JPH1149704A - Synthesis of methane-rich gas from saturated hydrocarbon - Google Patents

Synthesis of methane-rich gas from saturated hydrocarbon

Info

Publication number
JPH1149704A
JPH1149704A JP9209140A JP20914097A JPH1149704A JP H1149704 A JPH1149704 A JP H1149704A JP 9209140 A JP9209140 A JP 9209140A JP 20914097 A JP20914097 A JP 20914097A JP H1149704 A JPH1149704 A JP H1149704A
Authority
JP
Japan
Prior art keywords
gas
methane
catalyst
saturated hydrocarbon
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9209140A
Other languages
Japanese (ja)
Inventor
Yusaku Takita
祐作 滝田
Tatsuki Ishihara
達己 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OITA GAS KK
OOITA GAS KK
Original Assignee
OITA GAS KK
OOITA GAS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OITA GAS KK, OOITA GAS KK filed Critical OITA GAS KK
Priority to JP9209140A priority Critical patent/JPH1149704A/en
Publication of JPH1149704A publication Critical patent/JPH1149704A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently obtain the subject gas that is useful for increasing the calorie of town gas through a simple one-step process by bringing saturated hydrocarbons into contact with a specific metal catalyst supported on a carrier in the presence of hydrogen in the vapor phase. SOLUTION: Saturated hydrocarbon gases of 2-20 carbon atoms fed in an amount of 1.0-100 mol.%, preferably 50-100 mol.% are fed over a catalyst in which preferably 0.1-50 wt.% of a metal in the group VIII in the periodic table (such as nickel or iron) is supported on a carrier such as silica or alumina as it is or diluted with a filler inert to the catalytic reactions in an amount of 1-1,000 mol.% at a space velocity of 10 liters gas/liter catalyst/hour (described as 10/h hereinafter)-10,000/h, preferably 50/h-2,000/h to effect the vapor phase catalytic reaction by the vapor phase fixed bed process or the fluidized bed process at 150-800 deg.C, preferably 300-600 deg.C thereby producing the objective gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、飽和炭化水素から
メタンを合成する方法に関する。より詳しくは、水素の
存在下、特定の触媒と接触して高濃度のメタンを含むガ
スを合成する方法に関する。
[0001] The present invention relates to a method for synthesizing methane from a saturated hydrocarbon. More specifically, the present invention relates to a method for synthesizing a gas containing a high concentration of methane in contact with a specific catalyst in the presence of hydrogen.

【0002】[0002]

【従来の技術】都市ガスの高カロリー化には、成分ガス
としてメタンが配分される。メタンは天然ガスの主成分
として産出し、又石油に随伴して産出する石油ガスから
も得られる。メタンの合成法としては各種の炭素を含む
炭化水素を部分酸化して一酸化炭素となし、これを触媒
を用いて水素化することによっても得られる。メタンの
価格は季節や国内外の需要バランスによって変化する。
一方、多くが熱エネルギー源として利用されているプロ
パンやブタン等の価格も変動するので、水素/炭素比が
大きいこれらの飽和炭化水素から効率良くメタンが合成
できれば工業的メリットは大きい。
2. Description of the Related Art To increase the calories of city gas, methane is distributed as a component gas. Methane is produced as a main component of natural gas and is also obtained from petroleum gas produced along with petroleum. Methane can also be obtained by partially oxidizing hydrocarbons containing various carbons into carbon monoxide and hydrogenating them using a catalyst. The price of methane changes depending on the season and the balance between domestic and overseas demand.
On the other hand, the price of propane and butane, etc., which are mostly used as thermal energy sources, also fluctuates. Therefore, if methane can be efficiently synthesized from these saturated hydrocarbons having a large hydrogen / carbon ratio, industrial merit is great.

【0003】例えば、プロパンからメタンの合成を示せ
ば、以下の反応(1)のようになり、炭素の析出を伴
う。 C3 8 →2CH4 +C (1) 飽和炭化水素からの対応する不飽和炭化水素への脱水素
反応では、通常は触媒上への少量の炭素の析出が進行す
るが、炭素の析出を活性を低下させるために、これをい
かにして防止するかに腐心されてきた。
[0003] For example, if the synthesis of methane from propane is shown, the following reaction (1) follows, accompanied by the deposition of carbon. C 3 H 8 → 2CH 4 + C (1) In a dehydrogenation reaction from a saturated hydrocarbon to a corresponding unsaturated hydrocarbon, a small amount of carbon is usually deposited on the catalyst, but the carbon deposition is activated. To reduce this, it has been devastated how to prevent this.

【0004】[0004]

【発明が解決しようとする課題】メタンの合成法として
上記の炭化水素の部分酸化、水素化する方法では、プロ
セスが複雑になるばかりでなく、エネルギー的にロスが
大きい。一段構成の簡単なプロセスで、炭素数2以上の
飽和炭化水素から直接メタンを合成することができれ
ば、エネルギーの改善になり、そのような合成法の開発
が望まれていた。本発明者らは、先に、気相にて飽和炭
化水素を、ニッケル等の元素の周期表第VIII族金属を担
体に担持した触媒と接触することにより、メタンを含有
するガスの合成法を開発した。しかし、この合成法は、
飽和炭化水素を高度に接触分解するには500℃以上の
反応温度を要し、少なからずの炭素の析出を伴い、メタ
ンの濃度も決して満足したものではない。本発明は、飽
和炭化水素からより低温の反応温度においても、炭素の
析出が抑えられ、高濃度のメタンガスを合成することが
できる方法を提供することを目的とする。
The above-mentioned method of synthesizing methane by partially oxidizing and hydrogenating hydrocarbons not only complicates the process but also causes a large loss in energy. If methane can be directly synthesized from a saturated hydrocarbon having 2 or more carbon atoms by a simple one-stage process, energy can be improved, and the development of such a synthesis method has been desired. The present inventors have previously described a method for synthesizing a gas containing methane by bringing a saturated hydrocarbon in a gas phase into contact with a catalyst supporting a Group VIII metal of the periodic table of an element such as nickel on a carrier. developed. However, this synthesis method
Highly catalytic cracking of saturated hydrocarbons requires a reaction temperature of 500 ° C. or more, involves a considerable amount of precipitation of carbon, and does not satisfy methane concentration at all. An object of the present invention is to provide a method capable of suppressing the deposition of carbon from a saturated hydrocarbon even at a lower reaction temperature and synthesizing a high-concentration methane gas.

【0005】[0005]

【課題を解決するための手段】本発明者は、鋭意研究を
行った結果、先に本発明者らが開発した上記の合成法に
おいて、飽和炭化水素と上記触媒との接触を、水素の存
在下で行うことにより本発明の目的が達成できることを
見出だして本発明を完成した。
Means for Solving the Problems As a result of diligent studies, the present inventors have found that in the above-mentioned synthesis method developed by the present inventors, the contact between the saturated hydrocarbon and the above-mentioned catalyst is determined by the presence of hydrogen. The inventors have found that the object of the present invention can be achieved by performing the following, and completed the present invention.

【0006】すなわち、本発明は、気相にて飽和炭化水
素を、水素の存在下、元素の周期表第VIII族金属を担体
に担持した触媒と接触することからなるメタンリッチガ
スの合成法を要旨とする。又、本発明のメタンリッチガ
スの合成法は、上記飽和炭化水素は炭素数が2〜20の
飽和炭化水素であることを特徴とする。又、本発明のメ
タンリッチガスの合成法は、上記元素の周期表第VIII族
金属の担持量は0.1〜50重量%であることを特徴と
する。又、本発明のメタンリッチガスの合成法は、上記
接触温度が150〜800℃であることを特徴とする。
That is, the present invention provides a method for synthesizing a methane-rich gas comprising contacting a saturated hydrocarbon in a gas phase with a catalyst having a metal of Group VIII of the periodic table supported on a carrier in the presence of hydrogen. And Further, the method for synthesizing a methane-rich gas of the present invention is characterized in that the saturated hydrocarbon is a saturated hydrocarbon having 2 to 20 carbon atoms. Further, the method for synthesizing a methane-rich gas of the present invention is characterized in that the amount of a metal belonging to Group VIII of the periodic table is 0.1 to 50% by weight. Further, the method for synthesizing a methane-rich gas of the present invention is characterized in that the contact temperature is 150 to 800 ° C.

【0007】[0007]

【発明の実施の形態】本発明において、飽和炭化水素と
は炭素数が2以上、特に2〜20の飽和炭化水素を指
す。炭素効率の点からは、炭素数の小さい炭化水素ほど
好ましい。供給源の点では炭素数が3及び4のものが好
ましい。従って、飽和炭化水素としては、炭素数が3及
び4のものが特に好ましい。上記飽和炭化水素は、それ
らの混合物でも良いことは言うまでもない。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a saturated hydrocarbon refers to a saturated hydrocarbon having 2 or more carbon atoms, particularly 2 to 20 carbon atoms. From the viewpoint of carbon efficiency, a hydrocarbon having a smaller carbon number is more preferable. From the viewpoint of the source, those having 3 and 4 carbon atoms are preferred. Therefore, as the saturated hydrocarbon, those having 3 and 4 carbon atoms are particularly preferable. It goes without saying that the saturated hydrocarbon may be a mixture thereof.

【0008】本発明で用いられる触媒は、元素の周期表
第VIII族金属を担体に担持したものである。該第VIII族
金属は、ニッケル、鉄、コバルトの他、白金族金属、す
なわち、ルテニウム、ロジウム、パラジウム、オスミウ
ム、イリジウム、白金であるが、特にニッケルが好まし
い。これらは2種以上併用することができる。
The catalyst used in the present invention is obtained by supporting a metal of Group VIII of the periodic table on a carrier. The Group VIII metal is, in addition to nickel, iron and cobalt, a platinum group metal, that is, ruthenium, rhodium, palladium, osmium, iridium and platinum, with nickel being particularly preferred. These can be used in combination of two or more.

【0009】上記金属を担持する担体としては、シリ
カ、アルミナ、チタニア、シリカ−アルミナ、窒化珪
素、炭化珪素等が挙げられる。これら担体への上記金属
の担持量は、0.1〜50重量%、特に1〜20重量%
である。担持量が0.1重量%未満では、活性が低く、
充分な性能を示すことができず、50重量%を超える
と、それ以上の効果が得られず、触媒が高価になるばか
りでなく、炭素の析出が増大して、メタンの収率が低下
する恐れがある。
Examples of the carrier for supporting the metal include silica, alumina, titania, silica-alumina, silicon nitride, and silicon carbide. The amount of the metal supported on these carriers is 0.1 to 50% by weight, particularly 1 to 20% by weight.
It is. When the loading amount is less than 0.1% by weight, the activity is low,
If it does not show sufficient performance, and if it exceeds 50% by weight, no further effect can be obtained, not only the catalyst becomes expensive, but also the precipitation of carbon increases and the yield of methane decreases. There is fear.

【0010】上記担体への上記金属の担持法は、一般的
な方法で良い。例えば、上記金属の硝酸塩の水溶液に担
体を浸漬した後、該担体をホットプレート上で蒸発乾固
する。或いは硝酸塩の水溶液に担体を浸漬したものに、
希釈アンモニア水を滴下し中和沈殿させ、必要に応じて
熟成放置する。更に濾過し、乾燥させる。このようにし
て調製した触媒前駆体を乾燥する。乾燥温度は、100
〜130℃が良い。得られた乾燥体は、粉砕して粒度を
揃えるか、更に粉砕し成型する。その後、300℃以
上、好ましくは300〜500℃の温度で空気焼成す
る。焼成時間は、焼成温度にもよるが、1〜50時間程
度、好ましくは2〜24時間程度である。上記のように
して空気焼成された触媒は、還元性ガスで還元される。
還元性ガスとしては、水素、一酸化炭素、炭化水素等い
ずれの還元剤も使用できる。
The method of supporting the metal on the carrier may be a general method. For example, after immersing the carrier in an aqueous solution of the metal nitrate, the carrier is evaporated to dryness on a hot plate. Alternatively, the carrier is immersed in an aqueous solution of nitrate,
Dilute aqueous ammonia is added dropwise to neutralize and precipitate, and if necessary, it is left to age. Further filter and dry. The catalyst precursor thus prepared is dried. The drying temperature is 100
~ 130 ° C is good. The obtained dried product is crushed to make the particle size uniform, or further crushed and molded. Thereafter, air calcination is performed at a temperature of 300 ° C. or more, preferably 300 to 500 ° C. The firing time depends on the firing temperature, but is about 1 to 50 hours, preferably about 2 to 24 hours. The catalyst calcined in the air as described above is reduced with a reducing gas.
As the reducing gas, any reducing agent such as hydrogen, carbon monoxide, and hydrocarbon can be used.

【0011】上記飽和炭化水素と上記触媒との気相接触
反応は、飽和炭化水素含有ガス(供給ガス)を、触媒上
に供給することによりなされる。供給ガスの飽和炭化水
素濃度は、1.0〜100モル%、好ましくは50〜1
00モル%である。1.0モル%未満では、経済的に不
利である。該炭化水素に対して希釈ガスを用いる必要は
ないが、用いることは問題にならない。場合によって
は、接触反応が吸熱反応なので、希釈ガスは熱量のバッ
ファとして効果を示すことが期待される。希釈ガスとし
て窒素、ヘリウム、アルゴン等の反応に関与しない気体
を用いることができる。
The gas phase contact reaction between the saturated hydrocarbon and the catalyst is carried out by supplying a gas containing a saturated hydrocarbon (supply gas) onto the catalyst. The saturated hydrocarbon concentration of the feed gas is 1.0 to 100 mol%, preferably 50 to 1 mol%.
00 mol%. If it is less than 1.0 mol%, it is economically disadvantageous. It is not necessary to use a diluent gas for the hydrocarbon, but its use is not a problem. In some cases, since the contact reaction is an endothermic reaction, the diluent gas is expected to be effective as a buffer for heat. As the diluent gas, a gas that does not participate in the reaction, such as nitrogen, helium, or argon, can be used.

【0012】上記気相接触反応は、水素の存在下に行わ
れる。水素の使用量は、上記供給ガス中の飽和炭化水素
に対して、好ましくは等モル以上、特に好ましくは2〜
20モルである。水素の使用量が少なすぎると本発明の
目的は達成できず、又多すぎると反応後のメタンとの分
離の問題が生じたりして、経済的に不利となり、いずれ
も望ましくない。
The above gas phase contact reaction is carried out in the presence of hydrogen. The amount of hydrogen used is preferably at least equimolar to the saturated hydrocarbon in the feed gas, and particularly preferably 2 to 2.
20 moles. If the amount of hydrogen used is too small, the object of the present invention cannot be achieved. If the amount is too large, there is a problem of separation from methane after the reaction, which is economically disadvantageous, and both are undesirable.

【0013】上記触媒は、そのまま反応器に充填して用
いても良いが、反応に対して不活性な充填物で希釈して
用いても良い。充填物は触媒体積に対して1%から10
000%、好ましくは100%から1000%である。
充填物が少なすぎると、析出炭素で閉塞を起こす危険性
があり、多すぎると経済的に問題である。
The above catalyst may be used as it is in a reactor, or may be used after being diluted with a filler inert to the reaction. The packing is 1% to 10% of the catalyst volume.
000%, preferably 100% to 1000%.
If the amount of the filler is too small, there is a risk of clogging with the deposited carbon, and if the amount is too large, it is economically problematic.

【0014】上記飽和炭化水素と上記触媒との接触反応
温度は、反応すべき供給ガスの種類と組成によるが、高
温すぎる反応は触媒寿命が急激に低下する傾向にあるの
で経済的でない。又、低温すぎると未反応成分割合が増
加するので、150〜800℃、好ましくは300〜6
00℃である。
The contact reaction temperature between the above-mentioned saturated hydrocarbon and the above-mentioned catalyst depends on the kind and composition of the feed gas to be reacted. However, a reaction at an excessively high temperature is not economical because the catalyst life tends to be sharply reduced. On the other hand, if the temperature is too low, the proportion of unreacted components increases.
00 ° C.

【0015】触媒当たりの供給ガス量である空間速度
(space velosity)は、10l−ガス/l−触媒/時間
(以下10/hと記す)ないし10000/hが適当
で、より好ましくは50/h〜2000/hである。
The space velocity, which is the amount of gas supplied per catalyst, is suitably 10 l-gas / l-catalyst / hour (hereinafter referred to as 10 / h) to 10,000 / h, more preferably 50 / h. 20002000 / h.

【0016】反応の形式は、気層流通固定床式が一般的
であるが、流動層式でも良い。流動層式の場合、触媒上
に付着した炭素の除去効果が期待される。連続反応させ
ると、触媒上に固体炭素が析出し、飽和炭化水素の転化
率が低下してくる。その場合、供給ガスを停止し、触媒
を再生する。再生には種々の方法を用いることができ
る。例えば、酸素を含むガスを供給し、一酸化炭素或い
は二酸化炭素として析出炭素を除去する方法である。こ
の場合、酸素濃度の高い再生ガスの供給は炭素の燃焼に
より触媒層温度の過昇を招くので、触媒の希釈割合に応
じた酸素濃度の選定が必要である。その他、水蒸気を供
給して、メタンを回収する方法等があり、経済性よって
選択することができる。
The type of reaction is generally a gas-bed fixed bed type, but may be a fluidized bed type. In the case of a fluidized bed type, an effect of removing carbon attached on the catalyst is expected. When a continuous reaction is performed, solid carbon precipitates on the catalyst, and the conversion of saturated hydrocarbon decreases. In that case, the supply gas is stopped and the catalyst is regenerated. Various methods can be used for reproduction. For example, there is a method in which a gas containing oxygen is supplied to remove deposited carbon as carbon monoxide or carbon dioxide. In this case, the supply of the regeneration gas having a high oxygen concentration causes an excessive rise in the temperature of the catalyst layer due to the combustion of carbon. Therefore, it is necessary to select the oxygen concentration according to the dilution ratio of the catalyst. In addition, there is a method of recovering methane by supplying steam, and the method can be selected according to economic efficiency.

【0017】[0017]

【実施例】以下、本発明を実施例により、詳細に説明す
る。 (実施例1)触媒の調製 硝酸ニッケル六水和物(和光純薬社製、試薬特級)とシ
リカ(アエロジルシリカ−380;日本アエロジル社
製)を精製せずにそのまま用いた。まず、硝酸ニッケル
六水和物50.25gを50mlの純水に溶解し、これ
に91.5gのシリカを入れ、よく攪拌しながらホット
プレート上で蒸発乾固した。これを550℃で5時間、
空気気流中で焼成した。この焼成物を1200kg/c
2 でプレス成型した後、粉砕し、14〜32メッシュ
に整粒した。この触媒粒子を300ml/分の水素気流
中、400℃で5時間還元した。この触媒のニッケル含
有量は10重量%であった。
The present invention will be described below in detail with reference to examples. (Example 1) Preparation of catalyst Nickel nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, special grade of reagent) and silica (Aerosil silica-380; manufactured by Nippon Aerosil Co., Ltd.) were used without purification. First, 50.25 g of nickel nitrate hexahydrate was dissolved in 50 ml of pure water, 91.5 g of silica was added thereto, and the mixture was evaporated to dryness on a hot plate with good stirring. This at 550 ° C for 5 hours,
It was fired in a stream of air. 1200 kg / c
After press molding with m 2 , it was pulverized and sized to 14 to 32 mesh. The catalyst particles were reduced at 400 ° C. for 5 hours in a hydrogen stream of 300 ml / min. The nickel content of this catalyst was 10% by weight.

【0018】接触反応 反応は常圧流通固定床式反応装置を用いた。内径13m
mのステンレススチール製管に、上記触媒1.0cc
(約0.32g)と触媒と同粒子サイズのシリカビーズ
9ccとを混合したものを充填し、表1に示す各温度
で、プロパン26.7モル%、水素53.3モル%、窒
素20モル%の組成からなる供給ガスを30ml/分の
速度で供給した。反応後のガスをFID及びTCDガス
クロマトグラフィーにて分析し、それらの結果からプロ
パンの転化率とメタンへの選択率を算出し、それらの結
果を表1に示した。なお、メタンへの選択率は、次式に
て計算した。 メタンへの選択率=100(1/3生成したメタンのモ
ル数)/(反応したプロパンのモル数)(%)
For the catalytic reaction, an atmospheric pressure fixed bed reactor was used. 13m inside diameter
1.0cc of the above catalyst in a stainless steel tube
(About 0.32 g), 9 cc of silica beads having the same particle size as the catalyst, and 26.7 mol% of propane, 53.3 mol% of hydrogen, 20 mol of nitrogen at each temperature shown in Table 1. % Gas was supplied at a rate of 30 ml / min. The gas after the reaction was analyzed by FID and TCD gas chromatography, and from those results, the conversion of propane and the selectivity to methane were calculated. The results are shown in Table 1. The selectivity to methane was calculated by the following equation. Selectivity to methane = 100 (1/3 moles of methane produced) / (moles of reacted propane) (%)

【0019】(比較例1)供給ガスとして、プロパン8
0モル%、窒素20モル%の組成からなる供給ガスを用
いた以外は、実施例1と同様にして接触反応を行い、そ
れらの結果を表2に示した。
Comparative Example 1 Propane 8 was used as a supply gas.
A contact reaction was carried out in the same manner as in Example 1 except that a feed gas having a composition of 0 mol% and 20 mol% of nitrogen was used. The results are shown in Table 2.

【0020】(実施例2)供給ガスとして、イソブタン
20モル%、水素60モル%、窒素20モル%の組成か
らなる供給ガスを用いた以外は、実施例1と同様にして
接触反応を行い、それらの結果を表3に示した。なお、
メタンへの選択率は、次式にて計算した。 メタンへの選択率=100(1/4生成したメタンのモ
ル数)/(反応したイソブタンのモル数)(%)
Example 2 A contact reaction was carried out in the same manner as in Example 1 except that a feed gas having a composition of 20 mol% of isobutane, 60 mol% of hydrogen and 20 mol% of nitrogen was used as a supply gas. Table 3 shows the results. In addition,
The selectivity to methane was calculated by the following equation. Selectivity to methane = 100 (1/4 mole of methane produced) / (mol of reacted isobutane) (%)

【0021】(比較例2)供給ガスとして、イソブタン
80モル%、窒素20モル%の組成からなる供給ガスを
用いた以外は、実施例1と同様にして接触反応を行い、
それらの結果を表4に示した。
Comparative Example 2 A contact reaction was carried out in the same manner as in Example 1 except that a feed gas having a composition of 80 mol% of isobutane and 20 mol% of nitrogen was used as a feed gas.
Table 4 shows the results.

【0022】表1〜表4の結果から明らかなように、接
触反応時に水素を共存させることにより、低温における
プロパンやイソブタンの転化率を大幅に向上させること
ができ、各反応温度においてメタンへの選択率も大きく
改善されることが判る。
As is evident from the results in Tables 1 to 4, the conversion of propane and isobutane at low temperatures can be greatly improved by coexisting hydrogen during the catalytic reaction. It can be seen that the selectivity is greatly improved.

【0023】[0023]

【発明の効果】本発明によれば、工業的に供給が容易な
プロパンやブタン等の飽和炭化水素から、比較的低温で
高濃度のメタンを含有するガスを製造することができ、
従って例えば都市ガス原料に好適なガスの効率的合成を
可能とする。
According to the present invention, it is possible to produce a gas containing methane at a relatively low temperature and a high concentration from a saturated hydrocarbon such as propane or butane which can be industrially easily supplied,
Therefore, for example, it is possible to efficiently synthesize a gas suitable for a city gas raw material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石原 達己 大分県大分市鴛野959番地の22 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Tatsumi Ishihara 22 of 959 Oshino, Oita City, Oita Prefecture

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 気相にて飽和炭化水素を、水素の存在
下、元素の周期表第VIII族金属を担体に担持した触媒と
接触することからなるメタンリッチガスの合成法。
1. A method for synthesizing a methane-rich gas comprising contacting a saturated hydrocarbon in a gas phase with a catalyst in which a metal belonging to Group VIII of the periodic table is supported on a carrier in the presence of hydrogen.
【請求項2】 上記飽和炭化水素は炭素数が2〜20の
飽和炭化水素である請求項1記載のメタンリッチガスの
合成法。
2. The method according to claim 1, wherein the saturated hydrocarbon is a saturated hydrocarbon having 2 to 20 carbon atoms.
【請求項3】 上記元素の周期表第VIII族金属の担持量
は0.1〜50重量%である請求項1又は2記載のメタ
ンリッチガスの合成法。
3. The method for synthesizing a methane-rich gas according to claim 1, wherein the amount of the group VIII metal supported in the periodic table is 0.1 to 50% by weight.
【請求項4】 上記接触温度が150〜800℃である
請求項1〜3のいずれかに記載のメタンリッチガスの合
成法。
4. The method for synthesizing a methane-rich gas according to claim 1, wherein the contact temperature is 150 to 800 ° C.
JP9209140A 1997-08-04 1997-08-04 Synthesis of methane-rich gas from saturated hydrocarbon Pending JPH1149704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9209140A JPH1149704A (en) 1997-08-04 1997-08-04 Synthesis of methane-rich gas from saturated hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9209140A JPH1149704A (en) 1997-08-04 1997-08-04 Synthesis of methane-rich gas from saturated hydrocarbon

Publications (1)

Publication Number Publication Date
JPH1149704A true JPH1149704A (en) 1999-02-23

Family

ID=16567971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9209140A Pending JPH1149704A (en) 1997-08-04 1997-08-04 Synthesis of methane-rich gas from saturated hydrocarbon

Country Status (1)

Country Link
JP (1) JPH1149704A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1037567C (en) * 1993-11-24 1998-03-04 化学工业部沈阳化工研究院 Seed processing agent for paddy rice direct seeding
JP2013516506A (en) * 2010-01-05 2013-05-13 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Apparatus and method for treating natural gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1037567C (en) * 1993-11-24 1998-03-04 化学工业部沈阳化工研究院 Seed processing agent for paddy rice direct seeding
JP2013516506A (en) * 2010-01-05 2013-05-13 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Apparatus and method for treating natural gas
US9284236B2 (en) 2010-01-05 2016-03-15 Johnson Matthey Plc Apparatus and process for treating natural gas
US10010858B2 (en) 2010-01-05 2018-07-03 Johnson Matthey Plc Apparatus and process for treating natural gas

Similar Documents

Publication Publication Date Title
US7067562B2 (en) Iron-based Fischer-Tropsch catalysts and methods of making and using
US5001293A (en) Halocarbon conversion
EA016492B1 (en) Catalytic hydrogenation of carbon dioxide into syngas mixture
JPS60124693A (en) Manufacture of hydrocarbon
JPS60124694A (en) Manufacture of hydrocarbon
JPH0581635B2 (en)
JP2577830B2 (en) Catalyst composition for dehydrogenation and / or dehydrocyclization and use thereof
JP2009179801A (en) Method for producing liquefied petroleum gas
JP5706335B2 (en) Selective catalytic hydrogenation of alkynes to the corresponding alkenes
EP1212276A1 (en) Sulfur containing promoter for alkanes oxidative dehydrogenation processes
JP2000104078A (en) Method for producing liquid hydrocarbon oil from lower hydrocarbon gas containing carbon dioxide
JPS5929633B2 (en) Low-temperature steam reforming method for hydrocarbons
JPS62140652A (en) Catalyst composition
US20230133746A1 (en) Process for Producing Hydrogen, Carbon, and Ethylene From Methane-Containing Feedstock
WO2017085603A2 (en) Methods for the conversion of co2 into syngas for use in the production of olefins
JPS63233001A (en) Manufacture of synthetic gas or hydrogen by catalytic conversion of liquid-phase methanol
JPH1149704A (en) Synthesis of methane-rich gas from saturated hydrocarbon
Fathi et al. Conversion of ethane to ethylene and synthesis gas with cerium oxide. Promoting effect of Pt, Rh and Ru
JP2660880B2 (en) Acetic acid production method
JP2000053978A (en) Synthesis of methane-rich gas from hydrocarbon- containing compound and production of sng or city gas
JP3179051B2 (en) Synthesis of methane-rich gas from saturated hydrocarbons
JPS6113689B2 (en)
RU2006125385A (en) METHOD FOR CONVERTING SYNTHESIS GAS TO HYDROCARBONS IN THE PRESENCE OF SIC BETA AND EFFLUENT FORMED AS A RESULT OF THIS METHOD
JP6272791B2 (en) Method for producing organic acid
US11858886B2 (en) Process of selectively hydrogenating gas mixture having high acetylene content