JPH1151170A - Gear change ratio controller of continuously variable transmission - Google Patents

Gear change ratio controller of continuously variable transmission

Info

Publication number
JPH1151170A
JPH1151170A JP9208072A JP20807297A JPH1151170A JP H1151170 A JPH1151170 A JP H1151170A JP 9208072 A JP9208072 A JP 9208072A JP 20807297 A JP20807297 A JP 20807297A JP H1151170 A JPH1151170 A JP H1151170A
Authority
JP
Japan
Prior art keywords
upshift
speed ratio
shift
speed
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9208072A
Other languages
Japanese (ja)
Other versions
JP3211737B2 (en
Inventor
Hiroyuki Ashizawa
裕之 芦沢
Kazutaka Adachi
和孝 安達
Tatsuo Ochiai
辰夫 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP20807297A priority Critical patent/JP3211737B2/en
Priority to US09/127,464 priority patent/US6013006A/en
Priority to EP98114470A priority patent/EP0895005B1/en
Priority to DE69819622T priority patent/DE69819622T2/en
Publication of JPH1151170A publication Critical patent/JPH1151170A/en
Application granted granted Critical
Publication of JP3211737B2 publication Critical patent/JP3211737B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66254Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling
    • F16H61/66259Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling using electrical or electronical sensing or control means

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To smoothly perform foot return up shift in addition to auto up shift and foot leave up shift by changing dynamic characteristics in accordance with gear change mode at the time of up shift. SOLUTION: Driving torque input from an engine is input into a continuously variable transmission 17 through a torque converter 12 and is transmitted to a secondary pulley 26 through a V belt 24 from a primary pulley 16. When power is transmitted, a movable conical plate 22 of the primary pulley 16 and a movable conical plate 34 of the secondary pulley 26 are displaced to the axial direction to change a gear change ratio continuously. A gear change ratio of the continuously variable transmission 17 and contact friction of the V belt 24 are controlled by a hydraulic control valve 3. Furthermore, a line pressure control means which adjusts line pressure and a step motor 64 which drives a gear change control valve in accordance with a target gear change ratio from a CVT control unit 1 are stored and mounted. The CVT control unit 1 reads signals which indicate various driving conditions and controls a gear change ratio variably in accordance with demands of a vehicle and a driver.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、無段変速機の変速
比制御装置の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a speed ratio control device for a continuously variable transmission.

【0002】[0002]

【従来の技術】車両に搭載される無段変速機の変速比制
御装置では、車速とスロットル開度TVO(またはアク
セルペダル踏み込み量)から目標変速比を決定してお
り、図10(B)のように、走行中にアクセルペダルが
任意の位置から離される運転操作と、図10(A)のよ
うに、発進加速のためにアクセルペダルを踏み込んだ
後、ほぼ一定の踏み込み量(例えば、図11に示す破線
AのTVO=6/8)を維持して車速を増大させる運転
操作では、予め設定した変速マップによってそれぞれア
ップシフトとなって、変速方向は同一であるが、変速条
件は異なっており、前者を足離しアップシフト(図11
のB)、後者をオートアップシフト(図11の破線A)
とする。
2. Description of the Related Art In a speed ratio control apparatus for a continuously variable transmission mounted on a vehicle, a target speed ratio is determined from a vehicle speed and a throttle opening TVO (or an accelerator pedal depression amount). As shown in FIG. 10A, a driving operation in which the accelerator pedal is released from an arbitrary position during traveling, and a substantially constant depression amount (for example, FIG. 11) after the accelerator pedal is depressed for start acceleration. In the driving operation in which the vehicle speed is increased while maintaining the TVO (6/8 of the broken line A shown in FIG. 5), the upshift is performed according to the previously set shift map, and the shift direction is the same, but the shift condition is different. , Lift the former upshift (Fig. 11
B), the latter is automatically upshifted (broken line A in FIG. 11).
And

【0003】このような変速比制御装置としては、例え
ば、特開平8−74958号公報等が知られており、ス
ロットル開度TVO(またはアクセルペダル踏み込み
量)と到達変速比(制御目標変速比)の変化量から、上
記2つのアップシフトのモードを判別し、各変速モード
毎に実変速比の応答速度を変更することで、変速条件の
異なる各変速モードに適した変速比の応答を得ることが
でき、変速ショックや燃費の低減を図ることができる。
As such a gear ratio control device, for example, Japanese Patent Application Laid-Open No. Hei 8-74958 is known, and the throttle opening TVO (or accelerator pedal depression amount) and the attained gear ratio (control target gear ratio) are known. The above two upshift modes are determined from the change amount of the speed change, and the response speed of the actual speed ratio is changed for each speed change mode, thereby obtaining a speed ratio response suitable for each speed change mode having different speed change conditions. Thus, it is possible to reduce shift shock and fuel consumption.

【0004】[0004]

【発明が解決しようとする課題】ところで、走行中にア
クセルペダルを離した結果アップシフトが行われる足離
しアップシフトでは、スロットル開度TVO=0/8と
なって目標変速比はほぼ最Hi側に設定され、車速は徐
々に減少するのに対し、図10(C)及び図11のCの
ように、アクセルペダルを踏み込んだ状態から踏み込み
量を減少する場合でも、スロットル開度TVOが任意の
位置から閉じられる方向へ操作されるため、スロットル
開度TVOと到達変速比の変化量が所定のしきい値を超
えるとアップシフトとなり、このアップシフトは、スロ
ットル開度TVOが全閉にならないため、車速はスロッ
トル開度TVOに応じた値、例えば、増速となり、この
変速は足戻しアップシフトとして上記足離しアップシフ
トとは区別される。
By the way, in a foot release upshift in which the upshift is performed as a result of releasing the accelerator pedal during traveling, the throttle opening TVO = 0/8 and the target speed ratio is almost the highest Hi side. , And the vehicle speed gradually decreases. However, as shown in FIG. 10 (C) and FIG. 11 (C), even when the depression amount is reduced from the state in which the accelerator pedal is depressed, the throttle opening TVO can be set to an arbitrary value. When the throttle opening TVO and the amount of change in the attained gear ratio exceed a predetermined threshold value, the upshift is performed, and the upshift is not performed because the throttle opening TVO is not fully closed. The vehicle speed is a value corresponding to the throttle opening TVO, for example, the speed is increased, and this shift is distinguished from the above-mentioned foot-off upshift as a foot-return upshift.

【0005】しかしながら、上記従来の変速比制御装置
においては、アクセルペダルを踏み込んだ状態から踏み
込み量を減少すると、足戻しアップシフトと足離しアッ
プシフトの区別を行っておらず、足戻しアップシフト時
の変速性能を満足するように変速比変化(図10の目標
変速比)を緩やかに設定すると、足離しアップシフトが
行われた場合では、変速が遅すぎてアクセルペダルから
足を離したにもかかわらずエンジン回転数の低下が遅延
することのなって、運転者に違和感を与えてしまう一
方、足離し変速アップシフト時の変速性能を満足するよ
う変速比変化を設定した場合、足戻しアップシフトで
は、変速が速すぎることになって、アクセルペダルを戻
したにもかかわらず車両が加速するような違和感を与え
てしまうという問題があった。
However, in the above-described conventional gear ratio control device, when the depression amount is reduced from the state in which the accelerator pedal is depressed, a distinction is not made between a foot-return upshift and a foot-release upshift. When the speed ratio change (the target speed ratio in FIG. 10) is set gently so as to satisfy the speed change performance, when the foot release upshift is performed, the speed change is too slow and the foot is released from the accelerator pedal. Regardless, the decrease in the engine speed is delayed, which gives the driver a sense of incongruity. Then, the problem is that the gear shift is too fast, giving the uncomfortable feeling that the vehicle accelerates even though the accelerator pedal is released. Was Tsu.

【0006】また、スロットル開度TVOや到達変速比
の変化量のしきい値を大きく設定することにより、スロ
ットル開度TVOの変化によるアップシフトの判定を遅
らせることもできるが、足戻し操作を行うと、足戻しア
ップシフトに代わって、車速の増大に応じてオートアッ
プシフトが行われ、オートアップシフトは、エンジン回
転数が吹け上がらないように設定されるため、変速比の
変化速度が大きく設定されており、このような足戻し変
速では変速が速すぎて、上記と同様にアクセルペダルを
戻したにもかかわらず、車両が加速するような違和感を
与えてしまうという問題があった。
[0006] Further, by setting a large threshold value for the amount of change in the throttle opening TVO and the attained gear ratio, it is possible to delay the determination of an upshift due to a change in the throttle opening TVO. Instead of a foot-return upshift, an auto-upshift is performed in response to an increase in vehicle speed.The auto-upshift is set so that the engine speed does not increase, so the speed ratio change speed is set to a large value. In this case, there is a problem that the speed is too fast in such a return-to-foot speed change, and the driver feels uncomfortable as if the vehicle is accelerated despite the accelerator pedal being returned in the same manner as described above.

【0007】そこで本発明は、上記問題点に鑑みてなさ
れたもので、オートアップシフト、足離しアップシフト
に加えて、足戻しアップシフトを円滑に行うことを目的
とする。
The present invention has been made in view of the above-mentioned problems, and has as its object to smoothly perform a foot return upshift in addition to an automatic upshift and a foot release upshift.

【0008】[0008]

【課題を解決するための手段】第1の発明は、少なくと
も車速とアクセルペダルの踏み込み量から運転状態を検
出する運転状態検出手段と、この運転状態に応じて無段
変速機の最終的な変速比の目標値として到達変速比を設
定する到達変速比設定手段と、実際の変速比を検出する
実変速比検出手段と、所定の動特性に応じた目標変速比
を演算する目標変速比設定手段とを備えて、実変速比を
この目標変速比に追従させながら到達変速比へ設定する
無段変速機の変速比制御装置において、前記到達変速比
と目標変速比の偏差を演算する変速比偏差演算手段と、
前記アクセルペダルの開度を演算する開度演算手段と、
無段変速機の入力軸回転数の変化量を演算する入力軸回
転数変化量演算手段と、これら変速比偏差とアクセルペ
ダル開度及び入力軸回転数の変化量からアップシフトの
変速モードを、オートアップシフト、足離しアップシフ
ト、足戻しアップシフトのいずれかに判定する変速モー
ド判定手段とを備えて、前記目標変速比設定手段は、こ
れらアップシフトの際の変速モードに応じて前記動特性
を変更する。
According to a first aspect of the present invention, there is provided a driving state detecting means for detecting a driving state based on at least a vehicle speed and an amount of depression of an accelerator pedal, and a final shift of a continuously variable transmission according to the driving state. Reaching speed ratio setting means for setting the reaching speed ratio as a target value of the ratio, actual speed ratio detecting means for detecting the actual speed ratio, and target speed ratio setting means for calculating the target speed ratio according to predetermined dynamic characteristics A speed ratio deviation for calculating a deviation between the attained speed ratio and the target speed ratio in the continuously variable transmission speed ratio control device for setting the actual speed ratio to the attained speed ratio while following the target speed ratio. Arithmetic means;
Opening calculation means for calculating the opening of the accelerator pedal,
An input shaft rotation speed change amount calculating means for calculating a change amount of the input shaft rotation speed of the continuously variable transmission; and an upshift shift mode based on the speed ratio deviation, the accelerator pedal opening, and the input shaft rotation speed change amount, Shift mode determining means for determining any one of an automatic upshift, a foot release upshift, and a foot return upshift, wherein the target gear ratio setting means determines the dynamic characteristic according to the shift mode at the time of these upshifts. To change.

【0009】また、第2の発明は、前記第1の発明にお
いて、前記変速モード判定手段は、前記変速比偏差とア
クセルペダル開度及び入力軸回転数変化量に加えて、前
回の変速モードの判定結果に応じてアップシフトの変速
モードを、オートアップシフト、足離しアップシフト、
足戻しアップシフトのいずれかに判定する。
According to a second aspect of the present invention, in the first aspect, the shift mode determining means includes, in addition to the shift ratio deviation, the accelerator pedal opening and the change amount of the input shaft speed, a shift mode of a previous shift mode. Depending on the determination result, the upshift gear mode is set to auto upshift, foot upshift,
It is determined to be one of the foot return upshifts.

【0010】また、第3の発明は、前記第1の発明にお
いて、前記目標変速比設定手段は、オートアップシフ
ト、足離しアップシフト、足戻しアップシフトの各変速
モードに応じてそれぞれ予め設定した動特性マップに基
づいて前記動特性を変更する動特性演算手段を設ける。
In a third aspect based on the first aspect, the target speed ratio setting means is preset in accordance with each of the shift modes of an auto upshift, a foot release upshift, and a foot return upshift. A dynamic characteristic calculating means for changing the dynamic characteristic based on the dynamic characteristic map is provided.

【0011】また、第4の発明は、前記第3の発明にお
いて、前記動特性演算手段は、前記変速比偏差に基づい
て動特性を演算する。
In a fourth aspect based on the third aspect, the dynamic characteristic calculating means calculates a dynamic characteristic based on the speed ratio deviation.

【0012】また、第5の発明は、前記第1の発明にお
いて、前記目標変速比設定手段は、前記到達変速比に対
する目標変速比の応答速度が、オートアップシフトのと
きには大きく、足戻しアップシフトのときには小さく、
足離しアップシフトのときにはオートアップシフトと足
戻しアップシフトの間の値に設定される。
In a fifth aspect based on the first aspect, the target speed ratio setting means is characterized in that a response speed of the target speed ratio to the attained speed ratio is large when an automatic upshift is performed, and Small when
At the time of a foot release upshift, the value is set to a value between the auto upshift and the foot return upshift.

【0013】[0013]

【発明の効果】したがって、第1の発明は、変速比偏差
とアクセルペダル開度及び入力軸回転数の変化量からア
ップシフトの変速モードを、オートアップシフト、足離
しアップシフト、足戻しアップシフトのいずれかに判定
してから、各変速モードに応じた動特性に設定すること
により、各アップシフトの運転状態に応じた動特性=変
速応答を得ることができ、例えば、オートアップシフト
では動特性定数を小さく、足離しアップシフトでは動特
性定数を大きく、足戻しアップシフトでは動特性定数を
足離しアップシフトよりもさらに大きく設定すること
で、オートアップシフト時には変速応答(変速速度)を
速くして実変速比の遅れを防ぐ一方、足離しアップシフ
ト時には目標応答を遅くして実変速比を緩やかに変化さ
せて、加速度が生じる時間を縮小して変速ショックを防
止することができ、また、足戻しアップシフト時には目
標応答をさらに遅くして実変速比を足離しアップシフト
時よりもさらに緩やかに変化させて、アクセルペダルを
戻したときに車両が加速するような違和感を確実に防止
でき、無段変速機を備えた車両の運転性を向上させるこ
とができる。
Therefore, the first aspect of the present invention is to change the shift mode of the upshift based on the change ratio of the gear ratio, the degree of opening of the accelerator pedal and the amount of change in the input shaft speed, to the auto-upshift, the foot-off upshift, the foot-return upshift And then setting the dynamic characteristic according to each shift mode, it is possible to obtain a dynamic characteristic = shift response according to the driving state of each upshift. By setting the characteristic constant to be small, the dynamic characteristic constant to be large when the foot is upshifted, and the dynamic characteristic constant to be even larger than the upshift when the foot is upshifted, the shift response (gear speed) is faster during the auto upshift. To prevent a delay in the actual gear ratio, and when the foot is upshifted, the target response is slowed down and the actual gear ratio is gradually changed, resulting in acceleration. The shift shock can be prevented by shortening the time, and the target response is further slowed down when the foot is upshifted, the actual gear ratio is released, and the accelerator pedal is returned more slowly than during the upshift. In such a case, an uncomfortable feeling such as acceleration of the vehicle can be reliably prevented, and the drivability of the vehicle including the continuously variable transmission can be improved.

【0014】また、第2の発明は、変速比偏差とアクセ
ルペダル開度及び入力軸回転数変化量に加えて、前回の
変速モードの判定結果に応じてアップシフトの変速モー
ドを判定することにより、オートアップシフト、足離し
アップシフト、足戻しアップシフトの判定を正確に行う
ことができる。
Further, the second invention determines the upshift shift mode in accordance with the previous shift mode determination result in addition to the speed ratio deviation, the accelerator pedal opening, and the change amount of the input shaft speed. It is possible to accurately determine an auto upshift, a foot release upshift, and a foot return upshift.

【0015】また、第3の発明は、オートアップシフ
ト、足離しアップシフト、足戻しアップシフトの各変速
モードに応じてそれぞれ予め設定した動特性マップに基
づいて動特性を演算することにより、動特性の演算を迅
速に行いながら、各アップシフトモードに最適の動特性
を設定することができる。
The third aspect of the present invention is to calculate a dynamic characteristic by calculating a dynamic characteristic based on a dynamic characteristic map set in advance according to each of the shift modes of an auto upshift, a foot release upshift, and a foot return upshift. Optimal dynamic characteristics can be set for each upshift mode while calculating characteristics quickly.

【0016】また、第4の発明は、動特性を演算する際
に、変速比偏差に基づいて動特性を演算するようにした
ため、各アップシフトモードの動特性を運転状態に応じ
て可変制御することができ、運転状態応じた最適の動特
性に設定することができる。
According to the fourth aspect of the present invention, when calculating the dynamic characteristics, the dynamic characteristics are calculated based on the speed ratio deviation. Therefore, the dynamic characteristics of each upshift mode are variably controlled in accordance with the driving state. Therefore, it is possible to set an optimum dynamic characteristic according to the operating state.

【0017】また、第5の発明は、アップシフトの変速
モードを、オートアップシフト、足離しアップシフト、
足戻しアップシフトの3つに分類するとともに、オート
アップシフト時には応答速度を大きくして実変速比の遅
れを防ぐ一方、足離しアップシフト時には応答速度を遅
くして実変速比を緩やかに変化させて、加速度が生じる
時間を縮小して変速ショックを防止することができ、さ
らに、足戻しアップシフト時には応答速度をさらに遅く
して実変速比を足離しアップシフト時よりもさらに緩や
かに変化させ、アクセルペダルを戻したときに車両が加
速するような違和感を確実に防止できる
According to a fifth aspect of the present invention, the upshift speed change mode includes an auto upshift, a foot release upshift,
In addition to the three types of foot return upshifts, the response speed is increased during an auto upshift to prevent a delay in the actual gear ratio, while the response speed is slowed during a foot upshift to gradually change the actual gear ratio. Thus, it is possible to prevent the shift shock by reducing the time during which the acceleration occurs, and to further reduce the response speed at the time of the foot return upshift to change the actual speed ratio more slowly than at the time of the upshift by releasing the foot. Discomfort that the vehicle accelerates when the accelerator pedal is released can be reliably prevented.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面に基づいて説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0019】図1〜図9に本発明の一実施形態を示し、
図1はVベルト式無段変速機の変速比制御装置の概略構
成図を示し、図2は油圧コントロールバルブ3の概略構
成図を、図3はCVTコントロールユニット1で行われ
る制御の概念図をそれぞれ示す。
1 to 9 show an embodiment of the present invention.
FIG. 1 is a schematic configuration diagram of a gear ratio control device of a V-belt type continuously variable transmission, FIG. 2 is a schematic configuration diagram of a hydraulic control valve 3, and FIG. 3 is a conceptual diagram of control performed by a CVT control unit 1. Shown respectively.

【0020】図1において、無段変速機17はロックア
ップクラッチ11を備えたトルクコンバータ12を介し
て図示しないエンジンに連結されており、一対の可変プ
ーリとして入力軸側のプライマリプーリ16と、駆動軸
(出力軸)に連結されたセカンダリプーリ26を備え、
これら一対の可変プーリ16、26はVベルト24によ
って連結されている。
In FIG. 1, a continuously variable transmission 17 is connected to an engine (not shown) via a torque converter 12 having a lock-up clutch 11, and includes a primary pulley 16 on the input shaft side as a pair of variable pulleys, and a drive. A secondary pulley 26 connected to a shaft (output shaft);
The pair of variable pulleys 16 and 26 are connected by a V-belt 24.

【0021】プライマリプーリ16は、トルクコンバー
タ12の出力軸と一体となって回転する固定円錐板18
と、固定円錐板18と対向配置されてV字状のプーリ溝
を形成するとともに、プライマリプーリシリンダ室20
へ作用する油圧(プライマリプーリ油圧)によって軸方
向へ変位可能な可動円錐板22から構成される。
The primary pulley 16 has a fixed conical plate 18 which rotates integrally with the output shaft of the torque converter 12.
And a V-shaped pulley groove formed opposite to the fixed conical plate 18 and a primary pulley cylinder chamber 20.
The movable conical plate 22 is capable of being displaced in the axial direction by a hydraulic pressure acting on the main body (primary pulley hydraulic pressure).

【0022】一方、セカンダリプーリ26は出力軸側に
設けられており、この出力軸と一体となって回転する固
定円錐板30と、この固定円錐板30と対向配置されて
V字状のプーリ溝を形成するとともに、セカンダリプー
リシリンダ室32へ作用する油圧(セカンダリ油圧)に
応じて軸方向へ変位可能な可動円錐板34から構成され
る。なお、プライマリプーリシリンダ室20は、セカン
ダリプーリシリンダ室32よりも大きな受圧面積を有し
ている。
On the other hand, the secondary pulley 26 is provided on the output shaft side, and has a fixed conical plate 30 that rotates integrally with the output shaft, and a V-shaped pulley groove that is disposed to face the fixed conical plate 30. And a movable conical plate 34 that can be displaced in the axial direction according to the hydraulic pressure acting on the secondary pulley cylinder chamber 32 (secondary hydraulic pressure). The primary pulley cylinder chamber 20 has a larger pressure receiving area than the secondary pulley cylinder chamber 32.

【0023】エンジンから入力された駆動トルクは、ト
ルクコンバータ12を介して無段変速機17へ入力さ
れ、プライマリプーリ16からVベルト24を介してセ
カンダリプーリ26へ伝達される。
The drive torque input from the engine is input to the continuously variable transmission 17 via the torque converter 12 and transmitted from the primary pulley 16 to the secondary pulley 26 via the V-belt 24.

【0024】上記のような動力伝達の際に、プライマリ
プーリ16の可動円錐板22及びセカンダリプーリ26
の可動円錐板34を軸方向へ変位させて、Vベルト24
との接触半径を変更することにより、プライマリプーリ
16とセカンダリプーリ26との変速比、すなわち変速
比ipを連続的に変更することができる。
At the time of power transmission as described above, the movable conical plate 22 of the primary pulley 16 and the secondary pulley 26
Is displaced in the axial direction, and the V-belt 24
By changing the contact radius with the pulley, the gear ratio between the primary pulley 16 and the secondary pulley 26, that is, the gear ratio ip can be continuously changed.

【0025】例えば、プライマリプーリ16のV字状プ
ーリ溝の幅を縮小すれば、セカンダリプーリ26とVベ
ルト24の接触半径は小さくなるので、変速比はHi側
へ小さくなる一方、可動円錐板22及び34をこの逆方
向へ変位させれば変速比はLo側に変化して大きな値に
設定される。
For example, if the width of the V-shaped pulley groove of the primary pulley 16 is reduced, the contact radius between the secondary pulley 26 and the V-belt 24 is reduced. And 34 are displaced in the opposite direction, the gear ratio changes to the Lo side and is set to a large value.

【0026】そして、無段変速機17の変速比及びVベ
ルト24の接触摩擦力は油圧コントロールバルブ3によ
って制御され、油圧コントロールバルブ3にはライン圧
を調整する図示しないライン圧制御手段と、図2に示す
ように、CVTコントロールユニット1からの目標変速
比に応じて変速制御弁63を駆動するステップモータ6
4が収装される。
The gear ratio of the continuously variable transmission 17 and the contact frictional force of the V-belt 24 are controlled by a hydraulic control valve 3, and the hydraulic control valve 3 includes a line pressure control means (not shown) for adjusting the line pressure. As shown in FIG. 2, a step motor 6 for driving the shift control valve 63 in accordance with the target shift ratio from the CVT control unit 1
4 is installed.

【0027】CVTコントロールユニット1は、無段変
速機17のプライマリプーリ16の回転数Npri(入力
軸回転数)を検出するプライマリプーリ回転数センサ
6、セカンダリプーリ26の回転数Nsec(出力軸回転
数)を検出するセカンダリプーリ回転数センサ7からの
信号と、インヒビタースイッチ8からのシフト位置と、
運転者が操作するアクセルペダルの踏み込み量に応じた
スロットル開度センサ5からのスロットル開度TVO
(又は、アクセルペダルの開度)等の運転状態検出手段
からの信号を読み込むとともに、図示しないエンジンの
回転数Ne、図示しないアイドルスイッチなどの運転状
態を示す信号を読み込んで、車両の運転状態ないし運転
者の要求に応じて、変速比を可変制御している。なお、
本実施形態では、セカンダリ回転数Nsecに所定の定数
を乗じたものを車速VSPとして用いる。
The CVT control unit 1 includes a primary pulley rotation speed sensor 6 for detecting the rotation speed Npri (input shaft rotation speed) of the primary pulley 16 of the continuously variable transmission 17, and a rotation speed Nsec (output shaft rotation speed) of the secondary pulley 26. ), The signal from the secondary pulley rotation speed sensor 7, the shift position from the inhibitor switch 8,
Throttle opening TVO from throttle opening sensor 5 according to the amount of depression of the accelerator pedal operated by the driver
(Or an accelerator pedal opening) and other signals from operating state detecting means, as well as an engine speed Ne (not shown) and a signal indicating an operating state such as an idle switch (not shown). The gear ratio is variably controlled according to the driver's request. In addition,
In the present embodiment, a value obtained by multiplying the secondary rotation speed Nsec by a predetermined constant is used as the vehicle speed VSP.

【0028】このような、プライマリプーリ16とセカ
ンダリプーリ26のV字状プーリ溝の幅を変化させる変
速比制御は、プライマリプーリシリンダ室20への油圧
制御によって行われ、図2に示すように、油圧コントロ
ールバルブ3の変速制御弁63を駆動するステップモー
タ64を制御することで行われる。
The speed ratio control for changing the widths of the V-shaped pulley grooves of the primary pulley 16 and the secondary pulley 26 is performed by controlling the hydraulic pressure to the primary pulley cylinder chamber 20, and as shown in FIG. This is performed by controlling a step motor 64 that drives a shift control valve 63 of the hydraulic control valve 3.

【0029】ステップモータ64は、変速リンク67を
介してCVTコントローラ1からの指令に応じて変速制
御弁63を駆動し、プライマリプーリ16のシリンダ室
20に供給される油圧を調整することで実変速比ipR
を目標変速比ipTに一致させるよう制御する。
The stepping motor 64 drives the transmission control valve 63 in response to a command from the CVT controller 1 via the transmission link 67, and adjusts the hydraulic pressure supplied to the cylinder chamber 20 of the primary pulley 16 to change the actual transmission. Ratio ip R
The controls to match the target speed ratio ip T.

【0030】油圧コントロールバルブ3及び変速リンク
67を主体とするフィードバック手段は前記従来例と同
様に構成されており、ステップモータ64はピニオン6
6を介してラック65と歯合しており、このラック65
は所定のレバー比の変速リンク67の一端に連結され
る。そして、この変速リンク67の途中には変速制御弁
63のスプール(図示せず)が連結されるとともに、リ
ンク67の他端には可動円錐板22の軸方向の変位に応
動するフィードバック部材158が連結される。
The feedback means mainly composed of the hydraulic control valve 3 and the speed change link 67 is constructed in the same manner as in the conventional example, and the step motor 64 is connected to the pinion 6.
6 and the rack 65 meshes with each other.
Is connected to one end of a transmission link 67 having a predetermined lever ratio. A spool (not shown) of the transmission control valve 63 is connected in the middle of the transmission link 67, and a feedback member 158 responsive to an axial displacement of the movable conical plate 22 is provided at the other end of the link 67. Be linked.

【0031】このフィードバック部材158は、一端を
可動円錐板22の外周と軸方向で係合するとともに、所
定の位置にはライン圧制御弁60のロッド60aが連結
され、ステップモータ64の変位と、実際の変速比とな
る可動円錐板22の変位に応じて変速制御弁63及びラ
イン圧制御弁60を駆動する。
One end of the feedback member 158 is axially engaged with the outer periphery of the movable conical plate 22, and the rod 60a of the line pressure control valve 60 is connected to a predetermined position. The shift control valve 63 and the line pressure control valve 60 are driven in accordance with the displacement of the movable conical plate 22 that becomes the actual gear ratio.

【0032】変速制御弁63は、ステップモータ64の
駆動量(回転位置)に応じてプライマリプーリ16のシ
リンダ室20への供給油圧を制御し、ラック65の図中
左方向への変位によって、プライマリプーリ16のシリ
ンダ室20への供給油圧を増大してHi側への変速を行
う一方、右方向への変位によってシリンダ室20の油圧
を低減してLo側へ変速を行う。
The shift control valve 63 controls the hydraulic pressure supplied to the cylinder chamber 20 of the primary pulley 16 in accordance with the drive amount (rotational position) of the step motor 64, and the primary pressure is changed by the displacement of the rack 65 to the left in the drawing. The shift to the Hi side is performed by increasing the oil pressure supplied to the cylinder chamber 20 of the pulley 16, and the shift to the Lo side is performed by reducing the oil pressure of the cylinder chamber 20 by rightward displacement.

【0033】なお、図2において、78はシフトレバー
に応動するマニュアル弁、76は負圧ダイアフラム、7
7は負圧ダイアフラム76に応動するスロットル弁で、
95はラック65を最Hi及び最Lo位置で係止するス
トッパである。
In FIG. 2, reference numeral 78 denotes a manual valve responsive to the shift lever, 76 denotes a negative pressure diaphragm,
7 is a throttle valve which responds to the negative pressure diaphragm 76,
A stopper 95 locks the rack 65 at the highest Hi and lowest Lo positions.

【0034】次に、CVTコントロールユニット1で行
われる変速比制御の一例について、図3の制御概念図を
参照しながら以下に詳述する。
Next, an example of the gear ratio control performed by the CVT control unit 1 will be described in detail with reference to the control conceptual diagram of FIG.

【0035】図3において、CVTコントロールユニッ
ト1を構成する目標変速比生成装置400は、セカンダ
リ回転数センサ7からのセカンダリ回転数Nsecに基づ
く車速VSP、スロットル開度センサ5のスロットル開
度TVOから、図11のマップに基づいて運転状態に応
じた目標プライマリ回転数tNpriを演算する目標プラ
イマリ回転数演算部410と、目標プライマリ回転数t
Npriを、検出したセカンダリ回転数Nsecで除算するこ
とで到達変速比ip0を演算する到達変速比演算部43
0と、到達変速比ip0と目標変速比ipTの偏差eipを
演算する変速比偏差演算部450と、変速比偏差eipか
ら実変速比ipr(Npri/Nsec)を到達変速比ip0
一致させるときに目標とする変速比の動特性(変速比応
答=変速速度)の定数T0を決定する目標変速比動特性
決定部460と、到達変速比ip0と目標とする変速比
の動特性の定数T0を基に、変速比サーボ装置500の
動特性(伝達特性)の逆系のフィルタを備えて、目標変
速比ipTと指令変速比ipcを演算する目標変速比生
成部470に加えて、目標プライマリ回転数tNpriと
変速比偏差eip及びスロットル開度TVOからアップシ
フト時の変速モードを判定するアップシフトモード判定
部480が設けられ、目標変速比動特性決定部460は
アップシフトの変速モードに応じたマップから動特性定
数T0を決定する。
In FIG. 3, the target speed ratio generating device 400 constituting the CVT control unit 1 calculates the vehicle speed VSP based on the secondary rotation speed Nsec from the secondary rotation speed sensor 7 and the throttle opening TVO of the throttle opening sensor 5. A target primary rotation speed calculation unit 410 for calculating a target primary rotation speed tNpri according to the operating state based on the map of FIG. 11; and a target primary rotation speed t
Ultimate speed ratio calculating unit 43 that calculates the ultimate speed ratio ip 0 by dividing Npri by the detected secondary rotational speed Nsec.
0, and the gear ratio deviation computing unit 450 for computing a deviation eip arrival speed ratio ip 0 and the target speed change ratio ip T, match the actual speed ratio ipr from the gear ratio deviation eip and (Npri / Nsec) to reach speed ratio ip 0 A target gear ratio dynamic characteristic determination unit 460 that determines a constant T 0 of a dynamic characteristic (gear ratio response = gear speed) of a target gear ratio when the gear ratio is changed, and a dynamic characteristic of the attained gear ratio ip 0 and the target gear ratio. the constant T 0 in group, a de-system filters the dynamic characteristics of the speed ratio servo device 500 (transfer characteristic), in addition to the target speed ratio generator 470 for calculating a command gear ratio ipc a target speed change ratio ip T An upshift mode determining unit 480 for determining a shift mode at the time of an upshift from the target primary rotational speed tNpri, the speed ratio deviation eip, and the throttle opening TVO is provided. Mode The dynamic characteristic constant T 0 is determined from the corresponding map.

【0036】変速比サーボ装置500は、目標変速比生
成装置400からの指令変速比ipcと車速VSP及び
プライマリ回転数Npriに基づいて、ステップモータ6
4の駆動を行う。
The speed ratio servo device 500 controls the stepping motor 6 based on the commanded speed ratio ipc from the target speed ratio generating device 400, the vehicle speed VSP and the primary speed Npri.
4 is performed.

【0037】なお、上記目標変速比生成装置400のう
ちアップシフトモード判定部480以外は、本願出願人
が提案した特願平9−226656号とほぼ同様であ
る。
It is to be noted that, except for the upshift mode judging section 480 in the target gear ratio generating device 400, it is almost the same as Japanese Patent Application No. 9-226656 proposed by the present applicant.

【0038】ここで、前記従来例にも示したアップシフ
トモードは、次表のように、オートアップシフト、足離
しアップシフトと足戻しアップシフトの3つの変速モー
ドに区別される。
Here, the upshift mode also shown in the conventional example is divided into three shift modes, that is, an auto upshift, a foot release upshift and a foot return upshift, as shown in the following table.

【0039】[0039]

【表1】 [Table 1]

【0040】次に、マイクロコンピュータを主体とする
CVTコントロールユニット1によって上記変速比制御
を行う場合について、図4のフローチャートを参照しな
がら説明する。なお、図4のフローチャートは、図3の
目標変速比生成装置400のうち、アップシフトモード
判定部480及び目標変速比動特性決定部460で行わ
れる処理を示し、その他については、上記特願平9−2
26656号と同様である。
Next, the case where the above-described gear ratio control is performed by the CVT control unit 1 mainly composed of a microcomputer will be described with reference to the flowchart of FIG. Note that the flowchart of FIG. 4 shows processing performed by the upshift mode determination unit 480 and the target gear ratio dynamic characteristic determination unit 460 of the target gear ratio generation device 400 of FIG. 9-2
No. 26656.

【0041】まず、ステップS1では、上記変速比偏差
演算部450で求めた変速比偏差eipが予め設定した変
速方向判定用のしきい値DipT未満であるかを比較し
て、偏差eipがしきい値DipT以上の場合には、ダウン
シフトであると判定してステップS9へ進む一方、そう
でない場合にはステップS2へ進んで、偏差eipが負の
しきい値−DipT未満であるかを比較して、偏差eipが
負のしきい値−DipTよりも小さければ、ダウンシフト
であると判定してステップS3の処理へ進む一方、そう
でない場合には、変速が行われていないと判定して処理
を終了する。
First, in step S1, a comparison is made as to whether the gear ratio deviation eip obtained by the gear ratio deviation calculator 450 is less than a preset threshold value DipT for determining a gear direction, and the difference eip is determined by a threshold. If the value is equal to or more than the value DipT, it is determined that the shift is a downshift, and the process proceeds to step S9. If not, the process proceeds to step S2 to compare whether the deviation eip is less than the negative threshold value -DipT. If the deviation eip is smaller than the negative threshold value -DipT, it is determined that a downshift has occurred, and the process proceeds to step S3. To end.

【0042】アップシフトと判定されたステップS3で
は、スロットル開度TVO、変速比偏差eip、目標プラ
イマリ回転数tNpriの変化量ΔDrevと前回の変速モー
ドに基づいて、上記表1に示したアップシフトのモード
を図5に示すように判定する。判定する。なお、目標プ
ライマリ回転数tNpriの変化量ΔDrevは、目標プライ
マリ回転数tNpriの現在値と前回値の差から演算され
るものである。
In step S3 where it is determined that the upshift is performed, the upshift of the upshift shown in Table 1 is performed based on the throttle opening TVO, the gear ratio deviation eip, the change amount ΔDrev of the target primary rotational speed tNpri, and the previous shift mode. The mode is determined as shown in FIG. judge. The change amount ΔDrev of the target primary rotation speed tNpri is calculated from the difference between the current value and the previous value of the target primary rotation speed tNpri.

【0043】オートシフトアップ、足離しシフトアッ
プ、足戻しシフトアップの判定は、前回の変速モードの
判定結果に基づいて、図5のような場合分けによって実
行される。
The determination of the automatic shift-up, the foot-up shift-up, and the foot-return shift-up is executed based on the result of the previous shift mode determination in different cases as shown in FIG.

【0044】(1)前回の変速モードがオートアップシ
フトの場合 条件1;スロットル開度TVO ≠ 0かつ変化量ΔDre
v<KDであれば、足戻しアップシフト。ただし、KD
足戻しアップシフト判定用のしきい値で、KD<0の値
に予め設定されたものである。
(1) When the previous shift mode is an auto upshift Condition 1: Throttle opening TVO ≠ 0 and change amount ΔDre
If v <K D , the back upshift. However, K D is a threshold for determining a foot back upshift, in which is preset to the value of K D <0.

【0045】条件2;スロットル開度TVO=0が成立
する場合には、足離しアップシフト。
Condition 2: If the throttle opening TVO = 0, the upshift is performed.

【0046】上記、条件1または条件2を満たさない場
合には、オートアップシフトと判定する。
If the above condition 1 or condition 2 is not satisfied, it is determined that an automatic upshift has occurred.

【0047】(2)前回の変速モードが足離しアップシ
フトの場合 条件3;スロットル開度TVO ≠ 0が成立する場合に
は、足戻しアップシフト。
(2) When the previous shift mode is a foot release upshift Condition 3: If the throttle opening TVO ≠ 0 is satisfied, a foot return upshift.

【0048】条件4;偏差eip>Keが成立する場合に
は、オートアップシフトと判定する。なお、Keはオー
トアップシフト判定用のしきい値である。
Condition 4: If the deviation eip> Ke is satisfied, it is determined that an automatic upshift is performed. In addition, Ke is a threshold value for automatic upshift determination.

【0049】上記、条件3または条件4を満たさない場
合には、足離しアップシフトと判定する。
When the above condition 3 or condition 4 is not satisfied, it is determined that the foot is upshifted.

【0050】(3)前回の変速モードが足戻しアップシ
フトの場合 条件2;スロットル開度TVO=0が成立する場合に
は、足離しアップシフト。
(3) When the previous gear change mode is a foot return upshift Condition 2: If the throttle opening TVO = 0, the foot release upshift is performed.

【0051】条件4;偏差eip>Keが成立する場合に
は、オートアップシフトと判定する。
Condition 4: If deviation eip> Ke is satisfied, it is determined that an automatic upshift has been performed.

【0052】上記、条件2または条件4を満たさない場
合には、足戻しアップシフトと判定する。
If the above condition 2 or condition 4 is not satisfied, it is determined that the foot is upshifted.

【0053】(4)前回の変速モードがダウンシフトの
場合 条件2;スロットル開度TVO=0が成立する場合に
は、足離しアップシフト。
(4) When the previous shift mode is a downshift Condition 2: If the throttle opening TVO = 0 is established, release the upshift.

【0054】条件1;スロットル開度TVO ≠ 0かつ
変化量ΔDrev<KDであれば、足戻しアップシフト。
[0054] Condition 1: If the throttle opening TVO ≠ 0 and variation ΔDrev <K D, a foot back upshift.

【0055】上記、条件1または条件2を満たさない場
合には、オートアップシフトと判定する。
If the above condition 1 or condition 2 is not satisfied, it is determined that an automatic upshift has occurred.

【0056】以上の場合分け(1)〜(4)によって、
ステップS2でアップシフトと判定された場合には、図
5に示すように、上記条件1〜4によって、オートシフ
トアップ、足離しシフトアップ、足戻しシフトアップの
いずれかが判定される。
According to the above cases (1) to (4),
If it is determined in step S2 that the shift is an upshift, as shown in FIG. 5, one of the automatic shift up, the foot release shift up, and the foot return shift up is determined based on the above conditions 1 to 4.

【0057】そして、ステップS4からステップS8で
は、変速モードに応じて図6(A)〜(C)に示すよう
に、目標動特性時定数T0のマップが選択されて、ステ
ップS10では、変速比偏差eipに応じて目標動特性時
定数T0の演算を行って処理を終了する。
[0057] Then, in step S8 from step S4, in accordance with the shifting mode as shown in FIG. 6 (A) ~ (C) , the map of the target dynamic characteristic time constant T 0 is selected, in step S10, shift The target dynamic characteristic time constant T 0 is calculated according to the ratio deviation eip, and the process ends.

【0058】ここで、各目標動特性時定数T0について
説明すると、オートアップシフトの場合には、図6
(A)のように、変速比偏差eipの大小にかかわらず、
目標動特性時定数T0が小さい一定値に設定され、目標
変速比ipTに対する実変速比ip Rの遅れが小さくなる
よう設定される。
Here, each target dynamic characteristic time constant T0about
To explain, in the case of auto upshift, FIG.
As shown in (A), regardless of the magnitude of the gear ratio deviation eip,
Target dynamic characteristic time constant T0Is set to a small constant value and the target
Gear ratio ipTTransmission ratio ip with respect to RDelay is small
It is set as follows.

【0059】足離しアップシフトの場合には、図6
(B)のように、変速比偏差eipが減少するにつれて目
標動特性時定数T0が大きくなるように設定され、変化
する到達変速比ip0に対して、実変速比ipRが一定速
度でゆっくりと目標変速比ipTへ追従するように設定
される。
In the case of a foot release upshift, FIG.
As shown in (B), the target dynamic characteristic time constant T 0 is set to increase as the speed ratio deviation eip decreases, and the actual speed ratio ip R is maintained at a constant speed with respect to the changing ultimate speed ratio ip 0 . It is set to follow slowly to the target speed ratio ip T.

【0060】そして、足戻しアップシフトの場合には、
図6(C)のように、変速比偏差eipが減少するにつれ
て目標動特性時定数T0が大きく、かつ、目標動特性時
定数T0の値は足離しアップシフトに比して大きくなる
よう設定され、実変速比ipRの変化が足離しアップシ
フトに比してさらにゆっくりと目標変速比ipTへ追従
するように設定される。
In the case of a foot upshift,
As shown in FIG. 6C, as the speed ratio deviation eip decreases, the target dynamic characteristic time constant T 0 increases, and the value of the target dynamic characteristic time constant T 0 increases as compared with the foot-off upshift. is set, a change in the actual speed ratio ip R is set to follow the more slowly the target speed ratio ip T than the upshift foot release.

【0061】なお、ダウンシフトについては、図示しな
いダウンシフト用のマップから目標動特性時定数T0
演算される。
For a downshift, a target dynamic characteristic time constant T 0 is calculated from a downshift map (not shown).

【0062】以上のようにアップシフトの際の変速モー
ドに応じて、それぞれ目標動特性時定数T0を変化させ
ることにより、図7〜図9のように各アップシフトモー
ドを円滑に行うことが可能となる。
As described above, by changing the target dynamic characteristic time constant T 0 according to the shift mode at the time of the upshift, each upshift mode can be smoothly performed as shown in FIGS. It becomes possible.

【0063】すなわち、図7はオートアップシフトの場
合を示し、スロットル開度TVOを一定値(例えば、4
/8)としたものである。このオートアップシフトで
は、図6(A)より、目標動特性時定数T0が変速比偏
差eipにかかわらず一定の小さい値となるため、緩やか
に変化する到達変速比ip0に対し、実変速比ipRの遅
れができる限り小さくなり、プライマリ回転数Npriの
オーバーシュートを防いで、燃費の向上を図ることがで
きる。
FIG. 7 shows the case of an automatic upshift, in which the throttle opening TVO is set to a fixed value (for example, 4
/ 8). This auto upshift, from FIG. 6 (A), the order target dynamic characteristic time constant T 0 is constant small value regardless of the speed ratio deviation eip, to reach the speed ratio ip 0 which varies slowly, actual speed The delay of the ratio ip R is made as small as possible, and the overshoot of the primary rotational speed Npri is prevented, so that the fuel efficiency can be improved.

【0064】次に、図8に示す足離しアップシフトの場
合では、車速VSP=40Km/hでスロットル開度TVO
=8/8から0/8へ変化させた場合を示しており、こ
の足離しアップシフトでは、図6(B)より、目標動特
性時定数T0が変速比偏差eipが減少するにつれて大き
な値となるため、不連続に変化する到達変速比ip0
対し、実変速比ipRが一定速度でゆっくりと追従する
ことができる。したがって、加速度の変化が生じている
時間を短くして、足離し変速時の突き上げ感を抑制して
運転性を向上させることが可能となる。
Next, in the case of the upshift shown in FIG. 8, the throttle opening TVO at the vehicle speed VSP = 40 km / h.
FIG. 6B shows that the target dynamic characteristic time constant T 0 increases as the speed ratio deviation eip decreases. since the, to reach the speed ratio ip 0 which varies discontinuously, it is possible to the actual speed ratio ip R follows up slowly at a constant speed. Therefore, it is possible to improve the drivability by shortening the time during which the change in the acceleration is occurring, suppressing the feeling of thrust at the time of shifting off the foot, and improving the drivability.

【0065】さらに、図9に示す足戻しアップシフトの
場合では、車速VSP=40Km/hでスロットル開度TV
O=8/8から4/8へ変化させた場合を示しており、
この足戻しアップシフトでは、図6(C)より、目標動
特性時定数T0が変速比偏差eipが減少するにつれて大
きな値となり、かつ、足離しアップシフトよりも大きな
値に設定されるため、不連続に変化する到達変速比ip
0に対し、実変速比ipRが変化は足離しアップシフト時
よりもさらにゆっくりと追従することができる。したが
って、前記従来例のように、アクセルペダルを戻したに
もかかわらず車両が加速するような違和感を確実に防止
でき、いかなる状況でもアップシフトを円滑に行って、
無段変速機を備えた車両の運転性を向上させることがで
きるのである。
Further, in the case of the foot return upshift shown in FIG. 9, when the vehicle speed VSP = 40 km / h and the throttle opening TV
This shows a case where O = 8/8 is changed to 4/8,
In FIG. 6 (C), the target dynamic characteristic time constant T 0 is set to a larger value as the speed ratio deviation eip decreases, and is set to a larger value than the foot release up shift. Achieved gear ratio ip that changes discontinuously
0 against, the real speed ratio ip R is change can be further follow-up more slowly than during the foot release upshift. Therefore, as in the above-described conventional example, it is possible to reliably prevent a sense of incongruity such as acceleration of the vehicle despite returning the accelerator pedal, and to smoothly perform an upshift in any situation.
This makes it possible to improve the drivability of the vehicle provided with the continuously variable transmission.

【0066】こうして、アップシフトの変速モードを、
オートアップシフト、足離しアップシフト、足戻しアッ
プシフトの3つに分類するとともに、各アップシフトモ
ードに対応したマップに基づいて目標動特性時定数T0
を設定するようにしたため、オートアップシフト時には
目標応答(変速速度)を速くして実変速比ipRの遅れ
を防ぐ一方、足離しアップシフト時には目標応答を遅く
して実変速比ipRを緩やかに変化させて、加速度が生
じる時間を縮小して変速ショックを防止することができ
るのに加えて、足戻しアップシフト時には目標応答をさ
らに遅くして実変速比ipRを足離しアップシフト時よ
りもさらに緩やかに変化させて、アクセルペダルを戻し
たときに車両が加速するような違和感を確実に防止でき
るのである。
In this way, the shift mode of the upshift is
Automatic upshifts, foot release upshifts, and foot return upshifts are classified into three types, and a target dynamic characteristic time constant T 0 based on a map corresponding to each upshift mode.
Since it made to be set, while at the time of auto up-shift to prevent delay of target response to fast (shift speed) actual speed ratio ip R, gentle actual speed ratio ip R and slow target response at the time of foot release upshift , The time during which the acceleration occurs can be reduced to prevent a shift shock. In addition, the target response is further slowed down in the case of a foot-return upshift, and the actual speed ratio ip R is released from the foot. Can also be changed more gradually, so that an uncomfortable feeling such as acceleration of the vehicle when the accelerator pedal is released can be reliably prevented.

【0067】なお、上記実施形態において、無段変速機
としてベルト式を採用した場合について述べたが、図示
はしないが、トロイダル型の無段変速機としても同様の
作用効果を得ることができる。
In the above-described embodiment, the case where the belt type is adopted as the continuously variable transmission has been described. However, although not shown, the same operation and effect can be obtained as a toroidal type continuously variable transmission.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を示すベルト式無段変速機の
ブロック図。
FIG. 1 is a block diagram of a belt-type continuously variable transmission showing an embodiment of the present invention.

【図2】同じく油圧コントロールバルブの概略図。FIG. 2 is a schematic diagram of a hydraulic control valve.

【図3】同じくCVTコントロールユニットの制御概念
図。
FIG. 3 is a control conceptual diagram of the CVT control unit.

【図4】CVTコントロールユニットで行われる変速比
制御の一例を示すフローチャート。
FIG. 4 is a flowchart illustrating an example of gear ratio control performed by a CVT control unit.

【図5】アップシフトモードと各モードの遷移状態を示
す説明図。
FIG. 5 is an explanatory diagram showing an upshift mode and a transition state of each mode.

【図6】各アップシフトモードに対応する目標動特性定
数のマップで、変速比偏差eipと目標動特性定数の関係
を示し、(A)はオートアップモード、(B)は足離し
アップモード、(C)は足戻しアップモードをそれぞれ
示す。
FIG. 6 is a map of target dynamic characteristic constants corresponding to each upshift mode, showing a relationship between a speed ratio deviation eip and a target dynamic characteristic constant, (A) is an auto up mode, (B) is a foot release up mode, (C) shows the foot return up mode.

【図7】オートアップモードの場合のアップシフトの様
子を示すグラフで、時間経過に応じた各運転状態の関係
を示す。
FIG. 7 is a graph showing a state of an upshift in an auto-up mode, and shows a relationship between respective operation states with a lapse of time.

【図8】同じく、足離しアップモードの場合のアップシ
フトの様子を示すグラフで、時間経過に応じた各運転状
態の関係を示す。
FIG. 8 is a graph showing the state of an upshift in the foot release up mode, showing the relationship between the respective driving states over time.

【図9】同じく、足戻しアップモードの場合のアップシ
フトの様子を示すグラフで、時間経過に応じた各運転状
態の関係を示す。
FIG. 9 is also a graph showing a state of an upshift in the case of a foot return up mode, and shows a relationship between respective driving states with the passage of time.

【図10】従来例を示し、各変速モードに応じた時間経
過と各運転状態の関係を示す。
FIG. 10 shows a conventional example, and shows a relationship between elapsed time and each operation state according to each shift mode.

【図11】無段変速機の変速マップを示し、スロットル
開度TVOをパラメータとして、車速に応じた目標プラ
イマリ回転数tNpriを示す。
FIG. 11 shows a shift map of the continuously variable transmission, and shows a target primary rotational speed tNpri according to the vehicle speed, using the throttle opening TVO as a parameter.

【符号の説明】[Explanation of symbols]

1 CVTコントロールユニット 6 プライマリ回転数センサ 7 セカンダリ回転数センサ 16 プライマリプーリ 17 無段変速機 18 固定円錐板 20 プライマリプーリシリンダ室 22 可動円錐板 24 Vベルト 26 セカンダリプーリ 30 固定円錐板 32 セカンダリプーリシリンダ室 34 可動円錐板 63 変速制御弁 64 ステップモータ DESCRIPTION OF SYMBOLS 1 CVT control unit 6 Primary rotation speed sensor 7 Secondary rotation speed sensor 16 Primary pulley 17 Continuously variable transmission 18 Fixed conical plate 20 Primary pulley cylinder room 22 Movable conical plate 24 V belt 26 Secondary pulley 30 Fixed conical plate 32 Secondary pulley cylinder room 34 Movable conical plate 63 Shift control valve 64 Step motor

フロントページの続き (51)Int.Cl.6 識別記号 FI F16H 59:70 Continued on the front page (51) Int.Cl. 6 Identification code FI F16H 59:70

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも車速とアクセルペダルの踏み
込み量から運転状態を検出する運転状態検出手段と、こ
の運転状態に応じて無段変速機の最終的な変速比の目標
値として到達変速比を設定する到達変速比設定手段と、 実際の変速比を検出する実変速比検出手段と、 所定の動特性に応じた目標変速比を演算する目標変速比
設定手段とを備えて、実変速比をこの目標変速比に追従
させながら到達変速比へ設定する無段変速機の変速比制
御装置において、 前記到達変速比と目標変速比の偏差を演算する変速比偏
差演算手段と、 前記アクセルペダルの開度を演算する開度演算手段と、 無段変速機の入力軸回転数の変化量を演算する入力軸回
転数変化量演算手段と、 これら変速比偏差とアクセルペダル開度及び入力軸回転
数の変化量からアップシフトの変速モードを、オートア
ップシフト、足離しアップシフト、足戻しアップシフト
のいずれかに判定する変速モード判定手段とを備えて、 前記目標変速比設定手段は、これらアップシフトの際の
変速モードに応じて前記動特性を変更することを特徴と
する無段変速機の変速比制御装置。
An operating state detecting means for detecting an operating state based on at least a vehicle speed and an amount of depression of an accelerator pedal, and an attained gear ratio is set as a final gear ratio target value of the continuously variable transmission according to the operating state. Reaching speed ratio setting means, actual speed ratio detecting means for detecting an actual speed ratio, and target speed ratio setting means for calculating a target speed ratio in accordance with predetermined dynamic characteristics. A speed ratio control device for a continuously variable transmission that sets a target speed ratio while following a target speed ratio, wherein a speed ratio deviation calculating unit that calculates a deviation between the target speed ratio and the target speed ratio, and an opening degree of the accelerator pedal , An input shaft rotation amount change amount calculation unit for calculating the change amount of the input shaft rotation speed of the continuously variable transmission, and a change in the gear ratio deviation and the accelerator pedal opening and the input shaft rotation speed. Up from quantity A shift mode determining means for determining a shift speed mode to be any of an auto upshift, a foot release upshift, and a foot return upshift, wherein the target gear ratio setting means includes a shift mode at the time of these upshifts. A speed ratio control device for a continuously variable transmission, wherein the dynamic characteristic is changed in accordance with
【請求項2】 前記変速モード判定手段は、前記変速比
偏差とアクセルペダル開度及び入力軸回転数変化量に加
えて、前回の変速モードの判定結果に応じてアップシフ
トの変速モードを、オートアップシフト、足離しアップ
シフト、足戻しアップシフトのいずれかに判定すること
を特徴とする請求項1に記載の無段変速機の変速比制御
装置。
2. The shift mode determining means sets an upshift shift mode according to a previous shift mode determination result in addition to the shift ratio deviation, accelerator pedal opening, and input shaft rotational speed change amount. The speed ratio control device for a continuously variable transmission according to claim 1, wherein the shift ratio is determined to be one of an upshift, a foot release upshift, and a foot return upshift.
【請求項3】 前記目標変速比設定手段は、オートアッ
プシフト、足離しアップシフト、足戻しアップシフトの
各変速モードに応じてそれぞれ予め設定した動特性マッ
プに基づいて前記動特性を変更する動特性演算手段を設
けたことを特徴とする請求項1に記載の無段変速機の変
速比制御装置。
3. The target gear ratio setting means according to claim 1, wherein said target gear ratio setting means changes said dynamic characteristic based on a dynamic characteristic map set in advance according to each shift mode of an auto upshift, a foot release upshift, and a foot return upshift. The gear ratio control device for a continuously variable transmission according to claim 1, further comprising a characteristic calculating means.
【請求項4】 前記動特性演算手段は、前記変速比偏差
に基づいて動特性を演算することを特徴とする請求項3
に記載の無段変速機の変速比制御装置。
4. The dynamic characteristic calculating means calculates a dynamic characteristic based on the speed ratio deviation.
3. The speed ratio control device for a continuously variable transmission according to claim 1.
【請求項5】 前記目標変速比設定手段は、前記到達変
速比に対する目標変速比の応答速度が、オートアップシ
フトのときには大きく、足戻しアップシフトのときには
小さく、足離しアップシフトのときにはオートアップシ
フトと足戻しアップシフトの間の値に設定されたことを
特徴とする請求項1に記載の無段変速機の変速比制御装
置。
5. The target speed ratio setting means, wherein a response speed of the target speed ratio with respect to the attained speed ratio is large during an automatic upshift, low during a return upshift, and automatic upshift when a release upshift is performed. The speed ratio control device for a continuously variable transmission according to claim 1, wherein the speed ratio control device is set to a value between the step-up shift and the foot return upshift.
JP20807297A 1997-08-01 1997-08-01 Gear ratio control device for continuously variable transmission Expired - Lifetime JP3211737B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP20807297A JP3211737B2 (en) 1997-08-01 1997-08-01 Gear ratio control device for continuously variable transmission
US09/127,464 US6013006A (en) 1997-08-01 1998-07-31 Speed ratio controller for varying a time constant as a function of upshift characteristics in a continuously variable transmission
EP98114470A EP0895005B1 (en) 1997-08-01 1998-07-31 Speed ratio controller for a continuously variable transmission
DE69819622T DE69819622T2 (en) 1997-08-01 1998-07-31 Shift control for continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20807297A JP3211737B2 (en) 1997-08-01 1997-08-01 Gear ratio control device for continuously variable transmission

Publications (2)

Publication Number Publication Date
JPH1151170A true JPH1151170A (en) 1999-02-23
JP3211737B2 JP3211737B2 (en) 2001-09-25

Family

ID=16550186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20807297A Expired - Lifetime JP3211737B2 (en) 1997-08-01 1997-08-01 Gear ratio control device for continuously variable transmission

Country Status (4)

Country Link
US (1) US6013006A (en)
EP (1) EP0895005B1 (en)
JP (1) JP3211737B2 (en)
DE (1) DE69819622T2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001099286A (en) * 1999-09-30 2001-04-10 Nissan Motor Co Ltd Speed change control device for continuously variable transmission
JP2006242340A (en) * 2005-03-04 2006-09-14 Toyota Motor Corp Speed change controller for belt-type continuously variable transmission
JP2007520451A (en) * 2003-10-07 2007-07-26 ザ レジェンツ オブ ザ ユニバーシティ オブ ミシガン Indole antiviral compositions and methods
JP2009185869A (en) * 2008-02-05 2009-08-20 Toyota Motor Corp Continuously variable transmission control device
JP2010209982A (en) * 2009-03-09 2010-09-24 Nissan Motor Co Ltd Shift speed control device for automatic transmission for vehicle
KR20190045755A (en) * 2017-10-24 2019-05-03 현대오트론 주식회사 Apparatus for learning gear ratio control of cvt and method thereof
KR102074971B1 (en) * 2018-10-19 2020-02-07 현대오트론 주식회사 Apparatus and method for learning gear ratio and damper clutch control of cvt

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3855536B2 (en) * 1998-06-15 2006-12-13 日産自動車株式会社 Shift control device for continuously variable transmission
US6157884A (en) * 1998-09-25 2000-12-05 Nissan Motor Co., Ltd. Speed ratio control device and control method for automatic transmission
JP4126152B2 (en) * 2000-09-26 2008-07-30 ジヤトコ株式会社 Shift control device for continuously variable transmission
JP3656548B2 (en) * 2000-12-22 2005-06-08 日産自動車株式会社 Vehicle driving force control device
JP4145856B2 (en) * 2004-10-05 2008-09-03 ジヤトコ株式会社 Line pressure control device for belt type continuously variable transmission
US7862459B2 (en) * 2007-03-20 2011-01-04 Yamaha Hatsudoki Kabushiki Kaisha Transmission, power unit having the same, vehicle, controller for transmission, and method of controlling transmission

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4947970A (en) * 1988-11-08 1990-08-14 Borg-Warner Automotive, Inc. Dual clutch control system
JP3087001B2 (en) * 1994-09-05 2000-09-11 株式会社ユニシアジェックス Control device for continuously variable transmission
JP3358381B2 (en) * 1995-04-24 2002-12-16 日産自動車株式会社 Control device for continuously variable automatic transmission
JP3223768B2 (en) * 1995-08-31 2001-10-29 日産自動車株式会社 Gear ratio control device for continuously variable transmission
JP3358419B2 (en) * 1996-01-31 2002-12-16 日産自動車株式会社 Transmission control device for continuously variable automatic transmission
JP3358435B2 (en) * 1996-04-12 2002-12-16 日産自動車株式会社 Transmission control device for continuously variable automatic transmission
JP3211697B2 (en) * 1997-02-10 2001-09-25 日産自動車株式会社 Target transmission ratio generation device for continuously variable transmission
JPH11151170A (en) * 1997-11-19 1999-06-08 Shigeki Yamazaki 'okonomiyaki' or grilled flat flour batter with toppings cooking machine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001099286A (en) * 1999-09-30 2001-04-10 Nissan Motor Co Ltd Speed change control device for continuously variable transmission
JP2007520451A (en) * 2003-10-07 2007-07-26 ザ レジェンツ オブ ザ ユニバーシティ オブ ミシガン Indole antiviral compositions and methods
JP2006242340A (en) * 2005-03-04 2006-09-14 Toyota Motor Corp Speed change controller for belt-type continuously variable transmission
JP4561412B2 (en) * 2005-03-04 2010-10-13 トヨタ自動車株式会社 Shift control device for belt type continuously variable transmission
JP2009185869A (en) * 2008-02-05 2009-08-20 Toyota Motor Corp Continuously variable transmission control device
JP2010209982A (en) * 2009-03-09 2010-09-24 Nissan Motor Co Ltd Shift speed control device for automatic transmission for vehicle
KR20190045755A (en) * 2017-10-24 2019-05-03 현대오트론 주식회사 Apparatus for learning gear ratio control of cvt and method thereof
US10619736B2 (en) 2017-10-24 2020-04-14 Hyundai Autron Co., Ltd. Apparatus and method for learning gear ratio control of CVT
KR102074971B1 (en) * 2018-10-19 2020-02-07 현대오트론 주식회사 Apparatus and method for learning gear ratio and damper clutch control of cvt

Also Published As

Publication number Publication date
EP0895005A3 (en) 2001-02-28
EP0895005A2 (en) 1999-02-03
DE69819622D1 (en) 2003-12-18
EP0895005B1 (en) 2003-11-12
US6013006A (en) 2000-01-11
JP3211737B2 (en) 2001-09-25
DE69819622T2 (en) 2004-05-13

Similar Documents

Publication Publication Date Title
KR101647513B1 (en) Continuously variable transmission and method of controlling the same
RU2712713C1 (en) Transmission control method and transmission control device for stepless transmission
US8353799B2 (en) Control of and control method for vehicle continuously variable transmission
US8718883B2 (en) Continuously variable transmission and power on/off determination method
JP2004092809A (en) Belt type continuously variable transmission
JP3087001B2 (en) Control device for continuously variable transmission
JP3211737B2 (en) Gear ratio control device for continuously variable transmission
KR101812429B1 (en) Control device for continuously variable transmission
JP3168951B2 (en) Transmission control device for continuously variable transmission
JP2004124965A (en) Controller for belt type continuously variable transmission
JP3423840B2 (en) Control device for continuously variable transmission
JP3905445B2 (en) Hydraulic control device for V-belt type continuously variable transmission
JPWO2020121751A1 (en) Vehicle control device and vehicle control method
JP3425841B2 (en) Control device for continuously variable transmission
JPH1163193A (en) Shift controller for continuously variable transmission
JP3944042B2 (en) Hydraulic pressure reduction rate limiting device for V-belt type continuously variable transmission
JP4148796B2 (en) Control device for continuously variable transmission
JP4830914B2 (en) Shift control device for continuously variable transmission
JP3430934B2 (en) Transmission control device for V-belt type continuously variable transmission
JP2019027542A (en) Shift control device of automatic transmission
JP7064621B2 (en) Vehicle control device and vehicle control method
JP4354380B2 (en) Shift control device for continuously variable transmission when starting
JP3903748B2 (en) Shift control device for continuously variable transmission
JP4474880B2 (en) Transmission control device
JP3277852B2 (en) Transmission control device for continuously variable transmission

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140719

Year of fee payment: 13

EXPY Cancellation because of completion of term