JPH1158432A - Porous tube made of fiber-reinforced plastic and manufacture thereof - Google Patents

Porous tube made of fiber-reinforced plastic and manufacture thereof

Info

Publication number
JPH1158432A
JPH1158432A JP9219429A JP21942997A JPH1158432A JP H1158432 A JPH1158432 A JP H1158432A JP 9219429 A JP9219429 A JP 9219429A JP 21942997 A JP21942997 A JP 21942997A JP H1158432 A JPH1158432 A JP H1158432A
Authority
JP
Japan
Prior art keywords
fiber
sheet
tube
reinforced plastic
porous tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9219429A
Other languages
Japanese (ja)
Inventor
Katsuyuki Toma
克行 当麻
Takahiro Washimi
高弘 鷲見
Shinji Okumura
新司 奥村
Tetsuya Sawara
哲也 佐原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP9219429A priority Critical patent/JPH1158432A/en
Publication of JPH1158432A publication Critical patent/JPH1158432A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide a porous tube made of fiber-reinforced plastic and a method for manufacture thereof having high porosity, superior mechanical strength, a small pressure lose, and capable of generating fine air bubbles uniformly from the entire part of the tube wall irrespective of an amount of delivery of air during the aeration in water. SOLUTION: The porous tube is made of fiber-reinforced plastic consisting of 45-400 pts.wt. inorganic reinforcing fiber with respect to 100 pts.wt. heat melting fiber and having a porosity of 50-90 vol.%. and the 100 pts.wt. heat melting fiber and 45-400 pts.wt. inorganic fiber are dispersed in water to then be composited into a sheet, and the sheet is heated under pressure; then being cooled for compactness. Next, the compacted sheet is wound in one or more layers into a tube that is subsequently inserted in the inner part of a mold, followed by heating the sheet inserted mold for expanding the sheet, resulting in molding of a porous tube.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、繊維強化プラスチ
ック製多孔管及びその製造方法に関するものであり、さ
らに詳しくは、管壁中の気孔率が高くかつ力学的強度に
優れ、管壁による圧力損失が小さく、水中で曝気した際
に送気量の多少にかかわらず管壁全体から均一に微細な
気泡を発生させる繊維強化プラスチック製多孔管及びそ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous tube made of fiber reinforced plastic and a method for producing the same, and more particularly, to a tube having a high porosity and excellent mechanical strength in a tube wall, and a pressure loss due to the tube wall. The present invention relates to a porous tube made of fiber reinforced plastic which generates fine bubbles uniformly from the entire tube wall regardless of the amount of air supply when aerated in water, and a method for producing the same.

【0002】[0002]

