JPH1160395A - Compound semiconductor device - Google Patents

Compound semiconductor device

Info

Publication number
JPH1160395A
JPH1160395A JP22467697A JP22467697A JPH1160395A JP H1160395 A JPH1160395 A JP H1160395A JP 22467697 A JP22467697 A JP 22467697A JP 22467697 A JP22467697 A JP 22467697A JP H1160395 A JPH1160395 A JP H1160395A
Authority
JP
Japan
Prior art keywords
layer
lattice
compound semiconductor
semiconductor device
ingaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22467697A
Other languages
Japanese (ja)
Inventor
Toru Uchida
徹 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22467697A priority Critical patent/JPH1160395A/en
Publication of JPH1160395A publication Critical patent/JPH1160395A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compd. semiconductor device having a lattice relaxation layer capable of relieving the strain by the lattice mismatching between a substrate and an element forming layer and preventing the generation of cross hatch-like ruggedness on the surface. SOLUTION: Plural intermediate layers 13 constituting the relaxation layer 12 are formed of two-layered structures consisting of InGaAs layers 14 and GaAs layers 15. The In content in the InGaAs layers 14 arranged on the upper side is made larger, by which the inclination angle distribution of the crystal axes at the respective boundaries is confined to <=0.05 deg. or the lattice relaxation quantity is confined to <=0.1%, more preferably <=0.07%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、化合物半導体基板
と素子形成層との間に設けられて両者の間の格子定数の
差による歪みを緩和する格子緩和層を備えた化合物半導
体装置に関する。
The present invention relates to a compound semiconductor device provided with a lattice relaxation layer provided between a compound semiconductor substrate and an element formation layer to reduce distortion due to a difference in lattice constant between the two.

【0002】[0002]

【従来の技術】近年、化合物半導体は、高効率の発光ダ
イオードやレーザ素子に使用されている。これらの素子
では、InP又はGaAs等の化合物半導体からなる基
板の上に、基板と格子定数が異なるIII-V族混晶化合物
半導体からなる素子形成層を形成する必要が高まってき
た。
2. Description of the Related Art In recent years, compound semiconductors have been used for highly efficient light emitting diodes and laser devices. In these devices, it has become increasingly necessary to form an element formation layer made of a group III-V mixed crystal compound semiconductor having a different lattice constant from the substrate on a substrate made of a compound semiconductor such as InP or GaAs.

【0003】しかし、InP又はGaAs等の化合物半
導体基板の上にIII-V族混晶化合物からなる素子形成層
を直接形成すると、基板と素子形成層との格子不整合に
起因する歪みが大きく、素子形成層に欠陥(転移)が生
じたり、素子形成層やその上に形成する層の表面に凹凸
が発生して、素子特性の劣化の原因となる。このため、
InP又はGaAs等の化合物半導体基板の上にIII-V
族混晶化合物からなる素子形成層を形成する場合は、両
者の間に格子緩和層を介在させて、格子不整合に起因す
る歪みを低減している。
However, when an element formation layer made of a group III-V mixed crystal compound is directly formed on a compound semiconductor substrate such as InP or GaAs, distortion due to lattice mismatch between the substrate and the element formation layer is large, Defects (transitions) occur in the element formation layer, and irregularities occur on the surface of the element formation layer or a layer formed thereon, which causes deterioration of element characteristics. For this reason,
III-V on compound semiconductor substrate such as InP or GaAs
In the case of forming an element formation layer made of a group mixed crystal compound, a strain caused by lattice mismatch is reduced by interposing a lattice relaxation layer between the two.

【0004】格子緩和層には、階段状構造のものと、連
続的組成傾斜構造のものとがある。図6は、横軸にIn
含有量をとり、縦軸に格子緩和層の厚さ方向をとって、
従来の階段状構造の格子緩和層におけるIn含有量の厚
さ方向の変化を示す模式図である。例えば、半導体基板
がGaAsからなり、格子緩和層が複数のInGaAs
層の積層体からなる場合、この図6に示すように、格子
緩和層を構成するInGaAs層は、上側のものほどI
n含有量が多くなるように形成されて、最上層のInG
aAs層はその上に形成される素子形成層とほぼ同じ組
成に形成されている。
The lattice relaxation layer has a step-like structure and a continuous composition gradient structure. FIG. 6 shows that the horizontal axis represents In.
Taking the content, the vertical axis takes the thickness direction of the lattice relaxation layer,
It is a schematic diagram which shows the change of the In content in the thickness direction in the lattice relaxation layer of the conventional step-like structure. For example, the semiconductor substrate is made of GaAs, and the lattice relaxation layer is made of a plurality of InGaAs.
As shown in FIG. 6, the InGaAs layer constituting the lattice-relaxing layer has a lower IGaAs
n is formed to have a high n content, and the uppermost InG
The aAs layer has substantially the same composition as the element forming layer formed thereon.

