JPH1151769A - Radiation thermometer - Google Patents

Radiation thermometer

Info

Publication number
JPH1151769A
JPH1151769A JP9225751A JP22575197A JPH1151769A JP H1151769 A JPH1151769 A JP H1151769A JP 9225751 A JP9225751 A JP 9225751A JP 22575197 A JP22575197 A JP 22575197A JP H1151769 A JPH1151769 A JP H1151769A
Authority
JP
Japan
Prior art keywords
light source
light
radiation thermometer
temperature
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9225751A
Other languages
Japanese (ja)
Other versions
JP3656877B2 (en
Inventor
Isao Hishikari
功 菱刈
Toshifusa Suzuki
利房 鈴木
Tadashi Kobayashi
正 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chino Corp
Original Assignee
Chino Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chino Corp filed Critical Chino Corp
Priority to JP22575197A priority Critical patent/JP3656877B2/en
Publication of JPH1151769A publication Critical patent/JPH1151769A/en
Application granted granted Critical
Publication of JP3656877B2 publication Critical patent/JP3656877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a radiation thermometer where self-diagnostics can be made by applying light to an object to be measured from a light source via an optical system for indicating a measurement position, obtaining the radiation energy of the light source entering a sensing element, and performing self- diagnostics based on the change. SOLUTION: A driving means 14 is activated with a processing means 9 by an operation means 13, light for a spot marker is applied to an object 1 to be measured from a light source 15 through a beam splitter 4 and a lens 21 or the like, and a site to be measured can be visually verified. One part of the light of the light source 15 is applied to a sensitive element 7 via the beam splitter 4, a reflection mirror 5, and the beam splitter 4. The light source 15 is turned on and off before starting measurement, a radiation energy constituent L0 being reflected by the mirror 5 owing to/the difference of the detection output is obtained, a measurement value L2 is obtained in the same manner if required, the difference is compared with measurement accuracy by the processing means 9, and a self state is diagnosed based on the change state. Error information is indicated on a display means 11 and is informed to a host computer by a communication means 12, and self calibration is enabled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、放射エネルギー
を用いて測定対象の温度を測定する放射温度計に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation thermometer for measuring the temperature of an object using radiant energy.

【0002】[0002]

【従来の技術】放射温度計を長時間使用していると、光
学系、検出素子等の放射温度計の各部が劣化して測定誤
差を招く。このため、この劣化状態を把握することが要
望されている。通常、定期的又は必要時に、基準の黒体
炉を放射温度計で照準し、放射温度計の校正を行うよう
にしている。
2. Description of the Related Art When a radiation thermometer is used for a long time, each part of the radiation thermometer, such as an optical system and a detecting element, is deteriorated, causing a measurement error. For this reason, it is desired to grasp this state of deterioration. Usually, the reference blackbody furnace is aimed at the radiation thermometer periodically or when necessary, and the radiation thermometer is calibrated.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、基準の
黒体炉を用いて放射温度計の校正を行うとき、放射温度
計を設置箇所から取り外して基準の黒体炉を設置した所
に持ち込むか、又は基準の黒体炉を放射温度計の設置箇
所の持ち込み、いちいち放射温度計を黒体炉で比較検定
をしなければならず、装置が大がかりなものになり、ま
た、校正時期の把握、校正作業の手間を多く要し、煩雑
であった。
However, when calibrating the radiation thermometer using the reference black body furnace, the radiation thermometer should be removed from the installation location and brought into the place where the reference black body furnace was installed. Alternatively, the standard black body furnace must be brought into the place where the radiation thermometer is installed, and the radiation thermometer must be compared with the black body furnace each time, and the equipment becomes large-scale. It requires a lot of work and is complicated.

【0004】この発明の目的は、以上の点に鑑み、簡易
な構成で、自己診断が可能な放射温度計を提供すること
である。
An object of the present invention is to provide a radiation thermometer capable of performing self-diagnosis with a simple configuration in view of the above points.

