JPH115401A - Moving mechanism and moving method on rough terrain - Google Patents

Moving mechanism and moving method on rough terrain

Info

Publication number
JPH115401A
JPH115401A JP9158256A JP15825697A JPH115401A JP H115401 A JPH115401 A JP H115401A JP 9158256 A JP9158256 A JP 9158256A JP 15825697 A JP15825697 A JP 15825697A JP H115401 A JPH115401 A JP H115401A
Authority
JP
Japan
Prior art keywords
moving
terrain
curved board
driving wheel
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9158256A
Other languages
Japanese (ja)
Inventor
Tomotaka Marui
丸井智敬
Kazuo Ao
阿尾和夫
Isao Endo
勲 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9158256A priority Critical patent/JPH115401A/en
Publication of JPH115401A publication Critical patent/JPH115401A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a mechanism and a operation method which enable moving on a rough terrain of soft condition such as sandy ground or rocky ground on which free travelling by conventional balloon tire, a tire with blade lug and caterpillar was difficult. SOLUTION: This moving mechanism for a rough terrain is provided with a moving wheel 1 with a radius R for levelled ground moving, a curved surface board 3 which rotates making a rotating shaft of the moving wheel 1 to be a shaft core, and a rotation radius changing means 4 which changes the rotation radius R' of the curved surface board 3, and can control the tilting of a moving body. That is to say, this mechanism changes the rotation radius of the curved surface board 3 independently, enables to adjust the tilt angle of the moving body in accordance with the slope of the rough terrain and realizes better moving performance on the rough terrain.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】沙漠、農地、泥地、積雪地、
岩場などの不整地を移動する装置とそれを用いた移動方
法に関する。不整地面が岩場、砂、その他の混合であっ
て、かつ傾斜度のおおきな不整地の坂を登坂、降坂する
場合の移動方法、すなわち移動機構の運転方法を提供す
る。
[Technical field to which the invention belongs] Desert, farmland, muddy land, snowy land,
The present invention relates to a device that moves on rough terrain such as rocky places and a moving method using the device. The present invention provides a moving method when a rough terrain is a mixture of rocks, sand, and other terrain and climbs or descends on a rough hill having a large slope, that is, a method of operating a moving mechanism.

【0002】[0002]

【従来の技術】不整地とは沙漠、農地、泥地、積雪地、
岩場といった自然状態の大地である。これら不整地のう
ち、岩場は石ころや岩がごろごろした場所であり、海辺
であれば磯とよばれる。
[Background Art] Irregular lands are desert, farmland, muddy land, snowy land,
It is a land in a natural state such as a rocky place. Among these rough terrain, the rocky area is a place where rocks and rocks are loose, and if it is a seaside, it is called a rocky shore.

【0003】不整地走行については、四輪駆動車、無限
軌道車(キャタピラ、クローラ)などが公知である。無
限軌道車の改良については特許2585903、特開平
8−104261、特開平8−239066がある。ま
た、低圧のバルーンタイヤの応用として、特許2522
915、特許2576816、羽根ラグ付きタイヤの応
用として特開平8−332802がある。
[0003] For traveling on uneven terrain, known are four-wheel drive vehicles, endless track vehicles (caterpillars, crawlers) and the like. There are Japanese Patent No. 2585903, Japanese Patent Application Laid-Open No. 8-104261, and Japanese Patent Application Laid-Open No. 8-239066 for improvement of a tracked vehicle. In addition, as an application of a low-pressure balloon tire, Japanese Patent No. 2522
No. 915, Japanese Patent No. 2576816, and Japanese Patent Application Laid-Open No. 8-332802 are applied to tires with blade lugs.

【0004】しかしながら、これらの公知技術では前記
の「岩場」は移動走行しがたい。かろうじてキャタピラ
をとりつけた戦車のような移動体であれば可能であるも
のの、容易にわかるように、戦車は岩などを乗り越える
際に大きく車体が傾斜する。
[0004] However, these known techniques make it difficult for the aforementioned “rocky area” to travel and travel. Although it is possible to use a moving body such as a tank with a bare caterpillar, it is easily understood that the body of the tank inclines greatly when going over a rock or the like.

【0005】輸送する物品によっては、このような大き
な傾斜が好ましくないものがある。たとえば、医薬品な
どではガラス容器が使用されているので岩を乗り越える
前後の振動でガラス容器破損の恐れがある。
[0005] Depending on the goods to be transported, such a large inclination is not preferable. For example, a glass container is used in pharmaceuticals and the like, and there is a possibility that the glass container may be damaged by vibration before and after climbing over a rock.

【0006】[0006]

【発明が解決しようとする課題】こういった問題点に注
目し、不整地、特に岩場を傾斜せずに移動走行する機構
ならびに制御装置を提供する。
SUMMARY OF THE INVENTION In view of these problems, a mechanism and a control device for moving and traveling on uneven terrain, particularly on a rocky surface without tilting, are provided.

【0007】また、沙漠地帯にあっては、傾斜度のおお
きな坂が多くある。これは砂が風の作用で運ばれながら
形成されたものであり、「バルハン砂丘」「サンド・ヒ
ル」などと呼ばれている。
[0007] In a desert area, there are many large slopes having a slope. This is formed by the sand being carried by the action of the wind, and is called the "Barhan Dunes" or "Sand Hill".

【0008】こういった急勾配の砂丘の中には、水平方
向に長距離で山脈状に連続していることがある。そのた
め、この砂丘山脈は避けて通ることができず、どこかで
登坂しなければならない。また、当然であるが降坂も行
わねばならない。
[0008] In such a steep dune, there is a case where the sand dune is continuous in a long distance in a horizontal direction like a mountain range. For this reason, the dune mountains cannot be avoided and must be climbed somewhere. Also, of course, you have to go downhill.

【0009】このような急勾配の登坂、降坂が移動体の
パワ限界に達しているケースが多い。ここで登板、降坂
の可能な最大傾斜角を移動体の「限界登板(降坂)角
度:θ」と仮称する。
In many cases, such a steep ascent or descent reaches the power limit of the moving body. Here, the maximum possible inclination angle for climbing and descending a slope is temporarily referred to as “limit climbing (falling) angle: θ” of the moving body.

【0010】本案は、限界登板(降坂)角度θ以上の急
勾配の砂丘を移動するための移動体の運転方法をも提供
する。
[0010] The present invention also provides a method of operating a moving object for moving a steep dune having a climbing angle (downhill) angle θ or more.

【0011】[0011]

【課題を解決するための手段】本案の移動機構の第一例
を図1に示す。本案の基本構成としては、整地移動用の
半径Rの「動輪1」、動輪の回転軸を軸芯として回転す
る「曲面ボード3」、曲面ボードの回転半径R’を変化
させる「回転半径変化手段2、2’、4」である。(請
求項1)
FIG. 1 shows a first example of a moving mechanism according to the present invention. The basic configuration of the present invention is as follows: a “drive wheel 1” having a radius R for leveling movement, a “curved board 3” that rotates around the rotation axis of the drive wheel as an axis, and a “rotation radius changing unit” that changes the rotation radius R ′ of the curved board. 2, 2 ', 4 ". (Claim 1)

【0012】図1中でこの変化手段は、より具体的に、
2の伸縮スポークの伸長部、2’の伸縮スポーク基部、
および変化動力源4である。
In FIG. 1, this changing means is more specifically
2 extendable spoke extension, 2 'extendable spoke base,
And the change power source 4.

【0013】4の回転半径変化手段は曲面ボードの回転
半径を変化させる動力源で、ここでは伸縮スポークを基
部2’からストローク分だけ2の伸長部をもって伸長し
固定保持する。
The turning radius changing means 4 is a power source for changing the turning radius of the curved board. In this case, the telescopic spokes are extended from the base 2 'by two strokes by a stroke and fixed and held.

【0014】4は、さらに具体的には、流体シリンダの
動力源である高圧気体あるいは液体のバッファタンクお
よびバルブを内蔵せるユニットで、その場合には2、
2’は流体シリンダである。
More specifically, a unit 4 incorporates a high-pressure gas or liquid buffer tank and a valve as a power source of the fluid cylinder.
2 'is a fluid cylinder.

【0015】[0015]

【発明の実施の形態】図1でわかるように、回転半径変
化手段2、2’、4によって、曲面ボード3が半径方向
に可動なので、回転半径を変えられる。回転の回転軸は
動輪1と同じ軸である。ここで可変である曲面ボード3
の回転半径を「R’」とする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As can be seen from FIG. 1, since the curved board 3 is movable in the radial direction by the turning radius changing means 2, 2 ', 4, the turning radius can be changed. The rotation axis of rotation is the same axis as the driving wheel 1. Curved board 3 which is variable here
Is assumed to be “R ′”.

【0016】整地移動中にて、R’が動輪の回転半径R
以下であれば、動輪による整地移動に干渉しない。そこ
で、既述の回転半径変化手段は、R’を0.9R<R’
≦Rの範囲に固定する曲面ボード固定手段を兼備すると
よい。(請求項2)
During the terrain movement, R ′ is the turning radius R of the driving wheel.
If it is below, it does not interfere with the leveling movement by the driving wheel. Therefore, the above-described turning radius changing means sets R ′ to 0.9R <R ′.
A curved board fixing means for fixing in a range of ≤R may be provided. (Claim 2)

【0017】また図1のごとく複数の曲面ボードを有
し、それらが回転軸に対し軸対称に配置されていると設
計製造上好ましい。(請求項3)
It is preferable in terms of design and manufacture that a plurality of curved boards are provided as shown in FIG. 1 and they are arranged symmetrically with respect to the rotation axis. (Claim 3)

【0018】また曲面ボード回転半径変化手段が、流体
圧力ないしは機械力による緩衝機構(サスペンション)
を兼備していれば、不整地移動における振動は緩和され
る。緩衝機構を付加するケースも含め、半径変化のため
の伸縮部材は、半径を少しずつ変えて組み合わされた中
空の円筒管のような伸縮スポークが好適である。(請求
項4、5)
The curved board rotation radius changing means may be a buffer mechanism (suspension) by fluid pressure or mechanical force.
, Vibration in irregular terrain movement is reduced. The extendable member for changing the radius, including the case where the shock absorbing mechanism is added, is preferably an expandable spoke such as a hollow cylindrical tube combined by changing the radius little by little. (Claims 4 and 5)

【0019】さらにまた、さらさらした砂状の不整地で
は進行方向と逆方向に砂を押しやり、その反作用力を利
用することが効果的である。そこで砂を押すパドル状の
プッシュ板を設けるとよい。そこで、図4のように曲面
ボードの回転軸側の面に、不整地要素をプッシュするパ
ドル状プッシュ板6を取り付けることが好適である。
(請求項6)
Further, it is effective to push the sand in the direction opposite to the traveling direction and to use the reaction force on the rough sandy rough terrain. Therefore, it is preferable to provide a paddle-shaped push plate for pressing the sand. Therefore, it is preferable to attach a paddle-shaped push plate 6 for pushing the irregular terrain element to the surface on the rotation axis side of the curved board as shown in FIG.
(Claim 6)

【0020】図4のように回転軸側であれば、整地走行
では干渉しない。パドル状プッシュ板6の板面は、回転
最下点で移動方向に概ね垂直となるよう取り付ければ砂
状物を強く押すことができ好適である(請求項7)
On the rotating shaft side as shown in FIG. 4, there is no interference in terrain running. If the paddle-shaped push plate 6 is attached so that it is substantially perpendicular to the moving direction at the lowest point of rotation, it is possible to strongly push the sand-like material, and it is preferable.

【0021】さて、本案の移動機構の構成のバリエーシ
ョン、すなわち実施形態例について説明する。便宜的に
基本構成要素である曲面ボードと回転半径変化手段の
「取り付け方」で分類して説明する。
Now, a variation of the configuration of the moving mechanism of the present invention, that is, an embodiment will be described. For the sake of convenience, the description will be made by classifying the curved board, which is a basic component, and the "how to attach" the turning radius changing means.

【0022】すなわち、「貫通型」「外付け型」「着脱
型」および「動輪分割型」である。これらは一長一短が
あり使い分けをする。使い分けの詳細は枝葉末節である
のでここでは触れず、構成のみを列挙する。
That is, there are a "through type", an "external type", a "detachable type" and a "sprocket type". These have advantages and disadvantages and are used properly. The details of the proper use are the end-of-leaf sections, so they will not be described here, and only the configuration will be listed.

【0023】図1は貫通型である。すなわち、半径Rの
動輪に、回転軸から放射状に貫通する孔が開けられ、曲
面ボードと回転半径変化手段が、前記貫通孔を用いて取
り付けられている。(請求項8)
FIG. 1 shows a through type. That is, a hole radially penetrating from the rotation shaft is formed in the driving wheel having a radius R, and a curved board and a rotation radius changing unit are attached using the through hole. (Claim 8)

【0024】図2は外付け型である。半径Rの動輪1の
回転軸が延長されており、曲面ボード3と回転半径変化
手段4が、動輪1の回転軸の延長部分に取り付けられて
いる。(請求項9)
FIG. 2 shows an external type. The rotating shaft of the driving wheel 1 having a radius R is extended, and the curved board 3 and the turning radius changing means 4 are attached to an extension of the rotating shaft of the driving wheel 1. (Claim 9)