【0005】このように、半導体基板と素子形成層との
間にIn含有量が徐々に変化する複数のInGaAs層
を設けて各界面における水平方向の格子間隔を少しづつ
変化させることにより、半導体基板と素子形成層との間
の格子定数の差による歪みを緩和することができる。ま
た、連続的組成傾斜構造の格子緩和層においても、基板
側から素子形成層側にIn含有量が連続的に変化するよ
うに格子緩和層が形成されており、階段状構造の場合と
同様に、貫通転位密度が低い緩和層が得られ、格子不整
合に起因する歪みを低減することができる。
As described above, by providing a plurality of InGaAs layers whose In content gradually changes between the semiconductor substrate and the element formation layer and gradually changing the horizontal lattice spacing at each interface, the semiconductor substrate is formed. Distortion due to a difference in lattice constant between the element and the element formation layer can be reduced. Also, in the lattice relaxation layer having the continuous composition gradient structure, the lattice relaxation layer is formed so that the In content continuously changes from the substrate side to the element formation layer side. As a result, a relaxation layer having a low threading dislocation density can be obtained, and distortion due to lattice mismatch can be reduced.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
階段状構造又は連続的組成傾斜構造の格子緩和層では、
いずれも格子緩和層の表面にクロスハッチ状(格子状)
の凹凸が発生するという問題点がある。この凹凸によ
り、格子緩和層上に堆積する素子形成層にうねりが発生
するため、素子特性を改善する効果が十分ではない。
However, in a conventional lattice relaxation layer having a step-like structure or a continuous composition gradient structure,
In each case, the surface of the lattice relaxation layer is cross-hatched (lattice)
There is a problem that unevenness occurs. The unevenness causes undulation in the element formation layer deposited on the lattice relaxation layer, and the effect of improving the element characteristics is not sufficient.

【0007】本発明の目的は、基板と素子形成層との間
の格子不整合による歪みを緩和するとともに、表面にク
ロスハッチ状の凹凸が発生することを防止できる格子緩
和層を備えた化合物半導体装置を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a compound semiconductor having a lattice relaxation layer capable of alleviating distortion due to lattice mismatch between a substrate and an element formation layer and preventing cross-hatched irregularities from being generated on the surface. It is to provide a device.

【0008】[0008]

【課題を解決するための手段】上記した課題は、化合物
半導体基板と素子形成層との間に介在し、両者の間の格
子定数の差により生じる歪みを緩和する格子緩和層を有
する化合物半導体装置において、前記格子緩和層は、水
平方向の格子間隔が異なる複数の中間層により構成さ
れ、前記複数の中間層のうちの最下層の中間層と前記半
導体基板との界面、及び各中間層の界面における結晶軸
の傾斜角度分布がいずれも0.05°以下であることを
特徴とする化合物半導体装置により解決する。
SUMMARY OF THE INVENTION An object of the present invention is to provide a compound semiconductor device having a lattice relaxation layer interposed between a compound semiconductor substrate and an element forming layer, which alleviates strain caused by a difference in lattice constant between the two. In the above, the lattice relaxation layer is composed of a plurality of intermediate layers having different lattice spacings in a horizontal direction, an interface between a lowermost intermediate layer of the plurality of intermediate layers and the semiconductor substrate, and an interface between the intermediate layers. Wherein the inclination angle distribution of the crystal axes is 0.05 ° or less.

【0009】また、上記した課題は、化合物半導体基板
と素子形成層との間に介在し、両者の間の格子定数の差
により生じる歪みを緩和する格子緩和層を有する化合物
半導体装置において、前記格子緩和層は、水平方向の格
子間隔が異なる複数の中間層により構成され、前記複数
の中間層のうちの最下層の中間層と前記半導体基板との
界面、及び各中間層の界面における格子緩和量がいずれ
も0.1%以下であること特徴とする化合物半導体装置
により解決する。
[0009] The above-mentioned problem is also solved by a compound semiconductor device having a lattice relaxation layer interposed between a compound semiconductor substrate and an element forming layer, which alleviates strain caused by a difference in lattice constant between the two. The relaxation layer is composed of a plurality of intermediate layers having different lattice spacings in the horizontal direction, and the lattice relaxation amount at the interface between the lowermost intermediate layer of the plurality of intermediate layers and the semiconductor substrate and at the interface between the intermediate layers. Are all 0.1% or less.

