JPH1162775A - Fuel feed device of internal combustion engine - Google Patents

Fuel feed device of internal combustion engine

Info

Publication number
JPH1162775A
JPH1162775A JP9213710A JP21371097A JPH1162775A JP H1162775 A JPH1162775 A JP H1162775A JP 9213710 A JP9213710 A JP 9213710A JP 21371097 A JP21371097 A JP 21371097A JP H1162775 A JPH1162775 A JP H1162775A
Authority
JP
Japan
Prior art keywords
fuel
pressure
pipe
delivery pipe
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9213710A
Other languages
Japanese (ja)
Inventor
Hideo Nakai
英雄 中井
Kiyoshi Hatano
清 波多野
Tokiichi Mizukami
外喜市 水上
Takeo Kume
建夫 久米
Hirobumi Azuma
博文 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP9213710A priority Critical patent/JPH1162775A/en
Publication of JPH1162775A publication Critical patent/JPH1162775A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a variation in fuel injection amount between cylinders in a fuel feed device of an internal combustion engine. SOLUTION: A fuel feed device of an internal combustion engine is structured so that first and second cylindrical rows are arranged opposedly to each other and fuel injection valves I1 to I6 for fuel injection are installed on cylinders, respectively. In this case, it is also provided with first and second fuel distributor pipes 11 and 12 arranged along the first and second cylinder rows, respectively, a fuel pump 1 arranged on the upstream side of the fuel distributor pipe 11, a communicating pipe 5 which connects the downstream side of the first fuel distributor pipe 11 to the upstream side of the fuel distributor pipe 12 for fuel communication, a fuel pressure regulating means 4 arranged on the downstream side of the second fuel distributor pipe 12, and a pressure wave transmission means 8 provided between the upstream side of the first fuel distributor pipe 11 and the downstream side of the second fuel distributor pipe 12 for pressure wave transmission.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】本発明は、V型エンジンや水
平対向型エンジン等の2列の気筒列が対抗して設置され
た内燃機関(エンジン)の燃料供給に用いる、内燃機関
の燃料供給装置に関し、特に、燃料を高圧噴射する筒内
噴射内燃機関に用いて好適の、内燃機関の燃料供給装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel supply device for an internal combustion engine, which is used for supplying fuel to an internal combustion engine (engine) in which two rows of cylinders, such as a V-type engine and a horizontally opposed engine, are installed opposite to each other. More particularly, the present invention relates to a fuel supply device for an internal combustion engine suitable for use in a direct injection internal combustion engine that injects fuel at high pressure.

【従来の技術】近年、火花点火式の内燃機関(一般に
は、ガソリンエンジン)では、各気筒毎に燃料噴射弁を
そなえたマルチポイントインジェクション型のものが増
加しており、また、筒内噴射内燃機関では、当然ながら
燃料噴射弁が各気筒の燃焼室内に直接燃料噴射をするよ
うに各気筒毎にそなえられている。一般に、各気筒の燃
料噴射弁はデリバリパイプに接続されており、燃料タン
クからの燃料は、このデリバリパイプに送給され、デリ
バリパイプから各燃料噴射弁へ分配される。ところで、
V型エンジンや水平対向型エンジン等の2本の気筒列を
有するエンジン(内燃機関)では、デリバリパイプも気
筒数に応じて2本必要になる。このように2本のデリバ
リパイプを通じて各気筒の燃料噴射弁に燃料供給を行な
う場合、種々の燃料配管構成が考えられる。例えば図4
はV型エンジンの燃料配管構成例を示すもので、図示す
るように、第1気筒列(右バンク)用の第1デリバリパ
イプ11と第2気筒列(左バンク)用の第2デリバリパ
イプ12とが互いに隣り合って平行に配設されている
が、これらの第1,第2デリバリパイプ11,12は直
列に接続されている。つまり、第1デリバリパイプ11
の上流端に燃料ポンプ1からの燃料送給路2が接続さ
れ、第1デリバリパイプ11の下流端と第2デリバリパ
イプ12の上流端とが連通管5で接続され、さらに、第
2デリバリパイプ12の下流端に燃料返戻路3が接続さ
れ、この燃料返戻路3にはレギュレータ(燃圧調整手
段)4が介装されている。また、図5もV型エンジンの
燃料配管構成例を示すもので、図示するように、第1気
筒列用の第1デリバリパイプ11と第2気筒列用の第2
デリバリパイプ12とが互いに隣り合って平行に配設さ
れているが、これらの第1,第2デリバリパイプ11,
12は並列に接続されている。つまり、第1デリバリパ
イプ11の上流端に燃料ポンプ1からの燃料送給路2が
接続され、第1デリバリパイプ11の上流端と第2デリ
バリパイプ12の上流端とが連通管6で接続されるとと
もに、第1デリバリパイプ11の下流端と第2デリバリ
パイプ12の下流端とが連通管7で接続されている。さ
らに、第2デリバリパイプ12の下流端に燃料返戻路3
が接続され、この燃料返戻路3にレギュレータ(燃圧調
整手段)4が介装されている。このような2本のデリバ
リパイプを並列に接続した構成は、例えば特開平5−2
40122号公報にも開示されている。
2. Description of the Related Art In recent years, spark-ignition internal combustion engines (generally, gasoline engines) have increased in number of multipoint injection engines having a fuel injection valve for each cylinder. In the engine, a fuel injection valve is provided for each cylinder so as to inject fuel directly into the combustion chamber of each cylinder. Generally, a fuel injection valve of each cylinder is connected to a delivery pipe, and fuel from a fuel tank is supplied to the delivery pipe and distributed from the delivery pipe to each fuel injection valve. by the way,
In an engine (internal combustion engine) having two cylinder rows, such as a V-type engine and a horizontally opposed engine, two delivery pipes are required according to the number of cylinders. When fuel is supplied to the fuel injection valves of each cylinder through the two delivery pipes, various fuel pipe configurations are conceivable. For example, FIG.
1 shows an example of a fuel pipe configuration of a V-type engine. As shown, a first delivery pipe 11 for a first cylinder row (right bank) and a second delivery pipe 12 for a second cylinder row (left bank) are shown. Are arranged adjacent to each other in parallel, but the first and second delivery pipes 11 and 12 are connected in series. That is, the first delivery pipe 11
A fuel supply passage 2 from the fuel pump 1 is connected to an upstream end of the first delivery pipe 11, a downstream end of the first delivery pipe 11 and an upstream end of the second delivery pipe 12 are connected by a communication pipe 5, and a second delivery pipe is further connected. A fuel return path 3 is connected to a downstream end of the fuel supply path 12, and a regulator (fuel pressure adjusting means) 4 is interposed in the fuel return path 3. FIG. 5 also shows a fuel pipe configuration example of a V-type engine. As shown, a first delivery pipe 11 for a first cylinder row and a second delivery pipe 11 for a second cylinder row are shown.
Although the delivery pipe 12 and the delivery pipe 12 are disposed adjacent to each other and parallel to each other, these first and second delivery pipes 11 and
12 are connected in parallel. That is, the fuel supply passage 2 from the fuel pump 1 is connected to the upstream end of the first delivery pipe 11, and the upstream end of the first delivery pipe 11 and the upstream end of the second delivery pipe 12 are connected by the communication pipe 6. In addition, the downstream end of the first delivery pipe 11 and the downstream end of the second delivery pipe 12 are connected by the communication pipe 7. Further, a fuel return path 3 is provided at the downstream end of the second delivery pipe 12.
A regulator (fuel pressure adjusting means) 4 is interposed in the fuel return path 3. Such a configuration in which two delivery pipes are connected in parallel is disclosed in, for example,
No. 40122 also discloses it.

