JPH11501985A - How to simultaneously produce fuel and iron respectively - Google Patents

How to simultaneously produce fuel and iron respectively

Info

Publication number
JPH11501985A
JPH11501985A JP52230696A JP52230696A JPH11501985A JP H11501985 A JPH11501985 A JP H11501985A JP 52230696 A JP52230696 A JP 52230696A JP 52230696 A JP52230696 A JP 52230696A JP H11501985 A JPH11501985 A JP H11501985A
Authority
JP
Japan
Prior art keywords
gas
furnace
iron
crude
iron ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP52230696A
Other languages
Japanese (ja)
Inventor
アルバート カルデロン
Original Assignee
アルバート カルデロン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルバート カルデロン filed Critical アルバート カルデロン
Publication of JPH11501985A publication Critical patent/JPH11501985A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B49/00Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0073Selection or treatment of the reducing gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/40Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
    • C21B2100/42Sulphur removal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/62Energy conversion other than by heat exchange, e.g. by use of exhaust gas in energy production
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S75/00Specialized metallurgical processes, compositions for use therein, consolidated metal powder compositions, and loose metal particulate mixtures
    • Y10S75/958Specialized metallurgical processes, compositions for use therein, consolidated metal powder compositions, and loose metal particulate mixtures with concurrent production of iron and other desired nonmetallic product, e.g. energy, fertilizer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Manufacture Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Catalysts (AREA)

Abstract

(57)【要約】 石炭11と鉄鉱石47とから燃料と鉄とを夫々同時に製造する方法であって、石炭を熱分解炉内で酸素欠乏状態で加熱し、炭化水素を含む粗ガスとコークスを生成し、粗ガスは分留ユニットに送られ、粗ガス内の炭化水素が分留され、脱硫黄分試薬によって硫黄分を除去され、酸素分が増加することによって、粗ガス内の自由な水素量を増大させて還元ガス25とする。還元ガス25は反応し易くなっており、この還元ガスを還元炉において、鉄鉱石の炉床に通すことによって、鉄鉱石を直接還元して直接還元鉄56とする。 (57) [Abstract] This is a method for simultaneously producing fuel and iron from coal 11 and iron ore 47, respectively, wherein the coal is heated in a pyrolysis furnace in an oxygen-deficient state, and a crude gas containing hydrocarbons and coke are heated. The crude gas is sent to the fractionation unit, where the hydrocarbons in the crude gas are fractionated, the sulfur content is removed by the desulfurization reagent, and the oxygen content is increased. The amount of hydrogen is increased to reduce gas 25. The reducing gas 25 is easily reacted, and the reducing gas is passed through an iron ore hearth in a reducing furnace to directly reduce the iron ore to direct reduced iron 56.

Description

【発明の詳細な説明】 燃料と鉄とを夫々同時に製造する方法 本発明の背景 本発明は石炭及び鉄鋼石から燃料及び金属化鉄とを夫々同時に製造する新規な 方法に関する。金属化鉄は又の名を「直接還元鉄」(DRI)と呼ばれている。 天然ガスから改質された還元ガスを用いて直接還元鉄を製造することは、幾世 紀にもわたって商業的に行われてきた。この方法で天然ガスを用いることについ ての主な不利益は、コスト高になることであり、他の不利益はこれが常に得られ ないことである。さらに、天然ガスは酸素発生装置内で改質させる必要があり、 このような装置は鉄鉱石を直接還元鉄に変換させるための施設に、実質的に高価 な資金投入を必要とすることになる。1981年フォードハム大学が米国商務省の経 済開発局の為に行った研究によれば、これに関する結論と要約は、「直接還元に より石炭を改質する方法に関する基礎研究を、高い優先順位で行う必要がある。 」(26頁、パラグラフ.3)と言うものであった。 この発明の目的は、上記のような不利な点を解決し、基本的に豊富な石炭を用 いて、石炭及び/ 又はガスの形での燃料を製造しながら、同時に鉄鉱石から直接 還元鉄を製造する効率的な方法を生み出すことである。 図面の説明 この発明は、添付図面に示される実施例に基づいて、より詳細な説明がなされ る。この中で、 図1はコークスと直接還元鉄を同時に製造する工程のダイヤグラムを示し、直 接還元鉄が熱い間に、直接鉄鋼作成炉にチャージするために、隔離材で覆われた コンテナに収納される。 図2はコークスと直接還元鉄を同時に製造する工程のダイヤグラムを示し、直 接還元鉄が熱い間に、直接鉄鋼作成用電気アーク炉にチャージするために、隔離 材で覆われたコンテナに収納される。 図3はコークスと直接還元鉄を同時に製造する工程のダイヤグラムを示し、直 接還元鉄が酸素による鉄鋼生成炉にチャージされる前に溶融される状態を示す。 本発明を記述するに当たって、「コークス」と言う言葉は硬質石炭から生成さ れ、溶鉱炉等において鉄を精錬するために用いられる製司コークスを意味し、他 方「チャコール」と呼ばれるコークスは、ガス炉において硬質でない石炭からガ ス状燃料を作るもので、この種の燃料は発電用を含む雑多な用途に用いられる。 発明の概要 図1及び図2を参照すると、符号10は石炭が酸素欠乏状態で加熱される熱分解 炉レトルトを示す。石炭は矢印11の方向から導入され、熱気送ガスが石炭を加熱 するために、矢印12のように送り込まれる。石炭を加熱した後の気送ガスは線13 からレトルト10を出て行く。コークスは矢印14のように取り出され、生の石炭ガ スは矢印15に示すようにレトルト10から出て行く。このコークスは図2に符号16 で示す溶鉱炉のような炉の燃料として用いるために搬出されるか、又はこのコー クスはガス炉(図示せず)によってガス化され、このガスは図2において符号50 として示される電気アーク炉の為の発電機用燃料として用いられる。 分留すべき粗ガスの流れ(流れ15)は分留ユニット17に導かれ、矢印18に示す ように同ユニット内に導入される。分留されたガスは矢印19に示すようにユニッ トから出る。分留ユニット17はその内部に、粗ガスに含まれる炭化水素を分留す るための試薬を保持している。望ましくは分留ユニットは2部分に別れ、上側室 20は試薬を再生させるために用いられ、下部室21は分留作用が適正に行われるた めに用いられる。試薬は室21の底部から室20の頂部へと、矢印22、23に示すよう に再循環させられる。矢印19で示すように室21を離れるガスは、分留され、脱硫 黄され、熱還元作用のある合成ガスであって、鉄鉱石に対して極めて良く反応す る。この合成ガスは矢印25に示すように、還元塔24の中へ導入される。 還元塔24は、望ましくは2個の部分よりなる。その上部領域26は鉄鉱石が還元 作用をする前に予熱される領域として用いられ、下部領域27は鉄鉱石を直接還元 鉄に変換させるための還元反応領域である。鉄鉱石が線13により送られる供給ガ スによって予熱される時に、この供給ガスは線45から予熱領域に入り、線46から 排出される。ペレット状の鉄鉱石が矢印47で示すように塔24の頂上から導入され 炉床を形成する。還元作用を終えた合成ガスは、矢印28に示すように、オフガス として下部領域27を離れる。 このオフガスはまだ利用価値があり、最初に熱交換機29内で内部燃焼空気を予 熱するために用いられる。この内部燃焼空気は矢印30に示すように交換機に入り 、矢印31で出る。熱交換機29で冷却された後のオフガスはブロワ(コンプレッサ )32によって加圧され、流れ33と流れ34とに分岐され、更に流れ34は流れ35と流 れ36とに分岐される。流れ33はオフガスの最初の部分で、粗ガスの流れ15に合流 し、流れ18となって再利用される。流れ34はオフガスの第二の部分で、バーナー 37内で燃焼され、石炭を加熱してコークスと粗ガスとを生成するための熱エネル ギーを生み出す。流れ36はオフガスの第三の部分で、工程のバランスを維持する ために、大気中に捨てられる。この第三部分もまた他の熱エネルギー源として用 いられる。 室20内の吸収剤を再生するために、空気が室の底部から矢印38で示すように導 入され、再生されたガスは室20の頂部から流れ39として示すように送りだされ、 最小限の加熱損失で室21内を矢印40に示す方向に流下する試薬を加熱するので、 室20内の反応は極めて発熱性のものとなる。再生ガスはコンデンサ41に導かれ、 そこで硫黄分除去のために冷却され、さらに符号42で示す次の工程に送られる。 この硫黄分は貯留タンク43に溜められた後、矢印44の方向に抜き取られる。 工程に関して更に図1を説明すると、石炭は矢印11の方向からレトルト10に導 入され、鉱石は矢印47の方向から反応塔24に導入される。コークスは矢印14に沿 って導かれ、溶鉱炉又はガス化炉に送られる。直接還元鉄が次の工程で受け取ら れた時、なお熱を保っているように、断熱処理をした容器48内に供給される。酸 素による鉄鋼精錬炉49には、溶融した鉄(矢印51)、スクラップ(矢印52)、直 接還元鉄(矢印53)および酸素(矢印54)が鋼鉄を造るために導入される。炉49 は回転して出来た鉄鋼を矢印55に示すように送りだす。硬質石炭がレトルト10内 で処理された場合は、製司コークスが流れ14に沿って出てくる。又、もし非硬質 石炭がレトルト10内で用いられた場合は、非製司コークス(チャコール)が流れ 14に沿って出てくることになる。 図2を参照すると、示されたダイヤグラムは図1に示すものの変更例である。 流れ14(コークス流)は直接溶鉱炉に導かれ、そこで鉄鉱石(流れ58)と、岩石 (流れ59)とがコークスに加えられる。空気噴射(流れ57)が溶鉱炉16の底部に 導入される。直接還元鉄は流れ56を経て電気アーク炉50に直接導入され、鉄鋼が 流れ60に沿って導き出される。 図3を参照すると、基本的には図1のダイヤグラムと同一だが、他の変更例を 含む。流れ56(直接還元鉄の流れ)は融解炉61に導入され、捨てられていたガス (流れ36)は融解炉61に導入され燃やされる。空気(流れ62)とフラックス(流 れ63)とは直接還元鉄を溶融金属とし、搬送車64及び取鍋51によって製鋼炉49に 充満される。スラグはシンダーポット65内に集められる。 もし非硬質炭からコークスが出来た場合は、流れ14はガス発生炉(図示せず) に送られ、そこでコークスはガス化され、火力発電機の燃料として用いられる。 これにより発生した電力は、図2に示す電気アーク炉の電源を含め、種々のエネ ルギー源として用いられる。この非硬質炭の使用に加えて、他の炭化物質、例え ば古タイヤ、バイオマス、紙、プラスチックス等が添加物質として用いられる。DETAILED DESCRIPTION OF THE INVENTION BACKGROUND The present invention of a method invention for producing a fuel and iron respectively simultaneously relates to a novel process for preparing a fuel and metallized iron from coal and iron ore, respectively at the same time. Iron metallised is also called "direct reduced iron" (DRI). The production of direct reduced iron using a reducing gas reformed from natural gas has been commercially practiced for centuries. The main disadvantage of using natural gas in this way is that it is costly, and another disadvantage is that it is not always available. In addition, natural gas needs to be reformed in oxygen generators, which would require substantially expensive financing of facilities to convert iron ore directly into reduced iron . According to a study conducted by Fordham University for the U.S. Department of Commerce's Department of Economic Development in 1981, the conclusions and summaries were: "High priority is given to basic research on how to reform coal by direct reduction. (P. 26, paragraph 3). An object of the present invention is to solve the above-mentioned disadvantages, and to produce reduced fuel iron directly from iron ore while producing fuel in the form of coal and / or gas using basically abundant coal. To create an efficient way of manufacturing. Description of the drawings The present invention will be described in more detail based on embodiments shown in the accompanying drawings. Fig. 1 shows a schematic diagram of the process of simultaneously producing coke and direct reduced iron. While the direct reduced iron is hot, it is stored in a container covered with a separator to directly charge the steel making furnace. You. FIG. 2 shows a diagram of the process of simultaneously producing coke and direct reduced iron, which is stored in a container covered with a separator in order to charge the electric arc furnace directly for steel making while the direct reduced iron is hot. . FIG. 3 is a diagram showing a process of simultaneously producing coke and direct reduced iron, and shows a state in which the direct reduced iron is melted before being charged into the steel production furnace by oxygen. In describing the present invention, the term "coke" refers to coke produced from hard coal and used to refine iron in blast furnaces and the like, while coke called "charcoal" is used in gas furnaces. It produces gaseous fuel from non-rigid coal, which is used for miscellaneous applications, including for power generation. SUMMARY OF THE INVENTION Referring to FIGS. 1 and 2, reference numeral 10 indicates a pyrolysis furnace retort in which coal is heated in an oxygen-deficient state. Coal is introduced from the direction of arrow 11, and hot air gas is fed as shown by arrow 12 to heat the coal. The pneumatic gas after heating the coal exits the retort 10 on line 13. Coke is removed as indicated by arrow 14 and raw coal gas exits retort 10 as indicated by arrow 15. The coke is discharged for use as fuel in a furnace such as a blast furnace shown at 16 in FIG. 2, or the coke is gasified by a gas furnace (not shown) and the gas is Used as generator fuel for electric arc furnaces. The flow of the crude gas to be fractionated (stream 15) is guided to a fractionation unit 17 and introduced into the same as indicated by arrow 18. The fractionated gas exits the unit as shown by arrow 19. The fractionation unit 17 holds therein a reagent for fractionating hydrocarbons contained in the crude gas. Preferably, the fractionation unit is divided into two parts, the upper chamber 20 being used for regenerating reagents and the lower chamber 21 being used for proper fractionation. Reagent is recirculated from the bottom of chamber 21 to the top of chamber 20, as shown by arrows 22,23. The gas leaving the chamber 21, as indicated by arrow 19, is a fractionated, desulfurized, synthesizing gas with a thermal reduction effect and reacts very well with iron ore. This synthesis gas is introduced into the reduction tower 24 as shown by an arrow 25. The reduction tower 24 preferably comprises two parts. The upper region 26 is used as a region where the iron ore is preheated before performing a reducing action, and the lower region 27 is a reduction reaction region for directly converting the iron ore into reduced iron. As the iron ore is preheated by the feed gas delivered by line 13, the feed gas enters the preheating zone via line 45 and exits via line 46. Pellets of iron ore are introduced from the top of tower 24 as indicated by arrow 47 to form a hearth. The synthesis gas that has completed the reducing action leaves the lower region 27 as an off-gas as indicated by an arrow 28. This off-gas is still useful and is first used in the heat exchanger 29 to preheat internal combustion air. This internal combustion air enters the exchanger as indicated by arrow 30 and exits at arrow 31. The off-gas after being cooled by the heat exchanger 29 is pressurized by a blower (compressor) 32 and is branched into a stream 33 and a stream 34, and the stream 34 is further branched into a stream 35 and a stream 36. Stream 33 is the first part of the off-gas and joins the crude gas stream 15 and is recycled as stream 18. Stream 34 is the second part of the off-gas, which is burned in burner 37 and produces thermal energy to heat the coal to produce coke and crude gas. Stream 36 is the third portion of the offgas and is dumped to the atmosphere to maintain process balance. This third part is also used as another source of thermal energy. To regenerate the absorbent in chamber 20, air is introduced from the bottom of the chamber as indicated by arrow 38 and the regenerated gas is pumped out of the top of chamber 20 as shown as stream 39, with minimal Since the reagent flowing down in the chamber 21 in the direction shown by the arrow 40 is heated by the heating loss, the reaction in the chamber 20 becomes extremely exothermic. The regeneration gas is led to a condenser 41, where it is cooled to remove sulfur content and sent to the next step indicated by reference numeral. After this sulfur content is stored in the storage tank 43, it is extracted in the direction of arrow 44. Referring further to FIG. 1 with respect to the process, coal is introduced into retort 10 in the direction of arrow 11 and ore is introduced into reaction tower 24 in the direction of arrow 47. Coke is directed along arrow 14 and sent to a blast furnace or gasifier. When the direct reduced iron is received in the next step, it is supplied into a thermally insulated container 48 so that it still retains heat. In the steel smelting furnace 49 using oxygen, molten iron (arrow 51), scrap (arrow 52), direct reduced iron (arrow 53) and oxygen (arrow 54) are introduced to produce steel. The furnace 49 sends out the steel produced by the rotation as shown by an arrow 55. If the hard coal is processed in the retort 10, coke coke emerges along stream 14. Also, if non-hard coal is used in the retort 10, non-manufactured coke (charcoal) will emerge along stream 14. Referring to FIG. 2, the diagram shown is a modification of the one shown in FIG. Stream 14 (coke stream) is led directly to the blast furnace, where iron ore (stream 58) and rock (stream 59) are added to the coke. An air jet (stream 57) is introduced at the bottom of the blast furnace 16. The direct reduced iron is introduced directly into the electric arc furnace 50 via the stream 56 and the steel is drawn off along the stream 60. Referring to FIG. 3, it is basically the same as the diagram of FIG. 1, but includes other modifications. The stream 56 (flow of direct reduced iron) is introduced into the melting furnace 61, and the discarded gas (stream 36) is introduced into the melting furnace 61 and burned. The air (flow 62) and the flux (flow 63) use reduced iron directly as molten metal, and are filled in the steelmaking furnace 49 by the carrier 64 and the ladle 51. Slag is collected in the cinder pot 65. If coke is made from non-hard coal, stream 14 is sent to a gas generating furnace (not shown) where the coke is gasified and used as fuel for a thermal power generator. The electric power thus generated is used as various energy sources including a power supply of the electric arc furnace shown in FIG. In addition to the use of this non-hard charcoal, other carbonized substances, such as old tires, biomass, paper, plastics, etc., are used as additional substances.

───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,DE, DK,ES,FR,GB,GR,IE,IT,LU,M C,NL,PT,SE),OA(BF,BJ,CF,CG ,CI,CM,GA,GN,ML,MR,NE,SN, TD,TG),AP(KE,LS,MW,SD,SZ,U G),AM,AT,AU,BB,BG,BR,BY,C A,CH,CN,CZ,DE,DK,EE,ES,FI ,GB,GE,HU,IS,JP,KE,KG,KP, KR,KZ,LK,LR,LT,LU,LV,MD,M G,MN,MW,MX,NO,NZ,PL,PT,RO ,RU,SD,SE,SG,SI,SK,TJ,TM, TT,UA,UG,US,UZ,VN────────────────────────────────────────────────── ─── Continuation of front page    (81) Designated countries EP (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, M C, NL, PT, SE), OA (BF, BJ, CF, CG , CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), AP (KE, LS, MW, SD, SZ, U G), AM, AT, AU, BB, BG, BR, BY, C A, CH, CN, CZ, DE, DK, EE, ES, FI , GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, M G, MN, MW, MX, NO, NZ, PL, PT, RO , RU, SD, SE, SG, SI, SK, TJ, TM, TT, UA, UG, US, UZ, VN

Claims (1)

【特許請求の範囲】 1. 石炭と鉄鉱石とから燃料と鉄とを夫々同時に製造する方法であって、次に 示すような工程、すなわち: 石炭を熱分解炉内で酸素欠乏状態で加熱し、炭化水素を含む粗ガスとコー クスを生成し、 粗ガスは分留ユニットに送られ、粗ガス内の炭化水素が分留され、脱硫黄分 試薬によって硫黄分を除去され、酸素分が増加することによって、粗ガスが還元 ガスに変換され、 前記還元ガスを還元炉において、鉄鉱石の炉床に通すことによって、鉄鉱石 を直接還元して直接還元鉄とすると共に、オフガスを発生させ、 前記オフガスの一部が還元炉から燃焼ユニットに送られ、このオフガスの燃 焼によって生成された熱エネルギーを熱分解炉に送る、 工程を有する方法。 2. 熱分解炉からのコークスを、粗ガスと共に燃料として分留ユニットに送る ようにした、請求項1に記載の同時に製造する工程を具える方法。 3.熱分解炉からのコークスを、分留ユニットに行く粗ガスと共に、燃料として ガス発生炉に送られるようにした、請求項1に記載の同時に製造する工程を具え る方法。 4. 鉄鉱石の還元の間にオフガスを生成し、オフガスの最初の部分が還元炉か ら燃焼ユニットに送られた後で、還元炉からのオフガスを熱分解室からの石炭の 粗ガスと共に混ぜ合わせることによって、オフガスの第2部分をリサイクリング する、請求項1に記載の同時に製造する工程を具える方法。 5. 前記同時製造工程は、主工程との均衡を保つために、還元炉からのオフガ スの第3部分を廃棄する同時生成工程を含む、請求項4に記載の方法。 6. 鉄鉱石との反応を高めるために、前記還元ガスを予め予熱する同時に製造 する工程を含み、前記還元ガスを還元炉において、鉄鉱石の炉床に通すことによ って鉄鉱石を還元して還元鉄とする、請求項1に記載の方法。 7. 前記オフガスが内部燃焼室内で燃焼され、この熱エネルギーが熱分解室に 熱交換伝達され、さらに熱分解室からの余剰の熱エネルギーが還元炉に送られ鉄 鉱石を予熱する、請求項1に記載の同時に製造する工程を含む方法。 8. 還元炉から直接還元鉄を取り出し、この還元炉から取り出した直接還元鉄 を、製鋼炉に送る、請求項1に記載の同時に製造する工程を含む方法。 9. 直接還元鉄を加熱状態に保ちながら、還元炉から製鋼炉へと移送するよう にし、この熱い直接還元鉄を、製鋼炉に移送するようにした、請求項8に記載の 同時に製造する工程を含む方法。 10. 直接還元鉄を還元炉から導き出した後、この直接還元鉄を製鋼炉に導入 する前に、この直接還元鉄を溶融する、請求項8に記載の同時に製造する工程を 含む方法。 11. 熱分解炉からのコークスを、燃料ガスを製造するために、粗ガスの移送 と同時並行してガス炉に送られ、そこで製鋼炉の電力となる発電がなされるよう にした、請求項8に記載の同時に製造する工程を含む方法。 12. 鉄鋼製造工程を用いて、石炭と鉄鉱石とから夫々同時に燃料と鉄鋼とを 製造する方法であって、 石炭が熱分解炉内で酸素欠乏状態で加熱され、炭化水素を含有する粗ガスと コークスとが生成され、 この粗ガスを分留ユニットに導き、粗ガス内の炭化水素が分留され、脱硫黄 触媒の存在下で硫黄分を除去され、且つ水素分が増大されることによって、粗ガ スが還元ガスになり、 コークスを熱分解炉から取り出し、燃料として用いるために溶鉱炉に送り、 前記還元ガスを還元炉内の鉄鉱石の床を通して導入して、前記鉄鉱石を直接 還元して還元鉄とすると共に、オフガスを生成し、 前記オフガスの第1部分を還元炉から燃焼ユニットに送り、このオフガスを 燃焼させることによって、分留室へ送る熱エネルギーを生成し、 還元炉からのオフガスと熱分解室からの粗ガスとを混ぜ合わせ、この粗石炭 ガスとオフガスとの混合気体を分留ユニットに送ることによって、前記オフガス の第2部分をリサイクリングし、 還元鉄を還元炉から取り出し、製鋼炉へ搬入する、 工程を含む方法。 13. 鉄鋼製造工程を用いて、石炭と鉄鉱石とから夫々同時に燃料と鉄鋼とを 製造する方法であって、 石炭が熱分解炉内で酸素欠乏状態で加熱され、炭化水素を含有する粗ガスと コークスとが生成され、 この粗ガスを分留ユニットに導き、粗ガス内の炭化水素が分留され、脱硫黄 触媒の存在下で硫黄分を除去され、且つ水素分が増大されることによって、粗ガ スが還元ガスになり、 コークスを熱分解炉から取り出し、ガス炉に送り燃料ガスを生成し、この燃 料ガスにより溶鉱炉用の電気を発電し、 前記還元ガスを還元炉内の鉄鉱石の床を通して導入して、前記鉄鉱石を直接 還元して還元鉄とすると共に、オフガスを生成し、 前記オフガスの第1部分を還元炉から燃焼ユニットに送り、このオフガスを 燃焼させることによって、分留室へ送る熱エネルギーを生成し、 還元炉からのオフガスと熱分解室からの粗ガスとを混ぜ合わせ、この粗石炭 ガスとオフガスとの混合気体を分留ユニットに送ることによって、前記オフガス の第2部分をリサイクリングし、 還元鉄を還元炉から取り出し、製鋼炉へ搬入する、 工程を含む方法。 14. 鉄鋼製造工程を用いて、石炭と鉄鉱石とから夫々同時に燃料と鉄鋼とを 製造する方法であって、 石炭が熱分解炉内で酸素欠乏状態で加熱され、炭化水素を含有する粗ガスと コークスとが生成され、 この粗ガスを分留ユニットに導き、粗ガス内の炭化水素が分留され、脱硫黄 触媒の存在下で硫黄分を除去され、且つ水素分が増大されることによって、粗ガ スが還元ガスになり、 前記還元ガスを還元炉内の鉄鉱石の床を通して導入して、前記鉄鉱石を直接 還元して還元鉄とすると共に、オフガスを生成する、 工程を含む方法。 15. オフガスを還元炉から燃焼ユニットに送って熱エネルギーを起こす工程 を付加的に含む、請求項14に記載の方法。 16. 熱分解炉からのコークスを、粗ガスと共に燃料として分留ユニットに送 るようにした、請求項14に記載の同時に製造する工程を具える方法。 17. 熱分解炉からのコークスを、分留ユニットに行く粗ガスと共に、燃料と してガス発生炉に送られるようにした、請求項14に記載の同時に製造する工程 を具える方法 18. 鉄鉱石との反応を高めるために、前記還元ガスを予め予熱する同時に製 造する工程を含み、前記還元ガスを還元炉において、鉄鉱石の炉床に通すように した、請求項14に記載の方法。 19. コークスと還元鉄戸を溶融炉に供給する工程を付加的に含む、請求項1 4に記載の方法。[Claims] 1. A method of simultaneously producing fuel and iron from coal and iron ore, respectively. The steps as shown, ie:       Coal is heated in a pyrolysis furnace in an oxygen-deficient state, and crude gas containing hydrocarbons and coal are heated. Generate     The crude gas is sent to a fractionation unit where hydrocarbons in the crude gas are fractionated and Crude gas is reduced by removing sulfur content by reagent and increasing oxygen content Converted into gas,     By passing the reducing gas through a hearth of iron ore in a reduction furnace, To reduce iron directly, and generate off-gas,     Part of the off-gas is sent from the reduction furnace to the combustion unit, and the fuel Sending the thermal energy generated by baking to a pyrolysis furnace, A method having a step. 2. Coke from pyrolysis furnace is sent to fractionation unit as fuel together with crude gas A method comprising the step of simultaneously manufacturing according to claim 1. 3. The coke from the pyrolysis furnace is used as fuel along with the crude gas going to the fractionation unit. 2. A process according to claim 1, wherein the process is adapted to be sent to a gas generating furnace. Way. 4. During the reduction of iron ore, offgas is produced, and the first part of the offgas is Off-gas from the reduction furnace after being sent to the combustion unit. Recycling the second part of the offgas by mixing with the crude gas A method comprising the step of simultaneously manufacturing according to claim 1. 5. In order to maintain a balance with the main process, the simultaneous production 5. The method of claim 4, comprising a co-generation step of discarding a third portion of the fabric. 6. In order to enhance the reaction with iron ore, pre-heating the reducing gas at the same time Passing the reducing gas through a hearth of iron ore in a reducing furnace. The method according to claim 1, wherein the iron ore is reduced to reduced iron. 7. The off-gas is burned in the internal combustion chamber, and this heat energy is transferred to the pyrolysis chamber. Heat exchange is transmitted, and excess heat energy from the pyrolysis chamber is sent to the reduction furnace to 2. A method comprising the step of preheating the ore, comprising the step of co-producing according to claim 1. 8. Direct reduced iron is taken out directly from the reduction furnace, and the direct reduced iron is taken out from this reduction furnace. In the steelmaking furnace. 9. Transfer the reduced iron from the reduction furnace to the steelmaking furnace while maintaining the heated state. 9. The method according to claim 8, wherein the hot direct reduced iron is transferred to a steelmaking furnace. A method comprising the steps of manufacturing simultaneously. 10. After the direct reduced iron is led out of the reduction furnace, this direct reduced iron is introduced into the steelmaking furnace. Melting the direct reduced iron before performing the simultaneous production step according to claim 8. Including methods. 11. Coke from the pyrolysis furnace is transferred to a crude gas to produce fuel gas. In parallel with the gas furnace, where electricity is generated to power the steelmaking furnace. A method comprising the step of simultaneously manufacturing according to claim 8, wherein 12. Using the steelmaking process, fuel and steel are simultaneously extracted from coal and iron ore, respectively. A method of manufacturing,     Coal is heated in a pyrolysis furnace in an oxygen-deficient state, and the crude gas containing hydrocarbons is And coke is generated     This crude gas is led to a fractionation unit, where the hydrocarbons in the crude gas are fractionated and desulfurized. By removing the sulfur content and increasing the hydrogen content in the presence of the catalyst, the crude gas is removed. Gas becomes reducing gas,     Coke is removed from the pyrolysis furnace and sent to the blast furnace for use as fuel,     The reducing gas is introduced through a bed of iron ore in a reduction furnace to directly transfer the iron ore. Reduces to reduced iron, generates off-gas,     The first part of the off-gas is sent from the reduction furnace to the combustion unit, and this off-gas is By burning, it generates heat energy to be sent to the fractionation chamber,     The off-gas from the reduction furnace is mixed with the crude gas from the pyrolysis chamber, By sending a mixed gas of gas and off-gas to the fractionation unit, the off-gas Recycling the second part of     Remove the reduced iron from the reduction furnace and carry it into the steelmaking furnace.   A method comprising a step. 13. Using the steelmaking process, fuel and steel are simultaneously extracted from coal and iron ore, respectively. A method of manufacturing,     Coal is heated in a pyrolysis furnace in an oxygen-deficient state, and the crude gas containing hydrocarbons is And coke is generated     This crude gas is led to a fractionation unit, where the hydrocarbons in the crude gas are fractionated and desulfurized. By removing the sulfur content and increasing the hydrogen content in the presence of the catalyst, the crude gas is removed. Gas becomes reducing gas,     The coke is taken out of the pyrolysis furnace and sent to a gas furnace to generate fuel gas. Generated electricity for the blast furnace by the feed gas,     The reducing gas is introduced through a bed of iron ore in a reduction furnace to directly transfer the iron ore. Reduces to reduced iron, generates off-gas,     The first part of the off-gas is sent from the reduction furnace to the combustion unit, and this off-gas is By burning, it generates heat energy to be sent to the fractionation chamber,     The off-gas from the reduction furnace is mixed with the crude gas from the pyrolysis chamber, By sending a mixed gas of gas and off-gas to the fractionation unit, the off-gas Recycling the second part of     Remove the reduced iron from the reduction furnace and carry it into the steelmaking furnace. A method comprising a step. 14. Using the steelmaking process, fuel and steel are simultaneously extracted from coal and iron ore, respectively. A method of manufacturing,     Coal is heated in a pyrolysis furnace in an oxygen-deficient state, and the crude gas containing hydrocarbons is And coke is generated     This crude gas is led to a fractionation unit, where the hydrocarbons in the crude gas are fractionated and desulfurized. By removing the sulfur content and increasing the hydrogen content in the presence of the catalyst, the crude gas is removed. Gas becomes reducing gas,     The reducing gas is introduced through a bed of iron ore in a reduction furnace to directly transfer the iron ore. Reduces to reduced iron and produces off-gas,   A method comprising a step. 15. The process of sending off-gas from the reduction furnace to the combustion unit to generate thermal energy 15. The method of claim 14, further comprising: 16. The coke from the pyrolysis furnace is sent to the fractionation unit as fuel along with the crude gas. 15. A method comprising the step of simultaneously manufacturing according to claim 14. 17. The coke from the pyrolysis furnace, along with the crude gas going to the fractionation unit, is 15. The process of claim 14, wherein the gas is sent to a gas generating furnace. How to equip 18. In order to enhance the reaction with iron ore, the reducing gas is Including passing the reducing gas through a hearth of iron ore in a reducing furnace. 15. The method of claim 14, wherein the method comprises: 19. 2. The method according to claim 1, further comprising the step of supplying coke and reduced iron door to the melting furnace. 4. The method according to 4.
JP52230696A 1995-01-20 1996-01-16 How to simultaneously produce fuel and iron respectively Pending JPH11501985A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US37561295A 1995-01-20 1995-01-20
US08/375,612 1995-01-20
PCT/US1996/000278 WO1996022394A1 (en) 1995-01-20 1996-01-16 Method for co-producing fuel and iron

Publications (1)

Publication Number Publication Date
JPH11501985A true JPH11501985A (en) 1999-02-16

Family

ID=23481575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52230696A Pending JPH11501985A (en) 1995-01-20 1996-01-16 How to simultaneously produce fuel and iron respectively

Country Status (12)

Country Link
US (1) US5529599A (en)
EP (1) EP0805878A4 (en)
JP (1) JPH11501985A (en)
KR (1) KR19980701311A (en)
CN (1) CN1169163A (en)
AU (1) AU4750096A (en)
BR (1) BR9607574A (en)
CA (1) CA2210707A1 (en)
CZ (1) CZ219897A3 (en)
PL (1) PL321280A1 (en)
SK (1) SK97397A3 (en)
WO (1) WO1996022394A1 (en)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5767165A (en) * 1995-03-16 1998-06-16 Steinberg; Meyer Method for converting natural gas and carbon dioxide to methanol and reducing CO2 emissions
AUPN226095A0 (en) 1995-04-07 1995-05-04 Technological Resources Pty Limited A method of producing metals and metal alloys
AUPO426096A0 (en) 1996-12-18 1997-01-23 Technological Resources Pty Limited Method and apparatus for producing metals and metal alloys
AUPO426396A0 (en) 1996-12-18 1997-01-23 Technological Resources Pty Limited A method of producing iron
AUPO944697A0 (en) * 1997-09-26 1997-10-16 Technological Resources Pty Limited A method of producing metals and metal alloys
AT406964B (en) * 1998-03-11 2000-11-27 Voest Alpine Ind Anlagen METHOD FOR THE PRODUCTION OF LIQUID PIG IRON AND / OR STEEL PRE-PRODUCTS
US6053961A (en) * 1998-03-17 2000-04-25 The Boc Group, Inc. Method and apparatus for smelting iron ore
AUPP442598A0 (en) 1998-07-01 1998-07-23 Technological Resources Pty Limited Direct smelting vessel
AUPP483898A0 (en) 1998-07-24 1998-08-13 Technological Resources Pty Limited A direct smelting process & apparatus
MY119760A (en) * 1998-07-24 2005-07-29 Tech Resources Pty Ltd A direct smelting process
US6168709B1 (en) * 1998-08-20 2001-01-02 Roger G. Etter Production and use of a premium fuel grade petroleum coke
AUPP554098A0 (en) 1998-08-28 1998-09-17 Technological Resources Pty Limited A process and an apparatus for producing metals and metal alloys
AUPP570098A0 (en) 1998-09-04 1998-10-01 Technological Resources Pty Limited A direct smelting process
AUPP647198A0 (en) 1998-10-14 1998-11-05 Technological Resources Pty Limited A process and an apparatus for producing metals and metal alloys
AUPP805599A0 (en) 1999-01-08 1999-02-04 Technological Resources Pty Limited A direct smelting process
WO2000047780A2 (en) * 1999-02-02 2000-08-17 Hylsa, S.A. De C.V. Method and apparatus for preheating of direct reduced iron used as feed to an electric arc furnace
AUPQ083599A0 (en) 1999-06-08 1999-07-01 Technological Resources Pty Limited Direct smelting vessel
AUPQ152299A0 (en) 1999-07-09 1999-08-05 Technological Resources Pty Limited Start-up procedure for direct smelting process
AUPQ205799A0 (en) 1999-08-05 1999-08-26 Technological Resources Pty Limited A direct smelting process
AUPQ213099A0 (en) 1999-08-10 1999-09-02 Technological Resources Pty Limited Pressure control
US20020179493A1 (en) * 1999-08-20 2002-12-05 Environmental & Energy Enterprises, Llc Production and use of a premium fuel grade petroleum coke
AUPQ308799A0 (en) 1999-09-27 1999-10-21 Technological Resources Pty Limited A direct smelting process
AUPQ346399A0 (en) 1999-10-15 1999-11-11 Technological Resources Pty Limited Stable idle procedure
AUPQ365799A0 (en) 1999-10-26 1999-11-18 Technological Resources Pty Limited A direct smelting apparatus and process
US6602321B2 (en) 2000-09-26 2003-08-05 Technological Resources Pty. Ltd. Direct smelting process
US20090000194A1 (en) * 2006-01-12 2009-01-01 Liang-Shih Fan Systems and Methods of Converting Fuel
CN1896286B (en) * 2006-06-13 2010-04-21 苏亚杰 Method for producing direct iron-reduction by iron-ore briquet self-production reproduced gas
US8372264B2 (en) 2006-11-17 2013-02-12 Roger G. Etter System and method for introducing an additive into a coking process to improve quality and yields of coker products
US8206574B2 (en) * 2006-11-17 2012-06-26 Etter Roger G Addition of a reactor process to a coking process
US8361310B2 (en) * 2006-11-17 2013-01-29 Etter Roger G System and method of introducing an additive with a unique catalyst to a coking process
WO2008064162A2 (en) 2006-11-17 2008-05-29 Etter Roger G Selective cracking and coking of undesirable components in coker recycle and gas oils
US9011672B2 (en) 2006-11-17 2015-04-21 Roger G. Etter System and method of introducing an additive with a unique catalyst to a coking process
ES2735985T3 (en) 2008-09-26 2019-12-23 Univ Ohio State Conversion of carbonaceous fuels into carbon-free energy carriers
CN101724726B (en) * 2008-10-29 2011-06-15 贾会平 Method and device for ironmaking by smelting
CN101638702B (en) * 2009-08-14 2011-07-20 中冶赛迪工程技术股份有限公司 Recycling method of outlet gas in direct reduction process using gas as reducing gas
EP2475613B1 (en) 2009-09-08 2017-05-03 The Ohio State University Research Foundation Integration of reforming/water splitting and electrochemical systems for power generation with integrated carbon capture
AU2010292310B2 (en) 2009-09-08 2017-01-12 The Ohio State University Research Foundation Synthetic fuels and chemicals production with in-situ CO2 capture
CN102051426B (en) * 2009-11-02 2012-08-22 贾会平 Method and device for smelting iron by reduction
CN101787408B (en) * 2010-03-12 2011-12-21 苏亚杰 Method for producing direct reduced iron by utilizing sensible heat of raw gas
CN101956037B (en) * 2010-08-31 2012-01-04 贾会平 Method and device for indirect heating type reduction iron making
CN103354763B (en) 2010-11-08 2016-01-13 俄亥俄州立大学 There is the recirculating fluidized bed of air seal between reactor and moving bed downcomer
AU2012253332B2 (en) 2011-05-11 2017-05-11 Ohio State Innovation Foundation Oxygen carrying materials
CN103635449B (en) 2011-05-11 2016-09-07 俄亥俄州国家创新基金会 It is used for converting the system of fuel
CN102620569B (en) * 2012-03-09 2013-03-13 唐山京兆科技开发有限公司 Resource cyclic utilization system of industrial kiln
CN109536210B (en) 2013-02-05 2020-12-18 俄亥俄州国家创新基金会 Method for conversion of carbonaceous fuels
US9616403B2 (en) 2013-03-14 2017-04-11 Ohio State Innovation Foundation Systems and methods for converting carbonaceous fuels
KR101634513B1 (en) * 2013-03-29 2016-06-28 제이에프이 스틸 가부시키가이샤 High-calorie gas manufacturing process
US20150238915A1 (en) 2014-02-27 2015-08-27 Ohio State Innovation Foundation Systems and methods for partial or complete oxidation of fuels
CA3020406A1 (en) 2016-04-12 2017-10-19 Ohio State Innovation Foundation Chemical looping syngas production from carbonaceous fuels
CN105733689A (en) * 2016-04-26 2016-07-06 北京神雾环境能源科技集团股份有限公司 Preparation system and method for reducing gas for gas-based shaft kiln
US11090624B2 (en) 2017-07-31 2021-08-17 Ohio State Innovation Foundation Reactor system with unequal reactor assembly operating pressures
US10549236B2 (en) 2018-01-29 2020-02-04 Ohio State Innovation Foundation Systems, methods and materials for NOx decomposition with metal oxide materials
WO2020033500A1 (en) 2018-08-09 2020-02-13 Ohio State Innovation Foundation Systems, methods and materials for hydrogen sulfide conversion
CN109680114B (en) * 2019-01-29 2020-01-14 山东大学 System and method for gasifying pulverized coal and reducing iron ore in cooperation
CA3129146A1 (en) 2019-04-09 2020-10-15 Liang-Shih Fan Alkene generation using metal sulfide particles
CN111485060B (en) * 2020-05-27 2023-06-27 沈阳东大山汇环境科技有限公司 Self-generating gas circulation no-tail gas emission steel scrap smelting system and steel smelting method
US11753698B2 (en) * 2020-09-25 2023-09-12 Carbon Technology Holdings, LLC Bio-reduction of metal ores integrated with biomass pyrolysis

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB487525A (en) * 1936-03-05 1938-06-22 Siemens Ag Improvements in or relating to a process for the manufacture of compressed ferro-magnetic alloy powder cores
US3844766A (en) * 1973-12-26 1974-10-29 Midland Ross Corp Process for reducing iron oxide to metallic sponge iron with liquid or solid fuels
DE2659782B2 (en) * 1976-12-31 1979-06-21 Didier Engineering Gmbh, 4300 Essen Process for the further processing of coke oven gas
US5064174A (en) * 1989-10-16 1991-11-12 Northern States Power Company Apparatus for production of energy and iron materials, including steel
US4927430A (en) * 1988-05-26 1990-05-22 Albert Calderon Method for producing and treating coal gases
US5139568A (en) * 1991-10-03 1992-08-18 Cargill, Incorporated Continuous production of iron-carbon alloy using iron carbide

Also Published As

Publication number Publication date
US5529599A (en) 1996-06-25
WO1996022394A1 (en) 1996-07-25
CA2210707A1 (en) 1996-07-25
EP0805878A1 (en) 1997-11-12
AU4750096A (en) 1996-08-07
SK97397A3 (en) 1998-12-02
EP0805878A4 (en) 1998-04-22
CN1169163A (en) 1997-12-31
MX9705225A (en) 1997-10-31
CZ219897A3 (en) 1998-03-18
BR9607574A (en) 1998-07-07
KR19980701311A (en) 1998-05-15
PL321280A1 (en) 1997-11-24

Similar Documents

Publication Publication Date Title
JPH11501985A (en) How to simultaneously produce fuel and iron respectively
US4913733A (en) Process for producing pig iron
JP3299935B2 (en) Pig iron and / or sponge iron production method and plant
US5613997A (en) Metallurgical process
US4380469A (en) Process and apparatus for continuously reducing and melting metal oxides and/or pre-reduced metallic materials
CN1078499A (en) Smelting reduction method with high productivity
JP7028373B1 (en) Ironmaking equipment and method of manufacturing reduced iron
US5997609A (en) Sponge iron production process and plant
JP2004518020A (en) Method and apparatus for producing pig iron or fluid primary iron from a charge containing iron ore
US5069716A (en) Process for the production of liquid steel from iron containing metal oxides
GB2243840A (en) Liquid steel production
CN1046962C (en) Process for producing liquid raw iron or liquid steel base products and sponge iron and plant for implementing it
JPS6220809A (en) Melt reduction method of iron ore
CN1009561B (en) Process for mfr. of iron by melting-reducing iron ores
US6582492B1 (en) Method for producing melt iron
US3888658A (en) Process for the direct reduction of iron ore to steel
JP2022524228A (en) How to operate a metallurgical furnace
CN111218535A (en) Method for producing direct reduced iron by heating circulating reducing gas in gas production of molten iron bath coal
JPS59129707A (en) Method and device for direct refining of metallic oxide
JP2000503350A (en) How to make sponge iron
CN1047798C (en) Method for producing spongy iron and coproducing synthetic ammonia by reducing gas
MXPA97005225A (en) Method for the co-production of fuel and hie
CN116867912A (en) Effluent gas recovery in direct reduction processes
JP2701984B2 (en) Combustible gas production and purification methods
JPH0726313A (en) Production of molten steel from iron-containing metal oxide