【0010】なお、本願において傾斜角度分布とは、界
面における結晶軸の傾斜角度の分布をX線装置を用いた
逆格子マッピング法等により調べ、その結果から求めた
結晶軸の傾斜角度の標準偏差をいう。以下、本発明の作
用について説明する。図1は、GaAs基板1上にIn
GaAs層2を形成した場合のミスフィット転移とIn
GaAs層2の表面の凹凸との関係を示す模式図であ
る。この図1において、矢印は結晶軸の方向を示す。こ
の図1に示すように、GaAs基板1上にInGaAs
層2を形成すると、両者の間にミスフィット転移3が発
生し、ミスフィット転移3が発生した個所の近傍では結
晶軸が傾斜する。InGaAs層2が形成されるとき
は、InGaAs層2は結晶軸方向に成長するので、結
晶軸の傾斜角度が大きいと、InGaAs層2の表面に
クロスハッチ状の凹凸が発生する原因となる。
In the present application, the tilt angle distribution refers to the distribution of the tilt angle of the crystal axis at the interface by a reciprocal lattice mapping method using an X-ray apparatus, and the standard deviation of the tilt angle of the crystal axis obtained from the result. Say. Hereinafter, the operation of the present invention will be described. FIG. 1 shows that GaAs substrate 1 has In
Misfit transition and In when GaAs layer 2 is formed
FIG. 3 is a schematic diagram showing a relationship with unevenness on the surface of a GaAs layer 2. In FIG. 1, the arrow indicates the direction of the crystal axis. As shown in FIG. 1, InGaAs is formed on a GaAs substrate 1.
When the layer 2 is formed, a misfit transition 3 occurs between the two, and the crystal axis is inclined in the vicinity of the location where the misfit transition 3 has occurred. When the InGaAs layer 2 is formed, the InGaAs layer 2 grows in the crystal axis direction. Therefore, if the inclination angle of the crystal axis is large, cross-hatched irregularities may be generated on the surface of the InGaAs layer 2.

【0011】本願発明者らは、X線装置を用いた逆格子
マッピングによって、結晶軸の傾斜角度分布とクロスハ
ッチ状の凹凸との関係について調べた。逆格子マッピン
グにより、逆格子点の広がりを調べることができる。逆
格子点の広がりは結晶軸の傾斜角度分布に対応する。そ
こで、(004)反射条件で逆格子マッピングを行い、
半値幅から結晶軸の傾斜角度を計算し、その結果を基に
傾斜角度分布を求めた。その結果、結晶軸の傾斜角度分
布が0.05°以下であれば、クロスハッチ状の凹凸は
殆ど認められないとの知見を得た。
The inventors of the present application have examined the relationship between the inclination angle distribution of the crystal axis and the cross-hatch irregularities by reciprocal lattice mapping using an X-ray apparatus. By reciprocal lattice mapping, the spread of reciprocal lattice points can be examined. The spread of reciprocal lattice points corresponds to the tilt angle distribution of the crystal axis. Therefore, reciprocal lattice mapping is performed under the (004) reflection condition,
The tilt angle of the crystal axis was calculated from the half width, and the tilt angle distribution was determined based on the calculated result. As a result, it has been found that when the inclination angle distribution of the crystal axes is 0.05 ° or less, almost no cross-hatch irregularities are observed.

【0012】また、本願発明者らは、結晶軸の傾斜角度
分布と格子緩和量との関係を調べた。その結果を図2に
示す。但し、格子緩和量fは、GaAs基板の水平方向
の格子間隔をasub 、GaAs基板上に形成されたIn
GaAs層の水平方向の平均格子間隔をaepi とする
と、下記(1)式により定義される。 f=(aepi −asub )/asub …(1) 図2から明らかなように、格子緩和量fの増大に伴っ
て、結晶軸の傾斜角度分布が大きくなる。また、格子緩
和量fが0.1%以下であれば、傾斜角度分布を0.0
5°以下にすることができ、格子緩和量fを0.07%
以下とすると傾斜角度分布が著しく小さくなる。
The inventors of the present application have examined the relationship between the distribution of the tilt angle of the crystal axis and the amount of lattice relaxation. The result is shown in FIG. However, the lattice relaxation amount f is defined as a sub where the horizontal lattice spacing of the GaAs substrate is a sub , and In is formed on the GaAs substrate.
Assuming that the average lattice spacing in the horizontal direction of the GaAs layer is a epi , it is defined by the following equation (1). f = (a epi− a sub ) / a sub (1) As is apparent from FIG. 2, the inclination angle distribution of the crystal axis increases as the lattice relaxation amount f increases. If the lattice relaxation amount f is 0.1% or less, the inclination angle distribution is set to 0.0%.
5 ° or less, and the lattice relaxation amount f is 0.07%
Below, the inclination angle distribution becomes extremely small.

【0013】図3は、本発明の化合物半導体装置と、そ
の化合物半導体装置の格子緩和層を構成する中間層の各
界面における水平方向の格子間隔を示す模式図である。
この図3に示すように、本発明の化合物半導体装置は、
基板1上に複数の中間層9を積層してなる格子緩和層8
を有している。そして、例えばk番目の中間層9に対す
るk+1番目の中間層9の格子緩和量f1 は、k番目の
中間層9及びk+1番目の中間層9の水平方向の平均格
子間隔をそれぞれak 、ak+1 とすれば、近似的に下記
(2)式で求まる。
FIG. 3 is a schematic diagram showing the horizontal lattice spacing at each interface of the compound semiconductor device of the present invention and the intermediate layer constituting the lattice relaxation layer of the compound semiconductor device.
As shown in FIG. 3, the compound semiconductor device of the present invention
Lattice relaxation layer 8 formed by laminating a plurality of intermediate layers 9 on substrate 1
have. For example, the lattice relaxation amount f1 of the (k + 1) th intermediate layer 9 with respect to the (k) th intermediate layer 9 is obtained by setting the horizontal average lattice spacings of the kth intermediate layer 9 and the (k + 1) th intermediate layer 9 to a k and a k , respectively. If +1 is set, it is approximately obtained by the following equation (2).

【0014】 f1 =(ak+1 −ak )/asub …(2) 本発明においては、基板1と最下層の中間層9との界
面、及び各中間層9の界面における格子緩和量を0.1
%以下、より好ましくは0.07%以下とする。これに
より、各界面における結晶軸の傾斜角度分布が0.05
°以下と極めて小さくなり、格子緩和層8の表面にクロ
スハッチ状の凹凸が形成されることが防止され、特性が
良好な化合物半導体装置が得られる。
F 1 = ( ak + 1− ak ) / asub (2) In the present invention, the lattice relaxation amount at the interface between the substrate 1 and the lowermost intermediate layer 9 and at the interface between the intermediate layers 9 To 0.1
% Or less, more preferably 0.07% or less. Thereby, the inclination angle distribution of the crystal axis at each interface is 0.05
° or less, which prevents the formation of cross-hatch-like irregularities on the surface of the lattice relaxation layer 8, and provides a compound semiconductor device having good characteristics.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態につい
て、添付の図面を参照して説明する。図4は本発明の実
施の形態の化合物半導体装置と、その半導体装置の格子
緩和層を構成する複数の中間層の各界面における格子緩
和量とを示す模式図である。また、図5は横軸にIn含
有量をとり、縦軸に格子緩和層の厚さ方向をとって、本
実施の形態の化合物半導体装置の緩和層中におけるIn
含有量の厚さ方向の変化を示す図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 4 is a schematic diagram showing the compound semiconductor device according to the embodiment of the present invention and the amount of lattice relaxation at each interface of a plurality of intermediate layers constituting the lattice relaxation layer of the semiconductor device. In FIG. 5, the horizontal axis indicates the In content, and the vertical axis indicates the thickness direction of the lattice relaxation layer.
It is a figure which shows the change of the thickness direction of content.