【従来の技術】散気管等に用いられる従来のプラスチッ
ク製多孔管としては、例えば、ポリオレフィン樹脂等の
樹脂の粉末を金型に充填して加熱により成形した樹脂粉
末焼結体製のものや、熱融着性繊維を管状に集積して熱
融着させたものが知られているが、いずれの方法におい
ても、力学強度が不十分なうえに、水中で曝気した際に
気泡の発生が不均一であった。これらの問題を解決する
ため、本発明者等は、ポリオレフィン樹脂粉末と強化繊
維からなる複合シートを、一旦樹脂を溶融させて緻密化
した後、径の異なる円筒管からなる金型内において加熱
膨張させて成形した、軽量かつ高強度で気孔率が高く圧
力損失の小さいプラスチック製散気管を提案した(特開
平8−243369号公報)。しかしながら、このプラ
スチック製散気管は水中で曝気する際、送気量が比較的
多い場合には微細な気泡を均一に発生できたが、送気量
が少ない場合には、気泡発生の均一性が必ずしも満足で
きるものではなかった。この点を改良する技術として、
本発明者等は、例えば、管壁にコロイド状シリカを添着
して親水化を向上させた散気管を提案した(特願平8−
64136号)。この散気管は力学的強度に優れ、水中
曝気時に送気量が3リットル/分と少ないような場合に
も、管壁全体から均一で微細な気泡を発生させ得るもの
であった。
2. Description of the Related Art As a conventional plastic porous tube used for a diffuser tube or the like, for example, a resin porous material formed by filling a resin powder such as a polyolefin resin into a mold and molding by heating, It is known that heat-fusible fibers are accumulated in a tubular shape and heat-fused. However, any of these methods has insufficient mechanical strength and does not generate bubbles when aerated in water. It was uniform. In order to solve these problems, the present inventors have made a composite sheet made of a polyolefin resin powder and a reinforcing fiber, once melted and densified by melting the resin, and then heat-expanded in a mold composed of cylindrical tubes having different diameters. A plastic diffuser made of a plastic, which is lightweight, high-strength, high in porosity and low in pressure loss, has been proposed (JP-A-8-243369). However, when this plastic diffuser tube is aerated in water, fine bubbles can be uniformly generated when the air supply amount is relatively large, but when the air supply amount is small, the uniformity of bubble generation is low. It was not always satisfactory. As a technique to improve this point,
The present inventors have proposed, for example, an air diffuser tube in which colloidal silica is attached to the tube wall to improve the hydrophilicity (Japanese Patent Application No. 8-108).
64136). This air diffuser tube was excellent in mechanical strength, and could generate uniform and fine air bubbles from the entire wall of the tube even when the air supply amount was as small as 3 liters / minute during aeration in water.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
散気管においても、管壁を親水化処理する工程を要した
り、添着したコロイド状シリカによって、若干ではある
が圧力損失が高くなる等の問題点を残していた。そこ
で、本発明の課題は、気孔率が高くかつ力学的強度に優
れ、管壁による圧力損失が小さいとともに、管壁が特に
親水性でなくとも、水中曝気時に送気量の多少にかかわ
らず管壁全体から均一に微細な気泡を発生させることの
できる、繊維強化プラスチック製多孔管及びその製造方
法を提供するものである。
However, even in the above-mentioned air diffuser, there is a problem that a step of hydrophilizing the tube wall is required, and the pressure loss is slightly increased due to the attached colloidal silica. Had left a point. Accordingly, an object of the present invention is to provide a pipe having a high porosity and excellent mechanical strength, a small pressure loss due to a pipe wall, and even if the pipe wall is not particularly hydrophilic, regardless of the amount of air supply during aeration in water. An object of the present invention is to provide a fiber-reinforced plastic perforated tube capable of uniformly generating fine bubbles from the entire wall and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】水中での曝気時に気泡の
発生が不均一になる原因として、多孔管を水中に沈めた
際に、管壁内部の気孔分布の不均一に起因して管壁内部
への水の侵入度合にムラが生じることが考えられる。す
なわち、管壁内部の気孔に水が侵入していない部分は、
水で満たされている部分に比べて相対的に通気抵抗が少
なくなるため、曝気の際に空気の流れが集中することに
なり気泡発生の不均一が生じ、大きな気泡の発生も見ら
れるようになる。管壁が親水性であれば、管壁内部への
水の侵入度合のムラは緩和され、曝気時の気泡発生の均
一性は向上し、全体から微細な気泡が発生する。しかし
本質的には、管壁内部の気孔分布の均一性が向上すれ
ば、管壁が特に親水性でなくとも均一に気泡を発生させ
うると考えられる。本発明者等は、上記課題を解決する
ために、このような知見に基づいて鋭意検討した結果、
以下に述べる様な多孔管が、上記課題を解決できること
を見い出し、さらに後述する方法によれば、このような
多孔管が容易に得られることを見い出し、本発明に到達
した。すなわち、本発明は第一に、熱融着性繊維100
重量部に対して強化用繊維45〜400重量部からな
り、管壁中の気孔率が50〜90体積%であることを特
徴とする繊維強化プラスチック製多孔管を要旨とするも
のである。第2に、次の4つの工程からなることを特徴
とする、上記繊維強化プラスチック製多孔管の製造方法
を要旨とする。 (1)熱融着性繊維100重量部と強化用繊維45〜4
00重量部とを水中で分散させ、複合化してシート化す
る工程 (2)シートを加圧下に加熱した後、冷却して緻密化さ
せる工程 (3)緻密化したシートを一層以上に巻回して管状と
し、管状としたシートを成形型内部に挿入する工程 (4)シートを挿入した成形型を加温してシートを膨張
させて、多孔管を成形する工程。
Means for Solving the Problems One of the causes of non-uniform generation of air bubbles during aeration in water is that when a perforated tube is submerged in water, the pore distribution inside the tube wall becomes non-uniform. It is conceivable that the degree of intrusion of water into the inside becomes uneven. In other words, the part where water has not entered the pores inside the tube wall is
Since the airflow resistance is relatively lower than that of the area filled with water, the air flow is concentrated during aeration, so that the generation of bubbles is uneven, and the generation of large bubbles is also seen. Become. If the tube wall is hydrophilic, the unevenness of the degree of intrusion of water into the inside of the tube wall is reduced, the uniformity of bubble generation during aeration is improved, and fine bubbles are generated from the whole. However, in essence, it is thought that if the uniformity of the pore distribution inside the tube wall is improved, bubbles can be generated uniformly even if the tube wall is not particularly hydrophilic. The present inventors have conducted intensive studies based on such findings in order to solve the above-described problems,
The present inventors have found that a perforated tube as described below can solve the above-mentioned problems, and have found that such a perforated tube can be easily obtained by the method described later, and have reached the present invention. That is, the present invention firstly provides the heat fusible fiber 100
A porous tube made of fiber-reinforced plastic, comprising 45 to 400 parts by weight of reinforcing fiber with respect to parts by weight, and having a porosity in the tube wall of 50 to 90% by volume. Secondly, the gist of the present invention is a method for producing the above-mentioned porous tube made of fiber-reinforced plastic, which comprises the following four steps. (1) 100 parts by weight of heat-fusible fiber and reinforcing fibers 45 to 4
(2) heating the sheet under pressure, cooling and densifying (3) winding the densified sheet more than one layer Step of inserting a sheet made into a tubular shape into a mold (4) Step of heating a mold into which the sheet is inserted to expand the sheet and form a porous tube.

【0005】[0005]

【発明の実施の形態】以下、本発明を詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.

【0006】まず、本発明の繊維強化プラスチック製多
孔管は、熱融着性繊維と強化用繊維とからなる。
First, the fiber-reinforced plastic porous tube of the present invention comprises a heat-fusible fiber and a reinforcing fiber.

【0007】本発明における熱融着性繊維としては、例
えば、ポリオレフィン繊維、ポリエステル繊維、アクリ
ル繊維等の各種の合成樹脂繊維や、合成樹脂複合繊維等
が使用される。特に芯/鞘構造をとり、鞘部が芯部より
融点が低く、加熱することにより繊維同士が融着するよ
うな複合繊維が望ましい。このような複合繊維として
は、例えば、芯部がポリプロピレンで鞘部が変性ポリエ
チレンからなるポリオレフィン系繊維、芯部がポリエチ
レンテレフタレートで鞘部が低融点ポリエステルからな
るポリエステル系繊維等が挙げられる。
As the heat fusible fiber in the present invention, for example, various synthetic resin fibers such as polyolefin fiber, polyester fiber and acrylic fiber, and synthetic resin composite fiber are used. In particular, a composite fiber having a core / sheath structure, in which the sheath has a lower melting point than the core and the fibers are fused together by heating, is desirable. Examples of such composite fibers include polyolefin fibers having a core of polypropylene and a sheath of modified polyethylene, and polyester fibers having a core of polyethylene terephthalate and a sheath of low-melting polyester.

【0008】また、本発明における強化用繊維として
は、弾性の高い繊維が好ましく、例えば、ガラス繊維や
アルミナ繊維等の無機繊維、及びカーボン繊維等を単独
又は混合して用いることができる。
As the reinforcing fibers in the present invention, fibers having high elasticity are preferable. For example, inorganic fibers such as glass fibers and alumina fibers, and carbon fibers can be used alone or in combination.

【0009】熱融着性繊維及び強化用繊維の平均繊維長
としては、好ましくは1〜50mm、さらに好ましくは3
〜25mmである。平均繊維長が1mmより短いと、後述す
るシートの熱膨張が不十分である場合があり、多孔質体
が得られにくくなることがある。また、平均繊維長が5
0mmを超えても、熱膨張が不十分である場合があり、熱
融着性繊維と複合繊維の十分な均一性が得られにくくな
ることがある。熱融着性繊維及び強化用繊維の平均繊維
径としては、好ましくは2〜100μm、さらに好まし
くは5〜50μmである。
The average fiber length of the heat fusible fiber and the reinforcing fiber is preferably 1 to 50 mm, more preferably 3 to 50 mm.
2525 mm. If the average fiber length is shorter than 1 mm, the sheet may have insufficient thermal expansion as described below, and it may be difficult to obtain a porous body. In addition, the average fiber length is 5
If it exceeds 0 mm, the thermal expansion may be insufficient in some cases, and it may be difficult to obtain sufficient uniformity between the heat-fusible fiber and the composite fiber. The average fiber diameter of the heat-fusible fiber and the reinforcing fiber is preferably 2 to 100 μm, more preferably 5 to 50 μm.

【0010】本発明における熱融着性繊維と強化用繊維
の混合比としては、熱融着性繊維100重量部に対して
強化用繊維45〜400重量部である。強化用繊維の混
合比が熱融着性繊維100重量部に対して45重量部未
満の場合には、管壁内部の気孔を確保することが難しく
なる傾向がある。また、400重量部を超える場合には
シートから円筒状の成形体を得ることが難しくなる傾向
がある。
In the present invention, the mixing ratio of the heat fusible fiber and the reinforcing fiber is 45 to 400 parts by weight of the reinforcing fiber with respect to 100 parts by weight of the heat fusible fiber. If the mixing ratio of the reinforcing fibers is less than 45 parts by weight based on 100 parts by weight of the heat-fusible fiber, it tends to be difficult to secure pores inside the tube wall. If the amount exceeds 400 parts by weight, it tends to be difficult to obtain a cylindrical molded body from the sheet.

【0011】さらに、本発明の繊維強化プラスチック多
孔管は、必要に応じてその他種々の成分、例えば、多孔
管に着色を与えるための顔料又は染料、抗酸化剤、紫外
線安定剤、発泡剤、抗発泡剤、抗かび剤、殺菌剤等の化
学添加剤等を含有してもよい。
Further, the fiber-reinforced plastic porous tube of the present invention may contain various other components as required, for example, pigments or dyes for imparting color to the porous tube, antioxidants, ultraviolet stabilizers, foaming agents, It may contain chemical additives such as a foaming agent, an antifungal agent, and a bactericide.

【0012】本発明の繊維強化プラスチック製多孔管の
気孔率としては、50〜90体積%であることが必要で
あり、好ましくは60〜85体積%、さらに好ましくは
65〜80体積%である。気孔率が50体積%より小さ
いと、水中で通気したときの圧力損失が大きくなり、ま
た、気孔率が90体積%を超えると機械的強度が不足す
る傾向にある。なお、本発明における気孔率とは、繊維
強化プラスチック製多孔管を構成する材料の気孔を有し
ない場合の理論密度をAg/cm3 とし、繊維強化プラ
スチック製多孔管の見かけ密度をBg/cm3 として次
式により求めたものである。
The porosity of the fiber reinforced plastic porous tube of the present invention must be 50 to 90% by volume, preferably 60 to 85% by volume, and more preferably 65 to 80% by volume. If the porosity is less than 50% by volume, the pressure loss when ventilating in water increases, and if the porosity exceeds 90% by volume, the mechanical strength tends to be insufficient. In the present invention, the porosity refers to the theoretical density of a material constituting the fiber-reinforced plastic porous tube having no pores as Ag / cm 3, and the apparent density of the fiber-reinforced plastic porous tube as Bg / cm 3. Is obtained by the following equation.

【0013】[(A―B)/A]×100(%)[(AB) / A] × 100 (%)

【0014】また、機械的強度としては、樹脂粉末焼結
成形体製の多孔管と比較して同等以上の抗折強力を有す
ることが、取扱時の破損を防ぐうえで好ましい。例え
ば、外径が30mmの多孔管の場合、この値が25kg
f以上であることが好ましい。なお、本発明の繊維強化
プラスチック製多孔管の抗折強力は、20cm長の間隔
で両端を支持して中央に荷重を加え続け、折損に至った
時の荷重をもって表す。
[0014] In terms of mechanical strength, it is preferable to have a transverse rupture strength equal to or higher than that of a perforated tube made of a resin powder sintered compact in order to prevent breakage during handling. For example, in the case of a perforated tube having an outer diameter of 30 mm, this value is 25 kg
It is preferably f or more. The transverse rupture strength of the fiber-reinforced plastic porous tube of the present invention is represented by the load at the time of breakage, supporting both ends at intervals of 20 cm and continuously applying a load to the center.

【0015】本発明の繊維強化プラスチック製多孔管
は、例えば、次のような方法で製造することができる。
The fiber-reinforced plastic porous tube of the present invention can be manufactured, for example, by the following method.

【0016】まず、熱融着性複合繊維100重量部に対
し、無機繊維45〜400重量部を水中で分散混合して
複合化させたスラリーを調整する。
First, a composite slurry is prepared by dispersing and mixing 45 to 400 parts by weight of inorganic fibers in water with respect to 100 parts by weight of the heat-fusible conjugate fibers.

【0017】水中に熱融着性複合繊維と無機繊維を分散
させて混合する際には、例えば、結合剤を用いることが
好ましく、その添加量としては、得られる複合シートの
0.1〜10重量%が好ましく、さらに好ましくは0.
2〜5重量%である。結合剤としては、例えば、結合し
たスルホニウム基、イソチオウロニウム基、ピリジニウ
ム基、第四アンモニウム基サルフェート基、スルホネー
ト基又はカルボキシレート基を含有するアクリルポリマ
ー又はスチレン/ブタジエンポリマーのような結合した
陰イオンもしくは陽イオン電荷を有する実質的に水に不
溶な有機ポリマーからなるポリマーラテックス等が挙げ
られる。
When dispersing and mixing the heat-fusible conjugate fiber and the inorganic fiber in water, it is preferable to use, for example, a binder. % By weight, more preferably 0.1% by weight.
2 to 5% by weight. Binders include, for example, bound anions such as acrylic polymers or styrene / butadiene polymers containing bound sulfonium, isothiouronium, pyridinium, quaternary ammonium, sulfate, or carboxylate groups. Alternatively, a polymer latex made of an organic polymer having a cationic charge and substantially insoluble in water may be used.

【0018】また、澱粉、特に天然澱粉又はコーンスタ
ーチのような線状澱粉や、陽イオン澱粉を含む酵素的も
しくは化学的に変性した澱粉を含めた澱粉等も結合剤と
して適している。
Also suitable as binders are starches, especially linear starches such as natural starch or corn starch, starches including enzymatically or chemically modified starches including cationic starches.

【0019】さらに、水中に熱融着性複合繊維と無機繊
維を分散させて混合する際には、有機凝集剤を用いるこ
とが好ましい。有機凝集剤の添加量は、複合シートの約
3重量%未満が好ましく、さらに好ましくは1重量%未
満である。有機凝集剤としては、アルミニウム・ポリク
ロリド(アルミニウム・ヒドロオキシクロリド)、一部
加水分解したポリアクリルアミド、変性陽イオンポリア
クリルアミド、ジアリルジエチルアンモニウムクロリド
等が挙げられる。また、水中に熱融着性複合繊維と無機
繊維を分散させたスラリーの粘度を調整する目的で、キ
サンタンガム等の粘度調整剤を使用することもできる。
Further, when dispersing and mixing the heat-fusible conjugate fiber and the inorganic fiber in water, it is preferable to use an organic coagulant. The amount of the organic coagulant added is preferably less than about 3% by weight of the composite sheet, more preferably less than 1% by weight. Examples of the organic coagulant include aluminum polychloride (aluminum hydroxychloride), partially hydrolyzed polyacrylamide, modified cationic polyacrylamide, diallyl diethylammonium chloride, and the like. Further, for the purpose of adjusting the viscosity of a slurry in which the heat-fusible conjugate fibers and the inorganic fibers are dispersed in water, a viscosity modifier such as xanthan gum can be used.

【0020】このようにして調製した、熱融着性複合繊
維と無機繊維が均一に分散して複合化したスラリーか
ら、熱融着性複合繊維と無機繊維からなる複合シートを
得る。該スラリーからシートを形成させるには、湿式抄
紙の要領でスラリーを固液分離して得られる湿ったシー
トを乾燥させればよい。
From the slurry prepared as described above, in which the heat-fusible conjugate fibers and the inorganic fibers are uniformly dispersed and formed into a composite, a composite sheet comprising the heat-fusible conjugate fibers and the inorganic fibers is obtained. In order to form a sheet from the slurry, the wet sheet obtained by solid-liquid separation of the slurry in the manner of wet papermaking may be dried.

【0021】次に、上記の複合シートを1枚もしくは2
枚以上積層したものを加熱プレスした後、冷却プレスし
て緻密化させればよい。
Next, one or two of the above composite sheets are used.
What is necessary is to heat-press the thing laminated more than one sheet, and to cool and densify it.

【0022】加熱プレスする際の温度は、熱融着性複合
繊維の低融点樹脂の融点より10〜50℃高い温度であ
ることが好ましく、圧力としては、5〜100kg/c
であることが好ましい。また、冷却プレスする際に
は、加熱プレスと同程度の圧力で、温度は50℃以下で
行うことが望ましい。
The temperature for hot pressing is preferably 10 to 50 ° C. higher than the melting point of the low melting point resin of the heat-fusible conjugate fiber, and the pressure is 5 to 100 kg / c.
m 2 is preferable. Also, it is desirable that the cooling press be performed at a pressure similar to that of the hot press and at a temperature of 50 ° C. or less.

【0023】このように加熱プレスと冷却プレスを行う
ことにより、厚さが0.1〜1mm程度で、重量が10
0〜1000g/m2 程度の緻密化したシートを得るこ
とができる。このときのシートの気孔率は、最終的に得
る多孔管の気孔率より低いことが必要であり、50体積
%以下であることが好ましい。
By performing the heating press and the cooling press in this manner, the thickness is about 0.1 to 1 mm and the weight is about 10 to 1 mm.
A dense sheet of about 0 to 1000 g / m 2 can be obtained. At this time, the porosity of the sheet needs to be lower than the porosity of the finally obtained porous tube, and is preferably 50% by volume or less.

【0024】次に、この緻密化したシートを1層以上
に、好ましくは2〜20層に巻回して管状とし、これを
成形型の内部に挿入する。このときの成形型としては、
径の異なる2本1組の管を、中心軸を合わせて固定でき
るようにしたものが好ましく、この成形型の内部、すな
わち、2本の管の間の空間に材料を投入して成形すれば
よい。成形型の材質としては、耐熱性、熱伝導度及び機
械的強度の観点から、金属製、カーボン製が好ましい。
Next, the densified sheet is wound into one or more layers, preferably 2 to 20 layers to form a tube, which is inserted into a mold. In this case,
It is preferable that two sets of pipes having different diameters can be fixed with their central axes aligned. If the material is put into the inside of this mold, that is, the space between the two pipes, the material is molded. Good. The material of the mold is preferably made of metal or carbon from the viewpoints of heat resistance, thermal conductivity and mechanical strength.

【0025】シートを挿入した成形型を熱融着性複合繊
維の高融点樹脂の融点以上に、好ましくは当該融点の温
度以上、当該融点より30℃高い温度以下に設定された
加熱槽に投入し、10〜300分間保持する。このと
き、緻密化されたシート中で屈曲あるいは絡み合って圧
縮された状態にあった無機繊維が、加熱による樹脂の軟
化時に、無機繊維自身の持つ弾性回復力で圧縮状態から
開放されて元に戻ることによってシートの熱膨張が起こ
る。したがって、無機繊維が高弾性であるほど、また無
機繊維の含有率が高いほど、熱膨張倍率は大きなものと
なる。この熱膨張によって成形型の内部形状に沿った多
孔管が成形される。
The molding die into which the sheet is inserted is put into a heating tank set at a temperature higher than the melting point of the high melting point resin of the heat-fusible conjugate fiber, preferably at a temperature higher than the melting point and lower than a temperature 30 ° C. higher than the melting point. For 10 to 300 minutes. At this time, the inorganic fibers which were bent or entangled in the densified sheet and were in a compressed state are released from the compressed state by the elastic recovery force of the inorganic fibers themselves when the resin is softened by heating and return to the original state. This causes thermal expansion of the sheet. Therefore, the higher the inorganic fiber is and the higher the content of the inorganic fiber is, the larger the thermal expansion ratio becomes. Due to this thermal expansion, a porous tube conforming to the internal shape of the mold is formed.

【0026】次に、加熱槽から金型を取り出し、冷却
後、脱型することにより本発明の繊維強化プラスチック
多孔管を得る。
Next, the mold is taken out of the heating tank, cooled, and then released to obtain the fiber-reinforced plastic porous tube of the present invention.

【0027】以上の製造方法において、シートの重量、
積層枚数、巻回枚数、成形時の肉厚、すなわち、成形型
の内部形状等の一種以上を調節することにより、多孔管
の見かけ密度を自由にコントロールすることが可能であ
り、これによって気孔率が50〜90%の範囲の多孔管
を得ることができる。
In the above manufacturing method, the weight of the sheet,
The apparent density of the perforated tube can be freely controlled by adjusting at least one of the number of layers, the number of windings, the thickness at the time of molding, that is, the internal shape of the mold, and thereby the porosity. Can be obtained in the range of 50 to 90%.

【0028】また、上記方法では、成形型に材料を投入
するときには、巻回したシートを挿入すればよいので、
操作が極めて簡便であり、粒体を金型に充填する製造方
法で問題になるような充填密度の偏りが起こる心配は全
くなく、長尺でも均一な多孔管を安定して得ることがで
きる。
In the above method, when the material is put into the molding die, the wound sheet may be inserted.
The operation is extremely simple, and there is no fear that the packing density will be biased, which is a problem in the manufacturing method of filling the granules into the mold, and a long and uniform porous tube can be stably obtained.

【0029】[0029]

【実施例】次に、本発明を実施例によって具体的に説明
する。
Next, the present invention will be described specifically with reference to examples.

【0030】実施例1 水18リットル中に攪拌しながら、キサンタンガム0.
3gを加えた後、強化用繊維として平均繊維長が6mm
のガラス繊維(オーウェンズ・コーニング・ファイバー
グラス社製、415BB)50gをこの水に加え、5分
間攪拌してよく分散させた。
Example 1 Xanthan gum was added to 18 liters of water with stirring.
After adding 3 g, the average fiber length is 6 mm as a reinforcing fiber.
Of glass fiber (415BB, manufactured by Owens Corning Fiberglass Co., Ltd.) was added to the water, and the mixture was stirred for 5 minutes and dispersed well.

【0031】次に、この分散物に芯/鞘構造で、鞘部が
変性ポリエチエン、芯部がポリプロピレンである熱融着
性複合繊維(ダイワボウ製、NBF)40gとアクリル
ポリマーラテックス0.8gを加えた後、0.41重量
%濃度の陽イオン凝集剤(Betz Laboratories 社製、商
品名:Betz 1260 )98gを徐々に加えることにより凝
集させて、熱融着繊維と強化繊維が均一に分散して複合
化したスラリーを得た。
Next, to this dispersion were added 40 g of heat-fusible conjugate fibers (manufactured by Daiwabo, NBF) having a core / sheath structure, a sheath portion of modified polyethylene and a core portion of polypropylene, and 0.8 g of an acrylic polymer latex. After that, 98 g of a cationic flocculant (Betz Laboratories, trade name: Betz 1260) having a concentration of 0.41% by weight is gradually added to cause coagulation, whereby the heat-fused fiber and the reinforcing fiber are uniformly dispersed. A composite slurry was obtained.

【0032】上記スラリーからシートマシン(熊谷理機
工業社製)を用いて固液分離した湿ったシートを得、次
に、得られたシートを軽く圧縮した後、乾燥させること
により、280g/m2 の目付を有する熱融着性複合繊
維とガラス繊維からなる複合シートを得た。このとき、
熱融着性複合繊維100重量部に対して、ガラス繊維は
120重量部であった。
A wet sheet subjected to solid-liquid separation was obtained from the slurry using a sheet machine (manufactured by Kumagai Riki Kogyo Co., Ltd.), and then the obtained sheet was lightly compressed and dried to obtain 280 g / m2. A composite sheet comprising a heat-fusible composite fiber and a glass fiber having a basis weight of 2 was obtained. At this time,
The glass fiber was 120 parts by weight based on 100 parts by weight of the heat-fusible conjugate fiber.

【0033】得られた複合シートを20kgf/cm2
の圧力下で、120℃で加熱後、40℃で加圧冷却する
ことにより圧縮緻密化した。
The obtained composite sheet was weighed at 20 kgf / cm 2.
After heating at 120.degree. C. under pressure of 40.degree. C., compression and densification was performed by pressurizing and cooling at 40.degree.

【0034】次に、上記の緻密化したシートを外径18
mmのステンレス製円筒の外周面に沿って約8重に巻回
し、これを内径30mmのステンレス製円筒金型内部に
挿入し、温度を200℃に設定した温風循環式オーブン
中に30分間保持した後、室温に冷却し、ステンレス製
金型から脱型することにより、外径30mm、内径18
mmの熱融着性複合繊維とガラス繊維からなる表面の平
滑な繊維強化プラスチック製多孔管を成形した。この多
孔管の密度は、0.38g/cm3 であり、気孔率は7
3%と算出された。また、長さ30cmでの繊維強化プ
ラスチック製多孔管の抗折強力を測定したところ、30
kgfであった。
Next, the above-mentioned densified sheet was sewn with an outer diameter of 18 mm.
It is wound about 8 times along the outer peripheral surface of a stainless steel cylinder with a diameter of 30 mm, inserted into a stainless steel cylindrical mold with an inner diameter of 30 mm, and kept in a hot-air circulation oven set at a temperature of 200 ° C. for 30 minutes. Then, it is cooled to room temperature and removed from the stainless steel mold to obtain an outer diameter of 30 mm and an inner diameter of 18 mm.
A porous tube made of fiber-reinforced plastic and having a smooth surface made of a heat-fusible conjugate fiber having a thickness of 2 mm and glass fiber was molded. The density of this porous tube is 0.38 g / cm 3 and the porosity is 7
It was calculated to be 3%. Further, when the bending strength of a fiber-reinforced plastic perforated tube having a length of 30 cm was measured, it was found to be 30 cm.
kgf.

【0035】実施例2 水18リットル中に攪拌しながら、キサンタンガム0.
3gを加えた後、強化用繊維として平均繊維長が6mm
のガラス繊維(オーウェンズ・コーニング・ファイバー
グラス社製、415BB)60gをこの水に加え、5分
間攪拌してよく分散させた。
Example 2 Xanthan gum 0.1 was added to 18 liters of water while stirring.
After adding 3 g, the average fiber length is 6 mm as a reinforcing fiber.
Of water (415BB, manufactured by Owens Corning Fiberglass Co., Ltd.) was added to the water, and the mixture was stirred for 5 minutes and dispersed well.

【0036】次に、この分散物に芯/鞘構造で、鞘部が
変性ポリエチエン、芯部がポリプロピレンである熱融着
性複合繊維(ダイワボウ製、NBF)32gとアクリル
ポリマーラテックス0.8gを加えた後、0.41重量
%濃度の陽イオン凝集剤(Betz Laboratories 社製、商
品名:Betz 1260 )98gを除々に加えることにより凝
集させて、熱融着繊維と強化繊維が均一に分散して複合
化したスラリーを得た。
Next, 32 g of a heat-fusible conjugate fiber (manufactured by Daiwabo Co., Ltd., NBF) having a core / sheath structure, a modified polyethylene resin and a polypropylene core, and 0.8 g of an acrylic polymer latex were added to the dispersion. After that, 98 g of a cationic flocculant (Betz Laboratories, trade name: Betz 1260) having a concentration of 0.41% by weight was gradually added to cause coagulation, whereby the heat-fused fiber and the reinforcing fiber were uniformly dispersed. A composite slurry was obtained.

【0037】上記スラリーからシートマシン(熊谷理機
工業社製)を用いて固液分離した湿ったシートを得、次
いで得られたシートを軽く圧縮した後乾燥させることに
より、300g/m2 の目付を有する熱融着性複合繊維
とガラス繊維からなる複合シートを得た。このとき、熱
融着性複合繊維100重量部に対して、ガラス繊維は1
85重量部であった。
Using a sheet machine (manufactured by Kumagai Riki Kogyo Co., Ltd.), a wet sheet obtained by solid-liquid separation was obtained from the above slurry, and the obtained sheet was lightly compressed and dried to give a basis weight of 300 g / m 2 . A composite sheet comprising a heat-fusible composite fiber having the following and a glass fiber was obtained. At this time, the glass fiber was 1 to 100 parts by weight of the heat-fusible conjugate fiber.
It was 85 parts by weight.

【0038】得られた複合シートを20kgf/cm2
の圧力下で、120℃で加熱後、40℃で加圧冷却する
ことにより圧縮緻密化した。
The obtained composite sheet was weighed at 20 kgf / cm 2.
After heating at 120.degree. C. under pressure of 40.degree.

【0039】次に、上記の緻密化したシートを外径18
mmのステンレス製円筒の外周面に沿って約7重に巻回
し、これを内径30mmのステンレス製円筒金型内部に
挿入し、温度を200℃に設定した温風循環式オーブン
中に30分間保持した後、室温に冷却し、金型から脱型
することにより、外径30mm、内径18mmの、熱融
着性複合繊維とガラス繊維からなる表面の平滑な繊維強
化プラスチック製多孔管を成形した。この多孔管の密度
は、0.36g/cm3 であり、気孔率は77%と算出
された。また、長さ30cmでの繊維強化プラスチック
製多孔管の抗折強力を測定したところ、27kgfであ
った。
Next, the above-mentioned densified sheet was coated with an outer diameter of 18
Around the outer circumference of a 7 mm stainless steel cylinder, it is wound about 7 times, inserted into a 30 mm inner diameter stainless steel cylindrical mold, and kept in a hot air circulation oven set at a temperature of 200 ° C. for 30 minutes. After cooling to room temperature and removing the mold from the mold, a porous tube made of fiber-reinforced plastic having a smooth surface and composed of a heat-fusible conjugate fiber and a glass fiber having an outer diameter of 30 mm and an inner diameter of 18 mm was formed. The density of this porous tube was 0.36 g / cm 3 , and the porosity was calculated to be 77%. Further, when the transverse rupture strength of a fiber-reinforced plastic porous tube having a length of 30 cm was measured, it was 27 kgf.

【0040】比較例1 水18リットル中に攪拌しながら、キサンタンガム0.
3gを加えた後、強化用繊維として平均繊維長が6mm
のガラス繊維(オーウェンズ・コーニング・ファイバー
グラス社製、415BB)45gをこの水に加え、5分
間攪拌してよく分散させた。
COMPARATIVE EXAMPLE 1 Xanthan gum was added to 18 liters of water while stirring.
After adding 3 g, the average fiber length is 6 mm as a reinforcing fiber.
Of glass fiber (415BB, manufactured by Owens Corning Fiberglass Co., Ltd.) was added to the water, and the mixture was stirred for 5 minutes to be well dispersed.

【0041】次に、この分散物に高密度ポリエチレン樹
脂粉末(住友精化製)45gとアクリルポリマーラテッ
クス0.8gを加えた後、0.41重量%濃度の陽イオ
ン凝集剤(Betz Laboratories 社製、商品名:Betz 126
0 )98gを徐々に加えることにより凝集させてスラリ
ーを得た。
Next, 45 g of a high-density polyethylene resin powder (manufactured by Sumitomo Seika) and 0.8 g of an acrylic polymer latex were added to the dispersion, and a 0.41% by weight cation coagulant (manufactured by Betz Laboratories) was added. , Product name: Betz 126
0) Slurry was obtained by adding 98 g gradually to cause aggregation.

【0042】上記スラリーからシートマシン(熊谷理機
工業社製)を用いて固液分離した湿ったシートを得、次
に、得られたシートを軽く圧縮した後、乾燥させること
により、270g/m2 の目付を有する樹脂粉末とガラ
ス繊維からなる複合シートを得た。このとき、樹脂粉末
100重量部に対して、ガラス繊維は100重量部であ
った。
A wet sheet subjected to solid-liquid separation was obtained from the slurry using a sheet machine (manufactured by Kumagai Riki Kogyo Co., Ltd.), and then the obtained sheet was lightly compressed and dried to obtain 270 g / m2. A composite sheet comprising a resin powder having a basis weight of 2 and glass fibers was obtained. At this time, the glass fiber was 100 parts by weight based on 100 parts by weight of the resin powder.

【0043】得られた複合シートを20kgf/cm2
の圧力下で、170℃で加熱後、40℃で加圧冷却する
ことにより圧縮緻密化した。
The obtained composite sheet was weighed at 20 kgf / cm 2.
After heating at 170 ° C. under pressure of 40 ° C., compression and densification was performed by pressurizing and cooling at 40 ° C.

【0044】次に、上記の緻密化したシートを外径18
mmのステンレス製円筒の外周面に沿って約8重に巻回
し、これを内径30mmのステンレス製円筒金型内部に
挿入し、温度を150℃に設定した温風循環式オーブン
中に30分間保持した後、室温に冷却し、金型から脱型
することにより、外径30mm、内径18mmの、高密
度ポリエチレン樹脂とガラス繊維からなる、表面の平滑
な繊維強化プラスチック製多孔管を成形した。この多孔
管の密度は、0.37g/cm3 であり、気孔率は73
%と算出された。この多孔管に、平均粒子径0.1μm
の無水珪酸粒子44gを水956gに分散させた分散液
を含浸させた後、60℃で乾燥することにより、無水珪
酸粒子を3重量%添着させて、管壁が親水性である多孔
管を得た。
Next, the above-mentioned densified sheet was treated with an outer diameter of 18
It is wound about 8 times along the outer peripheral surface of a stainless steel cylinder of 2.5 mm, inserted into a stainless steel cylindrical mold of 30 mm inside diameter, and kept for 30 minutes in a hot air circulation oven set at a temperature of 150 ° C. After cooling to room temperature and removing from the mold, a porous tube made of high-density polyethylene resin and glass fiber and having a smooth surface and made of fiber reinforced plastic and having an outer diameter of 30 mm and an inner diameter of 18 mm was formed. The density of this porous tube is 0.37 g / cm 3 and the porosity is 73
%. An average particle size of 0.1 μm
Is impregnated with a dispersion obtained by dispersing 44 g of anhydrous silica particles in 956 g of water, and then dried at 60 ° C. to impregnate the silica particles by 3% by weight to obtain a porous tube having a hydrophilic tube wall. Was.

【0045】(性能試験)以下の方法により、実施例
1、実施例2及び比較例1で得られた繊維強化プラスチ
ック製多孔管の圧力損失を測定し、また、気泡の発生状
態を調べた。
(Performance Test) The pressure loss of the fiber-reinforced plastic porous tubes obtained in Examples 1, 2 and Comparative Example 1 was measured by the following method, and the state of generation of bubbles was examined.

【0046】実施例1、実施例2及び比較例1で得られ
た長さ30cmの繊維強化プラスチック製多孔管の一方
の口を封じ、他方にホースを接続して多孔管部分を20
℃の水を張った容量1m3 の水槽中の水深60cmの位
置に沈め、エアーブロワーで空気を40リットル/分の
割合で送入したところ、すべての繊維強化プラスチック
製多孔管の管壁全体から微細な気泡が均一かつ多量に発
生した。この時のそれぞれの吐出圧を測定して、次式に
よって圧力損失を算出した。
One end of the 30 cm long fiber reinforced plastic perforated tube obtained in Example 1, Example 2 and Comparative Example 1 was sealed, and a hose was connected to the other to make the perforated tube portion 20.
Submerged at a depth of 60 cm in a 1 m 3 water tank filled with water at a temperature of ℃, and air was blown in at a rate of 40 liters / minute using an air blower. Fine bubbles were generated uniformly and in large quantities. Each discharge pressure at this time was measured, and the pressure loss was calculated by the following equation.

【0047】吐出圧(mmAq)=実効水深(600mmAq)
+圧力損失(mmAq)+配管抵抗(460mmAq)
Discharge pressure (mmAq) = effective water depth (600 mmAq)
+ Pressure loss (mmAq) + Piping resistance (460 mmAq)

【0048】その結果、実施例1、実施例2及び比較例
1の多孔管での圧力損失は、それぞれ150mmAq、19
0mmAq、350mmAqであった。
As a result, the pressure loss in the porous tubes of Example 1, Example 2 and Comparative Example 1 was 150 mmAq and 19 mm, respectively.
The values were 0 mmAq and 350 mmAq.

【0049】また、空気の送入量を3リットル/分と少
なくした場合でも、実施例1、実施例2及び比較例1の
多孔管では、管壁全体から微細な気泡が均一に発生し
た。
Further, even when the amount of air supplied was reduced to 3 liters / minute, fine air bubbles were uniformly generated from the entire tube wall in the porous tubes of Example 1, Example 2 and Comparative Example 1.

【0050】以上のことから、実施例1、実施例2の多
孔管は比較例1の多孔管と比べて圧力損失が小さく、か
つ、送気量の多少にかかわらず管壁全体から微細な気泡
を均一に発生させることができる多孔管であることが明
らかである。
From the above, the perforated tubes of Examples 1 and 2 have a smaller pressure loss than the perforated tubes of Comparative Example 1 and fine air bubbles from the entire tube wall regardless of the amount of air supply. It is clear that this is a perforated tube capable of uniformly generating.

【0051】[0051]

【発明の効果】本発明の繊維強化プラスチック製多孔管
は、気孔率が高くかつ力学的強度が優れ、管壁による圧
力損失が小さいとともに、管壁が特に親水性でなくと
も、水中曝気時に送気量の多少にかかわらず管壁全体か
ら均一に微細な気泡を発生させることのできるものであ
る。これは、本発明の繊維強化プラスチック製多孔管
が、熱融着性複合繊維と無機繊維とが熱融着性複合繊維
の融着により強固に結合されており、また、管壁内の気
孔分布やサイズの均一性が向上しているためと考えられ
る。また、本発明の製造方法は、上記の特徴を有する繊
維強化プラスチック製多孔管を簡便に製造することがで
きる。さらに、本発明の繊維強化プラスチック製多孔管
は、汚水処理用や養魚用の散気管、液体ろ過用のフィル
ター管として好適である。
The porous tube made of fiber reinforced plastic according to the present invention has a high porosity and excellent mechanical strength, has a small pressure loss due to the tube wall, and is capable of supplying water when aerated in water even if the tube wall is not particularly hydrophilic. Regardless of the air volume, fine air bubbles can be uniformly generated from the entire tube wall. This is because the fiber-reinforced plastic porous tube of the present invention has a structure in which the heat-fusible conjugate fiber and the inorganic fiber are firmly bonded by fusion of the heat-fusible conjugate fiber, and the pore distribution in the tube wall. It is thought that the uniformity of the size and the size have been improved. Further, the production method of the present invention can easily produce a fiber-reinforced plastic porous tube having the above characteristics. Further, the fiber-reinforced plastic perforated tube of the present invention is suitable as a diffuser tube for sewage treatment and fish culture, and a filter tube for liquid filtration.

フロントページの続き (72)発明者 佐原 哲也 大阪府大阪市中央区久太郎町四丁目1番3 号 ユニチカ株式会社内Continued on the front page (72) Inventor Tetsuya Sahara 4-3-1 Kutarocho, Chuo-ku, Osaka-shi, Osaka Unitika Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱融着性繊維100重量部に対して強化
用繊維45〜400重量部からなり、管壁中の気孔率が
50〜90体積%であることを特徴とする繊維強化プラ
スチック製多孔管。
1. A fiber-reinforced plastic made of 45 to 400 parts by weight of reinforcing fiber with respect to 100 parts by weight of heat-fusible fiber, and having a porosity of 50 to 90% by volume in a tube wall. Perforated tube.
【請求項2】 次の4つの工程からなることを特徴とす
る請求項1記載の繊維強化プラスチック製多孔管の製造
方法。 (1)熱融着性繊維100重量部と強化用繊維45〜4
00重量部とを水中で分散させ、複合化してシート化す
る工程 (2)シートを加圧下に加熱した後、冷却して緻密化さ
せる工程 (3)緻密化したシートを一層以上に巻回して管状と
し、管状としたシートを成形型内部に挿入する工程 (4)シートを挿入した成形型を加温してシートを膨張
させて、多孔管を成形する工程。
2. The method for producing a fiber-reinforced plastic perforated tube according to claim 1, comprising the following four steps. (1) 100 parts by weight of heat-fusible fiber and reinforcing fibers 45 to 4
(2) heating the sheet under pressure, cooling and densifying (3) winding the densified sheet more than one layer Step of inserting a sheet made into a tubular shape into a mold (4) Step of heating a mold into which the sheet is inserted to expand the sheet and form a porous tube.
JP9219429A 1997-08-14 1997-08-14 Porous tube made of fiber-reinforced plastic and manufacture thereof Pending JPH1158432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9219429A JPH1158432A (en) 1997-08-14 1997-08-14 Porous tube made of fiber-reinforced plastic and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9219429A JPH1158432A (en) 1997-08-14 1997-08-14 Porous tube made of fiber-reinforced plastic and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH1158432A true JPH1158432A (en) 1999-03-02

Family

ID=16735267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9219429A Pending JPH1158432A (en) 1997-08-14 1997-08-14 Porous tube made of fiber-reinforced plastic and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH1158432A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8035635B2 (en) 2001-05-22 2011-10-11 Yoav Shefi Method and system for displaying visual content in a virtual three-dimensional space
JP2011230068A (en) * 2010-04-28 2011-11-17 Ael:Kk Air diffusing body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8035635B2 (en) 2001-05-22 2011-10-11 Yoav Shefi Method and system for displaying visual content in a virtual three-dimensional space
JP2011230068A (en) * 2010-04-28 2011-11-17 Ael:Kk Air diffusing body

Similar Documents

Publication Publication Date Title
CA2531077C (en) Methods to produce gel sheets
US6497787B1 (en) Process of manufacturing a wet-laid veil
US6093359A (en) Reinforced thermoplastic composite systems
WO2006132423A1 (en) Web, stampable sheet, expansion-molded stampable sheet, and process for producing these
US5721031A (en) Fiber-reinforced porous plastic tube
CN104876637A (en) Fiber-reinforced pure inorganic flame retardant foam composite and preparation method thereof
JP2003055888A (en) Inorganic sheet material, inorganic composite material, and inorganic structural material
JPH1158432A (en) Porous tube made of fiber-reinforced plastic and manufacture thereof
CN111136898A (en) Three-dimensional synchronous stretching polytetrafluoroethylene microporous film and preparation method thereof
JPH09253535A (en) Diffuser pipe and its production
JPH0813324B2 (en) Adsorbent filter
US4116761A (en) Porous element and the preparation thereof
JPH08243369A (en) Plastic made air diffuser
JPH1026379A (en) Absorbing element in water absorbing type heating humidifier
JP3545053B2 (en) Manufacturing method of lightweight stampable sheet
JPH10150901A (en) Liquid absorbing core for liquid chemical and manufacture therefor
JP2000317927A (en) Sheet for concrete form
CN113943463A (en) Closed bubble type structural pipe and preparation method thereof
MXPA06000052A (en) Methods to produce gel sheets
JP2003055028A (en) Inorganic binder composition, heat resistant sheet material, three-dimensional hollow structure and method for producing three-dimensional hollow structure
JPH04271832A (en) Manufacture of molded adsorbent
JPS591031B2 (en) speaker diaphragm
MXPA00004322A (en) Reinforced thermoplastic composite systems
JPH0741166B2 (en) Adsorbent molding and its manufacturing method
JPH08135181A (en) Concrete form sheet and manufacture thereof