【発明が解決しようとする課題】ところで、自動車の燃
料ポンプ1としては、エンジンにより駆動されるエンジ
ンポンプを用いることがあるが、ポンプの形式として
は、例えば往復動ピストンにより燃料を加圧する容積型
ポンプが多く用いられている。特に、筒内噴射内燃機関
のように高い燃圧を発生させる場合には、容積型ポンプ
が好適である。しかし、このような容積型ポンプでは、
ポンプの吐出圧に脈動が生じてしまい、このポンプ脈動
が燃圧の変動を招き、燃料噴射量のバラツキの原因とな
る。そこで、こうした脈動を抑制するために、図4,図
5に鎖線で示すように、第1デリバリパイプ11の直上
流部の燃料送給路2に容積室21及びレゾネータ22を
付設し、第2デリバリパイプ12の直下流部の燃料返戻
路3にレゾネータ23を付設して、これらの容積室21
及びレゾネータ22,23により、脈動を抑制すること
が考えられる。しかしながら、容積室21及びレゾネー
タ22,23を付設しても脈動を十分に抑制することが
できず、図4に示すような2本のデリバリパイプを直列
に接続した構成では、左右の各バンクの気筒列間で燃料
噴射量にバラツキが生じてしまう。このような燃料噴射
量のバラツキは、エンジンの回転が高速になるほど著し
くなる。例えば図6は、図4に示す直列配管型(容積室
21及びレゾネータ22,23付きのもの)の場合の燃
圧の脈動に関して示す図であり、(A)はエンジン回転
数に応じた脈動振幅を、(B)はエンジンの中速回転時
のクランク角に応じた燃圧変動を、(C)はエンジンの
高速回転時のクランク角に応じた燃圧変動を、それぞれ
示している。なお、容積室21やレゾネータ22,23
の一部又は全部をそなえなければ、脈動レベルは図6に
示すものよりもさらに大幅に大きくなってしまう。ま
た、燃圧の検出は、図4中に示すように、第1デリバリ
パイプの燃圧についてはその上流部に設置した圧力計P
1により、第2デリバリパイプの燃圧についてはその下
流部に設置した圧力計P2により、それぞれ行なったも
のであり、各図において、第1デリバリパイプの特性に
はP1を、第2デリバリパイプの特性にはP2を付して
いる。図6(A)に示すように、エンジンの中〜高回転
域に配管長さに応じた共振によるピークがあるが、エン
ジン回転数の増加に応じて脈動両振幅が増大する傾向が
あり、この傾向は、第1デリバリパイプ(P1)と第2
デリバリパイプ(P2)との両方に共通しているが、当
然ながら、燃料ポンプ1に近い第1デリバリパイプ(P
1)の方が第2デリバリパイプ(P2)よりも脈動両振
幅自体が大きくなる。そして、図6(B),(C)に示
すように、第1デリバリパイプ(P1)と第2デリバリ
パイプ(P2)とでは脈動に位相差が生じる。これはポ
ンプ脈動による圧力波の伝播に時間がかかり下流側ほど
圧力波の到達が遅くなるためである。圧力波の伝播は一
定なので、図6(B),(C)に示すように、エンジン
が高回転になるほど、クランク角単位での位相差は著し
くなる。このように、2つの気筒列(左右のバンク)間
で脈動に位相差が生じると、燃料噴射の瞬間に2つの気
筒列間で燃圧に大きな差が生じることになり、これが、
両気筒列間での燃料噴射量のバラツキの原因となる。と
ころが、このように両気筒列(両バンク)間での燃料噴
射量のバラツキを大きくする原因は、単にポンプ脈動の
影響に時間差があるためだけではない。つまり、ポンプ
1側からの圧力波だけでなくレギュレータ4側からの反
射波も大きく影響する。例えば図7はV型6気筒エンジ
ンのデリバリパイプ11,12における燃料に影響する
圧力波及び反射波についてを説明するもので、連通管5
を介して互いに直列に接続された第1デリバリパイプ1
1,第2デリバリパイプ12には、上流から順に第1〜
第6の燃料噴射弁I1 ,I2 ,I3 ,I4 ,I5 ,I6
が配設されている。ポンプ1側からの圧力波は、図7中
に実線の矢印で示すように、第1デリバリパイプ11,
第2デリバリパイプ12の順、即ち、燃料噴射弁I1
2 ,I3,I4 ,I5 ,I6 の順で伝播する。これに
対して、この圧力波がレギュレータ4で反射して生じる
反射波は、図7中に破線の矢印で示すように、圧力波と
は逆に、第2デリバリパイプ12,第1デリバリパイプ
11の順、即ち、燃料噴射弁I6 ,I5 ,I4 ,I3
2 ,I1 の順で伝播する。したがって、各燃料噴射弁
1 〜I6 では、圧力波や反射波が到達するのに時間差
か生じる。つまり、ポンプ1側の第1デリバリパイプ1
1では、早い時点で圧力波が到達しこの圧力波が反射し
て反射波として戻ってくるのに時間がかかり、図8に示
すように、ポンプからの圧力波と反射波とは大きく位相
差が生じる。一方、レギュレータ4側の第2デリバリパ
イプ12では、圧力波が到達するのは遅くなるがこの圧
力波が反射して反射波として戻ってくるには時間がかか
らないので、図9に示すように、ポンプからの圧力波と
反射波との位相差は僅かになり、圧力波と反射波との合
成波が生じて燃料圧力の振幅が大きくなる。実際の圧力
波や反射波は、図8,図9に示すように単発で生じるの
ではなく、周期的に生じるため、ある圧力波に対して、
これよりも前に伝播した圧力波の反射による反射波が合
成して合成波を形成するようなこともある。いずれにし
ても、このような反射波によって生じる合成波は、2つ
の気筒列(左右のバンク)間で不均等に生じ易く、合成
波による燃圧振幅の増大が、2つの気筒列間で不均等に
生じ易い。このような合成波の影響も、両気筒列間での
燃料噴射量のバラツキの原因となるのである。これに対
して、図5に示すような2本のデリバリパイプを並列に
接続した構成では、左右の各バンクの気筒列間で生じる
燃料噴射量のバラツキは直列配置(図4参照)に比べて
小さいが、ポンプと各デリバリパイプ上流側との距離が
短い等の理由により、脈動自体が大きくなってしまう課
題がある。例えば図10は、図5に示す並列配管型(容
積室21及びレゾネータ22,23付きのもの)の場合
の燃圧の脈動に関して示す図であり、図6と同様に、
(A)はエンジン回転数に応じた脈動両振幅を、(B)
はエンジンの中速回転時のクランク角に応じた燃圧変動
を、(C)はエンジンの高速回転時のクランク角に応じ
た燃圧変動を、それぞれ示しており、第1デリバリパイ
プの燃圧についてはその上流部に設置した圧力計P1に
より、第2デリバリパイプの燃圧についてはその下流部
に設置した圧力計P2により、それぞれ行なったもので
あり、各図において、第1デリバリパイプの特性にはP
1を、第2デリバリパイプの特性にはP2を付してい
る。なお、ここでも、容積室21やレゾネータ22,2
3の一部又は全部をそなえなければ、脈動レベルは図F
に示すものよりもさらに大幅に大きくなってしまう。図
10(A)に示すように、エンジンの中回転域及び高回
転域に配管長さに応じた共振によるピークがそれぞれあ
るが、エンジン回転数の増加に応じて脈動両振幅が増大
する傾向がある。この傾向は、第1デリバリパイプ(P
1)と第2デリバリパイプ(P2)との両方に共通して
おり、当然ながら、燃料ポンプ1に近い第1デリバリパ
イプ(P1)の方が第2デリバリパイプ(P2)よりも
脈動両振幅自体が大きい。しかし、第1デリバリパイプ
をはじめとして、エンジンの高回転域で、脈動両振幅自
体か極めて大きくなってしまう。これにより、図10
(B),(C)に示すように、第1デリバリパイプ(P
1)と第2デリバリパイプ(P2)との脈動の位相差は
少ないものの、ポンプ脈動による燃圧変動が極めて大き
くなり、各バンク毎の各気筒間での脈動の到達時間が変
化するため、燃料噴射量の大きなバラツキを招くことに
なってしまう。これは、図5の並列配管では図4の直列
配管に比べて、燃料脈動に対する燃料配管系の共振周波
数が低下し、共振レベルの著しい共振点が、常用エンジ
ン回転域に出現するためであり、このような共振レベル
の悪化は回避したい。本発明は、上述の課題に鑑み創案
されたもので、燃料の脈動自体を抑制するとともに、ポ
ンプからの圧力波に対する反射波の影響を減少させるこ
とで、各気筒間や各気筒列間での燃料噴射量のバラツキ
を低減させることができるようにした、内燃機関の燃料
供給装置を提供することを目的とする。
An engine pump driven by an engine may be used as a fuel pump 1 for an automobile. The type of the pump is, for example, a positive displacement pump which pressurizes fuel by a reciprocating piston. Pumps are often used. In particular, when a high fuel pressure is generated as in a direct injection internal combustion engine, a positive displacement pump is suitable. However, with such positive displacement pumps,
A pulsation occurs in the discharge pressure of the pump, and the pulsation of the pump causes a change in fuel pressure, which causes a variation in the fuel injection amount. Therefore, in order to suppress such pulsation, a volume chamber 21 and a resonator 22 are attached to the fuel supply path 2 immediately upstream of the first delivery pipe 11 as shown by a chain line in FIGS. A resonator 23 is attached to the fuel return path 3 immediately downstream of the delivery pipe 12 so that these volume chambers 21 are provided.
The pulsation may be suppressed by the resonators 22 and 23. However, even if the volume chamber 21 and the resonators 22 and 23 are provided, the pulsation cannot be sufficiently suppressed, and in the configuration in which two delivery pipes are connected in series as shown in FIG. The fuel injection amount varies between the cylinder rows. Such variation in the fuel injection amount becomes more remarkable as the engine speed increases. For example, FIG. 6 is a diagram showing the pulsation of the fuel pressure in the case of the series piping type (with the volume chamber 21 and the resonators 22 and 23) shown in FIG. 4, and FIG. 6A shows the pulsation amplitude according to the engine speed. , (B) shows the fuel pressure fluctuation according to the crank angle when the engine is rotating at medium speed, and (C) shows the fuel pressure fluctuation according to the crank angle when the engine is rotating at high speed. In addition, the volume chamber 21 and the resonators 22 and 23
Without some or all of this, the pulsation level would be much greater than that shown in FIG. Further, as shown in FIG. 4, the fuel pressure of the first delivery pipe is detected by a pressure gauge P installed upstream thereof, as shown in FIG.
1, the fuel pressure of the second delivery pipe was measured by a pressure gauge P2 installed downstream thereof, and in each figure, P1 was used as the characteristic of the first delivery pipe, and the characteristic of the second delivery pipe was used. Is marked with P2. As shown in FIG. 6 (A), there is a peak due to resonance in accordance with the pipe length in the middle to high rotation range of the engine, but both pulsation amplitudes tend to increase as the engine speed increases. The tendency is that the first delivery pipe (P1) and the second
Although it is common to both the delivery pipe (P2) and the first delivery pipe (P
In the case of 1), both pulsation amplitudes themselves are larger than that of the second delivery pipe (P2). Then, as shown in FIGS. 6B and 6C, there is a phase difference in pulsation between the first delivery pipe (P1) and the second delivery pipe (P2). This is because the propagation of the pressure wave due to the pump pulsation takes a long time, and the downstream reaches the pressure wave at a slower rate. Since the propagation of the pressure wave is constant, as shown in FIGS. 6B and 6C, the higher the engine speed is, the more the phase difference in crank angle units becomes significant. As described above, if a pulsation phase difference occurs between the two cylinder rows (left and right banks), a large difference occurs in the fuel pressure between the two cylinder rows at the moment of fuel injection.
This causes a variation in the fuel injection amount between the two cylinder rows. However, the cause of such a large variation in the fuel injection amount between the two cylinder arrays (both banks) is not merely due to the time difference in the influence of the pump pulsation. That is, not only the pressure wave from the pump 1 side but also the reflected wave from the regulator 4 side have a great influence. For example, FIG. 7 illustrates pressure waves and reflected waves that affect fuel in the delivery pipes 11 and 12 of the V-type six-cylinder engine.
Delivery pipes 1 connected in series to each other via
In the first and second delivery pipes 12, the first to
Sixth fuel injectors I 1 , I 2 , I 3 , I 4 , I 5 , I 6
Are arranged. The pressure wave from the pump 1 side is, as shown by a solid arrow in FIG.
The order of the second delivery pipe 12, that is, the fuel injection valves I 1 ,
The light propagates in the order of I 2 , I 3 , I 4 , I 5 , and I 6 . On the other hand, the reflected wave generated by the reflection of the pressure wave by the regulator 4 is opposite to the pressure wave, as shown by the broken arrow in FIG. , That is, the fuel injection valves I 6 , I 5 , I 4 , I 3 ,
The light propagates in the order of I 2 and I 1 . Therefore, at each of the fuel injection valves I 1 to I 6 , there is a time difference between the arrival of the pressure wave and the reflected wave. That is, the first delivery pipe 1 on the pump 1 side
In FIG. 1, it takes time for the pressure wave to arrive at an early point and to be reflected and return as a reflected wave, and as shown in FIG. 8, the pressure wave from the pump and the reflected wave have a large phase difference. Occurs. On the other hand, in the second delivery pipe 12 on the side of the regulator 4, the pressure wave arrives late, but it does not take much time for the pressure wave to be reflected and returned as a reflected wave, so as shown in FIG. The phase difference between the pressure wave and the reflected wave from the pump becomes small, and a combined wave of the pressure wave and the reflected wave is generated to increase the fuel pressure amplitude. Actual pressure waves and reflected waves do not occur in a single shot as shown in FIGS. 8 and 9, but occur periodically.
A reflected wave due to reflection of a pressure wave propagated earlier than this may be combined to form a combined wave. In any case, the composite wave generated by such a reflected wave is likely to be unevenly generated between the two cylinder rows (left and right banks), and the increase in the fuel pressure amplitude due to the synthesized wave is uneven between the two cylinder rows. Easy to occur. The influence of such a combined wave also causes a variation in the fuel injection amount between the two cylinder arrays. On the other hand, in the configuration in which two delivery pipes are connected in parallel as shown in FIG. 5, the variation in the fuel injection amount occurring between the cylinder rows of the left and right banks is smaller than that in the serial arrangement (see FIG. 4). Although it is small, there is a problem that the pulsation itself becomes large due to a short distance between the pump and the upstream side of each delivery pipe. For example, FIG. 10 is a diagram showing the pulsation of the fuel pressure in the case of the parallel piping type (with the volume chamber 21 and the resonators 22 and 23) shown in FIG.
(A) shows both pulsation amplitudes according to the engine speed, and (B)
(C) shows the fuel pressure fluctuation according to the crank angle at the time of high-speed rotation of the engine, and (C) shows the fuel pressure fluctuation according to the crank angle at the time of high-speed rotation of the engine. The fuel pressure of the second delivery pipe was measured by the pressure gauge P1 installed at the upstream portion, and the fuel pressure of the second delivery pipe was measured by the pressure gauge P2 installed at the downstream portion.
1 and P2 for the characteristics of the second delivery pipe. Here, also in this case, the volume chamber 21 and the resonators 22, 2
If some or all of 3 are not provided, the pulsation level is
Are much larger than those shown in FIG. As shown in FIG. 10 (A), there are peaks due to resonance in accordance with the pipe length in the middle rotation range and the high rotation range of the engine, but both pulsation amplitudes tend to increase as the engine speed increases. is there. This tendency is reflected in the first delivery pipe (P
1) and the second delivery pipe (P2), both of which are naturally common to the first delivery pipe (P1) closer to the fuel pump 1 than the second delivery pipe (P2). Is big. However, in the high rotation range of the engine including the first delivery pipe, the pulsation amplitude itself becomes extremely large. As a result, FIG.
As shown in (B) and (C), the first delivery pipe (P
Although the phase difference of the pulsation between 1) and the second delivery pipe (P2) is small, the fuel pressure fluctuation due to the pump pulsation becomes extremely large, and the arrival time of the pulsation between the cylinders of each bank changes, so that the fuel injection is performed. This leads to a large amount of variation. This is because the resonance frequency of the fuel piping system with respect to the fuel pulsation is reduced in the parallel piping of FIG. 5 as compared with the serial piping of FIG. 4, and a resonance point having a significant resonance level appears in the normal engine rotation range. It is desired to avoid such deterioration of the resonance level. The present invention has been made in view of the above-described problems, and suppresses fuel pulsation itself and reduces the influence of a reflected wave on a pressure wave from a pump. An object of the present invention is to provide a fuel supply device for an internal combustion engine, which is capable of reducing a variation in a fuel injection amount.

【課題を解決するための手段】このため、請求項1記載
の本発明の内燃機関の燃料供給装置では、燃料ポンプか
らの燃料は、第2の気筒列に配設された第1の燃料分配
管に送給され、さらに連通管を通じて第1の燃料分配管
から第2の気筒列に配設された第2の燃料分配管に送給
され、第1の燃料分配管及び第2の燃料分配管から各気
筒の燃料噴射弁に供給される。このとき、第2の燃料分
配管の下流側に配設された燃圧調整手段が、各気筒の燃
料噴射弁から噴射される燃料の燃圧を所定圧に調圧す
る。このとき、燃料ポンプから吐出される圧力波は、第
1の燃料分配管の上流から下流,連通管,第2の燃料分
配管の上流から下流の順で伝播し、さらに、燃圧調整手
段で反射して反射波となって、今度は逆に、第2の燃料
分配管の下流から上流,連通管,第1の燃料分配管の下
流から上流の順で伝播するが、第1の燃料分配管の上流
と第2の燃料分配管の下流との間に圧力波伝達手段が介
装されているので、圧力波や反射波(これも圧力波であ
る)は、上述の燃料供給ルートの他に、この圧力波伝達
手段を通じたルートでも伝播する。このように圧力波伝
達手段を通じても圧力波や反射波が伝播されるため、燃
料供給ルートを通じて伝播する圧力波や反射波の振幅が
低減される上、この燃料供給ルートを通じて、互いに最
も離隔した第1の燃料分配管の上流と第2の燃料分配管
の下流との間の圧力差が緩和されるため、圧力波及び反
射波に影響されて生じやすい各気筒列間での燃料噴射時
の燃圧のバラツキが低減される。請求項2記載の本発明
の内燃機関の燃料供給装置では、燃料噴射弁から、各気
筒の燃焼室内に直接燃料噴射が行なわれるため、燃料噴
射時期を自由に設定でき、特に、燃圧を高く設定するこ
とで、種々の燃焼形態を実現できる。燃圧を高めると燃
料ポンプによる脈動の影響が大きくなるが、上記のよう
な圧力波伝達手段を通じた燃圧変動の抑制により、燃料
ポンプによる脈動の影響が低減される。
Therefore, in the fuel supply system for an internal combustion engine according to the first aspect of the present invention, the fuel from the fuel pump is supplied to the first fuel supply provided in the second cylinder line. The first fuel distribution pipe is supplied to the first fuel distribution pipe and the second fuel distribution pipe is supplied to the second fuel distribution pipe arranged in the second cylinder line from the first fuel distribution pipe through the communication pipe. It is supplied from a pipe to the fuel injection valve of each cylinder. At this time, the fuel pressure adjusting means disposed downstream of the second fuel distribution pipe regulates the fuel pressure of the fuel injected from the fuel injection valve of each cylinder to a predetermined pressure. At this time, the pressure wave discharged from the fuel pump propagates from the upstream of the first fuel distribution pipe to the downstream, the communication pipe, and the upstream and downstream of the second fuel distribution pipe in order, and further reflected by the fuel pressure adjusting means. Then, the reflected wave propagates in the reverse order from the downstream of the second fuel distribution pipe to the upstream, the communication pipe, and the downstream of the first fuel distribution pipe to the upstream. Pressure wave transmitting means is interposed between the upstream of the fuel supply pipe and the downstream of the second fuel distribution pipe, so that pressure waves and reflected waves (which are also pressure waves) are , Also propagates through the route through the pressure wave transmitting means. As described above, since the pressure wave and the reflected wave are also propagated through the pressure wave transmitting means, the amplitude of the pressure wave and the reflected wave propagating through the fuel supply route is reduced, and the pressure wave and the reflected wave which are most separated from each other through the fuel supply route are reduced. Since the pressure difference between the upstream of the first fuel distribution pipe and the downstream of the second fuel distribution pipe is reduced, the fuel pressure at the time of fuel injection between the cylinder rows which is likely to be affected by pressure waves and reflected waves Is reduced. In the fuel supply device for an internal combustion engine according to the second aspect of the present invention, the fuel injection is performed directly from the fuel injection valve into the combustion chamber of each cylinder, so that the fuel injection timing can be freely set, and particularly, the fuel pressure is set high. By doing so, various combustion modes can be realized. When the fuel pressure is increased, the influence of the pulsation by the fuel pump increases. However, by suppressing the fuel pressure fluctuation through the pressure wave transmitting means as described above, the influence of the pulsation by the fuel pump is reduced.

【発明の実施の形態】以下、図面により、本発明の実施
の形態について説明すると、図1〜図3は本発明の一実
施形態としての内燃機関の燃料供給装置を示すもので、
図1はその燃料配管構成を示す模式図、図2はその作用
を示す模式的な燃圧特性図、図3はその効果を示すグラ
フである。本実施形態にかかる内燃機関は、左右のバン
ク(即ち、2つの気筒列)をそなえたV型6気筒エンジ
ンであり、各気筒には、燃焼室内に直接燃料を噴射する
ように燃料噴射弁が配設されている。このような各燃料
噴射弁に燃料を供給する本燃料供給装置の燃料配管系の
要部は、図1に示すように構成されている。図1に示す
ように、第1気筒列(左バンク又は右バンク)用の第1
デリバリパイプ(第1の燃料分配管)11と第2気筒列
(右バンク又は左バンク)用の第2デリバリパイプ(第
2の燃料分配管)12とが互いに隣り合って平行に配設
されており、これらの第1,第2デリバリパイプ11,
12は直列に接続されている。つまり、第1デリバリパ
イプ11の上流端(又は上流端近傍)11Aに、燃料送
給路2を介して、図示しない燃料タンクから供給された
燃料を加圧する燃料ポンプ1が接続され、第1デリバリ
パイプ11の下流端(又は下流端近傍)11Bと第2デ
リバリパイプ12の上流端(又は上流端近傍)12Aと
が連通管5で接続され、さらに、第2デリバリパイプ1
2の下流端(又は下流端近傍)12Bに燃料返戻路3が
接続され、この燃料返戻路3にはレギュレータ(燃圧調
整手段)4が介装されている。第1デリバリパイプ11
には、第1の気筒列の各気筒に対応してその上流から燃
料噴射弁順に第1〜第3の燃料噴射弁I1 ,I2 ,I3
が接続され、第2デリバリパイプ12には、第2の気筒
列の各気筒に対応してその上流から燃料噴射弁順に第4
〜第6の燃料噴射弁I4 ,I5 ,I6 が接続されてい
る。そして、本装置では、第1デリバリパイプ11の上
流端(又は上流端近傍)11Aと第2デリバリパイプ1
2の下流端(又は下流端近傍)12Bとの間には、これ
らの相互間で圧力波を伝達するための圧力波伝達手段と
しての圧力波伝達管8が介装されている。この圧力波伝
達管8は、燃料供給を行なうためのものではなく、圧力
波伝達を行なうためのものである。したがって、圧力波
伝達管8内は、圧力波のみを伝達できればよく、燃料が
流通できる必要はない。もちろん、圧力波伝達管8とし
て、燃料流通可能な連通管を用いてもよいが、この場
合、連通管の内径は、燃料供給を行なうための連通管5
の内径に対して十分に小さいものが適している。つま
り、この圧力波伝達管8の内径を連通管5と同等の径に
してしまうと、圧力波伝達管8内を多量の燃料が流れる
ことになり、デリバリパイプ11,12内の燃料の循環
を妨げ、デリバリパイプ11,12内にエアが溜まりや
すくなるという課題が生じてしまうのである。また、圧
力波伝達管8は、連通管内の途中に、燃料流通を遮断し
圧力波のみを伝達するような膜を介設したものでもよ
い。さらに、燃料ポンプ1と第1デリバリパイプ11と
の間には、容積室(蓄圧手段)9が介設されている。本
発明の一実施形態としての内燃機関の燃料供給装置は、
上述のように構成されているので、ポンプ1から吐出さ
れた燃料は、まず、容積室9で蓄圧されつつその脈動を
低減された上で、第1デリバリパイプ11の上流端11
Aに供給され、さらに、第1デリバリパイプ11を上流
端11Aから下流端11Bへ流通し、連通管5から第2
デリバリパイプ11に送られ、第2デリバリパイプ11
の上流端12Aから下流端12Bへ流通して、レギュレ
ータ4に流入する。この際、ポンプ1からの吐出燃料
は、容積室9でその脈動を低減されるものの、依然とし
て一定の脈動をもって燃料供給配管内に供給される。こ
の脈動による圧力波は、実際の燃料の流通(質量移動)
とは関係なく、燃料の流通速度よりも速い速度で伝播す
る。この圧力波は、上述のような燃料供給経路、即ち、
第1デリバリパイプ11の上流端11Aから下流端11
Bさらに連通管5を経て第2デリバリパイプ12の上流
端12Aから下流端12Bという経路で伝播して、レギ
ュレータ4により反射されて、反射波となって、今度は
逆に、第2デリバリパイプ12の下流端12Bから上流
端12Aさらに連通管5を経て第1デリバリパイプ11
の下流端11Bから上流端11Aという経路で伝播す
る。この一方で、本装置では、第1デリバリパイプ11
の上流端11Aと第2デリバリパイプ12の下流端12
Bとの間には、これらの相互間で圧力波を伝達する圧力
波伝達管8が介装されているので、燃料供給経路とは別
に、この圧力波伝達管8を通じても圧力波やその反射波
が伝播する。つまり、ポンプ1からの圧力波は、圧力波
伝達管8を経て第2デリバリパイプ12の下流端12B
から上流端12Aさらに連通管5を経て第1デリバリパ
イプ11の下流端11Bから上流端11Aという経路で
伝播し、また、レギュレータ4からの反射波は、圧力波
伝達管8を経て第1デリバリパイプ11の上流端11A
から下流端11Bさらに連通管5を経て第2デリバリパ
イプ12の上流端12Aから下流端12Bという経路で
伝播する。このような圧力波伝達管8を通じた圧力波
(反射波を含む)の伝播により、燃料供給経路を通じた
圧力波(反射波を含む)の伝播量が減少する上に、圧力
波伝達管8を通じた圧力波(反射波を含む)と燃料供給
経路を通じた圧力波(反射波を含む)とが左右対称なか
たちで伝播するので、第1デリバリパイプ11側と第2
デリバリパイプ12側とで脈動成分がほぼ等しくなる。
例えば図2は第1デリバリパイプ11側及び第2デリバ
リパイプ12側の燃圧変動を示すグラフであり、燃料供
給経路を通じて伝播した圧力波や反射波と圧力波伝達管
8を通じて伝播した圧力波や反射波とが適宜重合する
が、このような特性は、第1デリバリパイプ11側と第
2デリバリパイプ12側とでほぼ同様なものになる。ま
た、図3は本装置による効果を示す燃圧特性図であり、
このデータとしての燃圧検出は、図4中に示した場合と
同様に、第1デリバリパイプの燃圧についてはその上流
部に設置した圧力計P1により、第2デリバリパイプの
燃圧についてはその下流部に設置した圧力計P2によ
り、それぞれ行なったものであり、各図において、第1
デリバリパイプの特性にはP1を、第2デリバリパイプ
の特性にはP2を付している。図3(A)に示すよう
に、本装置では、全エンジン回転域において脈動振幅が
大幅に減少し、図3(B),(C)に示すように、第1
デリバリパイプ(P1)と第2デリバリパイプ(P2)
ともに燃圧変動が小さくなり、第1デリバリパイプ(P
1)と第2デリバリパイプ(P2)との燃圧変動の位相
差も極めて小さくなる。燃圧変動の位相差は、エンジン
が高回転になっても大きくならない。このように、燃圧
変動自体が小さくなり、且つ、2つの気筒列(左右のバ
ンク)間での脈動の位相差が小さくなるため、燃料噴射
の瞬間に2つの気筒列間で燃圧がほぼ均等になって、両
気筒列間での燃料噴射量のバラツキが回避され、両気筒
列間でほぼ均等な燃料噴射量が得られるようになる。特
に、筒内噴射内燃機関では、例えば圧縮工程を中心とし
たタイミングで燃料を高圧噴射することにより、燃料を
点火プラグの近傍に集めて燃焼を行なう層状燃焼によっ
て、着火性や燃焼性を確保しつつ、燃焼室全体としては
極めて少ない燃料で燃焼を行ない燃費を大きく向上させ
ることができ、吸気工程を中心としたタイミングで燃料
を高圧噴射することにより、十分な予混合を行なって燃
焼を行なう予混合燃焼をによって大きな出力を得ること
ができるが、いずれの場合も、高圧燃料噴射が必要にな
る上に、適切な空燃比制御が必要になり、燃料噴射量の
制御を精度よく行なわなくてはこれを実現することがで
きない。一方、高圧燃料噴射では、ポンプ脈動も大きく
なり、このポンプ脈動による燃圧変動が各気筒列間や各
気筒間での燃料噴射量のバラツキを招きやすいが、上述
のように、圧力波伝達管8を通じて燃圧変動の抑制が行
なわれ、燃料ポンプによる脈動の影響が低減されるた
め、各気筒列間での燃料噴射量のバラツキが低減される
ようになる。したがって、適切な空燃比制御を実現する
ことができるようになり、上述のような燃費重視の層状
燃焼や出力重視の予混合燃焼を適切に行なうことができ
るようになり、筒内噴射内燃機関の性能向上に大きく寄
与しうる。また、燃料噴射量のバラツキ低減は、エンジ
ンの静粛性の向上等にも寄与しうる利点がある。なお、
本実施形態では、筒内噴射内燃機関について説明した
が、本装置は、筒内噴射内燃機関に限らず、各気筒毎に
吸気ポートへ燃料噴射を行なうマルチポイントインジェ
クション型のものに広く適用することができるのは勿論
のことである。さらに、ポンプは、吐出圧に脈動の生じ
るタイプのものであれば、例えば電動ポンプなどのエン
ジン駆動以外のポンプであっても本装置を適用すること
ができる。またさらに、本装置は、容積室をそなえない
ように構成しても、ポンプ脈動の影響を低減する効果を
得ることはでき、有効である。また、本装置の適用対象
は、2列の気筒列が対抗して設置された内燃機関であ
り、V型エンジンの他、例えば水平対向型エンジン等に
も適用しうる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. FIGS. 1 to 3 show a fuel supply device for an internal combustion engine as an embodiment of the present invention.
FIG. 1 is a schematic diagram showing the configuration of the fuel pipe, FIG. 2 is a schematic fuel pressure characteristic diagram showing its operation, and FIG. 3 is a graph showing its effect. The internal combustion engine according to the present embodiment is a V-type six-cylinder engine having left and right banks (that is, two cylinder rows). Each cylinder is provided with a fuel injection valve so as to inject fuel directly into a combustion chamber. It is arranged. The main part of the fuel piping system of the present fuel supply device for supplying fuel to each of the fuel injection valves is configured as shown in FIG. As shown in FIG. 1, the first cylinder row (left bank or right bank)
A delivery pipe (first fuel distribution pipe) 11 and a second delivery pipe (second fuel distribution pipe) 12 for a second cylinder row (right bank or left bank) are arranged adjacent to and parallel to each other. And these first and second delivery pipes 11,
12 are connected in series. That is, the fuel pump 1 for pressurizing the fuel supplied from the fuel tank (not shown) is connected to the upstream end (or near the upstream end) 11A of the first delivery pipe 11 via the fuel supply path 2, and the first delivery The downstream end (or near the downstream end) 11B of the pipe 11 and the upstream end (or near the upstream end) 12A of the second delivery pipe 12 are connected by the communication pipe 5, and the second delivery pipe 1
A fuel return path 3 is connected to the downstream end (or near the downstream end) 12B of the fuel supply 2, and a regulator (fuel pressure adjusting means) 4 is interposed in the fuel return path 3. First delivery pipe 11
First to third fuel injection valves I 1 , I 2 , I 3 in the order of fuel injection valves from the upstream side corresponding to each cylinder of the first cylinder row.
Are connected to the second delivery pipe 12 from the upstream thereof in the order of the fuel injection valves corresponding to the respective cylinders of the second cylinder row.
To the sixth fuel injection valves I 4 , I 5 , I 6 . In the present apparatus, the upstream end (or near the upstream end) 11A of the first delivery pipe 11 and the second delivery pipe 1
A pressure wave transmitting pipe 8 as a pressure wave transmitting means for transmitting a pressure wave between them is interposed between the downstream end 12 (or the vicinity of the downstream end) 12B. The pressure wave transmission pipe 8 is not for supplying fuel, but for transmitting pressure waves. Therefore, only the pressure waves need to be transmitted in the pressure wave transmission pipe 8, and there is no need for the fuel to flow. Needless to say, a communication pipe through which fuel can flow may be used as the pressure wave transmission pipe 8, but in this case, the inner diameter of the communication pipe is determined by the communication pipe 5 for supplying fuel.
It is suitable that the diameter is sufficiently small with respect to the inner diameter. That is, if the inner diameter of the pressure wave transmission pipe 8 is made equal to the diameter of the communication pipe 5, a large amount of fuel flows in the pressure wave transmission pipe 8, and the circulation of the fuel in the delivery pipes 11 and 12 is reduced. This causes a problem that air easily accumulates in the delivery pipes 11 and 12. Further, the pressure wave transmission pipe 8 may be provided with a membrane that interrupts fuel flow and transmits only pressure waves in the communication pipe. Further, a volume chamber (pressure accumulating means) 9 is interposed between the fuel pump 1 and the first delivery pipe 11. A fuel supply device for an internal combustion engine as one embodiment of the present invention,