【0016】GaAs基板11上には格子緩和層12が
形成されている。格子緩和層12は複数の中間層13を
積層して構成され、各中間層13は下側のInGaAs
層14と上側のGaAs層15との2つの層により構成
されている。また、各中間層13のInGaAs層14
は、上側に配置されたものほどIn含有量が多くなって
いる。すなわち、最下層の中間層13のInGaAs層
14はIn0.06Ga0. 94Asからなり、次の中間層13
のInGaAs層14はIn0.07Ga0.93Asからなる
というように、各InGaAs層14のInとGaとの
含有比は少しづつ異なっているこの図4に示すように、
本実施の形態の化合物半導体装置は、InGaAs層1
4とGaAs層15とからなる複数の中間層13を積層
して構成されており、各中間層13のInGaAs層中
14のIn含有量を上側に配置されるものほど多くする
ことにより水平方向の格子間隔を少しづつ変化させてい
るので、基板11と最下層の中間層13との界面、及び
各中間層13の界面における格子緩和量がいずれも0.
07%以下になっている。これにより、各界面における
結晶軸の傾斜角度分布が0.05°以下になり、格子緩
和層12の表面にクロスハッチ状の凹凸が発生すること
が防止され、半導体素子の特性劣化が回避されるという
効果が得られる。
On the GaAs substrate 11, a lattice relaxation layer 12 is formed. The lattice relaxation layer 12 is formed by laminating a plurality of intermediate layers 13, and each intermediate layer 13 is formed of a lower InGaAs.
It is composed of two layers, a layer 14 and an upper GaAs layer 15. Further, the InGaAs layer 14 of each intermediate layer 13
The higher the number is, the higher the In content is. That, InGaAs layer 14 of the lowermost intermediate layer 13 is made of In 0.06 Ga 0. 94 As, the next intermediate layer 13
The InGaAs layer 14 is composed of In 0.07 Ga 0.93 As, and the In / Ga content ratio of each InGaAs layer 14 is slightly different, as shown in FIG.
The compound semiconductor device of the present embodiment has an InGaAs layer 1
4 and a plurality of intermediate layers 13 each composed of a GaAs layer 15. In the horizontal direction, the In content in the InGaAs layer 14 of each intermediate layer 13 is increased as the upper layer is disposed. Since the lattice spacing is changed little by little, the lattice relaxation amount at the interface between the substrate 11 and the lowermost intermediate layer 13 and at the interface between the intermediate layers 13 is 0.1 mm.
07% or less. Thereby, the inclination angle distribution of the crystal axis at each interface becomes 0.05 ° or less, cross-hatched irregularities are prevented from being generated on the surface of the lattice relaxation layer 12, and the characteristic deterioration of the semiconductor element is avoided. The effect is obtained.

【0017】以下、本実施の形態の化合物半導体層の製
造方法について説明する。まず、GaAsからなる基板
11の上に、例えば有機金属気相成長法(MOCVD
法)等の気相成長法によりInGaAs層(In0.06
0.94As)14を約0.2μmの厚さに形成する。そ
の後、十分な熱アニール処理を施す。これにより、基板
11とInGaAs層14との界面における格子緩和量
が約0.07%となり、結晶軸の傾斜角度分布が十分に
小さくなる。
Hereinafter, a method for manufacturing the compound semiconductor layer of the present embodiment will be described. First, for example, metal organic chemical vapor deposition (MOCVD) is formed on a substrate 11 made of GaAs.
InGaAs layer (In 0.06 G)
a 0.94 As) 14 is formed to a thickness of about 0.2 μm. Thereafter, a sufficient thermal annealing treatment is performed. As a result, the amount of lattice relaxation at the interface between the substrate 11 and the InGaAs layer 14 becomes about 0.07%, and the distribution of the tilt angles of the crystal axes becomes sufficiently small.

【0018】この時点で、InGaAs層14は残留歪
みを有する。この残留歪みは圧縮歪みであり、その大き
さはミスフィット転移を発生させる臨界歪み量、又はそ
れ以上である。従って、InGaAs層14上に直接I
n含有量が異なるInGaAs層を堆積した場合は臨界
歪みを超えるため、InGaAs14と基板11との界
面に更に新たなミスフィット転移が生じ、格子緩和量を
0.1%以下に保つことができなくなる。
At this point, the InGaAs layer 14 has a residual strain. This residual strain is a compressive strain, and its magnitude is equal to or larger than the critical strain amount at which a misfit transition occurs. Therefore, the I.I.
When an InGaAs layer having a different n content is deposited, the critical strain is exceeded, so that a new misfit transition occurs at the interface between the InGaAs 14 and the substrate 11 and the lattice relaxation amount cannot be maintained at 0.1% or less. .

【0019】そこで、InGaAs層14上には、その
圧縮歪みを打ち消すように、引っ張り歪みを有する材料
からなる層を形成する必要がある。この層として、本実
施の形態ではGaAs層15を形成する。そして、この
InGaAs層14とGaAs層15との2つの層によ
り第1(最下層)の中間層13を構成する。なお、引っ
張り歪みを有する材料とは、無歪み状態での格子間隔が
InGaAs層14の水平方向の格子間隔より小さな材
料であればよく、In含有量が少ないInGaAsによ
り形成してもよい。
Therefore, it is necessary to form a layer made of a material having a tensile strain on the InGaAs layer 14 so as to cancel the compressive strain. In this embodiment, a GaAs layer 15 is formed as this layer. The first (lowermost) intermediate layer 13 is constituted by the two layers of the InGaAs layer 14 and the GaAs layer 15. The material having a tensile strain may be any material as long as the lattice spacing in an unstrained state is smaller than the lattice spacing in the horizontal direction of the InGaAs layer 14, and may be formed of InGaAs having a small In content.

【0020】次に、第1の中間層13上に、InGaA
s(In0.07Ga0.93As)層14を形成し、このIn
GaAs層14上にGaAs層15を形成して、第2の
中間層13とする。このようにして、基板11上にIn
GaAs層14とGaAs層15とからなる中間層13
を積層して格子緩和層12を形成する。このようにして
形成された格子緩和層12は、各中間層13のInGa
As層14中のIn含有量が上側に配置されるものほど
多いので、最上層の中間層13の水平方向の格子間隔
は、各中間層13の緩和量の総和に相当する量だけ大き
くなる。
Next, InGaAs is formed on the first intermediate layer 13.
An s (In 0.07 Ga 0.93 As) layer 14 is formed, and this In
The GaAs layer 15 is formed on the GaAs layer 14 to form the second intermediate layer 13. In this way, In
Intermediate layer 13 composed of GaAs layer 14 and GaAs layer 15
Are laminated to form the lattice relaxation layer 12. The lattice-relaxed layer 12 formed in this manner is made of InGa of each intermediate layer 13.
Since the higher the In content in the As layer 14 is, the higher the upper layer, the lattice spacing in the horizontal direction of the uppermost intermediate layer 13 is increased by an amount corresponding to the total relaxation amount of each intermediate layer 13.

【0021】これにより、格子緩和層の最上層の格子間
隔を素子形成層の格子間隔に合わせることができて、素
子形成層に形成される素子の特性を損なうおそれがな
い。また、格子緩和層の表面にクロスハッチ状の凹凸が
発生することを回避できる。
Thus, the lattice spacing of the uppermost layer of the lattice relaxation layer can be matched with the lattice spacing of the element formation layer, and there is no possibility that the characteristics of the element formed in the element formation layer will be impaired. Further, it is possible to avoid the occurrence of cross-hatched irregularities on the surface of the lattice relaxation layer.

【0022】[0022]

【発明の効果】以上説明したように、本発明によれば、
格子緩和層を構成する複数の中間層のうちの最下層の中
間層と半導体基板との界面、及び各中間層の界面におけ
る結晶軸の傾斜角度分布がいずれも0.05°以下に設
定されているか、又は最下層の中間層と半導体基板との
界面、及び各中間層の界面における格子緩和量がいずれ
も0.1%以下に設定されているので、半導体基板と素
子形成層との間の格子定数の差による歪みを緩和できる
とともに、緩和層表面にクロスハッチ状の凹凸が発生す
ることを防止できて、素子特性の劣化が回避される。従
って、本発明は、化合物半導体装置の特性向上に大きな
貢献をなす。
As described above, according to the present invention,
The interface between the lowermost intermediate layer of the plurality of intermediate layers constituting the lattice relaxation layer and the semiconductor substrate, and the inclination angle distribution of the crystal axis at the interface of each intermediate layer are all set to 0.05 ° or less. Or the lattice relaxation amount at the interface between the lowermost intermediate layer and the semiconductor substrate and at the interface between the intermediate layers is set to 0.1% or less. Distortion due to a difference in lattice constant can be alleviated, and cross-hatched irregularities can be prevented from being generated on the surface of the relaxation layer, thereby avoiding deterioration of device characteristics. Therefore, the present invention makes a great contribution to improving the characteristics of the compound semiconductor device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理を示す図(その1)であり、Ga
As基板上にInGaAs層を形成したときの状態を示
す。
FIG. 1 is a diagram (part 1) illustrating the principle of the present invention;
This shows a state when an InGaAs layer is formed on an As substrate.

【図2】本発明の原理を示す図(その2)であり、格子
緩和量と傾斜角度分布との関係を示す図である。
FIG. 2 is a diagram (part 2) illustrating the principle of the present invention, and is a diagram illustrating a relationship between a lattice relaxation amount and a tilt angle distribution.

【図3】本発明の原理を示す図(その3)であり、化合
物半導体装置と、その化合物半導体装置の格子緩和層を
構成する中間層の各界面における水平方向の格子間隔を
示す図である。
FIG. 3 is a diagram (part 3) illustrating the principle of the present invention, and is a diagram illustrating a horizontal lattice spacing at each interface between a compound semiconductor device and an intermediate layer constituting a lattice relaxation layer of the compound semiconductor device. .

【図4】本発明の実施の形態の化合物半導体装置と、そ
の半導体装置の格子緩和層を構成する複数の中間層の各
界面における格子緩和量とを示す模式図である。
FIG. 4 is a schematic diagram showing a compound semiconductor device according to an embodiment of the present invention and the amount of lattice relaxation at each interface of a plurality of intermediate layers constituting a lattice relaxation layer of the semiconductor device.

【図5】実施の形態の化合物半導体装置の緩和層中のI
n含有量の分布を示す図である。
FIG. 5 shows I in the relaxation layer of the compound semiconductor device of the embodiment.
It is a figure showing distribution of n content.

【図6】従来の階段状構造の格子緩和層におけるIn含
有量の厚さ方向の変化を示す模式図である。
FIG. 6 is a schematic diagram showing a change in the In content in the thickness direction of a conventional lattice-relaxed layer having a step-like structure.

【符号の説明】[Explanation of symbols]

1,11 GaAs基板 2,14 InGaAs層 8,12 格子緩和層 9,13 中間層 15 GaAs層 1,11 GaAs substrate 2,14 InGaAs layer 8,12 lattice relaxation layer 9,13 intermediate layer 15 GaAs layer

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 化合物半導体基板と素子形成層との間に
介在し、両者の間の格子定数の差により生じる歪みを緩
和する格子緩和層を有する化合物半導体装置において、 前記格子緩和層は、水平方向の格子間隔が異なる複数の
中間層により構成され、前記複数の中間層のうちの最下
層の中間層と前記半導体基板との界面、及び各中間層の
界面における結晶軸の傾斜角度分布がいずれも0.05
°以下であることを特徴とする化合物半導体装置。
1. A compound semiconductor device having a lattice relaxation layer interposed between a compound semiconductor substrate and an element formation layer and configured to relax strain caused by a difference in lattice constant between the two. And a plurality of intermediate layers having different lattice spacings in the directions, and an interface between the lowermost intermediate layer of the plurality of intermediate layers and the semiconductor substrate, and an inclination angle distribution of a crystal axis at an interface of each intermediate layer. Also 0.05
° or less.
【請求項2】 前記複数の中間層は、いずれも圧縮歪み
を有する第1の層と、引っ張り歪みを有する第2の層と
からなることを特徴とする請求項1に記載の化合物半導
体装置。
2. The compound semiconductor device according to claim 1, wherein each of the plurality of intermediate layers includes a first layer having a compressive strain and a second layer having a tensile strain.
【請求項3】 前記第1の層は、上側に配置されるもの
ほどIn含有量が多いInGaAsからなり、前記第2
の層は前記基板と同一組成の材料からなることを特徴と
する請求項2に記載の化合物半導体装置。
3. The first layer is made of InGaAs having a higher In content as it is disposed on the upper side, and the first layer is made of InGaAs.
3. The compound semiconductor device according to claim 2, wherein said layer is made of a material having the same composition as said substrate.
【請求項4】 化合物半導体基板と素子形成層との間に
介在し、両者の間の格子定数の差により生じる歪みを緩
和する格子緩和層を有する化合物半導体装置において、 前記格子緩和層は、水平方向の格子間隔が異なる複数の
中間層により構成され、前記複数の中間層のうちの最下
層の中間層と前記半導体基板との界面、及び各中間層の
界面における格子緩和量がいずれも0.1%以下である
こと特徴とする化合物半導体装置。
4. A compound semiconductor device having a lattice relaxation layer interposed between a compound semiconductor substrate and an element formation layer and configured to relax strain caused by a difference in lattice constant between the two. A plurality of intermediate layers having different lattice spacings in the directions, and an interface between the lowermost intermediate layer of the plurality of intermediate layers and the semiconductor substrate and an interface between the respective intermediate layers have a lattice relaxation amount of 0. A compound semiconductor device having a content of 1% or less.
【請求項5】 前記複数の中間層は、いずれも圧縮歪み
を有する第1の層と、引っ張り歪みを有する第2の層と
からなることを特徴とする請求項4に記載の化合物半導
体装置。
5. The compound semiconductor device according to claim 4, wherein each of the plurality of intermediate layers includes a first layer having a compressive strain and a second layer having a tensile strain.
【請求項6】 前記第1の層は、上側に配置されるもの
ほどIn含有量が多いInGaAsからなり、前記第2
の層は前記基板と同一組成の材料からなることを特徴と
する請求項5に記載の化合物半導体装置。
6. The first layer is made of InGaAs having a higher In content as it is disposed on the upper side, and the first layer is made of InGaAs.
6. The compound semiconductor device according to claim 5, wherein said layer is made of a material having the same composition as said substrate.
JP22467697A 1997-08-21 1997-08-21 Compound semiconductor device Withdrawn JPH1160395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22467697A JPH1160395A (en) 1997-08-21 1997-08-21 Compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22467697A JPH1160395A (en) 1997-08-21 1997-08-21 Compound semiconductor device

Publications (1)

Publication Number Publication Date
JPH1160395A true JPH1160395A (en) 1999-03-02

Family

ID=16817482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22467697A Withdrawn JPH1160395A (en) 1997-08-21 1997-08-21 Compound semiconductor device

Country Status (1)

Country Link
JP (1) JPH1160395A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005015618A1 (en) * 2003-08-12 2005-02-17 Nippon Telegraph And Telephone Corporation Substrate for nitride semiconductor growth

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005015618A1 (en) * 2003-08-12 2005-02-17 Nippon Telegraph And Telephone Corporation Substrate for nitride semiconductor growth
KR100690413B1 (en) * 2003-08-12 2007-03-12 니폰덴신뎅와 가부시키가이샤 Substrate for growth of nitride semiconductor
US7244520B2 (en) 2003-08-12 2007-07-17 Nippon Telegraph And Telephone Corporation Substrate for nitride semiconductor growth
CN100389481C (en) * 2003-08-12 2008-05-21 日本电信电话株式会社 Substrate for nitride semiconductor growth

Similar Documents

Publication Publication Date Title
EP0329400B1 (en) Semiconductor thin film and process for fabricating the same
US7233610B2 (en) Nitride based semiconductor laser diode device with a bar mask
US4927471A (en) Semiconductor substrate comprising wafer substrate and compound semiconductor layer
JPH07307259A (en) Manufacture of compound semiconductor layer on silicon substrate
KR20060050798A (en) Sapphire substrate, epitaxial substrate and semiconductor device
KR20000005908A (en) Multilayered indium-containing nitride buffer layer for nitride epitaxy
JP3114809B2 (en) Semiconductor device
TWI805649B (en) Strain-balanced semiconductor structure and fabricating method thereof
US4789421A (en) Gallium arsenide superlattice crystal grown on silicon substrate and method of growing such crystal
JP6226627B2 (en) Group III nitride semiconductor epitaxial substrate and manufacturing method thereof
US5001521A (en) Semiconductor substrate including strained layer superlattice structure layer
JPH1160395A (en) Compound semiconductor device
US20090065812A1 (en) Compound semiconductor substrate
JPH10303510A (en) Iii-group nitride semiconductor device and its manufacture
US6815792B2 (en) Epitaxially grown compound semiconductor film and compound semiconductor multi-layer structure
JP7479707B2 (en) III-N semiconductor structure and method for producing same
EP4401158A1 (en) Group iii nitride light-emitting device, group iii nitride epitaxial wafer, and method for producing group iii nitride light-emitting device
CN114823853B (en) Nitride semiconductor epitaxial structure
JP2010141201A (en) Compound semiconductor substrate, light emitting element, method of manufacturing compound semiconductor substrate, and method of manufacturing light emitting element
EP2380215A1 (en) Optoelectronic semiconductor component
JP3169064B2 (en) Fabrication method of semiconductor three-dimensional quantum structure
Cai et al. High‐Quality Nonpolar a‐Plane AlGaN Film Grown on Si‐Doped AlN Template by Metal Organic Chemical Vapor Deposition
JP3146457B2 (en) Method for manufacturing quantum wire structure
JPS6174385A (en) Semiconductor laser
JPH0775222B2 (en) Method for manufacturing InP semiconductor thin film

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041102