【0025】図3は着脱型である。曲面ボード3と回転
半径変化手段4が一体化されていて、その一体化ユニッ
トごと半径Rの動輪1に着脱できるように着脱手段5が
設けられている。着脱手段5は、ボルト・ナットなど機
械的な締結器具を利用したものでよい。(請求項10)
FIG. 3 shows a detachable type. The curved board 3 and the turning radius changing means 4 are integrated, and an attaching / detaching means 5 is provided so that the integrated unit can be attached to and detached from the driving wheel 1 having a radius R. The attachment / detachment means 5 may use mechanical fastening tools such as bolts and nuts. (Claim 10)

【0026】図5、図6は動輪分割型である。これは、
半径Rの動輪が、回転方向にセパレータ(図示略)によ
って複数のサブユニットに分割固定されている。この分
割によってセパレータ間に空隙ができる。この空隙に曲
面ボード3と回転半径変化手段4が配備される。(請求
項11)
FIGS. 5 and 6 show a driving wheel split type. this is,
A driving wheel having a radius R is divided and fixed to a plurality of subunits by a separator (not shown) in the rotation direction. This division creates a gap between the separators. The curved board 3 and the turning radius changing means 4 are provided in this gap. (Claim 11)

【0027】「貫通型(図1)」「外付け型(図2)」
「着脱型(図3)」および「動輪分割型(図5、図
6)」すべて共通に回転半径変化手段4によって曲面ボ
ード3の回転半径R’を変化させることができる。
"Penetration type (Fig. 1)""External type (Fig. 2)"
The turning radius R ′ of the curved board 3 can be changed by the turning radius changing means 4 in common for both the “detachable type (FIG. 3)” and the “drive wheel split type” (FIGS. 5 and 6).

【0028】回転半径変化動作を「動輪分割型」の図5
と図6、および図4で説明する。図4については既に説
明したが、これは貫通型を想定した図である。すなわち
整地走行する際に曲面ボードを整地走行に干渉しないよ
うパドルプッシュ板が動輪に収容されるよう溝状孔7が
開けられている。
FIG. 5 shows the operation of changing the radius of gyration to the "split wheel type".
6 and FIG. Although FIG. 4 has already been described, this is a view assuming a penetration type. That is, the groove-shaped hole 7 is formed so that the paddle push plate is accommodated in the driving wheel so that the curved board does not interfere with the terrain running during the terrain running.

【0029】動輪分割型ではこのような溝状孔は不要で
ある。すなわち図5のように回転半径R’を0.9R<
R’≦Rの範囲に固定する際に、回転方向に分割された
半径Rの動輪のサブユニット一部8の間隙にパドル状プ
ッシュ板が収納される。
Such a groove-like hole is unnecessary in the driving wheel split type. That is, as shown in FIG.
When fixing in the range of R ′ ≦ R, the paddle-shaped push plate is housed in the gap between the subunit portions 8 of the driving wheels having the radius R divided in the rotation direction.

【0030】さて図5は、整地移動中に好適な動輪分割
型の状態で、曲面ボード3は分割された動輪サブユニッ
ト8の間隙にある。この状態で曲面ボードは動輪の一部
として整地に接触して機能する。
FIG. 5 shows a state in which the driving wheel is divided during the terrain movement, and the curved board 3 is located in the gap between the divided driving wheel subunits 8. In this state, the curved board functions as a part of the driving wheel in contact with the terrain.

【0031】図6は不整地走行のために曲面ボードの回
転半径R’を動輪半径Rよりも大きくした状態図であ
る。この状態では曲面ボード3の外周面は、砂、泥など
の不整地要素に接触し、加減速による相対速度から摩擦
力を発生する。このことはあとで説明する。
FIG. 6 is a diagram showing a state in which the radius of rotation R 'of the curved board is made larger than the radius R of the running wheel for running on uneven terrain. In this state, the outer peripheral surface of the curved board 3 comes into contact with irregular terrain elements such as sand and mud, and generates a frictional force from the relative speed due to acceleration and deceleration. This will be explained later.

【0032】さらに曲面ボードは、さらさらした砂では
砂に埋没するので回転軸側の面に取り付けたパドル状プ
ッシュ板6が砂を押しやる。この反作用力でさらに移動
力が増大する。
Furthermore, since the curved board is buried in the sand with the free-flowing sand, the paddle-shaped push plate 6 attached to the surface on the rotating shaft side pushes the sand. This reaction force further increases the moving force.

【0033】曲面ボードと動輪の機能的な違いは、曲面
ボードでは不整地要素との接触が断続的であるため、不
整地要素の速度は一定ではない。それはボードの接触面
でも同様で、要素は既述のごとくボード面近傍で加減速
している。
The functional difference between the curved board and the driving wheel is that the speed of the rough terrain element is not constant because the curved board has intermittent contact with the terrain element. The same applies to the contact surface of the board, and the elements are accelerated or decelerated near the board surface as described above.

【0034】加減速中はボード面と不整地要素の相対速
度が大きい。接触物と被接触面との相対速度の大きさと
摩擦力とは正相関があるので、動輪より大きな摩擦力が
生じ、不整地走行が可能になるわけである。
During acceleration / deceleration, the relative speed between the board surface and the terrain element is large. Since there is a positive correlation between the magnitude of the relative speed between the contact object and the contact surface and the frictional force, a frictional force greater than that of the driving wheel is generated, and the vehicle can travel on uneven terrain.

【0035】[0035]

【実施例】実施例として、限界登板(降坂)角度θ以上
の急勾配の砂丘を移動するための移動体の運転方法を説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As an embodiment, a method of operating a moving body for moving a steep dune having a climbing angle (downhill) angle θ or more will be described.

【0036】本案は、移動機構として以下の要素からな
る。すなわち整地移動用の半径Rの「動輪」、動輪の回
転軸を軸芯として回転する「曲面ボード」、曲面ボード
の回転半径R’を変化させる「回転半径変化手段」であ
る。さらにここで、移動体運転にて有効な回転半径変化
の制御手段を提供する。
The present invention comprises the following elements as a moving mechanism. That is, a "rotating wheel" having a radius R for leveling movement, a "curved board" that rotates around the rotation axis of the driving wheel as an axis, and a "rotating radius changing means" that changes the turning radius R 'of the curved board. Further, here, a control means of the change in the radius of rotation effective in the operation of the moving body is provided.

【0037】上記制御をさらに自動化するには、不整地
表面の傾斜あるいは凹凸状態を測定する傾斜・凹凸検知
手段ないしは、移動体の部分線と水平線とのなす角を測
定する姿勢角検知手段とを移動体に配備すればよい。こ
れら検知手段を図7のSに図示する。
In order to further automate the above control, it is necessary to provide an inclination / unevenness detecting means for measuring the inclination or unevenness of the uneven terrain surface, or an attitude angle detecting means for measuring the angle between the partial line of the moving body and the horizontal line. What is necessary is just to deploy to a mobile body. These detecting means are shown in S of FIG.

【0038】図7にてSが移動体の前部と後部に配備さ
れているのは前進用と後退用である。これらSは、不整
地表面の傾斜・凹凸に関して検知した量、ないしは移動
体の姿勢角を検知した量を電気的に変換して出力するセ
ンサーである。
In FIG. 7, S is provided at the front part and the rear part of the moving body for forward movement and backward movement. S is a sensor that electrically converts and outputs an amount detected with respect to the inclination / unevenness of the uneven ground surface or an amount obtained by detecting the attitude angle of the moving body.

【0039】前記の曲面ボードの回転半径R’の変化の
制御手段は、上記のSの出力を受信し、それにもとづい
て、移動中の移動体の振動が防止される、ないしは移動
体の姿勢が適正化されるようにR’を変える指令をR’
の変化手段4に与える。(請求項12)
The means for controlling the change in the radius of gyration R 'of the curved board receives the output of the above S, and based on the output, the vibration of the moving body during movement is prevented, or the posture of the moving body is changed. Command R 'to change R' to be optimized
To the change means 4. (Claim 12)

【0040】前記移動体の姿勢角は、移動体の部分線と
水平線とのなす角を採用するのが好適である。ここで移
動体の部分線とは、動輪の回転軸芯線、あるいは相異な
る動輪回転軸芯線上の点同士を結んだ直線とすれば簡便
である。たとえば、図7でLで図示される一点鎖線が動
輪の回転軸芯線である。(請求項13)
It is preferable that the posture angle of the moving body is an angle formed by a partial line of the moving body and a horizontal line. Here, it is convenient if the partial line of the moving body is a straight line connecting points on the rotating shaft center line of the driving wheel or different moving shaft rotating shaft core lines. For example, an alternate long and short dash line indicated by L in FIG. 7 is a rotational axis of the driving wheel. (Claim 13)

【0041】移動体の姿勢の適正化とは、ひとつには移
動体部分線と水平線とのなす角度をより小さく制御する
ことである。そうすれば移動体の姿勢代表線である移動
体部分線が水平に近くなるので、積み荷その他の傾斜が
小さくなる。(請求項14)
The optimization of the posture of the moving body means, in part, to control the angle between the partial line of the moving body and the horizontal line to be smaller. Then, since the moving body partial line, which is the posture representative line of the moving body, becomes nearly horizontal, the load and other inclinations become smaller. (Claim 14)

【0042】図7は上記の傾斜軽減の例を示すもので、
障害物の高さの分だけ前左の動輪の曲面ボードが回転半
径を小さくして、前左動輪が障害物上に乗り上げた際の
傾斜を軽減している。
FIG. 7 shows an example of the above-mentioned inclination reduction.
The curved board of the front left driving wheel reduces the turning radius by the height of the obstacle, thereby reducing the inclination when the front left driving wheel rides on the obstacle.

【0043】このように不整地表面の凹凸状態の検知手
段が、曲面ボードが接地する不整地面上の障害物の高さ
を測定するセンサーであり、曲面ボードの回転半径R’
を障害物の高さに応じて変えることで不整地面上の障害
物との接触による振動、傾斜を防止できる。(請求項1
5)
As described above, the means for detecting the unevenness state of the uneven surface is a sensor for measuring the height of an obstacle on the uneven ground where the curved board is in contact with the ground, and the radius of gyration R 'of the curved board is
By changing the distance according to the height of the obstacle, it is possible to prevent vibration and inclination due to contact with an obstacle on uneven ground. (Claim 1
5)

【0044】図8は、不整地の斜面の傾斜を検知してそ
の傾斜に応じて、R’を変化させる例である。図のごと
く登坂では後の動輪、降坂では前の動輪の曲面ボードが
つよい駆動力を出すほうが登坂、降坂性能がよい。これ
は動物のウサギのように後ろ足が長い生き物がすばやく
登坂することからわかるであろう。
FIG. 8 shows an example in which the inclination of the slope of the rough terrain is detected, and R 'is changed according to the inclination. As shown in the figure, it is better that the curved board of the front driving wheel gives a strong driving force when climbing a hill, and that when driving downhill, the driving performance is better. This can be seen from the fact that creatures with long hind legs, such as animal rabbits, climb quickly.

【0045】図9に、整地(Road)→砂地→砂丘
(Sand Hill)登坂→降坂の運転例を示す。図
中のaxは、登坂のために曲面ボード回転半径を小さく
した前輪、bxは、降坂のために曲面ボード回転半径を
大きくした前輪と回転半径を小さくした後輪、cxは、
整地から不整地に入る際に、曲面ボードの回転半径を大
きくした前輪後輪である。このように本案では整地、不
整地のノンストップ運転が可能である。
FIG. 9 shows an example of the operation of grading (Road) → sandy ground → sand hill (Sand Hill) uphill → downhill. In the figure, ax is a front wheel having a reduced curved board turning radius for climbing a hill, bx is a front wheel having a curved board turning radius increased for a downhill, and a rear wheel having a reduced turning radius for downhill, and cx is
The front and rear wheels have a large radius of rotation of the curved board when entering uneven terrain from leveling. In this way, the present invention enables non-stop operation on level and irregular terrain.

【0046】次に不整地表面の最大傾斜α1が、移動体
の登坂限界角度θ以上の傾斜である場合(α1>θ)の
実施例(運転例)を説明する。
Next, a description will be given of an embodiment (operation example) in which the maximum inclination α1 of the rough terrain surface is equal to or more than the inclination limit angle θ of the moving body (α1> θ).

【0047】図10が最大傾斜α1の傾斜面である。こ
こで「直登坂」、すなわち、図中のO→P1ルートは登
坂限界を上回るので登坂不可能。そこで、図10のO→
P2ルートのように不整地の最大傾斜方向に対し、斜行
角度θをなすように斜めに斜行して登坂する。(請求項
16)
FIG. 10 shows the inclined surface having the maximum inclination α1. Here, "straight climbing", that is, the O → P1 route in the figure exceeds the climbing limit, so climbing is impossible. Therefore, in FIG.
As shown in the P2 route, the vehicle is sloping obliquely so as to form a skew angle θ with respect to the maximum inclination direction of the irregular terrain, and climbing a slope. (Claim 16)

【0048】登坂できるためには、実質的登坂角度「α
2」が移動体の登坂可能角度θ以下でなくてはならな
い。斜面の基準点をO、基準高さをHとすると以下の式
が成り立つ。
In order to be able to climb a hill, the actual climbing angle "α
2 ”must be less than or equal to the angle θ at which the mobile object can climb the hill. When the reference point of the slope is O and the reference height is H, the following equation is established.

【0049】[ OP1の距離] ・sin α1 = H [ OP2の距離] ・sin α2 = H [ OP1の距離] :[ OP2の距離] =cos θ:1[Distance of OP1] sin α1 = H [distance of OP2] sin α2 = H [distance of OP1]: [distance of OP2] = cos θ: 1

【0050】これら3式から、 sin α2/sin α1 =
cos θ また、斜行登坂可能であるという条件から、 sin α2 ≦ sin θ
From these three equations, sin α2 / sin α1 =
cos θ In addition, from the condition that sloping uphill is possible, sin α2 ≤ sin θ

【0051】α2をθで置換すれば、以下の式が得られ
る。これが斜行登坂する際の斜行角度θの条件である。
(請求項17) sin θ/sin α1 ≦ cos θ
If α2 is replaced by θ, the following equation is obtained. This is the condition of the skew angle θ when skew-climbing.
(Claim 17) sin θ / sin α1 ≦ cos θ

【0052】傾斜角度の検知手段から得られる斜面の最
大傾斜α1と、実験等で既知の移動体の限界登坂角度θ
から上式を満たす値斜行角度θだけステアリングで曲げ
て登坂すれば、急斜面でも少しずつ登ることができる。
The maximum slope α1 of the slope obtained from the inclination angle detecting means and the limit slope angle θ of the moving body known from experiments and the like.
If the vehicle is bent by the steering by the value of the skew angle θ that satisfies the above equation and the vehicle is climbed, the vehicle can climb little by little on a steep slope.

【0053】さらにこのような斜行角度θの斜行登坂
を、前進斜行と後退斜行を一定時間ないしは一定距離ご
とに繰り返すスイッチバック式登坂を繰り返せば、目的
地から離れることなく移動できるので好適である。(請
求項18)
Further, by repeating a switchback type climbing in which such a forward slope and a backward slope are repeated at a predetermined time or a predetermined distance, the vehicle can move without leaving the destination. It is suitable. (Claim 18)

【0054】こういった斜行、スイッチバック登坂の際
にも前記の姿勢制御を組み合わすことがさらに好適であ
る。すなわち図11、図12のように、可能な限り移動
体を水平姿勢に近づける。
It is more preferable to combine the above-described attitude control even in such a skew or switchback climbing. That is, as shown in FIGS. 11 and 12, the moving body is brought closer to the horizontal posture as much as possible.

【0055】より具体的には、図11に模式的に示すよ
うに、傾斜の山側と谷側に置かれる曲面ボードの回転半
径を非対称に変える。図では曲面ボードの回転軌跡を円
で示しているが、山うしろ位置の曲面ボードの回転半径
(軌跡)9を谷うしろ位置の曲面ボードの回転半径(軌
跡)より小さくする。この状況断面図を図12の下の図
に示す。
More specifically, as shown schematically in FIG. 11, the turning radii of the curved boards placed on the hill side and the valley side of the slope are changed asymmetrically. In the figure, the rotation trajectory of the curved board is indicated by a circle, but the rotation radius (trajectory) 9 of the curved board at the position behind the peak is made smaller than the rotation radius (trajectory) of the curved board at the position behind the valley. A cross-sectional view of this situation is shown in the lower diagram of FIG.

【0056】同様に、山まえ位置の曲面ボードの回転半
径(軌跡)11を谷まえ位置の曲面ボードの回転半径
(軌跡)12より小さくする。図12の上の図参照。図
12からこのように曲面ボード回転半径を非対称にする
ことで、移動体の車体傾斜が軽減されることがわかるで
あろう。
Similarly, the turning radius (trajectory) 11 of the curved board at the position before the peak is made smaller than the turning radius (trajectory) 12 of the curved board at the position before the valley. See the upper diagram in FIG. It can be seen from FIG. 12 that the vehicle body tilt of the moving body is reduced by making the curved board rotation radius asymmetric in this way.

【0057】図13は、スイッチバック登坂の実施例で
ある。前進と後退を交互に行うので10’は後退時に前
方で回転する10の軌跡で、12’は後退時に後方で回
転する12の軌跡である。
FIG. 13 shows an embodiment of switchback climbing. Since forward and backward movements are performed alternately, 10 'is a locus of 10 rotating forward when moving backward, and 12' is a locus of 12 rotating backward when moving backward.

【0058】前進と後退は登坂性能が異なることが多い
ので、前進のときだけ斜行登坂、後退は水平移動とした
「Z字登坂」が有効かもしれない。また、図11から図
13では登坂で説明したが、降坂でも同様である。
The forward and backward movements often have different uphill performances. Therefore, a "Z-shaped uphill" in which the vehicle is moved obliquely only when moving forward and when the vehicle is moved backwards may be effective. Although the description has been made on the ascending slope in FIGS. 11 to 13, the same applies to the descending slope.

【0059】[0059]

【発明の効果】沙漠、農地、泥地、積雪地、岩場などの
不整地を移動する装置を提供、それを用いた移動方法
(運転方法)も提供した。不整地面が岩場、砂、その他
の混合であって、かつ傾斜度のおおきな不整地の坂の登
坂、降坂を可能ならしめた。
According to the present invention, there is provided an apparatus for moving on rough terrain such as a desert, a farmland, a muddy land, a snowy area, and a rocky place, and a moving method (operating method) using the apparatus. The rough terrain is a mixture of rocks, sand, and other terrain, and it is possible to climb up and down hills with large slopes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】「貫通型」の位置可変ボード構成例FIG. 1 is an example of a “through-type” position variable board configuration example

【図2】「外付け型」の位置可変ボード構成例FIG. 2 shows an example of an “external type” position-variable board configuration.

【図3】「着脱型」での位置可変ボード・ユニットの着
脱手段の説明図
FIG. 3 is an explanatory view of an attaching / detaching means of a position-removable board unit in a “detachable type”.

【図4】パドル状プッシュ板をつけた位置可変ボードの
斜視図
FIG. 4 is a perspective view of a position variable board with a paddle-shaped push plate.

【図5】動輪分割型の説明図(その1)でもFIG. 5 is an explanatory view (part 1) of a driving wheel split type.

【図6】動輪分割型の説明図(その2)FIG. 6 is an explanatory view of a driving wheel split type (part 2).

【図7】移動体の左右傾斜を軽減する位置可変ボードの
位置制御
FIG. 7 is a diagram illustrating a position control of a position variable board for reducing a left-right inclination of a moving object.

【図8】平坦、登板、降坂時の位置可変ボードの位置制
FIG. 8: Position control of a position variable board during flat, uphill, and downhill

【図9】整地から平坦不整地、不整地の丘にかけての運
転状況
[Fig. 9] Driving conditions from leveling to uneven terrain and uneven hills

【図10】斜面傾斜角度α1 の坂を斜行角度θで斜行し
て登坂することの説明図
FIG. 10 is an explanatory view of ascending a slope having a slope inclination angle α1 at a slope angle θ.

【図11】斜面斜行登坂の説明図FIG. 11 is an explanatory diagram of an ascending slope.

【図12】斜面斜行登坂のときの位置可変ボードの位置
の違い
FIG. 12: Difference in position of position-variable board when climbing a slope

【図13】斜行のスイッチバック繰り返しによる登坂の
説明図
FIG. 13 is an explanatory diagram of climbing up a hill due to repetitive switchback of skew

【符号の説明】[Explanation of symbols]

ax 登坂のために曲面ボード回転半径を小さくした前
輪 bx 降坂のために曲面ボード回転半径を大きくした前
輪と回転半径を小さくした後輪 cx 整地から不整地に入る際に、曲面ボードの回転半
径を大きくした前輪後輪 α1 斜面の最大傾斜角度 α2 斜面を斜行したときの登坂角度 β θとα1 と移動体姿勢で決まる傾斜角度 H 登坂高さ L 動輪(曲面ボード)の回転軸 l 前後輪の回転軸を結んだ線 O 登坂基準点 P1 直登坂での到達点 P2 斜行登坂での到達点 S 走行面センサー 1 動輪 2 伸縮スポーク伸長部 2’伸縮スポーク基部 3 曲面ボード 4 曲面ボードの回転半径R’の変化手段 5 曲面ボード・ユニットの動輪への着脱手段 6 パドル状プッシュ板 7 パドル板プッシュ板の収容のための溝状孔 8 回転方向に分割された半径Rの動輪の一部 9 山うしろ位置の曲面ボードの回転軌跡 10 谷うしろ位置の曲面ボードの回転軌跡 10’後退時に前方で回転する10の軌跡 11 山まえ位置の曲面ボードの回転軌跡 12 谷まえ位置の曲面ボードの回転軌跡 12’後退時に後方で回転する12の軌跡
ax Front wheel with reduced curved board turning radius for ascending hill bx Front wheel with larger curved board turning radius for downhill and rear wheel with smaller turning radius cx Turning radius of curved board when entering rough terrain from leveling Front wheel and rear wheel α1 Maximum inclination angle of slope α2 Climbing angle when sloping down slope β β, α1 and inclination angle determined by moving body posture H Climbing height L Rotating axis of driving wheel (curved board) l Front and rear wheels Line connecting the rotation axes of O O Uphill reference point P1 Arrival point on straight uphill P2 Arrival point on sloping uphill S Running surface sensor 1 Running wheel 2 Telescopic spoke extension 2 'Telescopic spoke base 3 Curved board 4 Curved board rotation Means for changing radius R '5 Means for attaching / detaching curved board unit to driving wheel 6 Paddle-shaped push plate 7 Groove-shaped hole for accommodating paddle plate push plate 8 Radius R divided in rotation direction Part of the driving wheel 9 Rotation trajectory of the curved board at the position behind the mountain 10 Rotation trajectory of the curved board at the position behind the valley 10 '10 trajectories that rotate forward when retreating 11 Rotation trajectory of the curved board at the position before the mountain 12 Rotation trajectory of curved board of position 12 '12 trajectories that rotate backward when retreating

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年6月27日[Submission date] June 27, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項16[Correction target item name] Claim 16

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項17[Correction target item name] Claim 17

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0009】このような急勾配の登坂、降坂が移動体の
パワ限界に達しているケ−スが多い。ここで登、降坂
の可能な最大傾斜角を移動体の「限界登(降坂)角
度:Θ」と仮称する。
There are many cases where such a steep ascent or descent reaches the power limit of the moving body. Here Noboru slope, "limit Noboru hill (downhill) angle: theta" mobile maximum inclination possible downhill and tentatively.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0010】本案は、限界登(降坂)角度Θ以上の急
勾配の砂丘を移動するための移動体の運転方法をも提供
する。
[0010] merits also provides a method of operating a mobile body for moving the limit Noboru slope (downhill) angle Θ over steep dunes.

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0035[Correction target item name] 0035

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0035】[0035]

【実施例】実施例として、限界登(降坂)角度Θ以上
の急勾配の砂丘を移動するための移動体の運転方法を説
明する。
As the examples, illustrating a method of operating a mobile body for movement limit Noboru Saka (the downhill) angle Θ over steep dunes.

【手続補正6】[Procedure amendment 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0046[Correction target item name] 0046

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0046】次に不整地表面の最大傾斜α1が、移動体
の登坂限界角度Θ以上の傾斜である場合(α1>Θ)の
実施例(運転例)を説明する。
Next, a description will be given of an embodiment (operation example) in which the maximum inclination α1 of the uneven terrain surface is equal to or more than the inclination limit angle Θ of the moving body (α1> Θ ).

【手続補正7】[Procedure amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0048[Correction target item name] 0048

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0048】登坂できるためには、実質的登坂角度「α
2」が移動体の登坂可能角度Θ以下でなくてはならな
い。斜面の基準点をO、基準高さをHとすると以下の式
が成り立つ。
In order to be able to climb a hill, the actual climbing angle "α
2 ”must be less than or equal to the climbing angle 移動 of the mobile object. When the reference point of the slope is O and the reference height is H, the following equation is established.

【手続補正8】[Procedure amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0050[Correction target item name] 0050

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0050】これら3式から、 sin α2/sin
α1 = cos θ また、斜行登坂可能であるという条件から、 sin α2 ≦ sin Θ
From these three equations, sin α2 / sin
α1 = cos θ In addition, from the condition that sloping uphill is possible, sin α2 ≦ sin Θ

【手続補正9】[Procedure amendment 9]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0051[Correction target item name] 0051

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0051】α2をΘで置換すれば、以下の式が得られ
る。これが斜行登坂する際の斜行角度θの条件である。
(請求項17) sin Θ/sin α1 ≦ cos θ
If α2 is replaced by Θ , the following equation is obtained. This is the condition of the skew angle θ when skew-climbing.
(Claim 17) sinΘ / sin α1 ≦ cos θ

【手続補正10】[Procedure amendment 10]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0052[Correction target item name] 0052

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0052】傾斜角度の検知手段から得られる斜面の最
大傾斜α1と、実験等で既知の移動体の限界登坂角度Θ
から上式を満たす値斜行角度θだけステアリングで曲げ
て登坂すれば、急斜面でも少しずつ登ることができる。
The maximum slope α1 of the slope obtained from the inclination angle detecting means and the limit climbing angle Θ of the moving body known from experiments and the like.
If the vehicle is bent by the steering by the value of the skew angle θ that satisfies the above equation and the vehicle is climbed, the vehicle can climb little by little on a steep slope.

【手続補正11】[Procedure amendment 11]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図面の簡単な説明】[Brief description of the drawings]

【図8】平坦、登、降坂時の位置可変ボードの位置制
[8] flat, Noboru Saka, position control of the variable position board downhill

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 整地移動用の半径Rの動輪と、動輪の回
転軸を軸芯として回転する曲面ボードと、曲面ボードの
回転半径R’を変化させる回転半径変化手段とを有する
ことを特徴とする不整地の移動機構。
1. A driving wheel having a radius R for leveling movement, a curved board rotating around a rotating shaft of the driving wheel as an axis, and a turning radius changing means for changing a turning radius R ′ of the curved board. Moving mechanism for rough terrain.
【請求項2】 回転半径変化手段において、曲面ボード
の回転半径R’を0.9R<R’≦Rの範囲に固定する
曲面ボード固定手段を有することを特徴とする請求項1
の不整地の移動機構。
2. The turning radius changing means, further comprising a curved board fixing means for fixing a turning radius R ′ of the curved board in a range of 0.9R <R ′ ≦ R.
Moving mechanism on rough terrain.
【請求項3】 複数の曲面ボードを有し、それらが回転
軸に対し軸対称に配置されている請求項1の不整地の移
動機構。
3. The rough terrain moving mechanism according to claim 1, comprising a plurality of curved boards, which are arranged axisymmetrically with respect to the rotation axis.
【請求項4】 曲面ボードの回転半径変化手段が、緩衝
機構を備えた伸縮スポークで構成されている請求項1の
不整地の移動機構。
4. The uneven terrain moving mechanism according to claim 1, wherein the turning radius changing means of the curved board is constituted by a telescopic spoke provided with a buffer mechanism.
【請求項5】 緩衝機構を備えた伸縮スポークが、流体
シリンダで構成されている請求項4の不整地の移動機
構。
5. The uneven terrain moving mechanism according to claim 4, wherein the telescopic spokes provided with the shock absorbing mechanism are constituted by fluid cylinders.
【請求項6】 曲面ボードの回転軸側の面に、不整地要
素をプッシュするパドル状プッシュ板を有する請求項1
の不整地の移動機構。
6. A paddle-shaped push plate for pushing an irregular terrain element on a surface on a rotation axis side of a curved board.
Moving mechanism on rough terrain.
【請求項7】 パドル状プッシュ板の板面が、回転最下
点で移動方向に概ね垂直となるよう取り付けられている
請求項6の不整地の移動機構。
7. The uneven terrain moving mechanism according to claim 6, wherein a plate surface of the paddle-shaped push plate is attached so as to be substantially perpendicular to the moving direction at the lowest point of rotation.
【請求項8】 半径Rの動輪に、回転軸から放射状に貫
通する孔が開けられ、曲面ボードと回転半径変化手段
が、前記貫通孔を用いて取り付けられている請求項1の
不整地の移動機構。
8. The rough terrain movement according to claim 1, wherein a hole radially penetrating from the rotating shaft is formed in the driving wheel having a radius R, and the curved board and the turning radius changing means are attached using the through hole. mechanism.
【請求項9】 半径Rの動輪の回転軸が延長されてお
り、曲面ボードと回転半径変化手段が、前記動輪回転軸
の延長部分に取り付けられている請求項1の不整地の移
動機構。
9. The rough terrain moving mechanism according to claim 1, wherein the rotating shaft of the driving wheel having a radius R is extended, and the curved board and the turning radius changing means are attached to an extension of the driving wheel rotating shaft.
【請求項10】 曲面ボードと回転半径変化手段が一体
化されていて、その一体化ユニットごと半径Rの動輪に
着脱可能な着脱手段を有する請求項1の不整地の移動機
構。
10. The uneven terrain moving mechanism according to claim 1, wherein the curved board and the turning radius changing means are integrated, and the integrated unit includes detachable means which can be attached to and detached from a driving wheel having a radius R.
【請求項11】 半径Rの動輪が、回転方向にセパレー
タによって複数のサブユニットに分割固定されていて、
曲面ボードと回転半径変化手段が、サブユニット間の空
隙部分に取り付けられている請求項1の不整地の移動機
構。
11. A driving wheel having a radius R is divided and fixed to a plurality of subunits by a separator in a rotational direction,
2. The mechanism for moving uneven terrain according to claim 1, wherein the curved board and the turning radius changing means are attached to a gap between the subunits.
【請求項12】 整地移動用の半径Rの動輪と、動輪の
回転軸を軸芯として回転する曲面ボードと、曲面ボード
の回転半径R’を変化させる回転半径変化手段と、変化
の制御手段と、不整地表面の傾斜あるいは凹凸状態を測
定する傾斜・凹凸検知手段ないしは、移動体の部分線と
水平線とのなす角を測定する姿勢角検知手段とを用い、
不整地表面の傾斜・凹凸の検知量、ないしは移動体の姿
勢角の検知量にもとづいて、移動中の移動体の振動を防
止する、ないしは移動体の姿勢を適正化するために曲面
ボードの回転半径R’を変えることを特徴とする不整地
の移動方法。
12. A driving wheel having a radius R for leveling movement, a curved board rotating around a rotation axis of the driving wheel as an axis, a turning radius changing means for changing a turning radius R 'of the curved board, and a change controlling means. , Using inclination / unevenness detecting means for measuring the inclination or unevenness of the surface of the rough terrain or using an attitude angle detecting means for measuring an angle between a partial line of the moving body and a horizontal line,
Rotation of a curved board to prevent vibration of the moving object during movement or to optimize the posture of the moving object based on the detected amount of inclination / unevenness on the surface of uneven terrain or the detected angle of the posture of the moving object A method for moving irregular terrain, characterized by changing a radius R '.
【請求項13】 移動体の部分線が、動輪の回転軸芯
線、あるいは相異なる動輪回転軸芯線上の点同士を結ん
だ直線である請求項12の不整地の移動方法。
13. The method according to claim 12, wherein the partial line of the moving body is a rotation axis of the driving wheel or a straight line connecting points on different rotation axis of the driving wheel.
【請求項14】 移動体の姿勢の適正化が、移動体部分
線と水平線とのなす角度をより小さくなし、移動体をよ
り水平に近づけるよう曲面ボードの回転半径R’を変え
ることである請求項12の不整地の移動方法。
14. A method for optimizing a posture of a moving body is to change a turning radius R ′ of a curved board so that an angle between a partial line of the moving body and a horizontal line is made smaller and the moving body is made more horizontal. Item 12. The method for moving irregular terrain according to Item 12.
【請求項15】 不整地表面の凹凸状態の検知手段が、
曲面ボードが接地する不整地面上の障害物の高さを測定
するセンサーであり、曲面ボードの回転半径R’を前記
障害物高さに応じて変えることで不整地面上の障害物と
の接触による振動、傾斜を防止することを特徴とする請
求項12の不整地の移動方法。
15. The means for detecting the unevenness state of an uneven terrain surface,
A sensor for measuring the height of an obstacle on an irregular ground on which the curved board contacts the ground, and by changing the turning radius R 'of the curved board according to the obstacle height, by contact with the obstacle on the irregular ground. 13. The method for moving uneven terrain according to claim 12, wherein vibration and inclination are prevented.
【請求項16】 不整地表面の最大傾斜α1が、移動体
の登坂限界角度Θ以上の傾斜である場合(α1>θ)、
不整地の最大傾斜角方向に対し、斜行角度θをなすよう
に斜めに斜行して登坂する姿勢となすことを特徴とする
請求項12の不整地の移動方法。
16. When the maximum slope α1 of the rough terrain surface is equal to or greater than the slope limit angle Θ of the moving object (α1> θ).
13. The method for moving uneven terrain according to claim 12, wherein the terrain is inclined obliquely so as to form a skew angle θ with respect to the maximum inclination direction of the uneven terrain.
【請求項17】 斜行角度θが、sin θ/sin α1 ≦
cos θを満たす値であることを特徴とする請求項16の
不整地の移動方法。
17. The skew angle θ is defined as sin θ / sin α1 ≦
17. The method according to claim 16, wherein the value satisfies cos θ.
【請求項18】 斜行角度θの斜行登坂が、前進斜行と
後退斜行を一定時間ないしは一定距離ごとに繰り返すス
イッチバック式登坂であることを特徴とする請求項16
の不整地の移動方法。
18. The sloping hill with the skew angle θ is a switchback type sloping in which forward sloping and backward sloping are repeated at predetermined time intervals or at fixed distances.
How to move on rough terrain.
JP9158256A 1997-06-16 1997-06-16 Moving mechanism and moving method on rough terrain Withdrawn JPH115401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9158256A JPH115401A (en) 1997-06-16 1997-06-16 Moving mechanism and moving method on rough terrain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9158256A JPH115401A (en) 1997-06-16 1997-06-16 Moving mechanism and moving method on rough terrain

Publications (1)

Publication Number Publication Date
JPH115401A true JPH115401A (en) 1999-01-12

Family

ID=15667660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9158256A Withdrawn JPH115401A (en) 1997-06-16 1997-06-16 Moving mechanism and moving method on rough terrain

Country Status (1)

Country Link
JP (1) JPH115401A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101844483A (en) * 2010-05-17 2010-09-29 北京航空航天大学 Variable-diameter wheel leg combined wheel structure
CN104401184A (en) * 2014-11-14 2015-03-11 梁惠斌 Multifunctional combination driving wheel
US20170197460A1 (en) * 2016-01-07 2017-07-13 Yaqoub Yousef Hussain Alyousefi Auxiliary drive mechanism for motor vehicle
CN108621682A (en) * 2018-07-08 2018-10-09 胡俊 A kind of lightweight trolley that can be travelled in sand ground
CN108638018A (en) * 2018-05-04 2018-10-12 宁波科邦华诚技术转移服务有限公司 A kind of adaptive walking robot
CN108715200A (en) * 2018-05-29 2018-10-30 边英卓 Balance car with variable-diameter wheel body and the balance car control module
CN110340863A (en) * 2018-04-08 2019-10-18 AIrobot株式会社 Autonomous transfer robot
CN110356167A (en) * 2019-08-14 2019-10-22 燕山大学 The deformation wheel of variable wheel diameter
CN110497994A (en) * 2019-09-20 2019-11-26 西南交通大学 More landform single wheel electrodynamic balance vehicles
CN112223951A (en) * 2020-10-20 2021-01-15 燕山大学 Multi-path condition deformable walking wheel
CN113460335A (en) * 2021-08-13 2021-10-01 吉林大学 Active suspension type planet vehicle climbing method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101844483A (en) * 2010-05-17 2010-09-29 北京航空航天大学 Variable-diameter wheel leg combined wheel structure
CN104401184A (en) * 2014-11-14 2015-03-11 梁惠斌 Multifunctional combination driving wheel
CN104401184B (en) * 2014-11-14 2020-02-14 梁惠斌 Multifunctional combined driving wheel
US20170197460A1 (en) * 2016-01-07 2017-07-13 Yaqoub Yousef Hussain Alyousefi Auxiliary drive mechanism for motor vehicle
CN110340863A (en) * 2018-04-08 2019-10-18 AIrobot株式会社 Autonomous transfer robot
US11839981B2 (en) 2018-04-08 2023-12-12 Airobot Co., Ltd. Autonomous moving transfer robot
JP2021517076A (en) * 2018-04-08 2021-07-15 AIrobot株式会社 Autonomous mobile transfer robot
CN110340863B (en) * 2018-04-08 2023-02-17 AIrobot株式会社 Autonomous mobile transfer robot
CN108638018A (en) * 2018-05-04 2018-10-12 宁波科邦华诚技术转移服务有限公司 A kind of adaptive walking robot
CN108715200A (en) * 2018-05-29 2018-10-30 边英卓 Balance car with variable-diameter wheel body and the balance car control module
CN108621682B (en) * 2018-07-08 2022-07-08 胡俊 Light trolley capable of running on sand
CN108621682A (en) * 2018-07-08 2018-10-09 胡俊 A kind of lightweight trolley that can be travelled in sand ground
CN110356167A (en) * 2019-08-14 2019-10-22 燕山大学 The deformation wheel of variable wheel diameter
CN110497994A (en) * 2019-09-20 2019-11-26 西南交通大学 More landform single wheel electrodynamic balance vehicles
CN112223951B (en) * 2020-10-20 2021-12-07 燕山大学 Multi-path condition deformable walking wheel
CN112223951A (en) * 2020-10-20 2021-01-15 燕山大学 Multi-path condition deformable walking wheel
CN113460335A (en) * 2021-08-13 2021-10-01 吉林大学 Active suspension type planet vehicle climbing method

Similar Documents

Publication Publication Date Title
JPH115401A (en) Moving mechanism and moving method on rough terrain
CN106005094B (en) A kind of multi-functional full landform special purpose vehicle
US7040426B1 (en) Suspension for a tracked vehicle
CN1784334A (en) Single-track vehicles and its control method and device
US7673711B1 (en) Tracked vehicle
JPH09501630A (en) System to be applied to universal ground vehicles with traction means attached to articulated arms
EP0100226B1 (en) Tyre for waste land travelling vehicle
CN101758866A (en) Composite wheel-tracked-bended leg obstacle crossing travelling system
CN101927780B (en) Multifunctional vehicle with variable diameter wheels and skids
CN1676398A (en) Universal turnover-proof special vehicle
US11155119B2 (en) Traction wheel apparatus with non-uniform tread teeth
CN201660033U (en) Obstacle detouring walk system of one caterpillar and one bending leg of compound wheel
CN102632782A (en) High-trafficability vehicle
CN114313036A (en) Unmanned vehicle and control method
JPH10309901A (en) Off-road moving mechanism and designing method thereof
JP7293527B2 (en) unmanned rover
US20220388583A1 (en) Track system and vehicle
RU2268823C1 (en) Wheel with variable configuration of rim
CN111098948A (en) Leg wheel type automobile walking mechanism and control method
CN202378651U (en) Vehicle having high trafficability
CN109204680A (en) A kind of sled mountain bike
JPH07309264A (en) Crawler belt type fire engine
CN220785973U (en) Chassis structure for vibrating
WO1999050133A1 (en) Motorcycle construction
CN213705606U (en) Crawler-type self-balancing vehicle

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040907