With the above-described configuration, the fuel discharged from the pump 1 is first stored in the volume chamber 9 and reduced in pulsation. Then, the fuel is discharged from the upstream end 11 of the first delivery pipe 11.
A, and flows through the first delivery pipe 11 from the upstream end 11A to the downstream end 11B.
Sent to the delivery pipe 11 and the second delivery pipe 11
Flows from the upstream end 12A to the downstream end 12B, and flows into the regulator 4. At this time, although the pulsation of the fuel discharged from the pump 1 is reduced in the volume chamber 9, it is still supplied into the fuel supply pipe with a constant pulsation. The pressure wave due to this pulsation is the actual fuel flow (mass transfer).
Irrespective of this, it propagates at a speed higher than the fuel flow speed. This pressure wave has a fuel supply path as described above, that is,
From the upstream end 11A to the downstream end 11 of the first delivery pipe 11
B further propagates through a path from the upstream end 12A to the downstream end 12B of the second delivery pipe 12 through the communication pipe 5, is reflected by the regulator 4 and becomes a reflected wave. From the downstream end 12B to the upstream end 12A and further through the communication pipe 5 to the first delivery pipe 11
From the downstream end 11B to the upstream end 11A. On the other hand, in this device, the first delivery pipe 11
End 11A and the downstream end 12 of the second delivery pipe 12
B, a pressure wave transmission pipe 8 for transmitting pressure waves between them is interposed. Therefore, apart from the fuel supply path, the pressure wave and its reflection are also transmitted through the pressure wave transmission pipe 8. Waves propagate. In other words, the pressure wave from the pump 1 passes through the pressure wave transmission pipe 8 to the downstream end 12B of the second delivery pipe 12.
From the downstream end 11B of the first delivery pipe 11 to the upstream end 11A via the communication pipe 5, and the reflected wave from the regulator 4 is transmitted through the pressure wave transmission pipe 8 to the first delivery pipe. 11 upstream end 11A
From the upstream end 12B of the second delivery pipe 12 to the downstream end 12B via the communication pipe 5. The propagation of the pressure wave (including the reflected wave) through the pressure wave transmission pipe 8 reduces the propagation amount of the pressure wave (including the reflected wave) through the fuel supply path, and also causes the pressure wave transmission pipe 8 The pressure wave (including the reflected wave) and the pressure wave (including the reflected wave) passing through the fuel supply path propagate in a symmetrical manner, so that the first delivery pipe 11 side and the second
The pulsation component is substantially equal to the delivery pipe 12 side.
For example, FIG. 2 is a graph showing fuel pressure fluctuations on the first delivery pipe 11 side and the second delivery pipe 12 side. The pressure waves and reflection waves propagated through the fuel supply path and the pressure waves and reflection waves propagated through the pressure wave transmission pipe 8. Although the waves are appropriately polymerized, such characteristics are substantially the same between the first delivery pipe 11 and the second delivery pipe 12. FIG. 3 is a fuel pressure characteristic diagram showing the effect of the present device.
The fuel pressure detection as this data is performed in the same manner as shown in FIG. 4 by measuring the fuel pressure of the first delivery pipe with the pressure gauge P1 installed upstream of the first delivery pipe and measuring the fuel pressure of the second delivery pipe with the pressure gauge downstream thereof. The measurement was performed by the installed pressure gauge P2.
The characteristics of the delivery pipe are denoted by P1, and the characteristics of the second delivery pipe are denoted by P2. As shown in FIG. 3A, in the present apparatus, the pulsation amplitude is significantly reduced in the entire engine rotation range, and as shown in FIGS.
Delivery pipe (P1) and second delivery pipe (P2)
In both cases, the fuel pressure fluctuation becomes small, and the first delivery pipe (P
The phase difference of the fuel pressure fluctuation between 1) and the second delivery pipe (P2) also becomes extremely small. The phase difference of the fuel pressure fluctuation does not increase even when the engine rotates at a high speed. As described above, the fuel pressure fluctuation itself becomes small, and the phase difference of the pulsation between the two cylinder rows (left and right banks) becomes small, so that the fuel pressure between the two cylinder rows becomes almost even at the moment of fuel injection. As a result, a variation in the fuel injection amount between the two cylinder rows is avoided, and a substantially uniform fuel injection quantity can be obtained between the two cylinder rows. In particular, in a direct injection internal combustion engine, ignitability and flammability are ensured by stratified combustion in which fuel is collected near a spark plug and burned, for example, by injecting fuel at a high pressure at a timing centered on a compression process. On the other hand, the combustion chamber as a whole can burn with very little fuel and greatly improve fuel efficiency. By injecting the fuel at a high pressure mainly at the intake stroke, sufficient premixing and combustion can be performed. A large output can be obtained by mixed combustion, but in any case, high-pressure fuel injection is required, and appropriate air-fuel ratio control is required, and the fuel injection amount must be controlled accurately. This cannot be achieved. On the other hand, in the high-pressure fuel injection, the pump pulsation also increases, and the fuel pressure fluctuation due to the pump pulsation tends to cause variation in the fuel injection amount between the cylinder rows or between the cylinders. The fuel pressure fluctuation is suppressed through the above, and the influence of the pulsation by the fuel pump is reduced, so that the variation of the fuel injection amount between the respective cylinder rows is reduced. Therefore, appropriate air-fuel ratio control can be realized, and the above-described stratified combustion with an emphasis on fuel efficiency and premixed combustion with an emphasis on output can be appropriately performed. It can greatly contribute to performance improvement. Further, there is an advantage that reduction in the variation of the fuel injection amount can contribute to improvement in quietness of the engine and the like. In addition,
In the present embodiment, the in-cylinder injection internal combustion engine has been described. However, the present invention is not limited to the in-cylinder injection internal combustion engine, but may be widely applied to a multipoint injection type in which fuel is injected into an intake port for each cylinder. Of course you can. Further, the present apparatus can be applied to a pump other than the engine drive, such as an electric pump, as long as the pump has a pulsation in discharge pressure. Further, even if the present apparatus is configured not to have a volume chamber, the effect of reducing the influence of the pump pulsation can be obtained, which is effective. The target of application of the present apparatus is an internal combustion engine in which two cylinder rows are opposed to each other, and may be applied to, for example, a horizontally opposed engine in addition to a V-type engine.

