JPH1163385A - Rotary shaft bearing lubricating method and rotary shaft temperature controlling method using this method - Google Patents

Rotary shaft bearing lubricating method and rotary shaft temperature controlling method using this method

Info

Publication number
JPH1163385A
JPH1163385A JP24474797A JP24474797A JPH1163385A JP H1163385 A JPH1163385 A JP H1163385A JP 24474797 A JP24474797 A JP 24474797A JP 24474797 A JP24474797 A JP 24474797A JP H1163385 A JPH1163385 A JP H1163385A
Authority
JP
Japan
Prior art keywords
lubricating oil
flow rate
bearing
rotating shaft
temperature rise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24474797A
Other languages
Japanese (ja)
Other versions
JP3394692B2 (en
Inventor
Nakamasa Takeno
仲勝 武野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP24474797A priority Critical patent/JP3394692B2/en
Publication of JPH1163385A publication Critical patent/JPH1163385A/en
Application granted granted Critical
Publication of JP3394692B2 publication Critical patent/JP3394692B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the generation of excessive energy from a lubricant supply device so as to suppress temperature increase to minimum by suppressing turbulence of lubricant in a bearing unit and preventing an oil pump from discharging excessive oil unavailable for lubrication. SOLUTION: A driving motor 8 is driven by means of an inverter at a selected number of revolutions when a power source of a lubricant supply device is turned on, and lubricant is fed out by means of an oil pump 5 at a selected discharge ratio of 1800 cc/min so as to be fed to a spindle bearing unit 1 from a supply flow passage 11 by a proper quantity for eliminating turbulence due to stirring. Then, the lubricant, which lubricated the spindle bearing unit 1, is heated because it takes the heat generated in lubrication while lubricating the bearing, and the oil pump 5 is prevented from discharging excessive oil, which not used for lubrication, so that the generation of excessive energy from the lubricant supply device is prevented, and the oil raised in temperature is returned to an oil tank 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は産業機械、特に高精
度が要求される工作機械、例えば研削盤,旋盤,マシニ
ングセンタ等の主軸に類する回転軸軸受の潤滑方法及び
この方法を用いた回転軸の温度制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of lubricating a rotating shaft bearing similar to a main shaft of an industrial machine, particularly a machine tool requiring high precision, for example, a grinding machine, a lathe, a machining center, etc., and a rotating shaft using the method. It relates to a temperature control method.

【0002】[0002]

【従来の技術】工作機械に使用する主軸軸受は主軸の回
転数の上昇に伴って温度が上昇し、この温度上昇がその
主軸の最高回転数を制限する原因にもなる。同時に主軸
又は主軸台等に熱変位が発生して加工精度に影響するた
め、如何にして軸受温度の上昇を抑えるかが各製造技術
者の頭を使うところである。従来一般に行われている軸
受への潤滑油供給装置を図1にもとづいて説明する。主
軸ユニット1は例えば先端に工具を取り付けた主軸2が
軸受〔流体軸受(動圧軸受等)または転がり軸受〕で軸
承されており、軸の後部からベルト駆動またはモータ3
との直結により駆動される。潤滑油供給装置のオイルポ
ンプ5はフイルタ6を介してオイルタンク7に接続され
ている。オイルポンプ5は駆動モータ8の回転によって
一定量の油を吐出するものである。吐出された潤滑油は
油量調整弁9,圧力制御弁10を介して供給流路11よ
り軸受ユニット1の軸受に供給され、軸受を潤滑したあ
と排出流路12からオイルタンク7へ戻される。流量調
整弁9は通常軸受の必要とする適当な流量に調整されて
おり、軸受に供給されない余分の油は圧力制御弁10の
排出路11よりオイルタンク7に戻される。
2. Description of the Related Art The temperature of a spindle bearing used in a machine tool rises with an increase in the rotation speed of the spindle, and this rise in temperature also limits the maximum rotation speed of the spindle. At the same time, thermal displacement occurs in the spindle or the headstock, which affects machining accuracy. Therefore, it is a matter of each manufacturing engineer how to suppress the rise in bearing temperature. A conventional lubricating oil supply device for a bearing, which is generally performed, will be described with reference to FIG. The main spindle unit 1 has, for example, a main spindle 2 having a tool attached to its tip end supported by a bearing [fluid bearing (dynamic pressure bearing or the like) or a rolling bearing].
Driven by direct connection with An oil pump 5 of the lubricating oil supply device is connected to an oil tank 7 via a filter 6. The oil pump 5 discharges a certain amount of oil by the rotation of the drive motor 8. The discharged lubricating oil is supplied to the bearing of the bearing unit 1 from the supply flow path 11 via the oil amount adjusting valve 9 and the pressure control valve 10, and after lubricating the bearing, is returned to the oil tank 7 from the discharge flow path 12. The flow control valve 9 is normally adjusted to an appropriate flow rate required by the bearing, and excess oil not supplied to the bearing is returned to the oil tank 7 through the discharge path 11 of the pressure control valve 10.

【0003】[0003]

【発明が解決しようとする課題】一般にオイルポンプ5
および駆動モータ8は余裕を持った容量で設計使用され
ているので、潤滑に必要としない余分の流量は必然的に
圧力制御弁10の排出路11から排出されタンク7内の
油の温度を一層上昇させる。この排出される流量の分だ
けオイルポンプ5および駆動モータ8は余分のエネルギ
ーを発生していることになる。このエネルギーは取りも
直さず潤滑油供給装置自体の温度上昇となり潤滑油の温
度へ添加され温度上昇につながる。軸受ユニット内で主
軸の回転に伴う発熱による軸受自体の温度上昇に加え
て、余分のエネルギーにより既に温度が上昇している潤
滑油の温度が加算され総合的な軸受ユニットの温度上昇
となりそれだけ主軸ユニットの運転可能回転数の上限に
近づき、すなわち運転不能限度に近くなり、さらに機械
の熱変位を増大するという問題があった。
SUMMARY OF THE INVENTION Generally, an oil pump 5
Since the drive motor 8 is designed and used with a sufficient capacity, an extra flow not required for lubrication is inevitably discharged from the discharge passage 11 of the pressure control valve 10 to further increase the temperature of the oil in the tank 7. To raise. The oil pump 5 and the drive motor 8 generate extra energy by the amount of the discharged flow. This energy becomes the temperature rise of the lubricating oil supply device itself without being recovered, and is added to the temperature of the lubricating oil, which leads to the temperature rise. In addition to the temperature rise of the bearing itself due to the heat generated by the rotation of the main shaft in the bearing unit, the temperature of the lubricating oil, whose temperature has already risen due to the extra energy, is added to the overall temperature of the bearing unit, resulting in a corresponding increase in the temperature of the main shaft unit. Has reached the upper limit of the operable rotation speed, that is, approaches the inoperable limit, and further increases the thermal displacement of the machine.

【0004】また軸受ユニットの軸受に必要とする潤滑
油量を流量調整弁で調整するとしても適格でない場合が
多く、従来の観念から一般には多い目に調整されてお
り、軸受ユニット内の攪拌による乱流を生じる結果、か
えって温度上昇が起こっているという問題があることが
判明した。本発明は従来の技術の有するこのような問題
点に鑑みなされたもので、その目的とするところは、軸
受ユニット内での潤滑油の攪拌、及び潤滑油供給装置か
ら発生する余分のエネルギーにもとづく余分の温度上昇
を伴った潤滑油を、軸受ユニットに供給する構成を止め
て、温度上昇を最低に抑えることのできる回転軸軸受潤
滑方法並びにこの方法を用いた回転軸の温度制御方法を
提供しようとするものである。
In addition, even if the amount of lubricating oil required for the bearing of the bearing unit is adjusted by the flow control valve, it is often unsuitable, and is generally adjusted from the conventional idea to a large amount. As a result of the turbulence, it has been found that there is a problem that the temperature is increasing. SUMMARY OF THE INVENTION The present invention has been made in view of such problems of the related art, and has as its object to agitate lubricating oil in a bearing unit and to generate extra energy generated from a lubricating oil supply device. By stopping the supply of lubricating oil with an extra temperature rise to the bearing unit, a method of lubricating a rotating shaft bearing capable of minimizing the temperature rise and a method of controlling the temperature of a rotating shaft using this method will be provided. It is assumed that.

【0005】[0005]

【課題を解決するための手段】本発明はこの問題を解決
するために、回転軸の軸受に潤滑用油を供給するオイル
ポンプに回転数に対応した吐出量が得られる形式を用
い、予め回転軸の回転数をパラメータとする軸受温度上
昇と供給する潤滑油流量との関係を求めて回転数に対す
る最低温度上昇時の最適潤滑油流量を把握しておき運転
する回転軸の回転数に対応した最適潤滑油流量を吐出す
るようにオイルポンプの回転数を制御して軸受を最適潤
滑油流量で潤滑してなり、軸受ユニット内での潤滑油の
乱流を抑制するとともに、潤滑に利用しない余分の油を
オイルポンプが吐出しないようにして潤滑油供給装置か
らの余分のエネルギーの発生を無くするものである。回
転軸の回転数に見合った最適な潤滑油流量をオイルポン
プが吐出するようにして軸受を潤滑させる。このため軸
受ユニット内で潤滑油の攪拌による乱流が生ぜず、また
オイルポンプ,駆動モータから余分のエネルギーが発生
せず潤滑油供給装置自体の温度上昇が最低となり、軸受
の温度上昇に転嫁される度合いが最少となる。また軸受
も運転条件に見合った必要な潤滑油流量が供給されるの
で軸受の温度上昇も最少となる。
According to the present invention, in order to solve this problem, an oil pump for supplying lubricating oil to a bearing of a rotary shaft uses a type capable of obtaining a discharge amount corresponding to the number of rotations, and is previously rotated. Determine the relationship between the bearing temperature rise and the lubricating oil flow rate using the shaft rotation speed as a parameter to determine the optimum lubrication oil flow rate at the minimum temperature rise relative to the rotation speed, and correspond to the rotation speed of the rotating shaft to be operated. The bearing is lubricated with the optimal lubricating oil flow rate by controlling the number of revolutions of the oil pump so that the optimal lubricating oil flow rate is discharged. Is prevented from being discharged by the oil pump, thereby eliminating the generation of extra energy from the lubricating oil supply device. The bearing is lubricated such that the oil pump discharges an optimal lubricating oil flow rate corresponding to the rotation speed of the rotating shaft. As a result, no turbulent flow occurs due to agitation of the lubricating oil in the bearing unit, no extra energy is generated from the oil pump and the drive motor, and the temperature rise of the lubricating oil supply device itself is minimized, which is passed on to the temperature rise of the bearing. The degree to which it is minimized. Also, since the required lubricating oil flow rate is supplied to the bearing in accordance with the operating conditions, the temperature rise of the bearing is minimized.

【0006】また回転軸の軸受に潤滑油を供給するオイ
ルポンプに回転数に対応した吐出量が得られる形式を用
い、予め回転軸の回転数をパラメータとする軸受温度上
昇と供給する潤滑油流量との関係を求めて色々な回転数
に対する最低温度上昇時の最適潤滑油流量を把握してお
き、色々な回転数に対する最低温度上昇の点を結ぶ温度
特性カーブを求めて、該温度特性カーブを利用して広い
回転数範囲に対応して、それぞれの回転数に最適の潤滑
油流量を供給し、何れの回転数においても最低温度上昇
で運転できるものである。広い範囲運転できるとともに
最高速度で運転できる限度を求めることができる。
[0006] An oil pump for supplying lubricating oil to a bearing of a rotary shaft is of a type capable of obtaining a discharge amount corresponding to the number of rotations. The optimum lubricating oil flow rate at the time of the minimum temperature rise for various rotation speeds is obtained by calculating the relationship with the rotation speed, and a temperature characteristic curve connecting the points of the minimum temperature rise for various rotation speeds is obtained, and the temperature characteristic curve is calculated. Utilizing the present invention, it is possible to supply an optimal lubricating oil flow rate to each of the rotation speeds in accordance with a wide rotation speed range, and to operate at a minimum temperature increase at any of the rotation speeds. It is possible to determine the limit that can be operated in a wide range and at the maximum speed.

【0007】また回転軸の軸受に潤滑用油を供給するオ
イルポンプに回転数に対応した吐出量が得られる形式を
用い、予め回転軸の回転数をパラメータとする軸受温度
上昇と供給する潤滑油流量との関係を求めて回転数に対
する最低温度上昇時の最適潤滑油流量を把握しておき、
回転軸起動時に潤滑油流量を前記最適潤滑油流量よりは
るかに大量に供給して軸受の温度上昇の立ち上がりを急
速に行い、飽和点以上に達したとき潤滑油供給流量を減
らし暫くしてから最適潤滑油流量に切り換えることによ
り、回転軸の軸受温度が飽和点へ到達する時間を短縮す
るものである。最適潤滑油流量より大量の潤滑油を供給
するので軸受の焼付の恐れはなく安全運転が可能で回転
軸の温度の飽和点への時間が短縮できる。
[0007] An oil pump for supplying lubricating oil to the bearing of the rotary shaft is of a type capable of obtaining a discharge amount corresponding to the number of rotations. Find the relationship with the flow rate and grasp the optimal lubricating oil flow rate when the minimum temperature rises with respect to the rotation speed.
When the rotating shaft is started, the lubricating oil flow rate is supplied in a much larger amount than the optimal lubricating oil flow rate, and the temperature rise of the bearing rises rapidly. By switching to the lubricating oil flow rate, the time required for the bearing temperature of the rotating shaft to reach the saturation point is shortened. Since a larger amount of lubricating oil is supplied than the optimal lubricating oil flow rate, there is no risk of bearing seizure, safe operation is possible, and the time required for the temperature of the rotating shaft to reach the saturation point can be reduced.

【0008】[0008]

【発明の実施の形態】発明者は回転軸の動圧軸受を採用
した主軸ユニットの軸受の温度上昇と潤滑油流量の関係
を長年にわたって研究しその結果一つの新しい事実を見
出した。即ち従来軸受の温度上昇は潤滑油流量を多くす
るほど抑制できるというのが一般的な常識となってい
た。ところが実験を重ねるうち、潤滑油流量が多ければ
多い方が良いということに疑問が生じた。軸受の構成,
負荷の状況等の種々の条件を考慮して製造された回転軸
はそれぞれに軸受が必要とする潤滑油流量が決められる
ものであり軸受温度上昇を少なくする最適流量が存在す
るとこが判明した。
DETAILED DESCRIPTION OF THE INVENTION The inventor of the present invention has studied for a long time the relationship between the temperature rise of a bearing of a spindle unit employing a hydrodynamic bearing of a rotary shaft and the flow rate of lubricating oil, and as a result has found one new fact. That is, it has been common general knowledge that the temperature rise of the conventional bearing can be suppressed by increasing the lubricating oil flow rate. However, during repeated experiments, it was questioned that the higher the lubricating oil flow rate, the better. Bearing configuration,
It has been found that the lubricating oil flow rate required for the bearing is determined for each of the rotating shafts manufactured in consideration of various conditions such as the load condition and the like, and that there is an optimum flow rate for reducing a rise in the bearing temperature.

【0009】その一つ目には今まで軸受が潤滑に必要と
しない余分の油はタンクに戻していたことが潤滑油温度
の上昇に悪影響を及ぼしていることが明らかとなった。
その二つ目には軸受ユニットの軸受に必要とする潤滑油
量を流量調整弁で調整するとしても適格でない場合が多
く、従来の観念から一般には焼付の防止上多い目に調整
されており、軸受ユニット内での余分の潤滑油の攪拌に
よる乱流を生じる結果、かえって温度上昇が起こってい
ることが明らかとなった。
First, it has been clarified that the extra oil that the bearing does not need for lubrication has been returned to the tank, which adversely affects the increase in lubricating oil temperature.
In the second case, even if the amount of lubricating oil required for the bearing of the bearing unit is adjusted by the flow control valve, it is often not suitable, and from the conventional idea it is generally adjusted to prevent seizure, As a result of the generation of turbulence due to the agitation of excess lubricating oil in the bearing unit, it became clear that a temperature rise had occurred.

【0010】図2は実験結果の一例を示す図表である。
このときの実験条件は、軸受型式;動圧軸受,軸径φ5
5mm、潤滑油;エッソスタンダード,ベロシティ#
3、室温;22℃。
FIG. 2 is a table showing an example of the experimental results.
The experimental conditions at this time were: bearing type; dynamic pressure bearing, shaft diameter φ5
5mm, lubricating oil; Esso standard, velocity #
3, room temperature; 22 ° C.

【0011】図表は回転軸の回転数をパラメータとした
潤滑油流量と軸受ユニットの温度上昇との関係を示すも
のである。回転軸回転数が2000rpmの場合におい
て、潤滑油の供給量の増加に対してF1点の潤滑油流量
約1200cc/min迄は温度上昇の値は順調に低下
しているが、1200cc/minを越える付近から温
度上昇の値は再び上昇に転じている。これは軸受ユニッ
ト内での余分の潤滑油による攪拌による乱流現象によ
る。即ち温度上昇が最低となる流量が存在することを示
している。回転軸回転数が4000rpmの場合は温度
上昇最低の流量は約1800cc/min近傍のF2点
である。回転軸回転数が6500rpmの場合の温度上
昇最低の流量は2300cc/min近傍のF3点であ
る。なお、このF1,F2,F3点は軸受の構造,負荷
等によって変動するものである。したがってこの実験デ
ータは実際の軸受ユニットにおいて求めるべきものであ
る。
The table shows the relationship between the lubricating oil flow rate and the temperature rise of the bearing unit with the rotation speed of the rotating shaft as a parameter. When the rotational speed of the rotating shaft is 2000 rpm, the value of the temperature rise is steadily reduced up to about 1200 cc / min of the lubricating oil flow rate at the point F1 with respect to the increase of the supply amount of the lubricating oil, but exceeds 1200 cc / min. From around the value of the temperature rise has started to rise again. This is due to a turbulent flow phenomenon caused by agitation by extra lubricating oil in the bearing unit. That is, it indicates that there is a flow rate at which the temperature rise becomes minimum. When the rotation speed of the rotating shaft is 4000 rpm, the lowest flow rate at the temperature rise is the point F2 near about 1800 cc / min. When the rotation speed of the rotating shaft is 6500 rpm, the lowest flow rate of the temperature rise is the point F3 near 2300 cc / min. The F1, F2, and F3 points vary depending on the structure, load, and the like of the bearing. Therefore, this experimental data should be obtained for an actual bearing unit.

【0012】[0012]

【実施例】上記の実験結果にもとづき本発明に使用する
軸受潤滑装置を示す図3にもとづき説明する。図1と同
じ部品は同符号を付して説明を省略する。オイルポンプ
5は吐出量が回転数によって変更できる市販されている
ものを用い、その駆動モータ8を制御手段20で制御す
るものである。従って従来技術において必要であった流
量調整弁9,圧力調整弁10は不要となる。
FIG. 3 shows a bearing lubrication device used in the present invention based on the above experimental results. The same parts as those in FIG. The oil pump 5 is a commercially available oil pump whose discharge amount can be changed according to the number of revolutions, and the drive motor 8 is controlled by the control means 20. Therefore, the flow regulating valve 9 and the pressure regulating valve 10 which are required in the prior art become unnecessary.

【0013】ここに使用する制御手段20について電気
的制御の第1の場合を図4について説明する。駆動モー
タ8は通常の汎用モータが使用でき、このモータ8の入
力電源の周波数を変える市販の通常のインバータ21を
用いることができる。インバータにより駆動モータ8の
回転数を、必要とする吐出量となるようにオイルポンプ
5の回転数に合わせる。
The first case of the electric control of the control means 20 used here will be described with reference to FIG. As the drive motor 8, a general-purpose motor can be used, and a commercially available normal inverter 21 that changes the frequency of the input power of the motor 8 can be used. The rotation speed of the drive motor 8 is adjusted by the inverter to the rotation speed of the oil pump 5 so that the required discharge amount is obtained.

【0014】電気的制御の第2の場合を図5について説
明する。駆動モータ8は直流モータ22を使用し交流電
源を整流器により直流電源としてその電圧を変更する電
圧変換器23を用いる。直流電圧を変更して駆動モータ
8の回転数を必要とする吐出量となるようにオイルポン
プ5の回転数に合わせる。
The second case of the electric control will be described with reference to FIG. The drive motor 8 uses a DC motor 22 and a voltage converter 23 that changes the voltage of the AC power supply as a DC power supply using a rectifier. By changing the DC voltage, the rotational speed of the drive motor 8 is adjusted to the rotational speed of the oil pump 5 so that the required discharge amount is obtained.

【0015】電気的制御の第3の場合を図6について説
明する。市販されているオイルポンプはリニアモータ式
オイルポンプ或いはパイブレータ式オイルポンプ25を
用いる。このポンプの回転数制御に周波数変換器26が
組み合わされる。周波数変換器26の周波数を変更して
駆動モータ8の回転を必要とする吐出量となるようにオ
イルポンプ25の回転数に合わせる。
A third case of the electric control will be described with reference to FIG. As a commercially available oil pump, a linear motor oil pump or a piebrator oil pump 25 is used. The frequency converter 26 is combined with the rotation speed control of the pump. The frequency of the frequency converter 26 is changed to match the rotation speed of the oil pump 25 so that the discharge amount requires the rotation of the drive motor 8.

【0016】機械的制御の場合を図7について説明す
る。駆動モータ8の出力軸に市販されている変速装置2
7を接続し、この出力軸をオイルホンプ5と連結するも
のである。そして必要とする吐出量が得られるようにオ
イルポンプの回転数に変速装置を調整する。
The case of mechanical control will be described with reference to FIG. Transmission 2 commercially available on the output shaft of drive motor 8
7 and the output shaft is connected to the oil pump 5. Then, the transmission is adjusted to the rotation speed of the oil pump so that a required discharge amount is obtained.

【0017】このような構成における本発明の作用を説
明する。使用条件に対応して回転軸軸受ユニット1が決
まると必然的に回転数が決まる。一般的に、この回転数
はその用途により固定回転数の場合とある程度の範囲を
持つ場合とがある。今駆動モータ8の制御手段20に図
4の構成を用いるものとする。回転軸回転数をパラメー
タとした。回転軸受ユニット1の温度上昇と潤滑油流量
との関係を、予め実験して求めた図2から最低温度上昇
に見合う最適潤滑油流量を確認する。オイルポンプの吐
出量と回転数との関係を示す特性表により、上記最適潤
滑油流量が吐出される回転数を選択する。インバータ2
1の周波数を選択して駆動モータ8の回転数をオイルポ
ンプ回転数に合わせる。予め測定したオイルポンプの回
転数と吐出量との関係から駆動モータの回転数を個々に
設定する。
The operation of the present invention in such a configuration will be described. When the rotating shaft bearing unit 1 is determined according to the use conditions, the number of rotations is inevitably determined. Generally, this rotation speed may be a fixed rotation speed or a certain range depending on the application. Now, it is assumed that the configuration of FIG. 4 is used for the control means 20 of the drive motor 8. The rotation speed of the rotating shaft was used as a parameter. The relationship between the temperature rise of the rotary bearing unit 1 and the lubricating oil flow rate is confirmed by an experiment in advance, and an optimum lubricating oil flow rate corresponding to the minimum temperature rise is confirmed from FIG. The number of revolutions at which the optimum lubricating oil flow rate is discharged is selected from a characteristic table showing the relationship between the discharge amount and the number of revolutions of the oil pump. Inverter 2
The frequency of 1 is selected and the rotation speed of the drive motor 8 is adjusted to the rotation speed of the oil pump. The number of rotations of the drive motor is individually set from the relationship between the number of rotations of the oil pump and the discharge amount measured in advance.

【0018】例えば回転軸の回転数4000rpmが決
定されたとすると、最適潤滑油流量は1800cc/m
inと図2より求める。又は図2におけるF1,F2
点,F3点から、個々の回転数に対する最低温度上昇の
点を結ぶ温度カーブH線を図8のように得ることができ
る。図8のG線は図2のF1点の流量で2000,40
00,6500rpmで運転した時の流量、すなわちF
1点と交差する垂直な線に交わる点の温度上昇の値をフ
ロットしたものであるから、4000,6500rpm
ではH線より高い温度上昇となる。この各回転数におけ
るG線とH線との温度上昇の差は本方式により普通の運
転方式より低い温度で運転できることを意味している。
For example, assuming that the rotational speed of the rotating shaft is 4000 rpm, the optimum lubricating oil flow rate is 1800 cc / m
in and FIG. Or F1, F2 in FIG.
From the points F3 and F3, a temperature curve H connecting the points of the minimum temperature rise with respect to the individual rotation speeds can be obtained as shown in FIG. The line G in FIG. 8 represents the flow rate at point F1 in FIG.
The flow rate when operating at 00,6500 rpm, ie, F
Since the value of the temperature rise at the point of intersection with the vertical line intersecting with one point is plotted, it is 4000,6500 rpm
In this case, the temperature rises higher than the H line. The difference in the temperature rise between the G line and the H line at each rotation speed means that the system can be operated at a lower temperature than the ordinary operation system.

【0019】潤滑油供給装置の電源を入れるとインバー
タ21が選択した回転数で駆動モータ8を駆動する。こ
れによりオイルポンプ5は選択した吐出量1800cc
/minの潤滑油を送り出し、供給流路11より主軸軸
受ユニット1に供給される。潤滑油供給は適量であるの
で軸受ユニット内での攪拌による乱流はなく、主軸軸受
ユニット1を潤滑した潤滑油は排出流路12よりオイル
タンク7に戻される。循環された油は軸受を潤滑すると
ともに発熱した熱をうばって昇温した油となってオイル
タンク7に戻される。しかし潤滑油供給装置では余分の
エネルギーが発生していないのでタンク内の油は軸受ユ
ニットからうばった熱による昇温より更なる温度上昇は
なく、主軸軸受ユニットの温度上昇は小さいものとな
る。なお実施例では動圧軸受を例としたが転がり軸受に
適用できることは勿論である。
When the power supply of the lubricating oil supply device is turned on, the drive motor 8 is driven at the rotation speed selected by the inverter 21. As a result, the oil pump 5 has the selected discharge amount of 1800cc.
/ Min lubricating oil is fed out and supplied to the main shaft bearing unit 1 from the supply flow path 11. Since the lubricating oil is supplied in an appropriate amount, there is no turbulent flow due to agitation in the bearing unit, and the lubricating oil lubricating the main shaft bearing unit 1 is returned to the oil tank 7 from the discharge passage 12. The circulated oil lubricates the bearings and generates heat by returning the heat generated to the oil tank 7. However, since no extra energy is generated in the lubricating oil supply device, the temperature of the oil in the tank does not rise further than the temperature rise due to the heat from the bearing unit, and the temperature rise of the main shaft bearing unit is small. In the embodiment, the dynamic pressure bearing is used as an example, but it is needless to say that the present invention can be applied to a rolling bearing.

【0020】広い回転数範囲を持つ、および高速な回転
軸を必要とする場合に、軸受に潤滑油を供給するオイル
ポンプに回転数を対応した吐出量が得られる形式を用
い、予め回転軸の回転数をパラメータとする軸受温度上
昇と供給する潤滑油流量との関係を求めて色々な回転数
に対する最低温度上昇時の最適潤滑油流量を把握してお
き、色々な回転数に対する最低温度上昇の点を結ぶ温度
特性カーブを得ることができる。従来は、同じ潤滑油流
量で広い回転数範囲の運転を行う場合はその範囲の最高
回転数を満足させる潤滑油流量で低い回転数も運転する
ことになり、低い回転数においては、本来は低い回転数
のみで運転する場合に比べて高い温度上昇で運転される
結果となる。本案は、広い回転数範囲に対して、上記の
温度特性カーブを利用してそれぞれの回転数に最適の潤
滑油流量を供給するので、何れの回転数においても最低
温度上昇で運転できる回転軸の潤滑油供給の制御方法。
この方式は回転軸を広い回転範囲で運転するのに効果を
発揮する。また高速回転の上限を高めることも可能とな
る。
When a wide rotation speed range is required and a high-speed rotation shaft is required, an oil pump for supplying lubricating oil to the bearing is provided with a type capable of obtaining a discharge amount corresponding to the rotation speed. The optimum lubricating oil flow rate at the minimum temperature rise for various rotational speeds is determined by obtaining the relationship between the bearing temperature rise and the lubricating oil flow rate using the rotational speed as a parameter, and the minimum temperature rise for various rotational speeds is determined. A temperature characteristic curve connecting the points can be obtained. Conventionally, when operating over a wide rotational speed range with the same lubricating oil flow rate, a low rotational speed will also be operated at a lubricating oil flow rate that satisfies the maximum rotational speed in that range, and at low rotational speeds, it is originally low As a result, the operation is performed at a higher temperature than when the operation is performed only at the rotation speed. The present invention uses the above-mentioned temperature characteristic curve to supply the optimal lubricating oil flow rate for each rotational speed over a wide rotational speed range. Control method of lubricating oil supply.
This method is effective for operating the rotating shaft in a wide rotation range. It is also possible to increase the upper limit of the high-speed rotation.

【0021】さらに本発明で述べた回転軸潤滑方法を軸
受ユニットの温度の安定領域(飽和点)に早く到達させ
たい場合に応用することができる。潤滑油流量を少なく
しておけば温度上昇の立ち上がりが早くなるが、この場
合は軸受の焼付が起こる可能性が大きく、危険にさらさ
れる運転は避けなければならない。本発明では安全状態
において運転できる方法である。回転軸の回転による温
度上昇と経過時間との関係が図9のD線に示す状態であ
る場合、そのときの回転軸回転数における温度上昇に対
する最適潤滑油流量以上のはるかに大量の流量を軸受ユ
ニット1に供給して、軸受ユニットの発熱を促進して温
度上昇の立ち上がりを急速に行い、軸受ユニット1の温
度をE線のE1点まで上げ、E1点に達したら潤滑油の
供給を減らして、暫くしてから最終的にその回転数の最
適潤滑油流量に切り換えることにより、温度の安定領域
に達する時間をほぼ半減させるということができる。
Further, the rotating shaft lubrication method described in the present invention can be applied to a case where it is desired to quickly reach a stable temperature range (saturation point) of the bearing unit. If the lubricating oil flow rate is reduced, the temperature rises faster, but in this case, there is a high possibility that bearing seizure will occur, and dangerous operation must be avoided. The present invention is a method that can be operated in a safe state. When the relationship between the temperature rise due to the rotation of the rotating shaft and the elapsed time is in the state shown by the line D in FIG. 9, a much larger flow rate than the optimal lubricating oil flow rate for the temperature rise at the rotating shaft speed at that time is applied. The temperature of the bearing unit 1 is increased to the point E1 on the E line by increasing the temperature of the bearing unit 1 and the lubricating oil supply is reduced when the temperature reaches the point E1. After a while, by finally switching to the optimum lubricating oil flow rate of the rotation speed, it can be said that the time required to reach the temperature stable region is almost halved.

【0022】起動停止の頻度の高い回転軸の場合、上記
と同様の方法でやはり起動時のみ潤滑油供給量を最適潤
滑油流量より増やしてから最適潤滑油流量に戻すことに
より回転軸の温度上昇が高くなるのを防ぎ且つ回転軸の
損耗を少なくすることができる。これによって機械の稼
働効率を上げるとともに、主軸の運転領域即ち温度上昇
の範囲をある程度広く制御することが可能である。さら
にまた回転軸回転数が広い範囲でその回転数に対応する
最適潤滑油流量を図8より求めて回転数の変化に対応し
てオイルポンプの回転数を順次手動又は自動で切り換え
て行くことにより広範囲に対応することができる。
In the case of a rotating shaft that is frequently started and stopped, the temperature of the rotating shaft is raised by increasing the lubricating oil supply amount from the optimum lubricating oil flow amount and returning to the optimum lubricating oil flow amount only at the time of start-up in the same manner as described above. Can be prevented from increasing, and wear of the rotating shaft can be reduced. As a result, the operating efficiency of the machine can be increased, and the operating range of the main shaft, that is, the range of temperature rise can be controlled to a certain extent. Further, by obtaining the optimum lubricating oil flow rate corresponding to the rotation speed in a wide range of the rotation speed of the rotation shaft from FIG. 8, the rotation speed of the oil pump is sequentially or manually switched automatically in response to the change of the rotation speed. A wide range can be supported.

【0023】[0023]

【発明の効果】請求項1の本発明は予め実験で求めてお
いた主軸回転数に対応した最適な潤滑油流量をオイルポ
ンプが吐出するようにオイルポンプを制御するようにし
必要以上の潤滑油の供給をなくしたので、オイルポン
プ,駆動モータを含む潤滑油供給装置が余分のエネルギ
ーを発生することがなくなり、軸受で発生する熱による
油温の上昇のみに止めることができ、また軸受ユニット
内での攪拌による乱流を防止でき、軸受ユニットの温度
上昇を総合的に最低に抑えることが可能である。このた
め従来より広い回転数領域で低い温度上昇で運転が可能
となり、高速回転域を持つ軸受ユニットが得られる。ま
た特定回転数のみ運転される軸受ユニットを特別な冷却
装置を付加することなく最低の温度上昇とすることが可
能である。さらに節電にも寄与する。請求項2の本発明
は広い回転数範囲において温度の上昇を最低で運転する
ことができる。請求項3の本発明は回転軸温度の安定領
域に早く到達でき運転効率が上がる。そして温度上昇を
最低点から広い範囲にわたって制御できる。
According to the first aspect of the present invention, the oil pump is controlled so that the oil pump discharges an optimum lubricating oil flow rate corresponding to the spindle speed previously determined by an experiment in advance. Since the oil supply is eliminated, the lubricating oil supply device including the oil pump and the drive motor does not generate extra energy, and can be stopped only by an increase in oil temperature due to heat generated in the bearing. Thus, turbulent flow due to agitation can be prevented, and a rise in the temperature of the bearing unit can be totally minimized. For this reason, it is possible to operate with a lower temperature rise in a wider rotation speed range than in the conventional case, and a bearing unit having a high speed rotation range can be obtained. Further, it is possible to minimize the temperature rise of the bearing unit operated only at a specific rotation speed without adding a special cooling device. It also contributes to power saving. According to the second aspect of the present invention, the operation can be performed with a minimum temperature increase in a wide rotation speed range. According to the third aspect of the present invention, it is possible to quickly reach the stable region of the rotating shaft temperature, thereby increasing the operation efficiency. And the temperature rise can be controlled over a wide range from the lowest point.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の軸受の潤滑油供給装置を示す説明図であ
る。
FIG. 1 is an explanatory view showing a conventional lubricating oil supply device for a bearing.

【図2】回転回転数をパラメータとし軸受温度上昇と潤
滑油量との関係を示す図表である。
FIG. 2 is a table showing a relationship between a bearing temperature rise and a lubricating oil amount using a rotational speed as a parameter.

【図3】本発明の軸受の潤滑油供給装置を示す説明図で
ある。
FIG. 3 is an explanatory view showing a lubricating oil supply device for a bearing according to the present invention.

【図4】オイルポンプ駆動モータの第1の電気的制御を
示す説明図である。
FIG. 4 is an explanatory diagram showing a first electric control of an oil pump drive motor.

【図5】オイルポンプ駆動モータの第2の電気的制御を
示す説明図である。
FIG. 5 is an explanatory diagram showing a second electric control of the oil pump drive motor.

【図6】オイルポンプ駆動モータの第3の電気的制御を
示す説明図である。
FIG. 6 is an explanatory diagram showing a third electric control of the oil pump drive motor.

【図7】オイルポンプ駆動モータの機械的制御を示す説
明図である。
FIG. 7 is an explanatory diagram showing mechanical control of an oil pump drive motor.

【図8】最適潤滑油流量に対する主軸温度上昇と回転数
との関係を示す図表である。
FIG. 8 is a table showing a relationship between a spindle temperature rise and a rotation speed with respect to an optimal lubricating oil flow rate.

【図9】軸受ユニットの温度上昇と経過時間との関係を
示す図表である。
FIG. 9 is a table showing a relationship between a temperature rise of a bearing unit and an elapsed time.

【符号の説明】[Explanation of symbols]

1 主軸軸受ユニット 2 主軸 3 駆動モータ 5 オイルポンプ 8 駆動モータ 20 モータ回転数の制御装置 21 インバータ 22 直流モータ 23 直流電圧変換器 25 リニアモータ式オイルポンプ 26 周波数変換器 27 変速機 DESCRIPTION OF SYMBOLS 1 Main shaft bearing unit 2 Main shaft 3 Drive motor 5 Oil pump 8 Drive motor 20 Motor rotation speed control device 21 Inverter 22 DC motor 23 DC voltage converter 25 Linear motor oil pump 26 Frequency converter 27 Transmission

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 回転軸の軸受に潤滑用油を供給するオイ
ルポンプに回転数に対応した吐出量が得られる形式を用
い、予め回転軸の回転数をパラメータとする軸受温度上
昇と供給する潤滑油流量との関係を求めて回転数に対す
る最低温度上昇時の最適潤滑油流量を把握しておき運転
する回転軸の回転数に対応した最適潤滑油流量を吐出す
るようにオイルポンプの回転数を制御して軸受を最適潤
滑油流量で潤滑してなり、軸受ユニット内での潤滑油の
乱流を抑制するとともに、潤滑に利用しない余分の油を
オイルポンプが吐出しないようにして潤滑油供給装置か
らの余分のエネルギーの発生を無くすることを特徴とす
る回転軸軸受潤滑方法。
An oil pump for supplying lubricating oil to a bearing of a rotating shaft is of a type capable of obtaining a discharge amount corresponding to the number of rotations. Obtain the optimal lubricating oil flow rate at the time of minimum temperature rise with respect to the rotational speed by obtaining the relationship with the oil flow rate, and adjust the rotational speed of the oil pump to discharge the optimal lubricating oil flow rate corresponding to the rotational speed of the rotating shaft to be operated. The lubricating oil supply device controls and lubricates the bearing with the optimal lubricating oil flow rate, suppresses the turbulence of the lubricating oil in the bearing unit, and prevents the oil pump from discharging extra oil not used for lubrication. A method of lubricating a rotating shaft bearing, which eliminates the generation of extra energy from the shaft.
【請求項2】 回転軸の軸受に潤滑油を供給するオイル
ポンプに回転数に対応した吐出量が得られる形式を用
い、予め回転軸の回転数をパラメータとする軸受温度上
昇と供給する潤滑油流量との関係を求めて色々な回転数
に対する最低温度上昇時の最適潤滑油流量を把握してお
き、色々な回転数に対する最低温度上昇の点を結ぶ温度
特性カーブを求めて、該温度特性カーブを利用して広い
回転数範囲に対応して、それぞれの回転数に最適の潤滑
油流量を供給し、何れの回転数においても最低温度上昇
で運転できることを特徴とする回転軸の温度制御方法。
2. An oil pump that supplies lubricating oil to a bearing of a rotating shaft uses a type capable of obtaining a discharge amount corresponding to the number of rotations, and a bearing temperature rise and a lubricating oil to be supplied in advance using the number of rotations of the rotating shaft as a parameter. The optimum lubricating oil flow rate at the time of the minimum temperature rise for various rotation speeds is obtained by obtaining the relationship with the flow rate, and the temperature characteristic curve connecting the points of the minimum temperature rise for various rotation speeds is obtained. A method for controlling the temperature of a rotating shaft, characterized in that an optimum lubricating oil flow rate is supplied to each of the rotation speeds in correspondence with a wide rotation speed range by using the above-mentioned method, and the operation can be performed with a minimum temperature rise at any of the rotation speeds.
【請求項3】 回転軸の軸受に潤滑用油を供給するオイ
ルポンプに回転数に対応した吐出量が得られる形式を用
い、予め回転軸の回転数をパラメータとする軸受温度上
昇と供給する潤滑油流量との関係を求めて色々な回転数
に対する最低温度上昇時の最適潤滑油流量を把握してお
き、回転軸起動時に潤滑油流量を前記最適潤滑油流量よ
りはるかに大量に供給して軸受の温度上昇の立ち上がり
を急速に行い、飽和点以上に達したとき潤滑油供給流量
を減らし暫くしてから最適潤滑油流量に切り換えること
により、回転軸の軸受温度が飽和点へ到達する時間を短
縮することを特徴とする回転軸の温度制御方法。
3. An oil pump that supplies lubricating oil to a bearing of a rotating shaft uses a type capable of obtaining a discharge amount corresponding to the number of rotations. Obtain the relationship with the oil flow rate and grasp the optimal lubricating oil flow rate at the time of the minimum temperature rise for various rotation speeds. The temperature rise of the shaft rapidly increases, and when the temperature exceeds the saturation point, the lubricating oil supply flow rate is reduced, and after a while, switching to the optimal lubricating oil flow rate shortens the time required for the rotating shaft bearing temperature to reach the saturation point. A method of controlling the temperature of the rotating shaft.
JP24474797A 1997-08-25 1997-08-25 Rotary shaft bearing lubrication method and rotary shaft temperature control method using this method Expired - Fee Related JP3394692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24474797A JP3394692B2 (en) 1997-08-25 1997-08-25 Rotary shaft bearing lubrication method and rotary shaft temperature control method using this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24474797A JP3394692B2 (en) 1997-08-25 1997-08-25 Rotary shaft bearing lubrication method and rotary shaft temperature control method using this method

Publications (2)

Publication Number Publication Date
JPH1163385A true JPH1163385A (en) 1999-03-05
JP3394692B2 JP3394692B2 (en) 2003-04-07

Family

ID=17123301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24474797A Expired - Fee Related JP3394692B2 (en) 1997-08-25 1997-08-25 Rotary shaft bearing lubrication method and rotary shaft temperature control method using this method

Country Status (1)

Country Link
JP (1) JP3394692B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003074889A1 (en) * 2002-03-05 2003-09-12 Ntn Corporation Rolling bearing lubricating method and device
JP2004353868A (en) * 2004-07-14 2004-12-16 I M N Kk Lubricant supplying method in rotation part support
JP2004353869A (en) * 2004-07-14 2004-12-16 I M N Kk Lubricant supplying method in rotation part support
CN110474595A (en) * 2019-08-16 2019-11-19 西安陕鼓动力股份有限公司 A kind of air blower main oil pump control switching circuit and booting, method for handover control
CN113825913A (en) * 2019-04-16 2021-12-21 江森自控泰科知识产权控股有限责任合伙公司 Fluid flow control for compressor lubrication system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003074889A1 (en) * 2002-03-05 2003-09-12 Ntn Corporation Rolling bearing lubricating method and device
US7374019B2 (en) 2002-03-05 2008-05-20 Ntn Corporation Method of and device for lubricating rolling bearings
JP2004353868A (en) * 2004-07-14 2004-12-16 I M N Kk Lubricant supplying method in rotation part support
JP2004353869A (en) * 2004-07-14 2004-12-16 I M N Kk Lubricant supplying method in rotation part support
JP4683870B2 (en) * 2004-07-14 2011-05-18 アイ・エム・エヌ株式会社 Lubricating oil supply method for rotating part support
CN113825913A (en) * 2019-04-16 2021-12-21 江森自控泰科知识产权控股有限责任合伙公司 Fluid flow control for compressor lubrication system
CN110474595A (en) * 2019-08-16 2019-11-19 西安陕鼓动力股份有限公司 A kind of air blower main oil pump control switching circuit and booting, method for handover control

Also Published As

Publication number Publication date
JP3394692B2 (en) 2003-04-07

Similar Documents

Publication Publication Date Title
KR100344716B1 (en) Pump operation control device
KR101890895B1 (en) A gear unit and method for controlling a lubrication pump of a gear unit
EP0764799B1 (en) Continuously variable transmission
JP6542034B2 (en) Device for cooling equipment parts using PCM
US6374950B1 (en) Lubrication and temperature control methods for a journal bearing system
US5180034A (en) Adaptive lubrication oil system
JPH03256546A (en) Spindle motor
CN2765372Y (en) Dynamic/static pressure bearing electric main shaft
JPS62290392A (en) Driving controller for drill
JPH1163385A (en) Rotary shaft bearing lubricating method and rotary shaft temperature controlling method using this method
US5599108A (en) Static pressure table device with a tapered surface
JPS6345403A (en) Method for controlling back pressure in rotary machine driven by screw type expansion machine
CN108980323B (en) Air quantity control lubrication system for large megawatt wind power main gear box
JPH03113198A (en) Bearing lubricating device
JPH07167085A (en) Operation control device for pump
EP0411134B1 (en) Turbo-blower for laser and laser oscillator using the same
JPH05253791A (en) Thermal displacement hysteresis improvement method of static pressure main spindle for precision working machine
JP2012197842A (en) Controller for motor-driven oil pump
JP5643694B2 (en) Spindle control device and spindle control method
EP0377748A1 (en) Laser oscillator
JPS62152643A (en) Highly accurate machining device
JPH0641796Y2 (en) Spindle unit
JPH0455098A (en) Method for controlling lubricating oil of press machine
JPS63300862A (en) Grinding spindle
JP2000110992A (en) Lubricating oil supplying device for emergency use

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080131

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090131

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090131

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100131

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100131

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110131

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees