JPH11514291A - Honeycomb catalyst carrier - Google Patents

Honeycomb catalyst carrier

Info

Publication number
JPH11514291A
JPH11514291A JP9515450A JP51545097A JPH11514291A JP H11514291 A JPH11514291 A JP H11514291A JP 9515450 A JP9515450 A JP 9515450A JP 51545097 A JP51545097 A JP 51545097A JP H11514291 A JPH11514291 A JP H11514291A
Authority
JP
Japan
Prior art keywords
catalyst
acid
honeycomb
catalyst carrier
phyllosilicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9515450A
Other languages
Japanese (ja)
Inventor
トーマス エンゲルハルト
ラインハルト ヘーン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sued Chemie AG
Original Assignee
Sued Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sued Chemie AG filed Critical Sued Chemie AG
Publication of JPH11514291A publication Critical patent/JPH11514291A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/64Addition to a carbon atom of a six-membered aromatic ring
    • C07C2/66Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/04Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides onto unsaturated carbon-to-carbon bonds
    • C07C67/05Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides onto unsaturated carbon-to-carbon bonds with oxidation
    • C07C67/055Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides onto unsaturated carbon-to-carbon bonds with oxidation in the presence of platinum group metals or their compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/30Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/16Clays or other mineral silicates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)

Abstract

(57)【要約】 主としてSiO2よりなるハニカムX線非晶質触媒担体を開示し、該触媒担体は、焼成して次いで酸浸出した、約0.1〜1.2ml/gの孔容積及び約20〜400m2/gの比表面積(BETによる)を有するフィロシリケート並びに約10〜50重量%の非晶質ケイ酸又は非晶質アルミニウムシリケートの少なくとも1種からなり、約0.1〜5mmの壁厚を有しかつ壁厚と壁間隔との比が1:5〜5:1である。触媒担体を、10m2/g以上、好ましくは40〜500m2/gの比表面積を有する微細に粉砕したフィロシリケートを液体、好ましくは水でペースト状にし、前記ペーストをハニカム体に押出し、これを乾燥してアルミニウムシリケートの対応する酸化ケイ素の焼結温度未満である約50〜200℃の温度で焼成し、次いで焼成体を酸処理することにより調製する。触媒担体は、元素周期表の1A、1B、2A、2B、6A及び/又は8族の触媒作用を有する元素の少なくとも1種を包含する。触媒は、気相におけるオレフィン、酸及び酸素からの不飽和エステルの調製、有機物を包含する排気の精製並びに芳香族化合物のアルキル化、特にベンゼンとエチレンからのエチルベンゼンの調製に使用することができる。 (57) Abstract: mainly discloses a honeycomb X-ray amorphous catalyst support consisting of SiO 2, the catalyst carrier is calcined to then acid leaching, the pore volume and about 0.1~1.2ml / g A phyllosilicate having a specific surface area (according to BET) of about 20 to 400 m 2 / g and at least one of amorphous silicic acid or amorphous aluminum silicate of about 10 to 50% by weight; And the ratio of wall thickness to wall spacing is 1: 5 to 5: 1. The catalyst support, 10 m 2 / g or more, preferably liquid phyllosilicate was finely pulverized with a specific surface area of 40~500m 2 / g, preferably into a paste with water, extruding the said paste into honeycomb bodies, it It is prepared by drying and firing at a temperature of about 50 to 200 ° C., which is lower than the sintering temperature of the corresponding silicon oxide of aluminum silicate, and then subjecting the fired body to an acid treatment. The catalyst support includes at least one element having a catalytic action of Group 1A, 1B, 2A, 2B, 6A and / or Group 8 of the periodic table. The catalyst can be used for the preparation of unsaturated esters from olefins, acids and oxygen in the gas phase, the purification of exhaust gases, including organics, and the alkylation of aromatics, especially the preparation of ethylbenzene from benzene and ethylene.

Description

【発明の詳細な説明】 ハニカム触媒担体 本発明は、ハニカム触媒担体、この上に調製する触媒、触媒担体の調製方法及 びその使用方法に関する。 ハニカム触媒は、気相で処理される種々の技術的触媒的方法に使用されている 。固床触媒と比較して、より大きな表面積を有しているにもかかわらず、流れに 対する抵抗が非常に小さい。これが、広範囲の用途、特に高い流速を伴う用途に 使用される理由である。 とりわけハニカム触媒は、自動車並びに発電所の排気清浄系に使用されている 。 自動車の排気清浄系用のハニカム触媒の調製において、第一にセラミックハニ カム触媒担体を押出す。従来使用されているセラミック物質は、コーディエライ トである。セラミック触媒担体を1000℃以上の温度で焼き、次いで圧縮する 。この方法で調製した場合、担体は開孔を僅しか有さない。この理由によって、 比表面積は非常に小さい。可能な限り広い表面積に触媒作用を有する貴金属を均 一に分布させるために、焼き、次いで圧縮したハニカム触媒を、洗浄−被膜[Was h-Coat]と称されるもので被覆する。洗浄−被膜は、一般的にγ−酸化アルミニ ウムよりなり、含浸することによりハニカム触媒に適用する。第2熱処理工程に おいて、洗浄−被膜は、水溶性貴金属塩で含浸し、次いで適用条件下で還元させ る。 貴金属で被覆した上述の触媒は、多くの欠点を有する。洗浄−被膜とセラミッ ク担体とは異なる物質からできているために、熱歪により洗浄−被膜の剥離が生 じる。加えて、使用するハニカム担体が多孔性ではないため、そのような触媒の 触媒活性を示す表面積は非常に小さい。 EP-B-0211224並びにDE-A-3524160には、触媒成分としてフィロシリ ケートを包含する、燃焼排気中の窒素酸化物を減少させる触媒が開示されている が、多層構造、(例えば3層シリケート)を有する酸活性化フィロシリケートは 開示されていない。焼成及び焼成後の酸含浸は規定されていない。また、EP-B-0 211224並びにDE-A-3524160に開示されている触媒は、ハニカム体の形態で調製し 得るが、ハニカム体の構造については、何らデータは与えられていない。 DE-A-4326938には、炭化水素及びハロゲン化炭化水素の酸化用のハニカムセラ ミック触媒が開示され、これは担体成分としてフィロシリケート並びに触媒作用 成分として三元酸化物の添加物を有するものである。しかし、非晶質ケイ酸又は 非晶質アルミニウムシリケートの添加は開示されていない。また、焼成後の含浸 並びにハニカム体の構造についても何ら開示されていない。 DE-A-4405877には、触媒、特に少なくとも1種の酸活性化フィロシリケートに 基づく成形触媒担体が開示され、これは多孔性ケイ酸及び/又はシリケート上の ガ−ナイトを有するものである。この成形体はX線非晶質ではなく、焼成及び焼 成後の酸含浸も規定されていない。成形体の特定の構造も開示されていない。 DE-A-4405878は、酸活性化フィロシリケートを乾燥して微細に粉砕し、これを 水で潤らせ、次いで塊状化条件下で混練することからなる粒状吸着媒体の調製方 法に関するものである。塊を微細に粉砕し乾燥することにより調製される乾燥顆 粒は向上した耐磨耗性を有している。 DE-A-2908491には、オレフィンをアルコールに水素化する触媒の調製方法が開 示され、これは第1工程において先ずモンモリロナイトクレイを酸で処理し、プ レス成形[press-mold]し、次いで500〜800℃で焼成することを特徴とする 。生じる成形担体物質は、第2工程において酸で処理する。第3工程において、 球状担体は酢酸を用いた含浸により酸触媒に変換する。しかし、この方法ではハ ニカム触媒は調製されない。 同様な方法がDE-A-4107973に開示され、これはシリカゲルを酸処理クレイに添 加するものである。しかし、この方法もハニカム触媒の調製に は使用しない。 本発明は、適当な処理により触媒に変換し得る至適な多孔構造を有する触媒担 体を提供するという課題に基づくものである。 本発明によると、主としてSiO2よりなるハニカムX線非晶質触媒は、焼成 して次いで酸浸出した、約0.1〜1.2ml/gの孔容積及び約20〜400 m2/gの比表面積(BETによる)を有するフィロシリケート並びに約10〜 50重量%までの非晶質ケイ酸又は非晶質アルミニウムシリケートの少なくとも 1種を包含し、約0.1〜5mmの壁厚を有しかつ壁厚と隔室の大きさとの比が 1:5〜5:1である。ハニカム触媒担体は0.8〜2.0g/cm3の嵩密度 を有する。「主としてSiO2よりなる」という表記の意味は、触媒担体がシリ ケート中に結合されていない遊離のSiO2を約50%以上包含するということ である。 ハニカム触媒担体の比表面積は、約70〜400m2/gの範囲であるのが好 適である。容積当たりの表面積は、約10×1032/l以上、好ましくは約2 0×103〜20×1042/lである。 「容積当たりの表面積」は、ハニカム体の容積に関係する表面積、例えばハニ カム体が反応器に完全に充填される場合、反応器の容積に関係する表面積である 。 触媒担体の平均孔径は、約5〜100nmの範囲であるのが好適である。 孔容積並びに平均孔径は、ASTM T4284-83に従う水銀浸透法[mercury penetrat ion method]で決定した。水銀は、室温において試験する試料中に通した。ポロ シメーターは、通過した水銀の量対圧力を測定した。水銀と試料表面との間の負 湿潤角[negative wetting angle]の観点において、孔が小さい程、圧力を高くす る必要がある。試験装置(マイクロメトリクス ポア サイザー[Micrometrics Pore Sizer]9310)を用いると、5nmまでの孔径では、圧力の範囲は1〜 3000バールである。 孔径分布は、浸透する水銀の量と用いる圧力の値の相関関係に基づき決定するこ とができる。 BETによる比表面積は、250℃まで加熱した試料を用いて、DIN661 32(単一点窒素法[sligle-point nitrogen method])により決定することがで きる。 本発明の触媒担体の酸度は、少なくとも10μg等量/gであるのが好適であ る。酸度は、下記のようにして決定する。 微細に粉砕した触媒担体(1g)を正確に秤量し、100mlの蒸留水中に分 散させた。次いで分散液を15分間攪拌した。次に、懸濁液をメルトロン[Merth rom]製の自動滴定プロセッサー[Titroprocessor]686により、0.01Nのナ トロンアルカリ溶液[natron lye]を用いてpH7.00の値まで滴定した。酸度 は、用いたナトロンアルカリ溶液[natron lye]の等量によって決定した。酸度は 、μg等量/gで表記した。 本発明によると、ハニカム触媒担体は更に上述の触媒担体に基づき、周期系の 1A、1B、2B、6A、及び/又は8族(旧IUPAC用語)の触媒作用活性 を有する元素の少なくとも1種を含有させて調製する。1A族は、例えばカリウ ムを包含し、1B族は好ましくは銅、銀並びに金を包含し、2B族は好ましくは 亜鉛並びにカドミウムを包含し、6A族は好ましくはクロム、モリブデン並びに タングステンを包含し、8族は好ましくはルテニウム、ロジウム、パラジウム並 びにプラチナを包含する。本発明によると、酸を更に添加することができる。 本発明によると、上述の触媒担体の調製方法であって、10m2/g以上、好 ましくは40〜500m2/gの比表面積を有する微細に粉砕したフィロシリケ ートを液体、好ましくは水でペースト状にし、前記ペーストをハニカム体に押出 し、これを乾燥してアルミニウムシリケートの対応する酸化ケイ素の焼結温度未 満である約50〜200℃の温度で焼成し、次いで焼成体を酸処理することを特 徴とする触媒担体の調製方法が提供される。 触媒担体は、10重量%以上の含浸し得る二価もしくは三価の金属イオン(C a,Mg,Al,Feのイオンなど)を含有するフィロシリケートから調製する のが好適である。下記するフィロシリケート; モンモリロナイト、ヘクトライト、サポー石、スチーブンサイト、セピオライト 、アタパルジャイト、ひる石、バイデライト及び/又はカオリンを用いるのが好 適である。 微細に粉砕したフィロシリケートは約100nm〜100μmの粒径を有する のが好適である。生成物の所望の性質を制御するために、合成シリケート塩及び /又は純粋なケイ酸をアルカリ溶液[lye]処理したフィロシリケートに添加する ことができる。 本発明の方法は、高度に特異的でかつ幾何学的な表面を有するハニカム触媒担 体を調製し得るものであり、これは良好な機械的強度をも有する。触媒は、上述 の排気清浄触媒として使用した場合に触媒的作用を示す。 触媒担体は、少なくとも1種の触媒元素及び周期系の1A、1B、2B、6A 、又は8族(既に規定)から選択される促進剤元素を包含するのが好ましい。 触媒担体は、貴金属(Ru,Rh,Pd,Pt)の塩溶液で含浸して乾燥し、 次いで焼成するのが好ましい。 成形体を乾燥(50〜100℃の温度)し、約200〜600℃で焼成するの が好ましい。 本発明の多孔性ハニカム触媒担体は、合成を完全に気相で実施する化学的方法 に用いるのが好ましい。その例は、ビニルアセテートの合成並びに有機物を包含 する空気のアフターバーニング[afterburning]、例えば石油精製ワニス並びに粘 着処理製造及びハロゲン化有機化合物を無害な方法で除去するプラントである。 本発明によると、本発明の触媒は、気相におけるオレフィン、酸及び酸素から の不飽和オレフィンの調製、並びに有機物を包含する空気の精製並びに芳香族化 合物のアルキル化、特にエチレンとベンゼンからのエ チルベンゼンの調製に触媒として使用することができる。 世界中におけるビニルアセテート調製用の経済的に有効な方法は、エチレンの 気相アセトキシル化[acetoxylation]である。エチレン、酢酸、酸素及び窒素の 気体混合物(化合気体として)は、管状反応器に通じる流れを与える。反応は、 8〜10バールの圧力で実施する(バイゼルメル[Weissermel]著、アルプ イン ダストリーレ オーガニッシェ ケミエ VCA バーラグスゲゼルシャフト バインハイム[Arpe Industrielle Organische Chemie VCA Verlagsgesellschaft Weinheim]、第3巻、1990年、第244〜247頁を参照)。爆発の可能性は、出発混 合物中の酸素含量を調節することにより回避する。エチレン変換は、通常約10 %である。 この方法は、貴金属被膜したSiO2担体による先行技術の固床触媒を用いて 実施する。従って、ジュート−ヒェミー AG 社は、酸活性化ベントナイトに 基づく球状ケイ酸担体“KA−トラエガー[KA-Traeger]”を製造した。市販の触 媒の粒径は5〜7mmの範囲である。 先行技術の方法は、氷酢酸中のパラジウムアセテート、カドミウムアセテート 並びにカリウムアセテートでSiO2を含浸し、次いで減圧下で100℃で乾燥 することを包含する。金属塩の還元は、水素又は他の適する還元媒体を用いて実 施することができる。特に、水溶性金化合物を用いる改良方法を実施して、沈殿 の後に還元するのが好適である。 DE-A-3803800には、凸状末端面を有するシリンダー状の担体が開示され、孔系 の50%が50〜20nmの孔を有する。担体物質は、エアロジーナス[aerogen eous]SiO2又はSiO2とAl23のエアロジーナス混合物よりなる。担体は 、優れた空間/時間速度並びに高度な選択性により同定する。 DE-A-3940125に開示されているビニルアセテートの製造方法において、4〜9 nmの粒径、7〜10nmの孔径を有するものの孔容積が50〜90%であるよ うなSiO2担体又はSiO2−Al23担体が使用される。触媒は、パラジウム 、カドミウム並びにカリウム塩で含浸し、次いで還元することにより調製される 。 ビニルアセテート合成用の上述の触媒の全ては、共通の欠点を有する:金属を 用いての含浸が触媒担体の全体的横断面[cross-section]を生じさせる。ビニル アセテートへの選択性を促進しかつエチレン酸化の副反応を抑えるために、反応 器中における触媒との接触時間を短くする必要がある。触媒本体の内部の相対的 に長い拡散パス[path]のために、反応時間は引き延ばされ、その結果副産物の生 成を引き起こす。 5〜6mmの実質的に小さい直径を有する触媒の使用は、高い圧力損失のため に、不利である。 上述の欠点を取り除く試みは、DE-A-3940125並びにDE-A-3803900の触媒担体の シェル金属含浸を実施することによりDE-A-4120492において為されている。この 特許出願により、含浸を鉱酸で制限して、触媒担体の外側のシェル上における金 属の被膜を得ることができる。これは、より高い選択性を達成し得る。しかし、 この方法は、反応器中で利用できる表面の一部分だけが触媒作用を有するために 、不完全である。これは、空間/時間速度が低いために、方法の経済的効率を減 少させるので、許容し得るものではない。 本発明による触媒の使用は、ビニルアセテートの合成並びに有機物を包含する 排気の精製に適用するように記載している。下記する例は、多孔性ハニカム触媒 と先行技術の触媒との比較を示している。 ビニルアセテート合成用の触媒を用いる他の化学的方法のように、転移[trans fer]は、流れに対してより低い抵抗にいおてより高い選択性と結合するより高い 空間/時間速度と共に生じる。この転移は、本発明の多孔性ハニカム触媒用いた 理想的な方法においても生じる。 本発明による、主にSiO2よりなる多孔性ハニカム触媒又は触媒担体は、酸 の存在下における反応に特に適する。γ−Al23などの典型的な担体物質は、 酸成分で損傷を受ける。これに対して、本発明の触媒担体は酸で損傷を受けない 。この理由において、本発明の触媒又は触媒担体は、塩素化有機化合物の分解に 対して特に良好である。 ハニカム触媒の壁厚が5mm以下である場合、担体断面は触媒作用を 有する金属により全体的に被膜される。この点において、触媒は全体的に触媒作 用を有する表面を利用し得ることと共に拡散パスがより短くなるという利点を有 する。このことは、高い空間/時間速度をもたらし、製造方法における高い選択 性を伴わせる。 酸含浸し得るフィロシリケートの上述の粉末の全ては、約20〜500m2/ g、好ましくは約40〜500m2/gの表面積及び約100nm〜100μm の粒径を有しており、合成フィロシリケート並びに純粋なケイ酸と同様に用いる ことができる。 触媒担体の調製において、粉末シリケート[silicate]は、適当な量の液体、好 ましくは水と混合してペースト状にする。生じるペーストは、適当な押出し型に より所望の外形のハニカム体に押出す。本体をシリン 増加させるために、適する有機並びに無機接着剤を添加することができる。多孔 系における所望の作用は、金属、グラファイト、ポリエチレン ミクロスフェア [microsphere]、セルロースエーテル並びにセルロース繊維などの可燃性物質を 触媒作用を有する酸化物と一緒に添加することにより達成される。 押出しハニカム体は、予め乾燥(例えば、100℃未満の温度)させ、使用す る物質の焼結温度未満である約20〜200℃の温度で焼成するのが好適である 。通常、焼成温度(使用する物質並びに用途に依存)は、400〜1600℃で ある。 ハニカム体を焼成後に酸、好ましくは塩酸で含浸して、孔を制御するのが重量 である。焼成して鉱酸で含浸した後、貴金属塩などの触媒作用を有する物質の被 覆を従来の方法で実施する。 貴金属塩は、プラチナ、パラジウム、ロジウム並びにイリジウムの塩が好適で ある。適する有機酸塩(例えば、アセテート)を使用するのが好適である。カド ミウム、バリウム並びにカリウムなどの促進剤元素の塩を更に添加することがで きる。担体を貴金属塩溶液で含浸した後、含浸した担体を乾燥し、次いで約20 0〜600℃で焼成する。貴金属の 塩を貴金属に変換させる。クロリド(又は、クロロ錯体[chloro-complex])など の無機酸の貴金属の塩も使用することができる。この場合、貴金属の酸化物又は 水酸化物をアンモニアで担体に沈殿させる。生じる担体を乾燥し、次いで適する 還元媒体(例えば、水素)で還元する。 被膜した触媒本体は、直径が10〜50mmであり、壁厚と壁間隔との比が1 :5〜5:1であるのが好適である。壁厚は0.5〜5mmである。ハニカム触 媒の長さは任意に選択することができ、本発明の特徴には全く影響を与えない。 実施を考慮すると、ハニカム触媒の長さは、破損の可能性があるため、50cm 以下である。 本発明を下記する実施例を参照して説明する。 比較試験例1 微細に粉砕した発熱性ケイ酸(90重量部)(エアロジル[Aerosil][登録商 標]200,DEGUSSA社製)を10重量部のステアリン酸マグネシウムと一緒に ホモゲナイズしてペースト状混合物にして、次いでペースト状混合物に0.1〜 1mmの粒径を有する良好な粒状の粒子を得るのに必要な量で水を添加した。良 好な粒子を乾燥し、0.1〜0.5mmの画分を選択した。乾燥した粒子を15 重量部の水で湿潤させ、凸末端面を有する直径6mm並びに6mm以上のタブレ ット[tablet]をタブレットプレス[tabletingpress]で加圧した。加圧したタブ レットを90℃で12時間乾燥し、900℃で4時間焼成した。 焼成したタブレット(100g)(多孔性を有する担体)を66mlの氷酢酸 中の11.5gのパラジウムアセテート、10.0gのカドミウムアセテート及 び10.8gのカリウムアセテートの溶液で含浸し、次いで残留する溶液の含量 が2重量%になるまで、窒素中において60℃、200mbarの圧力下で乾燥 した。これは、2.3重量%のパラジウム含量、1.8重量%のカドミウム含量 並びに2.0重量%のカリウム含量であった。 比較試験例2 比較試験例1のように調製した焼成SiO2担体を10%塩酸中の金属塩と8 時間、室温で接触させて含浸し、流水で洗浄して塩素を除去し、次いで乾燥させ た。金属塩を用いての含浸を比較試験例1に記載のように実施した。 比較試験例3 比較試験例1に記載のように調製した焼成SiO2担体を10%塩酸中の金属 塩と14時間、室温で接触させて含浸し、流水で洗浄して塩素を除去し、次いで 110℃で5時間乾燥した。生じた担体(100g)(担体は多孔を包含)を2 .8gのナトリウムテトラパラジウムクロリドと0.7gのヘキサクロロ金酸[h exachlorogoldacid]の溶液で含浸し、次いで乾燥した。次に乾燥しかつ含浸した 担体を500mlの2%水酸化ナトリウム水溶液に移し、この溶液中に30分間 静置し、次いで脱イオン水で洗浄して塩化物を完全に除去した。湿った担体を再 度乾燥した。次に担体を7.0gのカリウムアセテートの水溶液で含浸した。含 浸した担体を100℃で乾燥した。生じた触媒は、1.0重量%のパラジウム、 0.4重量%の金並びに2.8重量%のカリウムを含有していた。 実施例(本発明である) ハニカム触媒の調製 240m2/gの比表面積及び12μmの平均粒径を有する73重量%のSi O2(Tonsil Optimun[登録商標]FF)を含有する酸活性化ベントナイト(20k g)を、330m2/gの比表面積を有する5kgの沈澱シリカゲル(製品SD 1164、クロスフィールド社製)及び15kgの蒸留水と一緒に30分間ドラ イスミキサー[Drais mixer]中でホモゲナイズした。次いで湿潤混合物を壁厚1 mm及び壁間隔2mm(四角形ハニカム)を有する直径25mmのシリンダー状ハ ニカム体に押出 した。湿潤押出し体を70℃で12時間乾燥し、次いで700℃で5時間焼成し た(焼結温度は900℃である)。次に焼成ハニカム体を150mmの長さの小 片に切断した。切断したハニカム体を50リットルガラス反応器中に充填し、3 0%の塩酸で被覆した。担体の塩酸含浸を90℃で24時間実施した。次いで残 留する酸を除去し、ハニカム体を水で洗浄して塩化物を含まない状態にした。 100℃で乾燥したX線非晶質触媒担体は、198m2/gの比表面積、0. 65孔容積並びに12nmの平均孔径を有していた。容積当たりの比表面積は1 03・1032/lであり、かつ酸度は25μg等量/gであった。 ハニカム触媒担体(100g)(多孔を包含する触媒)を2.8gのナトリウ ム テトラクロロパラジウム及び0.7gのテトラクロロ金酸の溶液で含浸し、 次いで乾燥した。含浸ハニカム体を500mlの2%水酸化ナトリウム水溶液で 被覆し、溶液中に15時間静置した。次に担体を水で洗浄して塩化物を含まない 状態にし、再度乾燥した。乾燥したハニカム体を7.9gのカリウムアセテート の溶液で含浸し、乾燥させ、次いで250℃で焼成した。生じた触媒は、1.0 重量%のパラジウム、0.4重量%の金並びに2.8重量%のカリウムを含有し ていた。 使用例 触媒活性試験 比較試験例1〜3及び本発明の実施例1〜2で調製した触媒を内径26mm、 長さ6000mmを有する恒温管状反応器中に個々のハニカム体との間にスペー サーリングを有するように充填した。全ての管状反応器は、同量の触媒を包含す る。管状反応器を165℃の温度に温度調節した。27体積%のエチレン、55 体積%の窒素、12体積%の酢酸及び6体積%の酸素を含有する気体混合物を管 状反応器に、6.5バールの入口圧力で通した。反応が非常に発熱性であるため 、反応器を冷却して165℃の温度に維持する必要があった。液体反応生成物を 0℃で凝 縮させることにより連続的に凍らせ、ビニルアセテートをある空間/時間速度で 製造した。反応気体並びに凝縮した反応生成物のガスクロマトグラフィーによっ て選択性を決定した。 結果を下記の表に示す。 Description: TECHNICAL FIELD The present invention relates to a honeycomb catalyst carrier, a catalyst prepared thereon, a method for preparing the catalyst carrier, and a method for using the same. Honeycomb catalysts have been used in various technical catalytic processes which are processed in the gas phase. Despite having a larger surface area, the resistance to flow is very low compared to fixed bed catalysts. This is why it is used in a wide range of applications, especially those involving high flow rates. In particular, honeycomb catalysts are used in exhaust gas purification systems of automobiles and power plants. In the preparation of a honeycomb catalyst for an automotive exhaust purification system, first, a ceramic honeycomb catalyst carrier is extruded. A conventionally used ceramic material is cordierite. The ceramic catalyst support is baked at a temperature of 1000 ° C. or higher and then compressed. When prepared in this manner, the carrier has few openings. For this reason, the specific surface area is very small. In order to evenly distribute the catalytic noble metal over the largest possible surface area, the fired and then pressed honeycomb catalyst is coated with what is called a wash-coat [Wash-Coat]. The cleaning-coating generally consists of gamma-aluminum oxide and is applied to the honeycomb catalyst by impregnation. In a second heat treatment step, the cleaning-coating is impregnated with a water-soluble noble metal salt and then reduced under application conditions. The above-mentioned catalysts coated with noble metals have a number of disadvantages. Since the cleaning-coat and the ceramic carrier are made of different materials, the thermal strain causes the cleaning-coat to peel off. In addition, the catalytically active surface area of such catalysts is very small, since the honeycomb supports used are not porous. EP-B-0211224 and DE-A-3524160 disclose catalysts for reducing nitrogen oxides in combustion exhaust, which contain phyllosilicate as a catalyst component, but have a multilayer structure, for example a three-layer silicate. No acid activated phyllosilicates having the formula: Firing and acid impregnation after firing are not specified. Also, the catalysts disclosed in EP-B-0 211 224 and DE-A-3524160 can be prepared in the form of a honeycomb, but no data is given on the structure of the honeycomb. DE-A-4326938 discloses a honeycomb ceramic catalyst for the oxidation of hydrocarbons and halogenated hydrocarbons, which has an additive of phyllosilicate as a carrier component and a ternary oxide as a catalytic component. . However, the addition of amorphous silicic acid or amorphous aluminum silicate is not disclosed. Also, there is no disclosure of impregnation after firing and the structure of the honeycomb body. DE-A-4405877 discloses a shaped catalyst support based on catalysts, in particular on at least one acid-activated phyllosilicate, which comprises porous silica and / or ganite on silicate. This compact is not X-ray amorphous, and neither firing nor acid impregnation after firing is specified. The specific structure of the molding is not disclosed. DE-A-4405878 relates to a method for preparing a granular adsorption medium, comprising drying an acid-activated phyllosilicate, pulverizing it finely, moistening it with water and then kneading it under agglomeration conditions. . Dried granules prepared by finely grinding and drying the agglomerates have improved abrasion resistance. DE-A-2908491 discloses a process for the preparation of a catalyst for hydrogenating olefins to alcohols, in which in a first step the montmorillonite clay is first treated with an acid, press-molded, and then 500-. It is characterized by firing at 800 ° C. The resulting shaped carrier material is treated with an acid in a second step. In the third step, the spherical support is converted to an acid catalyst by impregnation with acetic acid. However, no honeycomb catalyst is prepared by this method. A similar method is disclosed in DE-A-4107973, which adds silica gel to acid-treated clay. However, this method is also not used for preparing the honeycomb catalyst. The present invention is based on the problem of providing a catalyst carrier having an optimal porous structure that can be converted into a catalyst by an appropriate treatment. According to the present invention, primarily honeycomb X-ray amorphous catalysts made of SiO 2 is fired to then acid leaching, the pore volume and about 20 to 400 m 2 / g to about 0.1~1.2ml / g A phyllosilicate having a specific surface area (according to BET) and at least one of amorphous silicic acid or amorphous aluminum silicate up to about 10 to 50% by weight, having a wall thickness of about 0.1 to 5 mm And the ratio of wall thickness to compartment size is 1: 5 to 5: 1. Honeycomb catalyst carrier has a bulk density of 0.8 to 2.0 g / cm 3. The expression "mainly composed of SiO 2 " means that the catalyst support contains about 50% or more of free SiO 2 not bound in the silicate. The specific surface area of the honeycomb catalyst carrier is suitably in the range of about 70~400m 2 / g. The surface area per volume is about 10 × 10 3 m 2 / l or more, preferably about 20 × 10 3 to 20 × 10 4 m 2 / l. "Surface area per volume" is the surface area related to the volume of the honeycomb body, for example, the volume of the reactor when the honeycomb body is completely filled in the reactor. The average pore size of the catalyst support is preferably in the range of about 5 to 100 nm. Pore volume and average pore size were determined by the mercury penetration method according to ASTM T4284-83. Mercury was passed through the samples to be tested at room temperature. The porosimeter measured the amount of mercury passed versus the pressure. In view of the negative wetting angle between mercury and the sample surface, the smaller the hole, the higher the pressure. Using a test apparatus (Micrometrics Pore Sizer 9310), for pore sizes up to 5 nm, the pressure range is 1 to 3000 bar. The pore size distribution can be determined based on the correlation between the amount of permeating mercury and the value of the pressure used. The specific surface area by BET can be determined according to DIN 661 32 (sligle-point nitrogen method) using samples heated to 250 ° C. The acidity of the catalyst support of the present invention is preferably at least 10 μg equivalent / g. The acidity is determined as follows. The finely ground catalyst support (1 g) was accurately weighed and dispersed in 100 ml of distilled water. The dispersion was then stirred for 15 minutes. Next, the suspension was titrated by an automatic titration processor [Titroprocessor] 686 manufactured by Merthrom using a 0.01 N natron alkali solution [natron lye] to a value of pH 7.00. The acidity was determined by the equivalent of the used natron alkaline solution [natron lye]. The acidity was expressed in μg equivalent / g. According to the invention, the honeycomb catalyst support is further based on the catalyst support described above and comprises at least one element having catalytic activity of group 1A, 1B, 2B, 6A and / or group 8 (former IUPAC term). Prepare by incorporating. Group 1A includes, for example, potassium, Group 1B preferably includes copper, silver and gold, Group 2B preferably includes zinc and cadmium, Group 6A preferably includes chromium, molybdenum and tungsten, Group VIII preferably includes ruthenium, rhodium, palladium and platinum. According to the invention, an acid can be further added. According to the present invention, a process for the preparation of the above-mentioned catalyst carrier, 10 m 2 / g or more, preferably liquid phyllosilicate was finely pulverized with a specific surface area of 40~500m 2 / g, preferably a paste with water Extruding the paste into a honeycomb body, drying the paste, firing at a temperature of about 50 to 200 ° C. which is lower than the sintering temperature of the corresponding silicon oxide of aluminum silicate, and then subjecting the fired body to an acid treatment. A method for preparing a catalyst carrier is provided. The catalyst support is preferably prepared from a phyllosilicate containing at least 10% by weight of impregnable divalent or trivalent metal ions (such as Ca, Mg, Al, Fe ions). It is preferable to use phyllosilicates described below; montmorillonite, hectorite, sapolite, stevensite, sepiolite, attapulgite, vermiculite, beidellite and / or kaolin. The finely ground phyllosilicate preferably has a particle size of about 100 nm to 100 μm. Synthetic silicate salts and / or pure silicic acid can be added to the lye-treated phyllosilicate to control the desired properties of the product. The process of the invention makes it possible to prepare a honeycomb catalyst support having a highly specific and geometric surface, which also has good mechanical strength. The catalyst exhibits catalytic action when used as the above-mentioned exhaust gas purifying catalyst. The catalyst support preferably comprises at least one catalytic element and a promoter element selected from groups 1A, 1B, 2B, 6A or group 8 (previously defined) of the periodic system. The catalyst carrier is preferably impregnated with a salt solution of a noble metal (Ru, Rh, Pd, Pt), dried, and then calcined. Preferably, the compact is dried (at a temperature of 50-100 ° C) and fired at about 200-600 ° C. The porous honeycomb catalyst carrier of the present invention is preferably used in a chemical method in which the synthesis is carried out completely in the gas phase. Examples are the synthesis of vinyl acetate and the afterburning of air containing organics, such as petroleum refining varnishes and tackifier production and plants for removing halogenated organic compounds in a harmless manner. According to the present invention, the catalyst of the present invention is used for the preparation of unsaturated olefins from olefins, acids and oxygen in the gas phase, and for the purification of air, including organics, and the alkylation of aromatics, in particular ethylbenzene from ethylene and benzene. Can be used as a catalyst in the preparation of An economically effective method for the preparation of vinyl acetate throughout the world is gas-phase acetoxylation of ethylene. A gaseous mixture of ethylene, acetic acid, oxygen and nitrogen (as a compound gas) provides a stream to the tubular reactor. The reaction is carried out at a pressure of 8 to 10 bar (Weissermel, Alpe Industrielle Organische Chemie VCA Verlagsgesellschaft Weinheim, Vol. 3, 1990, 244- See page 247). The possibility of an explosion is avoided by adjusting the oxygen content in the starting mixture. Ethylene conversion is usually about 10%. The process is carried out using a prior art solid bed catalyst with a noble metal coated SiO 2 support. Accordingly, Jute-Chemie AG has produced a spherical silicate support "KA-Traeger" based on acid-activated bentonite. Commercial catalysts have particle sizes in the range of 5-7 mm. Prior art methods include impregnating SiO 2 with palladium acetate, cadmium acetate and potassium acetate in glacial acetic acid, and then drying at 100 ° C. under reduced pressure. Reduction of the metal salt can be performed using hydrogen or other suitable reducing media. In particular, it is preferable to carry out an improved method using a water-soluble gold compound, and to carry out reduction after precipitation. DE-A-3803800 discloses a cylindrical carrier with a convex end face, wherein 50% of the pore system has pores of 50-20 nm. The carrier material consists of aerogenous SiO 2 or an aerogenous mixture of SiO 2 and Al 2 O 3 . Carriers are identified by excellent space / time rates as well as by a high degree of selectivity. In the process for producing vinyl acetate disclosed in DE-A-3940125, a SiO 2 carrier or SiO 2 having a particle size of 4 to 9 nm and a pore size of 7 to 10 nm but having a pore volume of 50 to 90%. -al 2 O 3 carrier is employed. The catalyst is prepared by impregnation with palladium, cadmium and potassium salts, followed by reduction. All of the above-mentioned catalysts for vinyl acetate synthesis have common drawbacks: impregnation with metal gives rise to an overall cross-section of the catalyst support. In order to promote selectivity to vinyl acetate and to suppress side reactions of ethylene oxidation, it is necessary to shorten the contact time with the catalyst in the reactor. Due to the relatively long diffusion path inside the catalyst body, the reaction time is lengthened, thereby causing the formation of by-products. The use of catalysts having a substantially small diameter of 5-6 mm is disadvantageous because of the high pressure drop. Attempts to eliminate the above disadvantages have been made in DE-A-4120492 by performing shell metal impregnation of the catalyst supports of DE-A-3940125 and DE-A-3803900. According to this patent application, impregnation can be limited with a mineral acid to obtain a coating of metal on the outer shell of the catalyst support. This can achieve higher selectivity. However, this method is incomplete because only a portion of the surface available in the reactor is catalytic. This is unacceptable as the space / time speed is low, which reduces the economic efficiency of the method. The use of the catalyst according to the invention is described as applied to the synthesis of vinyl acetate as well as to the purification of exhaust gases containing organic matter. The following example shows a comparison between a porous honeycomb catalyst and a prior art catalyst. As with other chemical methods using catalysts for vinyl acetate synthesis, trans fer occurs with higher space / time velocities that combine higher selectivity at lower resistance to flow . This transition occurs even in an ideal method using the porous honeycomb catalyst of the present invention. The porous honeycomb catalysts or catalyst supports mainly consisting of SiO 2 according to the invention are particularly suitable for reactions in the presence of acids. Typical carrier materials, such as γ-Al 2 O 3, are damaged by the acid component. In contrast, the catalyst support of the present invention is not damaged by the acid. For this reason, the catalysts or catalyst supports of the invention are particularly good for the decomposition of chlorinated organic compounds. When the wall thickness of the honeycomb catalyst is 5 mm or less, the cross section of the carrier is entirely coated with a catalytic metal. In this regard, the catalyst has the advantage that the overall catalytic surface can be utilized and the diffusion path is shorter. This results in high space / time velocities, with high selectivity in the manufacturing method. All of the above powder phyllosilicate can acid impregnation is from about 20 to 500 m 2 / g, and preferably have a particle size surface area and about 100nm~100μm about 40~500m 2 / g, synthetic phyllosilicates As well as pure silicic acid. In preparing the catalyst support, the powdered silicate is mixed with an appropriate amount of a liquid, preferably water, to form a paste. The resulting paste is extruded by a suitable extrusion die into a honeycomb body of the desired configuration. Body Suitable organic and inorganic adhesives can be added to increase. The desired effect in the porous system is achieved by adding combustible materials such as metals, graphite, polyethylene microspheres, cellulose ethers and cellulose fibers together with catalytic oxides. The extruded honeycomb body is preferably pre-dried (e.g., at a temperature below 100C) and fired at a temperature of about 20-200C, which is below the sintering temperature of the material used. Usually, the firing temperature (depending on the material used and the application) is between 400 and 1600C. After firing, the honeycomb body is impregnated with an acid, preferably hydrochloric acid, to control the pores. After calcination and impregnation with a mineral acid, coating with a catalytic substance such as a noble metal salt is carried out in a conventional manner. Preferred noble metal salts are platinum, palladium, rhodium and iridium salts. It is preferred to use a suitable organic acid salt (eg, acetate). Salts of promoter elements such as cadmium, barium and potassium can be further added. After impregnating the support with the noble metal salt solution, the impregnated support is dried and then calcined at about 200-600 ° C. Convert precious metal salts to precious metals. Noble metal salts of inorganic acids such as chloride (or chloro-complex) can also be used. In this case, the oxide or hydroxide of the noble metal is precipitated on the carrier with ammonia. The resulting carrier is dried and then reduced with a suitable reducing medium (eg, hydrogen). The coated catalyst body preferably has a diameter of 10 to 50 mm and a ratio of wall thickness to wall spacing of 1: 5 to 5: 1. The wall thickness is 0.5-5 mm. The length of the honeycomb catalyst can be arbitrarily selected and has no effect on the characteristics of the present invention. In consideration of implementation, the length of the honeycomb catalyst is 50 cm or less because of the possibility of breakage. The present invention will be described with reference to the following examples. Comparative Test Example 1 Finely pulverized pyrogenic silicic acid (90 parts by weight) (Aerosil® 200, manufactured by DEGUSSA) was homogenized together with 10 parts by weight of magnesium stearate to form a paste-like mixture. Then, water was added to the pasty mixture in an amount necessary to obtain good granular particles having a particle size of 0.1 to 1 mm. Good particles were dried and a fraction of 0.1-0.5 mm was selected. The dried particles were wetted with 15 parts by weight of water, and a tablet having a convex end face having a diameter of 6 mm and a diameter of 6 mm or more was pressed with a tableting press. The pressed tablet was dried at 90 ° C. for 12 hours and baked at 900 ° C. for 4 hours. The fired tablet (100 g) (porous carrier) is impregnated with a solution of 11.5 g of palladium acetate, 10.0 g of cadmium acetate and 10.8 g of potassium acetate in 66 ml of glacial acetic acid and then the remaining solution Was dried under nitrogen at 60 ° C. under a pressure of 200 mbar to a content of 2% by weight. This had a palladium content of 2.3% by weight, a cadmium content of 1.8% by weight and a potassium content of 2.0% by weight. Comparative Test Example 2 The calcined SiO 2 support prepared as in Comparative Test Example 1 was impregnated by contact with a metal salt in 10% hydrochloric acid for 8 hours at room temperature, washed with running water to remove chlorine, and then dried. Was. Impregnation with metal salts was carried out as described in Comparative Test Example 1. Comparative Test Example 3 The calcined SiO 2 support prepared as described in Comparative Test Example 1 was impregnated by contact with a metal salt in 10% hydrochloric acid for 14 hours at room temperature, washed with running water to remove chlorine, and Dry at 110 ° C. for 5 hours. 1. The resulting carrier (100 g) (the carrier includes porosity) It was impregnated with a solution of 8 g of sodium tetrapalladium chloride and 0.7 g of hexachlorogoldacid and then dried. The dried and impregnated carrier was then transferred to 500 ml of a 2% aqueous sodium hydroxide solution, allowed to stand in this solution for 30 minutes, and then washed with deionized water to completely remove the chloride. The wet carrier was dried again. The carrier was then impregnated with 7.0 g of an aqueous solution of potassium acetate. The impregnated support was dried at 100 ° C. The resulting catalyst contained 1.0% by weight palladium, 0.4% by weight gold and 2.8% by weight potassium. Example Preparation of a Honeycomb Catalyst (According to the Invention) Acid-activated bentonite containing 73% by weight of SiO 2 (Tonsil Optimun® FF) having a specific surface area of 240 m 2 / g and an average particle size of 12 μm (20 kg) were homogenized in a Drais mixer for 30 minutes with 5 kg of precipitated silica gel (product SD 1164, from Crossfield) having a specific surface area of 330 m 2 / g and 15 kg of distilled water. The wet mixture was then extruded into a 25 mm diameter cylindrical honeycomb body having a wall thickness of 1 mm and a wall spacing of 2 mm (square honeycomb). The wet extrudate was dried at 70 ° C. for 12 hours and then calcined at 700 ° C. for 5 hours (the sintering temperature is 900 ° C.). Next, the fired honeycomb body was cut into small pieces having a length of 150 mm. The cut honeycomb bodies were filled in a 50 liter glass reactor and covered with 30% hydrochloric acid. The carrier was impregnated with hydrochloric acid at 90 ° C. for 24 hours. Next, the remaining acid was removed, and the honeycomb body was washed with water to be free of chloride. The X-ray amorphous catalyst support dried at 100 ° C. has a specific surface area of 198 m 2 / g and a specific surface area of 0.1 m 2 / g. It had a 65 pore volume and an average pore size of 12 nm. The specific surface area per volume was 103 · 10 3 m 2 / l, and the acidity was 25 μg equivalent / g. The honeycomb catalyst carrier (100 g) (catalyst including porosity) was impregnated with a solution of 2.8 g of sodium tetrachloropalladium and 0.7 g of tetrachloroauric acid and then dried. The impregnated honeycomb was coated with 500 ml of a 2% aqueous sodium hydroxide solution and allowed to stand in the solution for 15 hours. The carrier was then washed with water to make it chloride-free and dried again. The dried honeycomb body was impregnated with a solution of 7.9 g of potassium acetate, dried and then calcined at 250 ° C. The resulting catalyst contained 1.0% by weight of palladium, 0.4% by weight of gold and 2.8% by weight of potassium. Usage Example Catalyst activity test The catalysts prepared in Comparative Test Examples 1 to 3 and Examples 1 to 2 of the present invention were placed in a constant temperature tubular reactor having an inner diameter of 26 mm and a length of 6000 mm by placing a spacer ring between individual honeycomb bodies. Filled to have. All tubular reactors contain the same amount of catalyst. The tubular reactor was thermostatted to a temperature of 165 ° C. A gas mixture containing 27% by volume of ethylene, 55% by volume of nitrogen, 12% by volume of acetic acid and 6% by volume of oxygen was passed through the tubular reactor at an inlet pressure of 6.5 bar. Because the reaction was very exothermic, the reactor had to be cooled and maintained at a temperature of 165 ° C. The liquid reaction product was continuously frozen by condensing at 0 ° C. to produce vinyl acetate at a space / time rate. The selectivity was determined by gas chromatography of the reaction gases as well as of the condensed reaction products. The results are shown in the table below.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C07C 69/15 B01D 53/36 ZABC ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C07C 69/15 B01D 53/36 ZABC

Claims (1)

【特許請求の範囲】 1.主としてSiO2よりなるハニカムX線非晶質触媒担体であって、該触媒担 体は、焼成して次いで酸浸出した、約0.1〜1.2ml/gの孔容積及び約2 0〜400m2/gの比表面積(BETによる)を有するフィロシリケート並び に約10〜50重量%の非晶質ケイ酸又は非晶質アルミニウムシリケートの少な くとも1種からなり、約0.1〜5mmの壁厚を有しかつ壁厚と壁間隔との比が 1:5〜5:1であることを特徴とするハニカムX線非晶質触媒担体。 2.比表面積が約70〜400m2/gの範囲であることを特徴とする請求項1 記載の触媒担体。 3.容積当たりの表面積が約10×1032/l、好ましくは約20×103〜 20×1042/lであることを特徴とする請求項1又は2記載の触媒担体。 4.平均孔径が約5〜100nmであることを特徴とする請求項1〜3のいずれ か一項に記載の触媒担体。 5.酸度が少なくとも10μg等量/gであることを特徴とする請求項1〜4の いずれか一項に記載の触媒担体。 6.元素周期表の1A、1B、2A、2B、6A又は8族の触媒作用を有する元 素の少なくとも1種を包含することを特徴とする請求項1〜5のいずれか一項に 記載の触媒担体上の触媒。 7.請求項1〜5のいずれか一項に記載の触媒担体の調製方法であって、10m2 /g以上、好ましくは40〜500m2/gの比表面積を有する微細に粉砕した フィロシリケートを液体、好ましくは水でペースト状にし、前記ペーストをハニ カム体に押出し、これを乾燥してのアルミニウムシリケートの対応する酸化ケイ 素の焼結温度未満である約50〜200℃の温度で焼成し、次いで焼成体を酸処 理することを特徴とする触媒担体の調製方法。 8.少なくとも1種のフィロシリケートを、10重量%以上の含浸し得る二価も しくは三価の金属イオンと一緒に用いることを特徴とする請求項7記載の方法。 9.用いるフィロシリケートがモンモリロナイト、ヘクトライト、サポー石、ス チーブンサイト、セピオライト、アタパルジャイト、ひる石、バイデライト及び /又はカオリンであることを特徴とする請求項7又は8記載の方法。 10.用いる微細に粉砕したフィロシリケートが約100nm〜100μmの粒径 を有することを特徴とする請求項7〜9のいずれか一項に記載の方法 11.請求項6に記載の触媒の調製方法であって、請求項1〜5のいずれか一項に 記載の触媒担体に元素周期表の1A、1B、2A、2B、6A及び/又は8族の 触媒作用を有する元素の少なくとも1種を包含させることを特徴とする触媒の調 製方法。 12.触媒が酸を包含することを特徴とする請求項11記載の方法。 13.触媒担体を貴金属塩溶液で含浸し、乾燥させ、焼成し、次いで貴金属成分を 除去することを特徴とする請求項11又は12記載の方法。 14.本体を乾燥させ、次いで約200〜600℃の温度で焼成することを特徴と する請求項7〜13のいずれか一項に記載の方法。 15.請求項6に記載の触媒並びに請求項7〜14のいずれか一項に記載の方法で 調製される触媒を、オレフィン、酸及び酸素から気相において不飽和エステルを 調製する際に用いることを特徴とする触媒の使用方法。 16.請求項6に記載の触媒並びに請求項7〜14のいずれか一項に記載の方法で 調製される触媒を、有機物を包含する排気の精製に触媒として用いることを特徴 とする触媒の使用方法。 17.請求項6に記載の触媒並びに請求項7〜14のいずれか一項に記載の方法で 調製される触媒を、芳香族化合物のアルキル化、特にベンゼンとエチレンからの エチルベンゼンの調製に触媒として用いることを特徴とする触媒の使用方法。[Claims] 1. Primarily a honeycomb X-ray amorphous catalyst support consisting of SiO 2, the catalyst carrier is calcined to then acid leaching, about 0.1~1.2ml / g pore volume and about 2 0~400m 2 Phyllosilicate having a specific surface area (by BET) of at least one of amorphous silicic acid or amorphous aluminum silicate having a wall thickness of about 0.1 to 5 mm. A honeycomb X-ray amorphous catalyst carrier characterized in that the ratio of wall thickness to wall spacing is 1: 5 to 5: 1. 2. Catalyst carrier of claim 1, wherein the specific surface area is in the range of about 70~400m 2 / g. 3. 3. The catalyst carrier according to claim 1, wherein the surface area per volume is about 10 × 10 3 m 2 / l, preferably about 20 × 10 3 to 20 × 10 4 m 2 / l. 4. The catalyst carrier according to any one of claims 1 to 3, wherein the average pore size is about 5 to 100 nm. 5. 5. The catalyst carrier according to claim 1, wherein the acidity is at least 10 [mu] g equivalent / g. 6. The catalyst carrier according to any one of claims 1 to 5, comprising at least one element having a catalytic action of Group 1A, 1B, 2A, 2B, 6A or Group 8 of the periodic table. Catalyst. 7. A process for preparing a catalyst carrier according to any one of claims 1 to 5, 10 m 2 / g or more, preferably liquid phyllosilicate was finely pulverized with a specific surface area of 40~500m 2 / g, Preferably, the paste is formed into a paste with water, and the paste is extruded into a honeycomb body, which is dried and calcined at a temperature of about 50 to 200 ° C. which is lower than the sintering temperature of the corresponding silicon oxide of aluminum silicate. A method for preparing a catalyst carrier, comprising subjecting a catalyst carrier to an acid treatment. 8. 8. The method according to claim 7, wherein at least one phyllosilicate is used together with at least 10% by weight of an impregnable divalent or trivalent metal ion. 9. 9. The method according to claim 7, wherein the phyllosilicate used is montmorillonite, hectorite, sapolite, stevensite, sepiolite, attapulgite, vermiculite, beidellite and / or kaolin. Ten. 10. The method according to any one of claims 7 to 9, wherein the finely ground phyllosilicate used has a particle size of about 100 nm to 100 [mu] m. The method for preparing a catalyst according to claim 6, wherein the catalyst carrier according to any one of claims 1 to 5 is a catalyst belonging to Group 1A, 1B, 2A, 2B, 6A, and / or 8 of the periodic table. A method for preparing a catalyst, comprising at least one element having an action. 12. The method of claim 11, wherein the catalyst comprises an acid. 13. 13. The method according to claim 11, wherein the catalyst support is impregnated with a noble metal salt solution, dried, calcined and then the noble metal component is removed. 14. The method according to any of claims 7 to 13, wherein the body is dried and then calcined at a temperature of about 200-600C. 15. The catalyst according to claim 6 and the catalyst prepared by the method according to any one of claims 7-14 are used in preparing an unsaturated ester in the gas phase from an olefin, an acid and oxygen. How to use the catalyst. 16. A method for using a catalyst, comprising using the catalyst according to claim 6 and the catalyst prepared by the method according to any one of claims 7-14 as a catalyst for purifying exhaust gas containing organic matter. 17. Use of the catalyst according to claim 6 and the catalyst prepared by the process according to any one of claims 7-14 as a catalyst in the alkylation of aromatic compounds, in particular in the preparation of ethylbenzene from benzene and ethylene. Use of a catalyst characterized by the above-mentioned.
JP9515450A 1995-10-18 1996-09-24 Honeycomb catalyst carrier Pending JPH11514291A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19538799.6 1995-10-18
DE19538799A DE19538799A1 (en) 1995-10-18 1995-10-18 Honeycomb-shaped catalyst carrier
PCT/EP1996/004157 WO1997014499A1 (en) 1995-10-18 1996-09-24 Honeycomb catalyst base

Publications (1)

Publication Number Publication Date
JPH11514291A true JPH11514291A (en) 1999-12-07

Family

ID=7775179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9515450A Pending JPH11514291A (en) 1995-10-18 1996-09-24 Honeycomb catalyst carrier

Country Status (4)

Country Link
EP (1) EP0855934A1 (en)
JP (1) JPH11514291A (en)
DE (1) DE19538799A1 (en)
WO (1) WO1997014499A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001269586A (en) * 2000-03-24 2001-10-02 Ngk Insulators Ltd Method for producing transparent honeycomb structure

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5705679A (en) * 1996-04-02 1998-01-06 Nicolau; Ioan Honeycomb catalyst for vinyl acetate synthesis
US6156283A (en) 1998-03-23 2000-12-05 Engelhard Corporation Hydrophobic catalytic materials and method of forming the same
DE19828491A1 (en) 1998-06-26 1999-12-30 Degussa Silicon dioxide molded article, useful as a catalyst support for the production of vinyl acetate monomer
DE10114836A1 (en) * 2001-03-26 2002-10-10 Sued Chemie Ag Acid-containing carrier material, for use as biocidal preservative, especially in animal feed or grain, comprises porous silicate carrier releasing acid slowly over long period
DE102007025444A1 (en) * 2007-05-31 2008-12-11 Süd-Chemie AG VAM shell catalyst, process for its preparation and its use
DE102007025442B4 (en) 2007-05-31 2023-03-02 Clariant International Ltd. Use of a device for producing a coated catalyst and coated catalyst
DE102007025223A1 (en) 2007-05-31 2008-12-04 Süd-Chemie AG Zirconia-doped VAM shell catalyst, process for its preparation and its use
DE102007025362A1 (en) 2007-05-31 2008-12-11 Süd-Chemie AG Doped Pd / Au coated catalyst, process for its preparation and its use
DE102007025443A1 (en) 2007-05-31 2008-12-04 Süd-Chemie AG Pd / Au coated catalyst containing HfO 2, process for its preparation and its use
GB0808427D0 (en) * 2008-05-09 2008-06-18 Johnson Matthey Plc Apparatus
DE102008059341A1 (en) 2008-11-30 2010-06-10 Süd-Chemie AG Catalyst support, process for its preparation and use
CN107149872B (en) * 2017-05-10 2020-06-12 大连理工大学 Preparation method of photocatalytic gas purification sticky note
JP2020076348A (en) 2018-11-06 2020-05-21 トヨタ自動車株式会社 Catalyst device and exhaust emission control system

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2111193B2 (en) * 1971-03-09 1973-11-29 Bayer Ag, 5090 Leverkusen Catalysts based on acidic activated alumina and their use for the alkylation of aromatic amines and hydroxy compounds
GB1526065A (en) * 1974-10-16 1978-09-27 Asahi Chemical Ind Process for separation of hydrocarbon mixture
NZ183608A (en) * 1976-03-31 1978-12-18 Mobil Oil Corp Aluminosilicate zeolite catalyst for selectine production of para-diakyl substituted benzenes
PL199748A1 (en) * 1976-07-19 1978-04-24 Mobil Oil Corp METHOD OF SELECTIVELY MANUFACTURING P-DUALKILOBENZENOW
GB1582842A (en) * 1976-09-29 1981-01-14 Ici Ltd Production of alkylbenzenes
MX152327A (en) * 1978-09-07 1985-06-27 Asahi Chemical Ind IMPROVED PROCEDURE FOR THE SEPARATION BY ADSORPTION OF C8 AROMATIC ISOMERS
JPS5756040A (en) * 1980-09-22 1982-04-03 Toshiba Corp Catalyst body for purification of waste combustion gas
JPS6164334A (en) * 1984-09-07 1986-04-02 Ube Ind Ltd Production of catalyst for purifying nitrogen oxide
DE3524160A1 (en) * 1985-07-05 1987-01-15 Sued Chemie Ag CATALYST FOR REDUCING THE NITROGEN OXIDE CONTENT OF COMBUSTION EXHAUST GASES
DE4120492A1 (en) * 1991-06-21 1992-12-24 Hoechst Ag METHOD FOR PRODUCING VINYL ACETATE
DE4323981C1 (en) * 1993-07-16 1995-03-09 Hoechst Ag Pallet and potassium, and cadmium, barium or gold-containing coated catalyst, process for its preparation and its use in the production of vinyl acetate
DE4326938A1 (en) * 1993-08-11 1995-02-16 Tridelta Gmbh Honeycomb ceramic catalyst for the oxidation of hydrocarbons and halogenated hydrocarbons
DE4405877A1 (en) * 1994-02-23 1995-08-24 Sued Chemie Ag Catalyst or catalyst carrier shaped body
DE4405878A1 (en) * 1994-02-23 1995-08-24 Sued Chemie Ag Process for the preparation of adsorbent granules

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001269586A (en) * 2000-03-24 2001-10-02 Ngk Insulators Ltd Method for producing transparent honeycomb structure
JP4504502B2 (en) * 2000-03-24 2010-07-14 日本碍子株式会社 Method for manufacturing transparent honeycomb structure

Also Published As

Publication number Publication date
EP0855934A1 (en) 1998-08-05
DE19538799A1 (en) 1997-04-24
WO1997014499A1 (en) 1997-04-24

Similar Documents

Publication Publication Date Title
US6316383B1 (en) Moldings based on silica
CN1078104C (en) Supported catalysts
RU2386477C2 (en) Layered composition and method of preparing and using said composition
JPH11514291A (en) Honeycomb catalyst carrier
KR100289213B1 (en) Silicon Dioxide Compacts Produced by Pyrolysis
JP5584891B2 (en) Exothermic catalyst carrier and catalyst produced from the carrier
US4713363A (en) High surface area supported noble metal catalysts and process for their preparation
Bankmann et al. Forming of high surface area TiO2 to catalyst supports
JPH06211517A (en) Method for extrusion of crystalline aluminosilicate
JPH07232067A (en) Copper catalyst formed for selective hydrogenation of furfural into furfuryl alcohol, method for production thereof and method for selective hydrogenation of organic compound
US6207610B1 (en) Compacts based on pyrogenically produced silicon dioxide
JP2000093797A (en) Supported catalyst for producing vinyl monomer, and preparation and use thereof
JP2010512985A (en) Process for producing a catalyst and use of the catalyst for olefin gas phase oxidation
US20030195114A1 (en) Supported catalyst
CA2253952A1 (en) Mouldings based on pyrogenic silicon dioxide
JP2003260359A (en) Spheric metal-containing catalyst, method for manufacturing the same and hydrogenation method of aromatic compound
JP4002884B2 (en) Production of sorbitol
US7351393B1 (en) Star shaped alumina extrudates and catalyst based thereon
JPH0674171B2 (en) Pressed product based on silicon dioxide / aluminum oxide mixed oxide obtained by thermal decomposition method, production method thereof, and catalyst carrier and catalyst comprising the pressed product
JP2002284520A (en) Mesoporous silica-alumina gel, moisture conditioning agent, and catalyst carrier
JP2932199B2 (en) Catalyst suitable for production of hydrocarbons from carbon monoxide and hydrogen, method for producing catalyst precursor and said catalyst
JPH0513090B2 (en)
JPH08195B2 (en) Catalyst for reducing the nitrogen oxide content of combustion exhaust gases
JPH05253481A (en) Molded catalyst body
KR0169111B1 (en) Process for the preparation of vinyl acetate