【発明の効果】以上詳述したように、請求項1記載の本
発明の内燃機関の燃料供給装置によれば、圧力波伝達手
段を通じて、燃料供給ルートを通じて伝播する圧力波や
反射波の振幅が低減され、且つ、第1の燃料分配管の上
流と第2の燃料分配管の下流との間の圧力差が緩和され
るため、圧力波及び反射波に影響されて生じやすい各気
筒列間での燃料噴射時の燃圧のバラツキが低減され、各
気筒列間での燃料噴射量のバラツキも低減されることに
なり、ポンプ脈動の影響を少なくしながら機関の運転を
円滑に行なえるようになり、機関の性能向上や静粛性の
向上等に寄与しうる利点がある。請求項2記載の本発明
の内燃機関の燃料供給装置によれば、筒内噴射内燃機関
では、例えば圧縮工程を中心に燃料噴射することで燃費
に優れた層状燃焼を行なったり、あるいは吸気工程を中
心に燃料噴射することで大きな出力を得られる予混合燃
焼を行なったり、機関への要求に応じて適宜の燃焼形態
を選択できるが、いずれの場合も、高い燃圧での燃料噴
射が各燃焼形態の燃焼性能確保に重要であるが、高燃圧
にすると燃料ポンプによる脈動の影響が大きくなり易
い。しかし、圧力波伝達手段を通じた燃圧変動の抑制に
より、燃料ポンプによる脈動の影響が低減され、各気筒
列間での燃料噴射量のバラツキが低減されることにな
り、筒内噴射内燃機関の性能向上や静粛性の向上等に寄
与しうる利点がある。
As described above in detail, according to the fuel supply system for an internal combustion engine according to the first aspect of the present invention, the amplitude of the pressure wave or the reflected wave propagating through the fuel supply route through the pressure wave transmitting means is reduced. Since the pressure difference is reduced and the pressure difference between the upstream of the first fuel distribution pipe and the downstream of the second fuel distribution pipe is alleviated, the pressure difference between the cylinder rows that are likely to be affected by the pressure wave and the reflected wave is reduced. The variation in fuel pressure during fuel injection is reduced, and the variation in fuel injection amount between the cylinder rows is also reduced.This makes it possible to smoothly operate the engine while reducing the effects of pump pulsation. In addition, there is an advantage that it can contribute to improvement of engine performance and quietness. According to the fuel supply device for an internal combustion engine of the present invention, in the cylinder injection internal combustion engine, for example, fuel injection is performed mainly in the compression step to perform stratified combustion with excellent fuel efficiency, or to perform the intake step. Premixed combustion, in which a large output can be obtained by injecting fuel into the center, can be performed, or an appropriate combustion mode can be selected according to the demands on the engine.In each case, fuel injection at a high fuel pressure is performed in each combustion mode. It is important to ensure the combustion performance of the fuel pump, but when the fuel pressure is increased, the influence of pulsation by the fuel pump tends to increase. However, by suppressing the fuel pressure fluctuation through the pressure wave transmitting means, the influence of the pulsation by the fuel pump is reduced, and the variation of the fuel injection amount between the respective cylinder rows is reduced, and the performance of the direct injection internal combustion engine is reduced. There is an advantage that can contribute to improvement and quietness.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態としての内燃機関の燃料供
給装置の燃料配管構成を示す模式図である。
FIG. 1 is a schematic diagram showing a fuel pipe configuration of a fuel supply device for an internal combustion engine as one embodiment of the present invention.