【0005】[0005]

【課題を解決するための手段】この発明は、測定対象の
温度を測定する放射温度計において、光学系を介して測
定対象に光を投光して測定位置を示すための光源と、こ
の光源の光が入射される検出素子と、この検出素子に入
射する光源の放射エネルギーを求めその変化に基いて自
己診断を行う処理手段とを備えるようにした放射温度計
である。
SUMMARY OF THE INVENTION The present invention relates to a radiation thermometer for measuring the temperature of an object to be measured, and a light source for projecting light to the object to be measured via an optical system to indicate a measurement position, and this light source. The radiation thermometer includes a detection element to which the light is incident, and a processing unit that obtains radiant energy of the light source incident on the detection element and performs self-diagnosis based on a change in the energy.

【0006】[0006]

【発明の実施の形態】図1(a)は、この発明の放射温
度計の一実施例を示す構成説明図である。図において、
測定対象1からの放射エネルギーはレンズ21、スリッ
ト3、ハーフミラー等のビームスプリッタ4、レンズ2
2、フイルタ6等の光学系を介し検出素子7に入射す
る。検出素子7で放射エネルギーは電気信号に変換さ
れ、増幅器A1で所定倍増幅され、A−D変換器8でデ
ジタル信号とされ、μCPU等の処理手段9に入力され
る。処理手段9でメモリ10のテーブル等を参照し温度
に換算する等の演算がなされ、表示器11に温度表示し
たり、通信手段12を介しパソコン等に温度信号を送信
することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 (a) is a structural explanatory view showing an embodiment of a radiation thermometer according to the present invention. In the figure,
The radiant energy from the measurement target 1 is a lens 21, a slit 3, a beam splitter 4 such as a half mirror, and a lens 2.
2. The light enters the detection element 7 through an optical system such as a filter 6. The radiation energy is converted into an electric signal by the detection element 7, amplified by a predetermined factor by the amplifier A1, converted into a digital signal by the AD converter 8, and input to the processing means 9 such as a μCPU. The processing means 9 performs calculations such as conversion to temperature by referring to a table or the like in the memory 10, and can display the temperature on the display 11 or transmit a temperature signal to a personal computer or the like via the communication means 12.

【0007】又、必要時、操作手段13の操作等により
処理手段9は駆動手段14を動作させ、発光ダイオード
LED、レーザーダイオードLD等の半導体素子光源
や、白熱電球等の光源15を発光させ、ビームスプリッ
タ4、レンズ21等の光学系を介しスポットマーカー用
の光を測定対象1に投光し測定位置を示し、測定部位を
人間が目視で視認することができる。
When necessary, the processing means 9 operates the driving means 14 by operating the operating means 13 to emit light from a semiconductor element light source such as a light emitting diode LED or a laser diode LD or a light source 15 such as an incandescent lamp. Light for a spot marker is projected onto the measurement target 1 through an optical system such as the beam splitter 4 and the lens 21 to indicate a measurement position, and a measurement site can be visually recognized by a human.

【0008】ここで、光源15の光のうちその一部の光
L2がビームスプリッタ4を透過して反射ミラー5で反
射し、再びビームスプリッタ4で反射して検出素子7に
入射するようにする。
Here, a part of the light L2 of the light from the light source 15 passes through the beam splitter 4, is reflected by the reflection mirror 5, is reflected by the beam splitter 4 again, and is incident on the detecting element 7. .

【0009】つまり、測定対象1からの放射エネルギー
成分をL1、光源15からの放射エネルギー成分をL2
とし、光源15をオンのとしたときの検出素子7の出力
をV1、光源15をオフのときの検出素子7の出力をV
2とすれば次式が成り立つ。
That is, the radiant energy component from the measurement target 1 is L1, and the radiant energy component from the light source 15 is L2.
The output of the detection element 7 when the light source 15 is turned on is V1, and the output of the detection element 7 when the light source 15 is off is V1.
Assuming that 2, the following equation holds.

【0010】 V1=L1+L2 (1) V2=L1 (2) つまり、光源15がオンのときは検出素子7の測定対象
1の放射エネルギー成分L1と反射ミラー5を反射した
放射エネルギー成分L2とが検出され、光源15がオフ
のときは測定対象1の放射エネルギー成分L1のみとな
る。
V1 = L1 + L2 (1) V2 = L1 (2) That is, when the light source 15 is on, the radiant energy component L1 of the measurement target 1 of the detection element 7 and the radiant energy component L2 reflected by the reflection mirror 5 are detected. When the light source 15 is off, only the radiant energy component L1 of the measurement target 1 is included.

【0011】これより、L2は次式で求まり、測定対象
1からの成分L1は除去される。
Thus, L2 is obtained by the following equation, and the component L1 from the object 1 is removed.

【0012】 L2=V1−V2 (3) つまり、あらかじめ、測定開始前に光源15をオン・オ
フし、(3)式のL2の測定を行い、この初期の基準値
(L0とする)をメモリ10に格納しておく。そして、
必要時、又は所定時間間隔で、光源15をオン・オフ
し、このときの測定値L2を得る。両者L0,L2の差
を処理手段9は比較し、その差が測定精度を越えて大き
い場合や大きくなりつつある場合等の変化の様子に基い
て自己の状態を診断し、エラー情報として、表示手段1
1に表示したり、通信手段12によりパソコン等の上位
コンピュータに通報でき、自己校正できる。
L2 = V1−V2 (3) That is, the light source 15 is turned on / off before the start of the measurement, the L2 is measured in the equation (3), and the initial reference value (L0) is stored in the memory. 10 is stored. And
When necessary or at predetermined time intervals, the light source 15 is turned on and off, and the measured value L2 at this time is obtained. The processing means 9 compares the difference between the two L0 and L2, and diagnoses its own state based on a change such as a case where the difference exceeds the measurement accuracy or a case where the difference is increasing, and displays it as error information. Means 1
1 or can be notified to a host computer such as a personal computer by the communication means 12 and can be self-calibrated.

【0013】又、光源15自体をオン・オフしてその光
を断続する他に、測定対象1への光路の途中に(例えば
レンズ21の前後等に)図示しないシャッタを設け、測
定対象1への光源15の光を断続し、シャッタが閉のと
きに検出素子7のみに入射する光を検出すれば、直接的
に光源15の光の成分L2を求めることができ、この変
動から自己診断を行うことができる。又、光源等の放射
エネルギーの十分大きい領域を用いるようにしても同様
である。
In addition to turning on and off the light source 15 itself to interrupt the light, a shutter (not shown) is provided in the optical path to the measurement target 1 (for example, before and after the lens 21) to provide the shutter to the measurement target 1. If the light of the light source 15 is intermittently detected and the light incident only on the detection element 7 when the shutter is closed is detected, the light component L2 of the light source 15 can be directly obtained. It can be carried out. The same applies to a case where a region having sufficiently large radiant energy such as a light source is used.

【0014】つまり、このように常時はスポットマーカ
ーとして測定位置の確認を行う光源15を利用して、光
源15、ビームスプリッタ4、レンズ22、フィルタ6
等の光学系、検出素子7等の異常の検知ができ、放射温
度計各部の自己診断ができる。尚、検出素子7の出力を
温度に換算して、初期のみかけの温度と、チェク時のみ
かけの温度とを比較し、異常検知してもよい。
That is, the light source 15, the beam splitter 4, the lens 22, the filter 6
Can detect abnormalities in the optical system, the detection element 7, etc., and can perform self-diagnosis of each part of the radiation thermometer. The output of the detecting element 7 may be converted to a temperature, and the apparent temperature at the initial stage may be compared with the apparent temperature at the time of the check to detect an abnormality.

【0015】ところで、特に光源15がLEDやLD等
の半導体素子光源の場合、温度依存性が大きく、温度に
より放射するエネルギーが変動する。このため、図1
(b)のような金属ブロック17に光源15、温度セン
サ16を設け、この温度センサ16で光源15の近くの
温度を検出し、増幅器A2で増幅してA−D変換器8で
デジタル信号とし、処理手段9に入力する。そして、あ
らかじ求めメモリ10に記憶された温度に対する光源1
5の出力の補正値により、光源15からの放射エネルギ
ー成分L2について補正を行い、正しい成分になるよう
温度補償する。なお、半導体素子の光源15に温度セン
サが組み込まれている場合、この温度センサの出力を用
いて温度補償できる。
By the way, particularly when the light source 15 is a semiconductor element light source such as an LED or an LD, the temperature dependency is large, and the radiated energy varies depending on the temperature. Therefore, FIG.
A light source 15 and a temperature sensor 16 are provided on a metal block 17 as shown in FIG. 2B, and the temperature near the light source 15 is detected by the temperature sensor 16, amplified by an amplifier A2, and converted into a digital signal by an AD converter 8. , To the processing means 9. Then, the light source 1 corresponding to the temperature previously obtained and stored in the memory 10 is obtained.
The radiant energy component L2 from the light source 15 is corrected by the correction value of the output of 5, and the temperature is compensated so as to be a correct component. When a temperature sensor is incorporated in the light source 15 of the semiconductor element, temperature compensation can be performed using the output of the temperature sensor.

【0016】例えば、温度が高いとき光源15の出力が
高めとなるとすれば、これを減らして一定値とするよう
な係数を乗除すれば良く、所定の関数をF、F´とすれ
ば、温度Tに対し補正前の出力L2aは次式で正しいも
のとなる。
For example, if the output of the light source 15 is high when the temperature is high, it is sufficient to multiply and divide the coefficient by a factor that reduces the output to a constant value. The output L2a before correction with respect to T is correct according to the following equation.

【0017】 L2=F(T)・L2a=F´(T,L2a) (4) この補償された出力と初期値L0と比較するようにする
とよい。
L2 = F (T) · L2a = F ′ (T, L2a) (4) The compensated output may be compared with an initial value L0.

【0018】更に、図2(a)で示すよう、処理手段9
により、駆動手段14を制御して、光源15への駆動電
流iをi1,i2と変化させ、このときの上記(3)式
の出力L2の変化を求め、各電流値i1,i2における
出力L21,L22から係数kiを次式で求める。
Further, as shown in FIG.
By controlling the driving means 14, the driving current i to the light source 15 is changed to i1 and i2, and the change of the output L2 of the above equation (3) at this time is obtained, and the output L21 at each current value i1 and i2 is obtained. , L22, a coefficient ki is obtained by the following equation.

【0019】 ki=(L22−L21)/(i2−i1) (5) そして、あらかじめ、図2(b)で示すように、温度T
1,T2,T3,…の場合について、係数k1,k2,
k3,…を求めて、補正関数Gをメモリ10に格納して
おく。自己診断時、処理手段9により、駆動手段14を
制御して、光源15の駆動電流をi1,i2と変化さ
せ、このときの上記(3)式の出力L2の変化から係数
kiを求め、図2(b)のような補正関数Gを利用し温
度Tを求める。この温度Tにより、(4)式のような補
償を行い、正しい自己診断を行う。
Ki = (L22−L21) / (i2-i1) (5) Then, as shown in FIG.
, T2, T3,..., Coefficients k1, k2,
.., and the correction function G is stored in the memory 10. At the time of self-diagnosis, the driving means 14 is controlled by the processing means 9 to change the driving current of the light source 15 to i1 and i2, and the coefficient ki is obtained from the change in the output L2 of the above equation (3). The temperature T is obtained by using the correction function G as shown in FIG. Based on the temperature T, compensation as shown in equation (4) is performed, and a correct self-diagnosis is performed.

【0020】なお、光源15が半導体素子の場合、駆動
電圧と流れる電流との電圧電流特性が温度依存性を持つ
ので、この温度に対する電圧電流特性を利用して温度を
求め、温度補償するようにしてもよい。
When the light source 15 is a semiconductor device, the voltage-current characteristics of the driving voltage and the flowing current have temperature dependence. Therefore, the temperature is obtained by using the voltage-current characteristics with respect to this temperature, and the temperature is compensated. You may.

【0021】尚、検出素子の種類、光源の種類、光学系
の構成等は上記放射温度計の実施例以外のどのようなも
のでも良く、同様に自己診断が簡易に、容易に可能であ
る。
The type of the detecting element, the type of the light source, the configuration of the optical system, etc. may be any other than the above-described embodiment of the radiation thermometer, and the self-diagnosis can be performed easily and easily.

【0022】[0022]

【発明の効果】以上述べたように、この発明は、測定対
象の温度を測定する放射温度計において、光学系を介し
て測定対象に光を投光して測定位置を示すための光源
と、この光源の光が入射される検出素子と、この検出素
子に入射する光源の放射エネルギーを求めその変化に基
いて自己診断を行う処理手段とを備えるようにした放射
温度計である。つまり、スポットマーカー用の光源を利
用して、この光源の出力の変化から光学系等の放射温度
計各部の異常を検知しているので、特別な部品は必要で
なく、簡易な構成で自己診断、自己校正を行うことがで
きる。又、光源を断続することで容易に測定対象からの
影響を除去し光源の放射エネルギーのみを取り出すこと
ができ、正確な自己診断ができる。通常、光源の変動は
少なく安定性がよいが、半導体素子光源等の温度係数を
持つ場合、金属ブロックに設けた光源の温度を温度セン
サで検知し補償を行ったり、又は、光源への駆動電流を
変化させたときの検出素子の出力の変化や電圧電流特性
から光源の温度を求め補償を行うようにすることで、い
っそう高精度で、自己診断、異常診断を行うことがで
き、外部に表示したり、上位計算機に送信し、総合的な
診断、異常検知ができ、システムの信頼性がより向上す
る。又、自己が異常となりつつある等の異常情報ををあ
らかじめ把握することができ、事前に予知、予測するこ
とができる。
As described above, the present invention relates to a radiation thermometer for measuring the temperature of a measurement object, a light source for projecting light to the measurement object via an optical system to indicate a measurement position, The radiation thermometer includes a detection element to which the light of the light source is incident, and processing means for obtaining radiant energy of the light source incident on the detection element and performing self-diagnosis based on a change in the energy. In other words, the light source for the spot marker is used to detect abnormalities in each part of the radiation thermometer, such as the optical system, based on changes in the output of the light source. , Can perform self-calibration. Further, by intermittently connecting the light source, the influence from the object to be measured can be easily removed, and only the radiant energy of the light source can be taken out, so that an accurate self-diagnosis can be performed. Normally, the fluctuation of the light source is small and the stability is good, but when the light source has a temperature coefficient of a semiconductor element light source or the like, the temperature of the light source provided on the metal block is detected by the temperature sensor to compensate, or the driving current to the light source is The self-diagnosis and abnormality diagnosis can be performed with higher accuracy by obtaining the temperature of the light source from the change in the output of the detection element and the voltage-current characteristics when the temperature is changed, and performing the diagnosis with higher accuracy. Or send it to a host computer to perform comprehensive diagnosis and abnormality detection, further improving the reliability of the system. In addition, it is possible to grasp in advance abnormality information such as that the self is becoming abnormal, and to predict and predict in advance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例を示す構成説明図である。FIG. 1 is a configuration explanatory view showing one embodiment of the present invention.

【図2】この発明の一実施例を示す動作説明図である。FIG. 2 is an operation explanatory diagram showing one embodiment of the present invention.

【符号の説明】 1 測定対象 21、22 レンズ 3 スリット 4 ビームスプリッタ 5 反射ミラー 6 フィルタ 7 検出素子 8 A−D変換器 9 処理手段 10 メモリ 11 表示手段 12 通信手段 13 操作手段 14 駆動手段 15 光源 16 温度センサ 17 金属ブロック A1,A2 増幅器[Description of Signs] 1 Measurement target 21, 22 Lens 3 Slit 4 Beam splitter 5 Reflection mirror 6 Filter 7 Detection element 8 A / D converter 9 Processing means 10 Memory 11 Display means 12 Communication means 13 Operation means 14 Driving means 15 Light source 16 Temperature sensor 17 Metal block A1, A2 Amplifier

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】測定対象の温度を測定する放射温度計にお
いて、光学系を介して測定対象に光を投光して測定位置
を示すための光源と、この光源の光が入射される検出素
子と、この検出素子に入射する光源の放射エネルギーを
求めその変化に基いて自己診断を行う処理手段とを備え
たことを特徴とする放射温度計。
1. A radiation thermometer for measuring a temperature of a measurement object, a light source for projecting light to the measurement object via an optical system to indicate a measurement position, and a detection element to which light from the light source is incident. And a processing means for obtaining radiant energy of the light source incident on the detection element and performing self-diagnosis based on the change.
【請求項2】前記光源の光を断続したときの検出素子の
出力から処理手段は光源の放射エネルギーを求めること
を特徴とする請求項1記載の放射温度計。
2. The radiation thermometer according to claim 1, wherein the processing means obtains the radiation energy of the light source from the output of the detection element when the light of the light source is interrupted.
【請求項3】前記光源として半導体素子光源を用いて金
属ブロックに設け、光源の温度を金属ブロックに設けた
温度センサ又は光源自体に組み込まれ温度センサで検知
し処理手段で温度補償を行うことを特徴とする請求項1
又は請求項2記載の放射温度計。
3. A semiconductor device as a light source, wherein the light source is provided on a metal block, and the temperature of the light source is detected by a temperature sensor provided on the metal block or a temperature sensor incorporated in the light source itself, and temperature compensation is performed by processing means. Claim 1.
Or the radiation thermometer according to claim 2.
【請求項4】前記処理手段は、光源への駆動電流を変化
させたときの検出素子の出力の変化から又は電圧電流特
性から光源の補償を行うことを特徴とする請求項1から
請求項3いずれかに記載の放射温度計。
4. The light source according to claim 1, wherein the processing means compensates for the light source based on a change in the output of the detection element when the drive current to the light source is changed or from a voltage-current characteristic. The radiation thermometer according to any one of the above.
JP22575197A 1997-08-07 1997-08-07 Radiation thermometer Expired - Fee Related JP3656877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22575197A JP3656877B2 (en) 1997-08-07 1997-08-07 Radiation thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22575197A JP3656877B2 (en) 1997-08-07 1997-08-07 Radiation thermometer

Publications (2)

Publication Number Publication Date
JPH1151769A true JPH1151769A (en) 1999-02-26
JP3656877B2 JP3656877B2 (en) 2005-06-08

Family

ID=16834264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22575197A Expired - Fee Related JP3656877B2 (en) 1997-08-07 1997-08-07 Radiation thermometer

Country Status (1)

Country Link
JP (1) JP3656877B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7833348B2 (en) 2005-09-21 2010-11-16 Sumco Corporation Temperature control method of epitaxial growth apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7833348B2 (en) 2005-09-21 2010-11-16 Sumco Corporation Temperature control method of epitaxial growth apparatus

Also Published As

Publication number Publication date
JP3656877B2 (en) 2005-06-08

Similar Documents

Publication Publication Date Title
EP0516398B1 (en) Method and apparatus for controlling the emission spectrum of a light emitting diode
US7697136B2 (en) Reflection characteristic measuring apparatus, and method for calibrating reflection characteristic measuring apparatus
US7339665B2 (en) Calibration source for calibrating spectroradiometer, calibration method using the same, and calibration system
US20110310925A1 (en) Optical fiber temperature distribution measuring device
US20050259250A1 (en) Method for measuring a spectrum of a sample by means of an infrared spectrometer and infrared spectrometer of this type
US20210367397A1 (en) Deterioration diagnosis device and method for diagnosing deterioration of optical transceiver
US7705983B2 (en) Wavelength displacement correcting system
JPH0464420B2 (en)
JP2008232920A (en) Gas detection device, and calibration method and wavelength confirmation method using device
US11099592B2 (en) Current self-checking regulation circuit based on voltage calibration
JPH1151769A (en) Radiation thermometer
JP2002372472A (en) Apparatus and method for detection of physical quantity using optical fiber
JPH1151771A (en) Radiation thermometer
JPH1151770A (en) Radiation thermometer
JPH0915048A (en) Spectrophotometer
KR20060130795A (en) Apparatus for compensating temperature of supersonic wave sensor and control method thereof
JP2537571Y2 (en) Laser device
KR20010036293A (en) Apparatus for determining a temperature using a Bolometer type Ifrared Rays sensor and method for compensating a sensetivity of the same
JPH04248423A (en) Apparatus for measuring luminescence
JPH10132577A (en) Optical fiber gyroscope
JPS61178610A (en) Reflection type distance sensor
JP6506120B2 (en) Gas sensor
JPH07280650A (en) Radiation thermometer
JPH0392734A (en) Measuring method for environment temperature by use of optical fiber sensor
JPH06323907A (en) Temperature-drift correction device used in optical analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050303

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees