p、3aをダミー電極群1
33にする。そして、この位置での、駆動電極群131
と測定電極群132との間の静電容量を再び測定する。
このようにして、複数の電極3の数に対応して各電極群
が管路2の周囲を一回りするまで、この例では総計16
回の静電容量測定を行い、求められた各静電容量から、
演算処理装置17によってこの断面における水の相割合
を求める。なお、各成分の相割合が時間的に変化する場
合には、続けて測定を行うことにより、各成分の相割合
の時間的変化が測定されることになる。
When the measurement of the capacitance is completed in the configuration shown in FIG. 4, the switching device 18 electrically shifts the electrodes one by one to form each electrode group again. For example, if the electrodes 3b to 3i are shifted clockwise,
To the drive electrode group 131, and the electrodes 31 to 3o to the measurement electrode group 1
32, the electrodes 3j, 3k, 3p, and 3a are connected to the dummy electrode group 1
33. Then, the drive electrode group 131 at this position
The capacitance between the measurement electrode group 132 and the measurement electrode group 132 is measured again.
In this manner, a total of 16 electrodes in this example is used until each electrode group goes around the circumference of the conduit 2 in accordance with the number of the plurality of electrodes 3.
Times of capacitance measurement, and from the obtained capacitance,
The phase ratio of water in this section is obtained by the arithmetic processing unit 17. In the case where the phase ratio of each component changes over time, the measurement is continuously performed to measure the change over time of the phase ratio of each component.

【0015】又、測定された静電容量値に、実験によっ
て予め求められている係数を掛けることにより、混合物
の平均誘電率εm が求められる。水と油の混合物の場
合、水の誘電率をεw 、油の誘電率をεo とすると、水
の相割合φは、 φ=1−{(εm −εw )/(εo −εw )}・(εo /εm Y (4) で求まる。(4)式中のYは、0から1の値を取る混合
物の混合係数であって、混合状態がわかっている場合に
は、実験によって予め求めることができるものである。
The average dielectric constant ε m of the mixture is obtained by multiplying the measured capacitance value by a coefficient obtained in advance by an experiment. In the case of a mixture of water and oil, assuming that the dielectric constant of water is ε w and the dielectric constant of oil is ε o , the phase ratio of water is φ = 1− φ (ε m −ε w ) / (ε o − ε w )} · (ε o / ε m ) Y (4) Y in the equation (4) is a mixing coefficient of the mixture taking a value from 0 to 1, and can be obtained in advance by an experiment when the mixing state is known.

【0016】混合物の混合状態が予測できないとき、混
合係数Yは、下記に示すような種々の方法で求めること
ができる。その1つは、各回の測定によって得られた静
電容量の変動値から求める方法である。流速が小さいと
き、水と油は、図9に示すがごとく層状に分かれて流れ
る。すると、各回の測定静電容量値は図10のようにな
り、測定値の変化が大きくなる。このとき、(4)式よ
り最も正確に水の相割合を計算できる混合係数Yを予め
求めておく。また、流速が大きくなると、水と油は、図
11に示すがごとく混合されて、各回の測定静電容量値
は図12のように変動が少なくなる。このときも、
(4)式より最も正確に水の相割合を計算できる混合係
数Yを予め求めておく。これらの値を基に、各回の測定
静電容量値の変動割合をパラメータとして、混合状態が
不明の混合物の混合係数Yを演算処理装置17で求め
る。
When the mixing state of the mixture cannot be predicted, the mixing coefficient Y can be obtained by various methods as described below. One of the methods is a method of obtaining from a capacitance variation value obtained by each measurement. When the flow velocity is low, water and oil flow in layers as shown in FIG. Then, the capacitance value measured each time becomes as shown in FIG. 10, and the change in the measured value becomes large. At this time, a mixing coefficient Y that can calculate the water phase ratio most accurately from the equation (4) is obtained in advance. When the flow velocity increases, water and oil are mixed as shown in FIG. 11, and the capacitance value measured each time has less fluctuation as shown in FIG. Again,
A mixing coefficient Y that can calculate the water phase ratio most accurately from the equation (4) is obtained in advance. Based on these values, the arithmetic processing unit 17 obtains the mixing coefficient Y of the mixture whose mixing state is unknown, using the variation ratio of the measured capacitance value at each time as a parameter.

【0017】実施の形態2.混合係数Yを求める2番目
の方法は、駆動電極群131と測定電極群132との間
の電気抵抗値の変動を利用するものである。図9のよう
に混合状態の場合、駆動電極群131と測定電極群13
2との間に水と油が直列につながったときの電気抵抗値
は大きくなり、それらが並列につながったときの電気抵
抗値は小さくなるので、各測定回の電気抵抗値は図10
のようになる。このとき、(4)式より最も正確に水の
相割合を計算できる混合係数Yを予め求めておく。一
方、図11のような混合状態の場合には、各測定回の電
気抵抗値はその変化が少なく図12のようになる。この
ときも、(4)式より最も正確に水の相割合を計算でき
る混合係数Yを予め求めておく。これらの値を基に、各
測定回の電気抵抗値の変動割合をパラメータとして、混
合状態が不明の混合物の混合係数Yを求めることができ
る。図13は、この方法を利用した混合物相割合測定セ
ンサの構成図である。これは、図1の構成に、各回の静
電容量測定時に駆動電極群131と測定電極群132と
の間の電気抵抗を測定する電気抵抗測定装置20を追加
し、測定された電気抵抗値の変動割合をパラメータとし
て、混合状態が不明の混合物の混合係数Yを演算処理装
置17で求める。
Embodiment 2 FIG. The second method for obtaining the mixing coefficient Y utilizes the fluctuation of the electric resistance between the drive electrode group 131 and the measurement electrode group 132. In the case of a mixed state as shown in FIG. 9, the drive electrode group 131 and the measurement electrode group 13
Since the electric resistance value when water and oil are connected in series between the two is increased, and the electric resistance value when they are connected in parallel is reduced, the electric resistance value at each measurement is shown in FIG.
become that way. At this time, a mixing coefficient Y that can calculate the water phase ratio most accurately from the equation (4) is obtained in advance. On the other hand, in the case of the mixed state as shown in FIG. 11, the electric resistance value at each measurement is little changed and becomes as shown in FIG. Also at this time, the mixing coefficient Y that can calculate the water phase ratio most accurately from the equation (4) is obtained in advance. Based on these values, the mixing coefficient Y of the mixture whose mixing state is unknown can be obtained by using the variation ratio of the electric resistance value at each measurement as a parameter. FIG. 13 is a configuration diagram of a mixture phase ratio measurement sensor using this method. This is achieved by adding an electric resistance measuring device 20 for measuring the electric resistance between the driving electrode group 131 and the measuring electrode group 132 at each time of the capacitance measurement to the configuration of FIG. Using the fluctuation ratio as a parameter, the arithmetic processing unit 17 obtains the mixing coefficient Y of the mixture whose mixing state is unknown.

【0018】実施の形態3.混合係数Yを求める3番目
の方法は、混合物の流速を利用するものである。予め混
合物の流速と混合係数Yの相関を求めておき、実際に測
定した流速から混合係数を求めるようにするものであ
る。図14はこの例の混合物相割合測定センサの構成図
である。これは、図1の構成に加えて、管路2に混合物
の流速を測定する流速センサ40を設け、測定された流
速をパラメータとして、混合状態が不明の混合物の混合
係数Yを演算処理装置17で求める。
Embodiment 3 A third method for determining the mixing coefficient Y utilizes the flow rate of the mixture. The correlation between the flow rate of the mixture and the mixing coefficient Y is determined in advance, and the mixing coefficient is determined from the actually measured flow rate. FIG. 14 is a configuration diagram of the mixture phase ratio measurement sensor of this example. This is achieved by providing a flow rate sensor 40 for measuring the flow rate of the mixture in the pipe line 2 in addition to the configuration of FIG. 1 and using the measured flow rate as a parameter to calculate the mixing coefficient Y of the mixture whose mixing state is unknown. Ask for.

【0019】実施の形態4.混合係数Yを求める4番目
の方法は、混合物の圧力の変動を利用するものである。
圧力の変動が、図15のように少ないときと、図16の
ように大きいときのそれぞれについて、(4)式より最
も正確に水の相割合を計算できる混合係数Yを予め求め
ておく。これらの値を基に、測定された圧力の変動をパ
ラメータとして、混合状態が不明の混合物の混合係数Y
を求めることができる。図17は、この方法を利用した
混合物相割合測定センサの構成図である。これは、図1
の構成に、各回の管路2を流れる混合物の圧力を測定す
る圧力センサ41を追加し、測定された抵抗値の変動割
合をパラメータとして、混合状態が不明の混合物の混合
係数Yを演算処理装置17で求める。
Embodiment 4 A fourth method for determining the mixing coefficient Y utilizes fluctuations in the pressure of the mixture.
For each of the case where the pressure fluctuation is small as shown in FIG. 15 and the case where the pressure fluctuation is large as shown in FIG. 16, a mixing coefficient Y which can calculate the water phase ratio most accurately from the equation (4) is obtained in advance. Based on these values, using the measured pressure fluctuation as a parameter, the mixing coefficient Y of the mixture whose mixing state is unknown
Can be requested. FIG. 17 is a configuration diagram of a mixture phase ratio measurement sensor using this method. This is shown in FIG.
A pressure sensor 41 for measuring the pressure of the mixture flowing through the pipe line 2 each time, and using the fluctuation ratio of the measured resistance value as a parameter, calculates the mixing coefficient Y of the mixture whose mixing state is unknown. Find at 17.

【0020】実施の形態5.ポンプなどの脈動が大きい
場合には、図18の構成図に示すように、圧力センサ4
2を管路2の内部の脈動をキャンセルするような構成で
設置して、その出力を利用することもできる。なお、図
19は管路2と圧力センサ42との関係を示す側面図で
ある。
Embodiment 5 When the pulsation of a pump or the like is large, as shown in the configuration diagram of FIG.
2 can be installed in such a manner as to cancel the pulsation inside the pipeline 2 and its output can be used. FIG. 19 is a side view showing the relationship between the pipeline 2 and the pressure sensor 42.

【0021】ここまで説明してきた混合係数Yを求める
場合、ニューラルネットワークの学習作用を利用して上
記各パラメータと混合係数Yとの関係を得ることもでき
る。例えば、静電容量値の変動をパラメータとする場合
は、静電容量のパターン認識をニューラルネットワーク
を介して行う。この場合に、上記各パラメータを組み合
わせて用いてもよい。
When the mixing coefficient Y described above is obtained, the relationship between each of the above parameters and the mixing coefficient Y can be obtained by using the learning operation of the neural network. For example, when the variation of the capacitance value is used as a parameter, the pattern recognition of the capacitance is performed via a neural network. In this case, the above parameters may be used in combination.

【0022】[0022]

【発明の効果】本発明の混合物相割合測定センサによれ
ば、混合物が流れる管路の周囲に配置された複数の電極
を、駆動電極群、測定電極群およびダミー電極群に分割
構成し、各電極群の組み合わせが管路の周囲を一回りす
るように電極の数に対応して各電極群の位置を電気的に
切り替えながら、駆動電極群と測定電極群との間の静電
容量を測定するため、その測定値が混合物の分布に影響
されず、したがって、静電容量をもとに算出される相割
合が正確に求まる。
According to the mixture phase ratio measuring sensor of the present invention, a plurality of electrodes arranged around a conduit through which the mixture flows are divided into a drive electrode group, a measurement electrode group, and a dummy electrode group. Measure the capacitance between the drive electrode group and the measurement electrode group while electrically switching the position of each electrode group according to the number of electrodes so that the combination of electrode groups goes around the circumference of the pipeline Therefore, the measured value is not affected by the distribution of the mixture, and therefore, the phase ratio calculated based on the capacitance is accurately determined.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の相割合測定センサの構成図である。FIG. 1 is a configuration diagram of a phase ratio measurement sensor of the present invention.

【図2】 管路と複数の電極と関係を具体的に示すそれ
ぞれ斜視図である。
FIG. 2 is a perspective view specifically showing a relationship between a conduit and a plurality of electrodes.

【図3】 管路と複数の電極と関係を具体的に示すそれ
ぞれ側面図である。
FIG. 3 is a side view specifically showing a relationship between a conduit and a plurality of electrodes.

【図4】 駆動電極、測定電極およびダミー電極として
使用する場合の、各電極群の配置例を示す電極群構成図
である。
FIG. 4 is an electrode group configuration diagram showing an arrangement example of each electrode group when used as a drive electrode, a measurement electrode, and a dummy electrode.

【図5】 管路内部での水と油の状態図である。FIG. 5 is a diagram showing the state of water and oil inside a pipe.

【図6】 図5の場合のコンデンサの等価回路である。FIG. 6 is an equivalent circuit of the capacitor in the case of FIG.

【図7】 管路内部での水と油の状態図である。FIG. 7 is a diagram showing the state of water and oil inside the pipeline.

【図8】 図7の場合のコンデンサの等価回路である。FIG. 8 is an equivalent circuit of a capacitor in the case of FIG. 7;

【図9】 管路内部での水と油の状態図である。FIG. 9 is a diagram showing the state of water and oil inside the pipeline.

【図10】 図9の場合における駆動電極群と測定電極
群を回転させながらこれらの間の静電容量又は電気抵抗
値を測定した結果である。
FIG. 10 shows the result of measuring the capacitance or electric resistance between the driving electrode group and the measurement electrode group in the case of FIG. 9 while rotating the group.

【図11】 管路内部での水と油の状態図である。FIG. 11 is a diagram showing the state of water and oil inside the pipeline.

【図12】 図11の場合における駆動電極群と測定電
極群を回転させながらこれらの間の静電容量又は電気抵
抗値を測定した結果である。
FIG. 12 shows a result of measuring a capacitance or an electric resistance value between the drive electrode group and the measurement electrode group while rotating the drive electrode group and the measurement electrode group in the case of FIG. 11;

【図13】 本発明の相割合測定センサの別の構成図で
ある。
FIG. 13 is another configuration diagram of the phase ratio measurement sensor of the present invention.

【図14】 本発明の相割合測定センサの別の構成図で
ある。
FIG. 14 is another configuration diagram of the phase ratio measurement sensor of the present invention.

【図15】 管路を流れる混合物の圧力と時間の関係図
である。
FIG. 15 is a diagram showing the relationship between the pressure of a mixture flowing through a pipe and time.

【図16】 管路を流れる混合物の圧力と時間の関係図
である。
FIG. 16 is a diagram showing the relationship between the pressure of a mixture flowing through a pipe and time.

【図17】 本発明の相割合測定センサの別の構成図で
ある。
FIG. 17 is another configuration diagram of the phase ratio measurement sensor of the present invention.

【図18】 本発明の相割合測定センサの別の構成図で
ある。
FIG. 18 is another configuration diagram of the phase ratio measurement sensor of the present invention.

【図19】 管路と差圧センサとの構成を示す図18の
側面図である。
FIG. 19 is a side view of FIG. 18 showing a configuration of a pipeline and a differential pressure sensor.

【図20】 静電容量を利用した従来の混合物相割合測
定センサの構成図である。
FIG. 20 is a configuration diagram of a conventional mixture phase ratio measurement sensor utilizing capacitance.

【符号の説明】[Explanation of symbols]

1 混合物、 2 管路、 3 複数の電極、 16
静電容量測定装置、17 演算処理装置、 18 スイ
ッチング装置、 19 電位供給装置、20 電気抵抗
測定装置、 40 流速センサ、 41 圧力センサ、
42 差圧センサ。
1 mixture, 2 conduits, 3 multiple electrodes, 16
Capacitance measurement device, 17 arithmetic processing device, 18 switching device, 19 potential supply device, 20 electric resistance measurement device, 40 flow velocity sensor, 41 pressure sensor,
42 Differential pressure sensor.

フロントページの続き (71)出願人 000006507 横河電機株式会社 東京都武蔵野市中町2丁目9番32号 (72)発明者 笛木 学 東京都武蔵野市中町2丁目9番32号 横河 電機株式会社内 (72)発明者 山崎 大輔 東京都武蔵野市中町2丁目9番32号 横河 電機株式会社内 (72)発明者 春山 周一 東京都武蔵野市中町2丁目9番32号 横河 電機株式会社内 (72)発明者 田中 仁章 東京都武蔵野市中町2丁目9番32号 横河 電機株式会社内Continuation of the front page (71) Applicant 000006507 Yokogawa Electric Corporation 2-9-132 Nakamachi, Musashino-shi, Tokyo (72) Inventor Manabu Fueki 2-9-132 Nakamachi, Musashino-shi, Tokyo Inside Yokogawa Electric Corporation (72) Inventor Daisuke Yamazaki 2-9-132 Nakamachi, Musashino City, Tokyo Inside Yokogawa Electric Corporation (72) Inventor Shuichi Haruyama 2-9-132 Nakamachi, Musashino City, Tokyo Inside Yokogawa Electric Corporation (72 ) Inventor: Hitoshi Tanaka 2-9-132 Nakamachi, Musashino City, Tokyo Inside Yokogawa Electric Corporation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 複数の相から成る混合物が流れる管路に
設けた電圧駆動電極と測定電極との間の静電容量を測定
することにより前記混合物の相割合を決定する混合物相
割合測定センサにおいて、 前記管路の周囲を取り囲むように相互に絶縁されて配置
された複数の電極と、 前記複数の電極を、交流電圧駆動する駆動電極群と、該
駆動電極群と対向する位置にある測定電極群と、該測定
電極群の両側に位置するダミー電極群とに構成するとと
もに、該電極の数に対応して前記各電極群が前記管路の
周囲を一回転するように各電極群の組み合わせを電気的
に切り替えるスイッチング装置と、 前記ダミー電極群に測定電極群と同じ電位を与える電位
供給装置と、 前記駆動電極群と測定電極群との間の静電容量を、前記
スイッチング装置の切り替え毎に測定する静電容量測定
装置と、 測定された静電容量から各成分の相割合を求める相割合
演算装置とを備えた混合物相割合測定センサ。
A mixture phase ratio measuring sensor for determining a phase ratio of a mixture by measuring a capacitance between a voltage driving electrode and a measurement electrode provided in a conduit through which a mixture of a plurality of phases flows. A plurality of electrodes arranged so as to be insulated from each other so as to surround the periphery of the conduit; a drive electrode group for driving the plurality of electrodes with an AC voltage; and a measurement electrode at a position facing the drive electrode group. And a dummy electrode group located on both sides of the measurement electrode group, and a combination of the electrode groups such that each electrode group makes one rotation around the conduit corresponding to the number of the electrodes. A switching device that electrically switches between the dummy electrode group, a potential supply device that applies the same potential as the measurement electrode group to the dummy electrode group, and a capacitance between the drive electrode group and the measurement electrode group. Mixture phase ratio measurement sensor having a capacitance measuring device, from the measured capacitance and phase fraction calculation device for determining the phase ratio of each component to be measured.
【請求項2】 前記静電容量測定装置から得られた静電
容量から求まる前記混合物の平均誘電率εm と、該混合
物の第1の成分の誘電率εw と、該混合物の第2の成分
の誘電率εo と、前記スイッチング装置の切り替え毎に
よる静電容量の変動値から求められる混合物の混合係数
Yとを用いて、前記第1の成分の相割合φを、 φ=1−{(εm −εw )/(εo −εw )}・(εo
/εm Y として求める請求項1記載の混合物相割合測定センサ。
2. An average dielectric constant ε m of the mixture obtained from the capacitance obtained from the capacitance measuring device, a dielectric constant ε w of a first component of the mixture, and a second dielectric constant of the mixture. Using the dielectric constant ε o of the component and the mixing coefficient Y of the mixture obtained from the variation value of the capacitance at each switching of the switching device, the phase ratio φ of the first component is calculated as φ = 1− { (Ε m −ε w ) / (ε o −ε w )} · (ε o
/ Ε m ) Y sensor according to claim 1, determined as Y.
【請求項3】 前記駆動電極群と測定電極群の間の電気
抵抗を前記スイッチング装置の切り替え毎に測定する電
気抵抗測定装置を備え、 前記静電容量測定装置から得られた静電容量から求まる
前記混合物の平均誘電率εm と、該混合物の第1の成分
の誘電率εw と、該混合物の第2の成分の誘電率ε
o と、前記電気抵抗測定装置から得られた電気抵抗の変
動値から求められる混合物の混合係数Yとを用いて、前
記第1の成分の相割合φを、 φ=1−{(εm −εw )/(εo −εw )}・(εo
/εm Y として求める請求項1記載の混合物相割合測定センサ。
3. An electric resistance measuring device for measuring an electric resistance between the driving electrode group and the measuring electrode group each time the switching device is switched, wherein the electric resistance is obtained from a capacitance obtained from the capacitance measuring device. The average dielectric constant ε m of the mixture, the dielectric constant ε w of the first component of the mixture, and the dielectric constant ε w of the second component of the mixture.
Using o and the mixing coefficient Y of the mixture obtained from the fluctuation value of the electric resistance obtained from the electric resistance measuring device, the phase ratio φ of the first component is calculated as φ = 1 − {(ε m − ε w ) / (ε o −ε w )} · (ε o
/ Ε m ) Y sensor according to claim 1, determined as Y.
【請求項4】 前記混合物の流速を測定する流速測定装
置を備え、 前記静電容量測定装置から得られた静電容量から求まる
前記混合物の平均誘電率εm と、該混合物の第1の成分
の誘電率εw と、該混合物の第2の成分の誘電率ε
o と、前記流速測定装置から得られた流速から求められ
る混合物の混合係数Yとを用いて、前記第1の成分の相
割合φを、 φ=1−{(εm −εw )/(εo −εw )}・(εo
/εm Y として求める請求項1記載の混合物相割合測定センサ。
4. A flow rate measuring device for measuring a flow rate of the mixture, an average dielectric constant ε m of the mixture obtained from a capacitance obtained from the capacitance measuring device, and a first component of the mixture. and the dielectric constant epsilon w of the dielectric constant of the second component of the mixture epsilon
Using o and the mixing coefficient Y of the mixture obtained from the flow rate obtained from the flow rate measuring device, the phase ratio φ of the first component is calculated as follows: φ = 1 − {(ε m −ε w ) / ( ε o −ε w )} ・ (ε o
/ Ε m ) Y sensor according to claim 1, determined as Y.
【請求項5】 前記管路内の圧力を測定する圧力測定装
置を備え、 前記静電容量測定装置から得られた静電容量から求まる
前記混合物の平均誘電率εm と、該混合物の第1の成分
の誘電率εw と、該混合物の第2の成分の誘電率ε
o と、前記圧力測定装置から得られた圧力の変動値から
求められる混合物の混合係数Yとを用いて、前記第1の
成分の相割合φを、 φ=1−{(εm −εw )/(εo −εw )}・(εo
/εm Y として求める請求項1記載の混合物相割合測定センサ。
5. An apparatus according to claim 1, further comprising a pressure measuring device for measuring a pressure in the conduit, wherein an average dielectric constant ε m of the mixture determined from a capacitance obtained from the capacitance measuring device, and a first value of the mixture. And the dielectric constant ε w of the second component of the mixture.
o and the mixing coefficient Y of the mixture obtained from the fluctuation value of the pressure obtained from the pressure measuring device, the phase ratio φ of the first component is calculated as follows: φ = 1 − {(ε m −ε w ) / (Ε o −ε w )} · (ε o
/ Ε m ) Y sensor according to claim 1, determined as Y.
【請求項6】 前記混合係数をニューラルネットワーク
で処理して算出する請求項2から5の何れかに記載の混
合物相割合測定センサ。
6. The mixture phase ratio measuring sensor according to claim 2, wherein the mixing coefficient is calculated by processing with a neural network.
JP21656297A 1997-08-11 1997-08-11 Sensor for measuring phase ratio of each component of mixture Pending JPH1164409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21656297A JPH1164409A (en) 1997-08-11 1997-08-11 Sensor for measuring phase ratio of each component of mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21656297A JPH1164409A (en) 1997-08-11 1997-08-11 Sensor for measuring phase ratio of each component of mixture

Publications (1)

Publication Number Publication Date
JPH1164409A true JPH1164409A (en) 1999-03-05

Family

ID=16690381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21656297A Pending JPH1164409A (en) 1997-08-11 1997-08-11 Sensor for measuring phase ratio of each component of mixture

Country Status (1)

Country Link
JP (1) JPH1164409A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208234A (en) * 2005-01-28 2006-08-10 Ngk Spark Plug Co Ltd Liquid concentration detector
JP2013253827A (en) * 2012-06-06 2013-12-19 Fujitsu Ltd Device and method for measuring dielectric constant
CN111089230A (en) * 2019-12-03 2020-05-01 西安科技大学 High-concentration coal water slurry conveying pipeline monitoring and early warning system and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208234A (en) * 2005-01-28 2006-08-10 Ngk Spark Plug Co Ltd Liquid concentration detector
JP2013253827A (en) * 2012-06-06 2013-12-19 Fujitsu Ltd Device and method for measuring dielectric constant
CN111089230A (en) * 2019-12-03 2020-05-01 西安科技大学 High-concentration coal water slurry conveying pipeline monitoring and early warning system and method

Similar Documents

Publication Publication Date Title
US8508238B2 (en) System and method for performing electrical impedance tomography
JP5739731B2 (en) Image reconstruction based on constrained maximization
KR100193004B1 (en) Water cut monitoring means and method
US20110163770A1 (en) Electrical network representation of a distributed system
EP0393068B1 (en) Apparatus and methods for measuring permitivity in materials
CA2729970C (en) Device for the measurement of electrical properties of fluids and method for measuring said electrical properties
RU2001122586A (en) MEASURING MULTI-PHASE FLOW IN A PIPELINE
AU8940498A (en) Method of measuring flow rates of respective fluids constituting multiphase fluid and flow meter for multiphase flow utilizing the same
JP2011257396A5 (en)
JP2021503090A (en) Device for monitoring fluids
JPH1164409A (en) Sensor for measuring phase ratio of each component of mixture
JPH03103722A (en) Flowmeter
Banik et al. Development of a pollution flashover model for 11 kV porcelain and silicon rubber insulator by using COMSOL multiphysics
JPH09138211A (en) Method and device for detecting phase component medium in open duct and closed duct
JPH08271469A (en) Densitometer for multiphase fluid
JPH10282035A (en) Mixture volume ratio measurement sensor
JPH10282033A (en) Mixture volume ratio measurement sensor
WO2021250225A1 (en) Flow meter for measuring flow velocity in oil continuous flows
GB2564226A (en) Method and Apparatus For Measuring Flows
JPH10282034A (en) Mixed object volume ratio measurement sensor
RU2156970C1 (en) Process determining component by component flow rate of three-component gas and liquid flow and device for its realization
RU2315960C2 (en) Method and device for measuring parameters of flowing multi-component fluids
SU524130A1 (en) Volumetric charge meter in the flow of petroleum products
JPH11125547A (en) Method for measuring flow rate of each fluid of multiphase fluid, and flowmeter for multiphase fluid
JPH11125616A (en) Component ratio measuring method of multiphase fluid and component rate meter using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040331