【図2】本発明の一実施形態としての内燃機関の燃料供
給装置の作用を示す模式的な燃圧特性図である。
FIG. 2 is a schematic fuel pressure characteristic diagram showing an operation of a fuel supply device for an internal combustion engine as one embodiment of the present invention.

【図3】本発明の一実施形態としての内燃機関の燃料供
給装置の効果を示すグラフであり、(A)は機関回転数
に応じた脈動レベルを示す図、(B)は機関の中回転域
での燃圧変動促成を示す図、(C)は機関の高回転域で
の燃圧変動促成を示す図である。
3A and 3B are graphs showing an effect of a fuel supply device for an internal combustion engine as one embodiment of the present invention, in which FIG. 3A shows a pulsation level according to the engine speed, and FIG. FIG. 7C is a diagram showing a fuel pressure fluctuation promotion in a high-speed region of the engine, and FIG.

【図4】従来のデリバリパイプ直列式の燃料供給装置の
燃料配管構成を示す模式的な構成図である。
FIG. 4 is a schematic configuration diagram showing a fuel pipe configuration of a conventional fuel supply device of a series delivery pipe type.

【図5】従来のデリバリパイプ並列式の燃料供給装置の
燃料配管構成を示す模式的な構成図である。
FIG. 5 is a schematic configuration diagram showing a fuel pipe configuration of a conventional fuel supply device of a parallel delivery pipe type.

【図6】図6のデリバリパイプ直列式の燃料供給装置の
燃圧特性を示すグラフであり、(A)は機関回転数に応
じた脈動レベルを示す図、(B)は機関の中回転域での
燃圧変動促成を示す図、(C)は機関の高回転域での燃
圧変動促成を示す図である。
6A and 6B are graphs showing fuel pressure characteristics of the fuel supply device of the delivery pipe in-line type shown in FIG. 6, in which FIG. 6A shows a pulsation level according to the engine speed, and FIG. FIG. 4C is a diagram showing fuel pressure fluctuation promotion in a high engine speed range of the engine.

【図7】従来のデリバリパイプ直列式の燃料供給装置の
課題を説明する燃料配管構成の模式図である。
FIG. 7 is a schematic diagram of a fuel pipe configuration for explaining a problem of a conventional fuel supply device of a delivery pipe in-line type.

【図8】従来のデリバリパイプ直列式の燃料供給装置の
課題を説明する模式的な燃圧特性図である。
FIG. 8 is a schematic fuel pressure characteristic diagram for explaining a problem of a conventional fuel supply device of a delivery pipe series type.

【図9】従来のデリバリパイプ直列式の燃料供給装置の
課題を説明する模式的な燃圧特性図である。
FIG. 9 is a schematic fuel pressure characteristic diagram for explaining a problem of a conventional fuel supply device of a series delivery pipe type.

【図10】図7のデリバリパイプ並列式の燃料供給装置
の燃圧特性を示すグラフであり、(A)は機関回転数に
応じた脈動レベルを示す図、(B)は機関の中回転域で
の燃圧変動促成を示す図、(C)は機関の高回転域での
燃圧変動促成を示す図である。
10A and 10B are graphs showing fuel pressure characteristics of the fuel supply device of the delivery pipe parallel type shown in FIG. 7, in which FIG. 10A shows a pulsation level according to the engine speed, and FIG. FIG. 4C is a diagram showing fuel pressure fluctuation promotion in a high engine speed range of the engine.

【符号の説明】[Explanation of symbols]

1 燃料ポンプ 2 燃料送給路 3 燃料返戻路 4 レギュレータ(燃圧調整手段) 5 連通管 8 圧力波伝達手段としての圧力波伝達管 9 容積室(蓄圧手段) 11 第1デリバリパイプ(第1の燃料分配管) 12 第2デリバリパイプ(第2の燃料分配管) Reference Signs List 1 fuel pump 2 fuel supply path 3 fuel return path 4 regulator (fuel pressure adjusting means) 5 communication pipe 8 pressure wave transmitting pipe as pressure wave transmitting means 9 volume chamber (pressure accumulating means) 11 first delivery pipe (first fuel pipe) Distribution pipe) 12 Second delivery pipe (second fuel distribution pipe)

フロントページの続き (72)発明者 久米 建夫 東京都港区芝五丁目33番8号 三菱自動車 工業株式会社内 (72)発明者 東 博文 東京都港区芝五丁目33番8号 三菱自動車 工業株式会社内Continued on the front page (72) Inventor Tateo Kume 5-33-8 Shiba, Minato-ku, Tokyo Inside Mitsubishi Motors Corporation (72) Inventor Hirofumi Higashi 5-33-8 Shiba, Minato-ku, Tokyo Mitsubishi Motors Corporation In company

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1及び第2の気筒列が対向して配置さ
れるとともに各気筒に燃料を噴射する燃料噴射弁をそな
えた内燃機関の燃料供給装置において、 上記の各気筒の燃料噴射弁に燃料を供給すべく上記の第
1及び第2の気筒列にそれぞれ沿うように配設された第
1及び第2の燃料分配管と、 該第1の燃料分配管の上流側に配設されて燃料タンクか
ら供給された燃料を加圧する燃料ポンプと、 該第1の燃料分配管の下流と該第2の燃料分配管の上流
とを接続して燃料流通させる連通管と、 該第2の燃料分配管の下流側に配設された燃圧調整手段
と、 該第1の燃料分配管の上流と該第2の燃料分配管の下流
との間で圧力波を伝達すべく介装された圧力波伝達手段
とをそなえていることを特徴とする、内燃機関の燃料供
給装置。
1. A fuel supply system for an internal combustion engine, comprising: a first and a second cylinder row arranged opposite to each other, and a fuel injection valve for injecting fuel into each cylinder; First and second fuel distribution pipes arranged along the first and second cylinder rows, respectively, so as to supply fuel to the first and second cylinder rows; and arranged upstream of the first fuel distribution pipe. A fuel pump for pressurizing the fuel supplied from the fuel tank, a communication pipe for connecting the downstream of the first fuel distribution pipe and the upstream of the second fuel distribution pipe for fuel flow, A fuel pressure adjusting means disposed downstream of the fuel distribution pipe; and a pressure interposed to transmit a pressure wave between the upstream of the first fuel distribution pipe and the downstream of the second fuel distribution pipe. A fuel supply device for an internal combustion engine, comprising a wave transmitting means.
【請求項2】 該内燃機関が、該燃料噴射弁を上記の各
気筒の燃焼室内に直接燃料噴射をするように配設された
筒内噴射内燃機関であることを特徴とする、請求項1記
載の内燃機関の燃料供給装置。
2. The internal combustion engine according to claim 1, wherein said internal combustion engine is a direct injection internal combustion engine arranged to inject said fuel injection valve directly into said combustion chamber of each of said cylinders. A fuel supply device for an internal combustion engine according to any one of the preceding claims.
JP9213710A 1997-08-07 1997-08-07 Fuel feed device of internal combustion engine Withdrawn JPH1162775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9213710A JPH1162775A (en) 1997-08-07 1997-08-07 Fuel feed device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9213710A JPH1162775A (en) 1997-08-07 1997-08-07 Fuel feed device of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH1162775A true JPH1162775A (en) 1999-03-05

Family

ID=16643713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9213710A Withdrawn JPH1162775A (en) 1997-08-07 1997-08-07 Fuel feed device of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH1162775A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1188919A2 (en) 2000-09-18 2002-03-20 Hitachi, Ltd. Fuel supply system
JP2008533387A (en) * 2005-03-21 2008-08-21 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel injection device used in a multi-cylinder internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1188919A2 (en) 2000-09-18 2002-03-20 Hitachi, Ltd. Fuel supply system
US6505608B2 (en) 2000-09-18 2003-01-14 Hitachi, Ltd. Fuel supply system
JP2008533387A (en) * 2005-03-21 2008-08-21 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel injection device used in a multi-cylinder internal combustion engine
JP4651057B2 (en) * 2005-03-21 2011-03-16 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel injection device used in a multi-cylinder internal combustion engine

Similar Documents

Publication Publication Date Title
EP1188919B1 (en) Fuel supply system
JP4297160B2 (en) Internal combustion engine
US20060196475A1 (en) Fuel supply apparatus for vehicle
JP3894179B2 (en) Fuel supply device for internal combustion engine
US7131427B2 (en) Fuel injection device having two separate common rails
WO2013051560A1 (en) Common rail fuel injection system
JP2005315174A (en) Fuel supply device for internal combustion engine
US6837212B2 (en) Fuel allocation at idle or light engine load
JPH10274075A (en) Cylinder injection internal combustion engine with cam driving type fuel pump, and cylinder injection internal combustion engine with parallel arrangement type fuel feed system
JPH1162775A (en) Fuel feed device of internal combustion engine
JP2009138568A (en) Internal combustion engine
KR102201716B1 (en) Fuel economy and emission reduction system of internal combustion engine
JP3301450B2 (en) Fuel injection device for internal combustion engine
JPH0666221A (en) Fuel injector for internal combustion engine
JPH10252486A (en) Intake/exhaust device for internal combustion engine
JPH11287148A (en) Fuel injector for internal combustion engine
JP2007170209A (en) Fuel injection device of internal combustion engine
JP2779253B2 (en) Multi-cylinder engine intake system
JP2006161673A (en) Fuel supply system for internal combustion engine
SU985381A1 (en) Fuel feed system
JPH03179164A (en) Combustion accelerating air injector for diesel engine
SU1393919A1 (en) Intake manifold for v-type eight-cylinder internal combustion engine
JPH04342868A (en) Fuel injector
JPH0949449A (en) Fuel injection device
JP2017198176A (en) Fuel injection device for engine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041102