JPH1152310A - Bias voltage control circuit corresponding to mark rate fluctuation - Google Patents

Bias voltage control circuit corresponding to mark rate fluctuation

Info

Publication number
JPH1152310A
JPH1152310A JP9207549A JP20754997A JPH1152310A JP H1152310 A JPH1152310 A JP H1152310A JP 9207549 A JP9207549 A JP 9207549A JP 20754997 A JP20754997 A JP 20754997A JP H1152310 A JPH1152310 A JP H1152310A
Authority
JP
Japan
Prior art keywords
circuit
mach
output
zehnder
control target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9207549A
Other languages
Japanese (ja)
Other versions
JP3527832B2 (en
Inventor
Hideyuki Serizawa
秀幸 芹澤
Atsushi Murata
淳 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20754997A priority Critical patent/JP3527832B2/en
Publication of JPH1152310A publication Critical patent/JPH1152310A/en
Application granted granted Critical
Publication of JP3527832B2 publication Critical patent/JP3527832B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably control a bias voltage by providing the circuit with a control target value selection circuit for matching the inclination of a change in the object value to be controlled changing according to α parameter positive and negative codes and the inclination of a change in the control target value at all times and outputting the control target value even at the time of the α parameter positive and negative code conversion. SOLUTION: A mark rate detecting circuit 3 detects the mark rate of an input electric signal from the opposite phase output of a Mach-Zehnder driving circuit 4. This mark rate detecting circuit 3, a standardization circuit 2 which matches the change width of the control target value and the fluctuation width of the object to be controlled at the time of a mark rate fluctuation and the control target value selection selection circuit 1 for matching the inclination of the change in the object value to be controlled changing according to the αparameter positive and negative codes and the inclination of the change in the control target value at all times are disposed between the Mach-Zehnder driving circuit 4 and a bias voltage control circuit 11. Even if the positive and negative codes of the α parameter are changed by an αparameter positive and negative code conversion input signal, the control target value matching the output value of an average light output detecting circuit 10 of the object to be controlled corresponding to the mark rate is outputted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はマッハツェンダ型光
強度変調器を外部変調器として用いた光出力強度変調光
送信器に使用でき、特に光送信器のαパラメータ正負符
号変換時でもマーク率に対応した制御目標値を設定し、
マッハツェンダ型光強度変調器出力光を安定に制御する
のに好適なマーク率変動対応バイアス電圧制御回路に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention can be used in an optical output intensity modulated optical transmitter using a Mach-Zehnder type optical intensity modulator as an external modulator. Set the desired control target value
The present invention relates to a bias voltage control circuit suitable for a mark ratio variation suitable for stably controlling output light of a Mach-Zehnder type light intensity modulator.

【0002】[0002]

【従来の技術】マッハツェンダ型光強度変調器を外部変
換器として用いた光出力強度変調光送信器では、マッハ
ツェンダ型光強度変調器の経時変化や温度変化により、
その消光特性が変動し、光強度変調出力値の変化が発生
する。本現象に対する従来の解決方法の制御構成例を図
1、図2に挙げる。図1に示す回路は、マッハツェンダ
型光強度変調器7から出力される強度変調光の分岐光を
受光器9により電圧変換を行い、平均光出力検出回路1
0により制御対象である平均電圧値として検出する。更
に入力電気信号のマーク率により、マーク率に対応した
定格信号を出力するマーク率検出回路3を設け、その出
力値と平均電圧値との差が最小となるように、バイアス
電圧制御回路11にてバイアス電圧制御電圧を出力す
る。同様の制御形式を採用している例としては、公開特
許公報公開番号平4−116618号公報に記載の制御
回路がある。
2. Description of the Related Art In an optical output intensity modulated optical transmitter using a Mach-Zehnder type optical intensity modulator as an external converter, the Mach-Zehnder type optical intensity modulator changes over time or changes in temperature.
The extinction characteristic fluctuates, and the light intensity modulation output value changes. FIGS. 1 and 2 show control configuration examples of a conventional solution to this phenomenon. The circuit shown in FIG. 1 converts the branched light of the intensity-modulated light output from the Mach-Zehnder type light intensity modulator 7 into a voltage by the photodetector 9 and outputs the average light output detection circuit 1.
0 is detected as an average voltage value to be controlled. Further, a mark ratio detection circuit 3 for outputting a rated signal corresponding to the mark ratio according to the mark ratio of the input electric signal is provided, and the bias voltage control circuit 11 is provided with a bias voltage control circuit 11 so that the difference between the output value and the average voltage value is minimized. To output a bias voltage control voltage. As an example adopting a similar control format, there is a control circuit described in Japanese Patent Application Laid-Open No. 4-116618.

【0003】また図2に示す回路は、波長分散に起因す
る分散ペナルティを抑圧するために発光論理選択回路1
5にてバイアス電圧値をマッハツェンダ半周期電圧Vπ
(v)だけシフトさせることによりαパラメータの正負
信号を変換させた時でも、論理選択回路12において制
御方向を反転させることにより、マーク率50%時にお
いてのみ安定なバイアス電圧制御が可能となる。同様の
制御形式を採用している例としては、公開特許公報公開
番号平4−140712号公報に記載の制御回路があ
る。
The circuit shown in FIG. 2 includes a light emitting logic selection circuit 1 for suppressing a dispersion penalty caused by chromatic dispersion.
5, the bias voltage value is changed to the Mach-Zehnder half cycle voltage Vπ.
Even when the positive / negative signal of the α parameter is converted by shifting by (v), by inverting the control direction in the logic selecting circuit 12, stable bias voltage control can be performed only when the mark ratio is 50%. As an example employing a similar control format, there is a control circuit described in Japanese Patent Application Laid-Open No. 4-140712.

【0004】しかし、αパラメータの正負符号変換を行
い、かつマーク率が変動したときにおいてもバイアス電
圧制御を行おうとした時、上記従来の回路を組み合わせ
ただけでは安定したバイアス電圧制御は行えない。これ
は波長分散に起因する分散ペナルティを抑圧するため
に、バイアス電圧をマッハツェンダ半周期電圧Vπ
(V)だけシフトさせることによりαパラメータ正負符
号変換を行うと、発光論理が反転するため制御方向が反
転するだけではなく、入力電気信号のマーク率を基に設
定される制御目標値もマーク率の変動に対して反対の変
化をすることとなり、安定した光出力制御が行えなくな
ってしまうからである。
However, when the sign conversion of the α parameter is performed and the bias voltage is to be controlled even when the mark ratio fluctuates, stable bias voltage control cannot be performed only by combining the above-mentioned conventional circuits. This is because the bias voltage is reduced to the Mach-Zehnder half-period voltage Vπ in order to suppress the dispersion penalty caused by chromatic dispersion.
When the α parameter sign conversion is performed by shifting by (V), not only the control direction is inverted because the light emission logic is inverted, but also the control target value set based on the mark ratio of the input electric signal is the mark ratio. This is because the opposite change is made to the fluctuation of the above, and stable light output control cannot be performed.

【0005】[0005]

【発明が解決しようとする課題】一般に、変調信号とバ
イアス電圧を異なる導波路に印加するマッハツェンダ型
光強度変調器ではαパラメータ>0の場合は、(数
1)、(数2)、αパラメータ<0の場合は(数3)、
(数4)で近似されるPoのDC消光特性を有する。こ
こでVmは変調信号入力側に印加されるDC電圧、Vb
は変調信号が印加されるのとは異なる導波路に印加され
るバイアス電圧、AはVmとVbを印加した場合のマッ
ハツェンダ型光強度変調器の最大と最小光出力のレベル
差をそれぞれ示す。
Generally, in a Mach-Zehnder type optical intensity modulator in which a modulation signal and a bias voltage are applied to different waveguides, when α parameter> 0, (Equation 1), (Equation 2), α parameter If <0 (Equation 3),
Po has DC quenching characteristics approximated by (Equation 4). Here, Vm is a DC voltage applied to the modulation signal input side, Vb
Represents a bias voltage applied to a waveguide different from that to which the modulation signal is applied, and A represents a level difference between the maximum and minimum optical outputs of the Mach-Zehnder optical intensity modulator when Vm and Vb are applied.

【0006】[0006]

【数1】 (Equation 1)

【0007】[0007]

【数2】 (Equation 2)

【0008】ここで、Po;マッハツェンダ型光強度変
調器出力光、Vb;バイアス電圧、A;マッハツェンダ
型光強度変調器光出力振幅、Vm;信号入力側DC電圧
である。
Here, Po: Mach-Zehnder type light intensity modulator output light, Vb: Bias voltage, A: Mach-Zehnder type light intensity modulator light output amplitude, Vm: Signal input side DC voltage.

【0009】更に強度変調光の分岐光モニタ値、すなわ
ち制御対象値である平均光出力検出回路出力値Vmoは
光出力波形クロスポイント50%となるバイアス電圧値
から変動していない場合、マーク率変動に対しαパラメ
ータ>0の場合(数3)、αパラメータ<0の場合(数
4)に示すように変化する。ここで、VmoMAXはマ
ーク率=1の時の平均光出力検出回路出力値Vmoの
値、Bはマーク率が1のときのVmo値と0の時のVm
o値の電圧差を示す。
Further, if the branch light monitor value of the intensity-modulated light, that is, the average light output detection circuit output value Vmo, which is the control object value, does not fluctuate from the bias voltage value at which the light output waveform cross point becomes 50%, the mark rate fluctuation When α parameter> 0 (Equation 3), when α parameter <0 (Equation 4), it changes. Here, VmoMAX is the value of the average light output detection circuit output value Vmo when the mark ratio = 1, and B is the Vmo value when the mark ratio is 1 and Vm when the mark ratio is 0.
It shows the voltage difference of the o value.

【0010】[0010]

【数3】 (Equation 3)

【0011】[0011]

【数4】 (Equation 4)

【0012】ここで、Vmo;平均光出力検出回路出
力、VmoMAX;マーク率=1の時のVmo出力、
B;マーク率=1,0時のVmo出力の電圧差である。
Here, Vmo: average light output detection circuit output, VmoMAX: Vmo output when mark ratio = 1,
B: Voltage difference of Vmo output when mark ratio = 1,0.

【0013】図3に(数1、数2)、(数3、数4)で
近似されるマッハツェンダ型光強度変調器出力光のDC
消光特性を、図4に(数5)、(数6)で近似される平
均光出力検出回路出力Vmoの出力特性図をそれぞれ示
す。
FIG. 3 shows the DC of the output light of the Mach-Zehnder type optical intensity modulator which is approximated by (Equation 1, 2) and (Equation 3, 4).
The extinction characteristic is shown in FIG. 4 as an output characteristic diagram of the average light output detection circuit output Vmo approximated by (Equation 5) and (Equation 6).

【0014】今従来技術を用いた場合、バイアス電圧の
制御目標値Vrefをマーク率に応じて安定な光出力制
御を行うためVrefは(数7)、(数8)に設定され
る。
When the conventional technique is used, Vref is set to (Equation 7) and (Equation 8) in order to perform stable light output control of the control target value Vref of the bias voltage in accordance with the mark rate.

【0015】[0015]

【数5】 (Equation 5)

【0016】ここで、X;Vref調整定数である。Here, X is a Vref adjustment constant.

【0017】しかし、波長分散に起因する分散ペナルテ
ィを抑圧するためバイアス電圧をマッハツェンダ半周期
電圧Vπ(V)だけシフトし、光送信器のαパラメータ
の正負符号変換すなわちαパラメータ<0とした場合、
光出力波形クロスポイント50%となる制御対象値平均
出力検出回路出力Vmo値は図4に示すようにマーク率
に対する変化の傾きが反転する。このため、制御目標値
がマーク率変動時に光出力波形クロスポイント50%と
なる値と異なることとなり、バイアス電圧が正しく制御
されず、図5に示すように安定したマッハツェンダ型光
強度変調器出力光制御が行えなくなる。
However, if the bias voltage is shifted by the Mach-Zehnder half-period voltage Vπ (V) to suppress the dispersion penalty due to chromatic dispersion, and the sign of the α parameter of the optical transmitter is converted into a sign, that is, α parameter <0,
The control object value average output detection circuit output Vmo value at which the optical output waveform cross point becomes 50% has an inverted slope of change with respect to the mark ratio as shown in FIG. For this reason, the control target value is different from the value at which the optical output waveform cross point becomes 50% when the mark ratio changes, and the bias voltage is not correctly controlled, and the stable Mach-Zehnder type optical intensity modulator output light as shown in FIG. Control becomes impossible.

【0018】[0018]

【課題を解決するための手段】マッハツェンダ型光強度
変調素子8とその光出力を分岐して出力光を検出する受
光器9を内蔵するマッハツェンダ型光強度変調器7と、
マッハツェンダ型光強度変調器7に入力する直流光を発
光する直流光源モジュール6と、マッハツェンダ型光強
度変調器7を駆動し光強度変調を与えるマッハツェンダ
駆動回路4とマッハツェンダ駆動回路の出力振幅を常に
一定値に制御する振幅制御回路5と、該受光器9によ
り、マッハツェンダ型光強度変調器出力光の平均値を検
出する平均光出力検出回路10と、制御対象である平均
光出力検出回路出力値と制御目標値とを比較してその偏
差を補正するようマッハツェンダ型光強度変調器7に印
加するバイアス圧電値を決定するバイアス電圧制御回路
11と、該バイアス電圧をマッハツェンダ型光強度変調
器7に印加するバイアス印加回路14と、伝送信号の発
光論理を反転させ、光送信器のαパラメータの正負符号
を変換するバイアス電圧をバイアス電圧印加回路14を
介して該マッハツェンダ型光強度変調器7に印加する発
光論理決定電圧選択回路15と、伝送信号の発光論理が
反転するとともに、バイアス電圧制御出力値の正負制御
方向を自動的に反転させる論理選択回路12と、マッハ
ツェンダ型光強度変調器7に印加するバイアス電圧の出
力範囲を発光論理決定電圧選択回路出力値を中心にマッ
ハツェンダ反周期電圧Vπの±1/2以下に設定したリ
ミット回路13とからなる光出力強度変調光送信器バイ
アス制御回路において、αパラメータ正負符号を変換し
た場合でもマーク率に応じた制御目標値を設定するため
に、マッハツェンダ駆動回路4の逆相出力より入力電気
信号のマーク率を検出するマーク率検出回路3と、マー
ク率変動時の制御目標値の変化幅を制御対象の変動幅と
合致させる規格化回路2と、αパラメータ正負符号に応
じて変わる制御対象値の変化の傾きと制御目標値の変化
の傾きとを常に合致させる制御目標値選択回路1をマッ
ハツェンダ駆動回路7とバイアス電圧制御回路11間に
設けたことを特徴とするマーク率変動対応バイアス電圧
制御回路を提供することにより解決できる。
A Mach-Zehnder type light intensity modulator 7 including a Mach-Zehnder type light intensity modulator 8 and a photodetector 9 for branching the light output and detecting an output light;
A DC light source module 6 that emits DC light input to the Mach-Zehnder type light intensity modulator 7, a Mach-Zehnder drive circuit 4 that drives the Mach-Zehnder type light intensity modulator 7 and performs light intensity modulation, and the output amplitude of the Mach-Zehnder drive circuit is always constant. The amplitude control circuit 5 controls the average value of the output light of the Mach-Zehnder type light intensity modulator by the photodetector 9, the output value of the average light output detection circuit to be controlled, A bias voltage control circuit 11 for determining a bias piezoelectric value to be applied to the Mach-Zehnder type optical intensity modulator 7 so as to compare with the control target value and correct the deviation, and apply the bias voltage to the Mach-Zehnder type optical intensity modulator 7 And a bias for inverting the light emission logic of the transmission signal and converting the sign of the α parameter of the optical transmitter. Logic voltage selection circuit 15 for applying a voltage to the Mach-Zehnder type light intensity modulator 7 via a bias voltage application circuit 14, the light emission logic of the transmission signal is inverted, and the positive / negative control direction of the bias voltage control output value is changed. The output range of the bias voltage applied to the logic selection circuit 12 for automatically inverting and the Mach-Zehnder type light intensity modulator 7 is set to ± 1/2 or less of the Mach-Zehnder anti-periodic voltage Vπ around the output value of the light emission logic determination voltage selection circuit. In the optical output intensity modulation optical transmitter bias control circuit comprising the set limit circuit 13, the reverse phase of the Mach-Zehnder drive circuit 4 is set in order to set a control target value corresponding to the mark rate even when the α parameter sign is converted. A mark ratio detection circuit 3 for detecting a mark ratio of an input electric signal from an output; A Mach-Zehnder drive circuit that includes a normalizing circuit 2 for matching the variation range of the control target value and a control target value selecting circuit 1 for always matching the gradient of the change of the control target value and the gradient of the change of the control target value that change according to the sign of the α parameter. This problem can be solved by providing a bias voltage control circuit corresponding to a mark ratio variation, which is provided between the bias voltage control circuit 7 and the bias voltage control circuit 11.

【0019】[0019]

【発明の実施の形態】以下図4と図6を用いて本発明の
動作原理を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The operation principle of the present invention will be described below with reference to FIGS.

【0020】直流光源モジュール6により発光された直
流光はマッハツェンダ型光強度変調器7に入射され、振
幅制御回路5により振幅を一定制御されたマッハツェン
ダ駆動回路4から印加される変調信号により光強度変調
を与えられている。
The DC light emitted by the DC light source module 6 is incident on a Mach-Zehnder type light intensity modulator 7, and the light intensity is modulated by a modulation signal applied from a Mach-Zehnder driving circuit 4 whose amplitude is controlled to be constant by an amplitude control circuit 5. Has been given.

【0021】該マッハツェンダ型光強度変調器7の上記
光強度変調光の分岐光は受光器9により電圧変換され、
平均光検出回路10により制御対象値である平均光検出
回路出力Vmoとしてバイアス電圧制御回路11に入力
される。バイアス電圧制御回路11では入力された制御
対象値Vmoと制御目標値Vrefを比較し、その差を
補正するバイアス電圧を出力する。
The branched light of the light intensity modulated light of the Mach-Zehnder type light intensity modulator 7 is converted into a voltage by a light receiver 9,
The average light detection circuit 10 inputs the average light detection circuit output Vmo, which is a control target value, to the bias voltage control circuit 11. The bias voltage control circuit 11 compares the input control target value Vmo with the control target value Vref, and outputs a bias voltage for correcting the difference.

【0022】本光送信器のαパラメータの正負符号を変
換するために、αパラメータの正負符号変換端子から符
号変換命令信号を入力したとき、発光論理決定電圧選択
回路15によりバイアス電圧印加回路14を介してバイ
アス電圧Vbの中心値をマッハツェンダ半周期電圧Vπ
(V)だけシフトさせる。これに伴い発光論理が反転し
マッハツェンダ型光強度変調器7のバイアス電圧Vbに
対する光出力の変化の傾きが反転するため、上記平均光
出力回路出力を一定に保つバイアス電圧Vbの正負制御
方向を論理選択回路12により発光論理に合わせて反転
させる。そして、論理選択回路12からバイアス電圧印
加回路14に入力されるバイアス電圧出力範囲を±Vπ
/2以下に設定したリミット回路13により、平均光出
力検出回路出力Vmoは制御目標値Vrefに安定する
ように発光論理反転前後によらず制御される。
In order to convert the sign of the α parameter of the optical transmitter, when a code conversion command signal is input from the α parameter sign conversion terminal, the light emission logic determination voltage selection circuit 15 controls the bias voltage application circuit 14. The center value of the bias voltage Vb through the Mach-Zehnder half cycle voltage Vπ
(V). Accordingly, the light emission logic is inverted, and the inclination of the change in the optical output with respect to the bias voltage Vb of the Mach-Zehnder type light intensity modulator 7 is inverted. Therefore, the positive / negative control direction of the bias voltage Vb for keeping the output of the average optical output circuit constant is logical. The signal is inverted by the selection circuit 12 in accordance with the light emission logic. The bias voltage output range input from the logic selection circuit 12 to the bias voltage application circuit 14 is ± Vπ
The average light output detection circuit output Vmo is controlled by the limit circuit 13 set to be equal to or less than / 2 regardless of before and after the light emission logic inversion so as to be stabilized at the control target value Vref.

【0023】そしてマーク率変動時は、振幅制御回路5
にて常に一定の振幅を保っているマッハツェンダ駆動回
路4の逆相出力を用いてマーク率検出回路3を用いて入
力電気信号のマーク率を検出し、その出力値をもとに規
格化回路2によりマーク率変動時に光出力波形クロスポ
イント50%となる平均光出力検出回路出力Vmoの変
動時Bに規格化する。(数9)に規格化回路出力V1を
示す。
When the mark rate changes, the amplitude control circuit 5
The mark ratio of the input electric signal is detected by using the mark ratio detection circuit 3 using the inverted phase output of the Mach-Zehnder drive circuit 4 which always keeps a constant amplitude, and the normalization circuit 2 is determined based on the output value. Is standardized to B when the output Vmo of the average light output detection circuit becomes 50% of the light output waveform cross point when the mark ratio changes. (Equation 9) shows the normalized circuit output V1.

【0024】[0024]

【数6】 (Equation 6)

【0025】ここでV1;規格化回路出力である。Here, V1 is the output of the standardization circuit.

【0026】制御目標値選択回路1では、該規格化回路
出力V1をαパラメータ正負符号変換信号入力により、 αパラメータ>0の場合 +V1 αパラメータ<0の場合 −V1 と変換し、平均光出力検出回路出力であるVmo値のマ
ーク率=1/2の時の値Vmo−VmoMAX−B/2と
加算を行う。よって制御目標値Vrefは
The control target value selection circuit 1 converts the normalization circuit output V1 into + V1 if α parameter> 0 and −V1 if α parameter <0 according to the α parameter sign conversion signal input, and detects the average light output. The addition is performed with the value Vmo-VmoMAX-B / 2 when the mark ratio of the Vmo value, which is the circuit output, is 1/2. Therefore, the control target value Vref is

【0027】[0027]

【数7】 (Equation 7)

【0028】[0028]

【数8】 (Equation 8)

【0029】よって、α>0の時Therefore, when α> 0

【0030】[0030]

【数9】 (Equation 9)

【0031】α<0の時When α <0

【0032】[0032]

【数10】 (Equation 10)

【0033】となり、αパラメータ正負符号変換入力信
号によりαパラメータの正負符号が変わった場合でも、
マーク率に対応した制御対象のVmo値(数5、6)と
合致する制御目標値を出力する。これにより、αパラメ
ータ正負符号変換時においてもマーク率変動に対応した
安定した制御が可能となる。
When the sign of the α parameter is changed by the α parameter sign conversion input signal,
A control target value that matches the Vmo value (Equation 5, 6) of the control target corresponding to the mark rate is output. As a result, stable control corresponding to the mark rate fluctuation can be performed even during the α parameter sign conversion.

【0034】本発明の実施例としてマッハツェンダ型光
強度変調器7を用いた図6の構成のマーク率変動対応バ
イアス電圧制御回路において、図4に示すマーク率=1
の時の平均光出力検出回路出力10の出力値Vmoma
xを2.5V、マーク率=0、1時の平均光出力検出回
路10出力の電圧差Bを1.0Vとし、マーク率を1/
4〜3/4に変化しαパラメータ正負符号変換を行った
時の光出力波形クロスポイント50%となる平均光出力
検出回路出力Vmo値と、規格化回路2と目標制御値選
択回路1により作成される制御目標値Vref、及びそ
の時の10Gbit/sNRZ疑似ランダムパターンに
よる光出力波形のそれぞれの振舞いについて説明する。
As an embodiment of the present invention, in a bias voltage control circuit using the Mach-Zehnder type light intensity modulator 7 and having the configuration shown in FIG.
The output value Vmoma of the average light output detection circuit output 10 at the time of
x is 2.5 V, the mark ratio = 0, the voltage difference B of the output of the average light output detection circuit 10 at 1 o'clock is 1.0 V, and the mark ratio is 1 /
An average optical output detection circuit output Vmo value which changes to 4/3 and becomes 50% of the optical output waveform cross point when the α parameter sign conversion is performed, and is created by the normalization circuit 2 and the target control value selection circuit 1. The control target value Vref and the behavior of the optical output waveform based on the 10 Gbit / s NRZ pseudo random pattern at that time will be described.

【0035】αパラメータを正符号すなわち発光論理を
反転しないとき、マーク率を1/4〜3/4に変動させる
と、光出力波形クロスポイントが50%となるVmo値
は(数5)より1.75V〜2.25Vとなる。この時
の制御目標値Vrefは(数9)より1.75V〜2.
25Vに設定され、Vmoは光出力波形クロスポイント
50%となる値に制御され安定なバイアス電圧制御が行
われる。この時のVmo,Vref、光波形の振舞いを
図7に示す。
When the α parameter has a positive sign, that is, when the light emission logic is not inverted, if the mark ratio is varied from / to /, the Vmo value at which the optical output waveform cross point becomes 50% is 1 according to (Equation 5). It becomes .75V-2.25V. The control target value Vref at this time is from 1.75 V to 2.
The voltage is set to 25 V, and Vmo is controlled to a value at which the optical output waveform cross point becomes 50%, and stable bias voltage control is performed. FIG. 7 shows the behavior of Vmo, Vref, and the optical waveform at this time.

【0036】今、波長分散に起因する分散ペナルティを
抑圧するために、バイアス電圧を発光論理決定電圧選択
回路15によりマッハツェンダ半周期電圧Vπ(V)だ
けシフトし、マッハツェンダ型光強度変調器のαパラメ
ータ正負符号変換すなわちαパラメータ<0としたと
き、マーク率を1/4〜3/4と変動させると光出力波形
クロスポイントが50%となるVmo値は(数6)より
2.25V〜1.75Vとなり、αパラメータ>0の時
と比較するとVmo値の変化の傾きが反転する。
Now, in order to suppress the dispersion penalty caused by the chromatic dispersion, the bias voltage is shifted by the Mach-Zehnder half-period voltage Vπ (V) by the light emission logic decision voltage selection circuit 15, and the α parameter of the Mach-Zehnder type optical intensity modulator is shifted. When the sign conversion is performed, that is, when the α parameter <0, the Vmo value at which the optical output waveform cross point becomes 50% when the mark ratio is varied from / to / is calculated from (Equation 6) from 2.25 V to 1.V. 75V, and the slope of the change of the Vmo value is inverted as compared with the case where the α parameter> 0.

【0037】この時のVref値は(数10)より2.
25V〜1.75Vとなり、αパラメータが負符号の時
でも光出力波形クロスポイント50%となるVmo値に
制御され安定したバイアス電圧制御が行われる。
The Vref value at this time is given by (Equation 10).
25V to 1.75V. Even when the α parameter has a negative sign, the Vmo value is controlled to be 50% of the optical output waveform cross point, and stable bias voltage control is performed.

【0038】これは、制御目標値であるVrefの変動
幅を規格化回路2によりマーク率変動時における光出力
波形クロスポイント50%となる平均光出力検出回路出
力値Vmo値の変動幅B(1.0V)に規格化し、かつ
制御目標値選択回路により制御目標値Vrefの変化の
傾きを制御対象値Vmo値の変化の傾きに常に合致する
ようにしているためである。よって制御目標値Vref
はマーク率が1/4〜3/4に変動したとき、α>0の場
合、1.75〜2.25V、α<0の場合2.25V〜
1.75Vと各々光出力波形クロスポイント50%とな
る制御目標値に設定され、αパラメータ変動時において
もマーク率に対応して安定した制御が可能となる。
This is because the standardizing circuit 2 sets the fluctuation range of the control target value Vref to the fluctuation range B (1) of the average light output detection circuit output value Vmo value at which the light output waveform cross point becomes 50% when the mark rate changes. .0 V), and the control target value selection circuit always makes the gradient of the change of the control target value Vref coincide with the gradient of the change of the control target value Vmo. Therefore, the control target value Vref
When the mark ratio fluctuates from / to /, when α> 0, 1.75 to 2.25 V, and when α <0, 2.25 V to
The control target values are set to 1.75 V and 50%, respectively, of the optical output waveform cross point, and stable control corresponding to the mark ratio can be performed even when the α parameter fluctuates.

【0039】図8は本発明マーク率変動対応バイアス電
圧制御回路の具体的な構成例を示す図である。本構成例
では、αパラメータの正負符号に関わらず常にマーク率
変動に応じた制御目標値を得るために、オペアンプを用
いたバッファ回路にてマーク率検出回路を、可変抵抗と
オペアンプを組み合わせることによりVmo変動幅B
(v)に規格化する規格化回路を、さらにアナログスイ
ッチとオペアンプを用いVrefの変化の傾きをVmo
の傾きに合致させる制御目標値選択回路をそれぞれ作成
した。
FIG. 8 is a diagram showing a specific configuration example of the bias voltage control circuit according to the present invention. In this configuration example, in order to always obtain a control target value corresponding to the mark rate variation regardless of the sign of the α parameter, the mark rate detection circuit is combined with a variable resistor and an operational amplifier by using a buffer circuit using an operational amplifier. Vmo fluctuation range B
(V) A standardization circuit for normalization, and an analog switch and an operational amplifier are used to determine the slope of the change in Vref by Vmo.
The control target value selection circuits that match the slopes of were created.

【0040】[0040]

【発明の効果】以上説明したように本発明によれば従来
のバイアス電圧制御回路に比べマーク率検出回路3と規
格化回路2と制御目標値選択回路1を用いることによ
り、αパラメータ正負符号変換時においても常に制御目
標値を出力することが可能となり、安定したバイアス電
圧制御が可能となる。
As described above, according to the present invention, the α parameter sign conversion can be performed by using the mark ratio detection circuit 3, the normalization circuit 2 and the control target value selection circuit 1 as compared with the conventional bias voltage control circuit. In this case, the control target value can be always output, and stable bias voltage control can be performed.

【0041】また、図8においては構成例の一つを示し
たが、マーク率検出回路部はクランプ回路を用いた構成
でも適用可能である。
FIG. 8 shows an example of the configuration, but the mark ratio detection circuit can be applied to a configuration using a clamp circuit.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来のマーク率変動対応バイアス電圧制御回路
構成例を示すブロック図。
FIG. 1 is a block diagram showing a configuration example of a conventional bias voltage control circuit corresponding to a mark ratio variation.

【図2】従来のαパラメータ符号変換対応バイアス電圧
制御回路構成例を示すブロック図。
FIG. 2 is a block diagram showing an example of a configuration of a conventional bias voltage control circuit for α parameter code conversion.

【図3】マッハツェンダ型光強度変調器のDC消光特性
を示す図。
FIG. 3 is a diagram showing a DC extinction characteristic of a Mach-Zehnder type optical intensity modulator.

【図4】マーク率変動時に図4に示された消光特性を持
つマッハツェンダ型光強度変調器の出力光を平均光出力
検出回路で受けたときの出力電圧を示す特性図。
FIG. 4 is a characteristic diagram showing an output voltage when the output light of the Mach-Zehnder light intensity modulator having the extinction characteristic shown in FIG.

【図5】従来回路を用いたときのマーク率変動時の最適
な平均光出力検出回路出力値と制御目標値、及び光出力
波形の振舞いを示した図。
FIG. 5 is a diagram showing the behavior of an optimum average optical output detection circuit output value, a control target value, and an optical output waveform when a mark ratio fluctuates when a conventional circuit is used.

【図6】本発明マーク率変動対応バイアス電圧制御回路
構成例を示すブロック図。
FIG. 6 is a block diagram showing a configuration example of a bias voltage control circuit corresponding to a mark ratio variation according to the present invention.

【図7】本発明を用いたときのマーク率変動時の最適な
平均光出力検出回路出力値と制御目標値、及び光出力波
形の振舞いを示した図。
FIG. 7 is a diagram showing the behavior of an optimum average optical output detection circuit output value, a control target value, and an optical output waveform when the mark ratio changes when the present invention is used.

【図8】本発明マーク率変動対応バイアス電圧制御回路
の具体的な構成例を示すブロック図。
FIG. 8 is a block diagram showing a specific configuration example of a bias voltage control circuit according to the present invention.

【符号の説明】[Explanation of symbols]

1…制御目標値選択回路、 2…規格化回路、 3
…マーク率検出回路、4…マッハツェンダ駆動回路、5
…振幅制御回路、6…直流光源モジュール、 7…マ
ッハツェンダ型光強度変調器、8…マッハツェンダ光強
度変調素子、 9…受光器、10…平均光
出力検出回路、 11…バイアス電圧制御回路、12…
論理選択回路、 13…リミット回路、14…バ
イアス電圧印加回路、15…発光論理決定電圧選択回
路。
1 ... control target value selection circuit 2 ... standardization circuit 3
... Mark ratio detection circuit, 4 ... Mach-Zehnder drive circuit, 5
... Amplitude control circuit, 6 ... DC light source module, 7 ... Mach-Zehnder light intensity modulator, 8 ... Mach-Zehnder light intensity modulation element, 9 ... Light receiver, 10 ... Average light output detection circuit, 11 ... Bias voltage control circuit, 12 ...
Logic selection circuit, 13: limit circuit, 14: bias voltage application circuit, 15: light emission logic determination voltage selection circuit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】マッハツェンダ型光強度変調素子とその光
出力を分岐して出力光を検出する受光器を内蔵するマッ
ハツェンダ型光強度変調器と、マッハツェンダ型光強度
変調器に入力する直流光を発光する直流電源モジュール
と、マッハツェンダ型光強度変調器を駆動し光強度変調
を与えるマッハツェンダ駆動回路とマッハツェンダ駆動
回路の出力振幅を常に一定値に制御する振幅制御回路
と、 該受光器により、マッハツェンダ型光強度変調器出力光
の平均値を検出する平均光出力検出回路と、制御対象で
ある平均光出力検出回路出力値と制御目標値とを比較し
てその偏差を補正するようマッハツェンダ型光強度変調
器に印加するバイアス電圧値を決定するバイアス電圧制
御回路と、該バイアス電圧をマッハツェンダ型光強度変
調器に印加するバイアス印加回路と、 伝送信号の発光論理を反転させ、光送信器のαパラメー
タの正負信号を変換するバイアス電圧をバイアス電圧印
加回路を介して該マッハツェンダ型光強度変調器に印加
する発光論理決定電圧選択回路と、伝送信号の発光論理
が反転するとともに、バイアス電圧制御出力値の正負制
御方向を自動的に反転させる論理選択回路と、マッハツ
ェンダ型光強度変調器に印加するバイアス電圧の出力範
囲を発光論理決定電圧選択回路出力値を中心にマッハツ
ェンダ反周期電圧Vπの±1/2以下に設定したリミッ
ト回路とからなる光出力強度変調光送信器バイアス制御
回路において、 αパラメータ正負符号を変換した場合でもマーク率に応
じた制御目標値を設定するために、マッハツェンダ駆動
回路の逆相出力より入力電気信号のマーク率を検出する
マーク率検出回路と、マーク率変動時の制御目標値の変
化幅を制御対象の変動幅と合致させる規格化回路と、α
パラメータ正負符号に応じて変わる制御対象値の変化の
傾きと制御目標値の変化の傾きとを常に合致させる制御
目標値選択回路をマッハツェンダ駆動回路とバイアス電
圧制御回路間に設けたことを特徴とするマーク率変動対
応バイアス電圧制御回路。
1. A Mach-Zehnder type light intensity modulator including a Mach-Zehnder type light intensity modulator and a photodetector for branching the optical output and detecting an output light, and emits DC light input to the Mach-Zehnder type light intensity modulator. A DC power supply module, a Mach-Zehnder type light intensity modulator, a Mach-Zehnder drive circuit for providing light intensity modulation, an amplitude control circuit for constantly controlling the output amplitude of the Mach-Zehnder drive circuit to a constant value, An average light output detection circuit that detects the average value of the output light from the intensity modulator, and a Mach-Zehnder type light intensity modulator that compares the output value of the average light output detection circuit to be controlled with the control target value and corrects the deviation. Voltage control circuit that determines a bias voltage value to be applied to the Mach-Zehnder type light intensity modulator A bias applying circuit, and a light emitting logic determining voltage for inverting the light emitting logic of the transmission signal and applying a bias voltage for converting the positive / negative signal of the α parameter of the optical transmitter to the Mach-Zehnder light intensity modulator via the bias voltage applying circuit. A selection circuit, a logic selection circuit that inverts the emission logic of the transmission signal and automatically reverses the positive / negative control direction of the bias voltage control output value, and emits the output range of the bias voltage applied to the Mach-Zehnder light intensity modulator In the optical output intensity modulation optical transmitter bias control circuit comprising a limit circuit which is set to ± 1/2 or less of the Mach-Zehnder anti-periodic voltage Vπ around the output value of the logic decision voltage selection circuit, even when the sign of the α parameter is converted. In order to set a control target value corresponding to the mark rate, the input electric signal is mapped from the negative phase output of the Mach-Zehnder drive circuit. A mark rate detecting circuit for detecting a click rate, and the normalized circuit to match the variation range of the control target value at the time of mark rate variation and fluctuation range of the control target, alpha
A control target value selection circuit that always matches the gradient of the change of the control target value and the gradient of the change of the control target value depending on the sign of the parameter is provided between the Mach-Zehnder drive circuit and the bias voltage control circuit. Bias voltage control circuit for mark rate fluctuation.
JP20754997A 1997-08-01 1997-08-01 Bias voltage control circuit for mark rate fluctuation Expired - Fee Related JP3527832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20754997A JP3527832B2 (en) 1997-08-01 1997-08-01 Bias voltage control circuit for mark rate fluctuation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20754997A JP3527832B2 (en) 1997-08-01 1997-08-01 Bias voltage control circuit for mark rate fluctuation

Publications (2)

Publication Number Publication Date
JPH1152310A true JPH1152310A (en) 1999-02-26
JP3527832B2 JP3527832B2 (en) 2004-05-17

Family

ID=16541582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20754997A Expired - Fee Related JP3527832B2 (en) 1997-08-01 1997-08-01 Bias voltage control circuit for mark rate fluctuation

Country Status (1)

Country Link
JP (1) JP3527832B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100701101B1 (en) 2004-12-20 2007-03-28 한국전자통신연구원 Apparatus for control optical interferometer and method thereof
JP2008236512A (en) * 2007-03-22 2008-10-02 Mitsubishi Electric Corp Dispersion pre-equalizing optical transmitter
CN100460913C (en) * 2006-06-30 2009-02-11 中国石油天然气集团公司 Optical fiber safety early warning phase control system
CN105867497A (en) * 2016-05-17 2016-08-17 华中科技大学 MZ modulator bias voltage self-adaption control method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100701101B1 (en) 2004-12-20 2007-03-28 한국전자통신연구원 Apparatus for control optical interferometer and method thereof
CN100460913C (en) * 2006-06-30 2009-02-11 中国石油天然气集团公司 Optical fiber safety early warning phase control system
JP2008236512A (en) * 2007-03-22 2008-10-02 Mitsubishi Electric Corp Dispersion pre-equalizing optical transmitter
CN105867497A (en) * 2016-05-17 2016-08-17 华中科技大学 MZ modulator bias voltage self-adaption control method

Also Published As

Publication number Publication date
JP3527832B2 (en) 2004-05-17

Similar Documents

Publication Publication Date Title
JP2642499B2 (en) Optical transmitter, optical modulator control circuit, and optical modulation method
US8098998B2 (en) Optical transmitter
US5208817A (en) Modulator-based lightwave transmitter
US7308210B2 (en) Optical modulating device, optical transmitting apparatus using the same, method of controlling optical modulating device, and control program recording medium
US20020003648A1 (en) Optical transmitter, and method of controlling bias voltage to the optical transmitter
EP0631169B1 (en) Optical modulation apparatus
JP2677234B2 (en) Light modulator
JP3772738B2 (en) Light modulator
JP3591346B2 (en) Light modulator
JP2005202400A (en) Optical modulating apparatus having bias controller and bias control method using the same
JPH11119176A (en) Driving circuit for electric field absorption type optical modulator and optical transmitter using the same
JPH08136871A (en) Optical modulation device
JP4640082B2 (en) Optical modulator and optical modulator control method
US20070092266A1 (en) Method and apparatus for controlling bias point of optical transmitter
JP2661574B2 (en) LN modulator DC bias circuit
JP3527832B2 (en) Bias voltage control circuit for mark rate fluctuation
JP4704596B2 (en) Optical quaternary modulator and optical quaternary modulation method
US5805328A (en) Driving circuit for an optical signal modulator
JPH1051389A (en) Optical transmitter
JP3822548B2 (en) Optical modulator controller
EP1986353B1 (en) Optical duobinary transmitter with bias control of the modulator
US20040005154A1 (en) Optical transmitter
EP1130817A2 (en) Optical modulator including a self optimized RF input driver
US7266309B2 (en) Apparatus and method for stabilizing bias voltage for pulse generating modulator
JPH10246874A (en) Optical modulator control circuit

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees