JPH1148997A - Motor-driven power steering device - Google Patents

Motor-driven power steering device

Info

Publication number
JPH1148997A
JPH1148997A JP20771197A JP20771197A JPH1148997A JP H1148997 A JPH1148997 A JP H1148997A JP 20771197 A JP20771197 A JP 20771197A JP 20771197 A JP20771197 A JP 20771197A JP H1148997 A JPH1148997 A JP H1148997A
Authority
JP
Japan
Prior art keywords
steering
force
rear wheel
wheel
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20771197A
Other languages
Japanese (ja)
Other versions
JP3660106B2 (en
Inventor
Hiroyuki Tokunaga
裕之 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP20771197A priority Critical patent/JP3660106B2/en
Publication of JPH1148997A publication Critical patent/JPH1148997A/en
Application granted granted Critical
Publication of JP3660106B2 publication Critical patent/JP3660106B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Power Steering Mechanism (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

PROBLEM TO BE SOLVED: To further surely suppress instability of a vehicle behavior on a slippery road surface by calculating a value corresponding to horizontal direction grip force that a rear wheel generates at present and relatively reducing steering auxiliary force as the value approaches a capacity limit of a tire. SOLUTION: An auxiliary steering torque command value Ta obtained from speed V and manual steering torque Ts is added to a steering resistance torque command value Tc obtained from steering resistance torque Tcf and steering resistance correction torque Tcr and a motor 4 is controlled. Because a rear wheel becomes a spin tendency when horizontal force utilization factor ξr of the rear wheel exceeds about 1, steering resistance force is generated in a power steering device as the horizontal force utilization factor ξr approaches about 1 and steering auxiliary force is relatively reduced. Thus, an oversteering tendency is eliminated and stability of a vehicle on a slippery road can be improved because a driver recognizes overtuning of a steering wheel and returns a front wheel steering angle.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、前輪に舵角を与え
る操舵系に対し、操舵力を軽減する操舵補助力を与える
ことができるように構成された電動パワーステアリング
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric power steering apparatus configured to apply a steering assist force for reducing a steering force to a steering system for giving a steering angle to a front wheel.

【0002】[0002]

【従来の技術】積雪路など、タイヤと路面間の摩擦係数
が極めて低い状態の路面(低μ路)では、路面からの操
舵抵抗(セルフアライニングトルク)が小さくなるた
め、場合によっては不用意に切りすぎないように微妙な
操舵が必要となり、運転者に大きな負担を与えるという
問題があった。
2. Description of the Related Art Steering resistance (self-aligning torque) from a road surface is small on a road surface (low μ road) such as a snowy road where a friction coefficient between a tire and the road surface is extremely low. There is a problem that a delicate steering is required so as not to cut too much, and a heavy load is imposed on a driver.

【0003】このような不都合を改善するために、タイ
ヤと路面間の摩擦係数と車速とに基づいて操向車輪の横
力利用率を算出し、横力利用率値に基づいて手動操舵系
に加える操舵抵抗を制御するようにした電動パワーステ
アリング装置を本出願人は提案している(特願平8−3
09496号明細書参照)。
In order to improve such inconvenience, a lateral force utilization factor of a steered wheel is calculated based on a friction coefficient between a tire and a road surface and a vehicle speed, and a manual steering system is calculated based on the lateral force utilization value. The present applicant has proposed an electric power steering apparatus in which the applied steering resistance is controlled (Japanese Patent Application No. Hei 8-3).
09496).

【0004】[0004]

【発明が解決しようとする課題】しかるに、前輪駆動車
の場合、旋回中にアクセルオフすると、前輪の横力(コ
ーナリングフォース)が増大してオーバーステア傾向と
なる所謂タックイン現象を生じるが、この現象が雪道の
ような摩擦係数が極度に低い路面上で起こると、後輪の
横力が飽和することがある。つまり従来の手法では後輪
のグリップ状況が考慮されていないので、特に低μ路で
の操縦応答性を向上する上に十分とは言えない面があっ
た。
However, in the case of a front-wheel drive vehicle, when the accelerator is turned off during turning, a so-called tack-in phenomenon occurs in which the lateral force (cornering force) of the front wheels increases and tends to oversteer. However, when it occurs on a road surface with an extremely low friction coefficient such as a snowy road, the lateral force of the rear wheel may be saturated. In other words, the conventional method does not consider the grip condition of the rear wheels, and thus cannot be said to be sufficient for improving the steering response especially on a low μ road.

【0005】本発明は、このような問題点を解消するべ
くなされたものであり、その主な目的は、滑り易い路面
上での車両挙動が不安定となることをより一層確実に抑
制し得るように改良された電動パワーステアリング装置
を提供することにある。
The present invention has been made to solve such a problem, and a main object of the present invention is to more reliably suppress instability of vehicle behavior on slippery road surfaces. An object of the present invention is to provide an improved electric power steering apparatus.

【0006】[0006]

【課題を解決するための手段】このような目的を果たす
ために、本発明においては、車両の前輪に舵角を与える
操舵系に動力を付加するモータと、該モータに発生させ
る操舵補助力を制御する制御手段とを有する電動パワー
ステアリング装置において、後輪が現在発生している横
方向グリップ力に対応する値を算出し、該横方向グリッ
プ力対応値がタイヤの能力限界に近づくに連れて操舵補
助力を相対的に減少させるように制御するものとした。
これによると、後輪が摩擦円を逸脱しそうな状態になる
とステアリングホイールが重くなる(操舵に要する力が
増大する)ので、過度な操舵を抑制できる。
According to the present invention, there is provided a motor for applying power to a steering system for providing a steering angle to front wheels of a vehicle, and a steering assist force generated by the motor. Controlling the electric power steering device having a control means for controlling the rear wheel to calculate a value corresponding to the lateral grip force currently generated by the rear wheel, and as the lateral grip force corresponding value approaches the performance limit of the tire. Control is performed so that the steering assist force is relatively reduced.
According to this, when the rear wheels are likely to deviate from the friction circle, the steering wheel becomes heavy (the force required for steering increases), so that excessive steering can be suppressed.

【0007】[0007]

【発明の実施の形態】以下に添付の図面に示された実施
例を参照して本発明の構成について詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The construction of the present invention will be described below in detail with reference to embodiments shown in the accompanying drawings.

【0008】図1は、本発明が適用された前後輪操舵車
両の一例を示している。この車両の前輪1側には、ステ
アリングホイール2に加えた回転力をピニオン(図示せ
ず)でラック軸3の軸力に変換すると共に、電動モータ
4による補助的な軸力をラック軸3に加えるようにした
ラック/ピニオン式電動パワーステアリング装置5が設
けられている。
FIG. 1 shows an example of a front-rear-wheel steering vehicle to which the present invention is applied. On the front wheel 1 side of this vehicle, the rotational force applied to the steering wheel 2 is converted into the axial force of the rack shaft 3 by a pinion (not shown), and the auxiliary axial force by the electric motor 4 is applied to the rack shaft 3. An additional rack / pinion type electric power steering device 5 is provided.

【0009】後輪6に舵角を与える後輪操舵装置7は、
車幅方向に延在する操舵ロッド8を電動モータ9で軸方
向に駆動し、その軸力を、前輪1側のラック軸3と同様
に、左右の後輪6を支持したナックルアーム10にタイ
ロッド11を介して伝達するようになっている。
A rear wheel steering device 7 for giving a steering angle to the rear wheel 6 includes:
A steering rod 8 extending in the vehicle width direction is axially driven by an electric motor 9, and its axial force is applied to a knuckle arm 10 supporting left and right rear wheels 6, similarly to the rack shaft 3 on the front wheel 1 side. 11.

【0010】電動パワーステアリング装置5には、ラッ
ク軸3の変位から前輪1の舵角δfを検出するための舵
角センサ12が設けられ、また後輪操舵装置7には、操
舵ロッド8の変位から後輪6の舵角δrを検出するため
の舵角センサ13が設けられている。そしてステアリン
グシャフト14には、ステアリングホイール2に加わる
手動操舵トルクTsを検知するための操舵トルクセンサ
15が設けられている。さらに、各車輪には車速センサ
16がそれぞれ設けられ、車体の適所にはヨーレイトセ
ンサ17が設けられ、ブレーキペダルにはブレーキ作動
センサ18が設けられている。
The electric power steering device 5 is provided with a steering angle sensor 12 for detecting the steering angle δf of the front wheels 1 from the displacement of the rack shaft 3, and the rear wheel steering device 7 is provided with a displacement of the steering rod 8. , A steering angle sensor 13 for detecting the steering angle δr of the rear wheel 6 is provided. The steering shaft 14 is provided with a steering torque sensor 15 for detecting a manual steering torque Ts applied to the steering wheel 2. Further, a vehicle speed sensor 16 is provided for each wheel, a yaw rate sensor 17 is provided at an appropriate position on the vehicle body, and a brake operation sensor 18 is provided for the brake pedal.

【0011】これらの各センサは、電動パワーステアリ
ング装置5並びに後輪操舵装置7のモータ4・9を駆動
制御するコンピュータユニット(ECU)19に電気的
に接続されている。
Each of these sensors is electrically connected to a computer unit (ECU) 19 that drives and controls the electric power steering device 5 and the motors 4 and 9 of the rear wheel steering device 7.

【0012】この前後輪操舵車両は、ステアリングホイ
ール2を運転者が操舵すると、その回転運動がラック/
ピニオン機構でラック軸3の直線運動に変換され、それ
によって前輪1に舵角が与えられる。それと同時に、ラ
ック軸3の移動量が舵角センサ12からECU19に入
力される。そして前輪舵角δf、車速V、及びヨーレイ
トγの各入力値に基づいて、その時の後輪6の最適舵角
がECU19で決定され、それに従って後輪操舵装置7
のモータ9が駆動されて後輪6に舵角が与えられる。
In this front-rear-wheel steering vehicle, when the driver steers the steering wheel 2, the rotational motion of the steering wheel 2 is changed to the rack / wheel.
This is converted into a linear motion of the rack shaft 3 by a pinion mechanism, whereby a steering angle is given to the front wheels 1. At the same time, the amount of movement of the rack shaft 3 is input from the steering angle sensor 12 to the ECU 19. Based on the input values of the front wheel steering angle δf, the vehicle speed V, and the yaw rate γ, the optimal steering angle of the rear wheel 6 at that time is determined by the ECU 19, and the rear wheel steering device 7 is accordingly determined.
Is driven to give a steering angle to the rear wheels 6.

【0013】図2は、本発明に基づく前後輪操舵車両の
制御系の全体構成を示している。本制御系は、大別して
前輪1側に設けられたパワーステアリング装置5の制御
系と、後輪6側に設けられた後輪操舵装置7の制御系と
からなっている。
FIG. 2 shows the overall configuration of a control system for a front-rear-wheel steering vehicle according to the present invention. This control system is roughly divided into a control system of the power steering device 5 provided on the front wheel 1 side and a control system of a rear wheel steering device 7 provided on the rear wheel 6 side.

【0014】パワーステアリング装置5は、ラック軸3
に作用するラック軸力Frを算出するラック軸力演算手
段21と、路面摩擦係数μを算出する路面摩擦係数演算
手段22と、路面摩擦係数μに基づいて前輪1並びに後
輪6の等価摩擦円を設定する等価摩擦円設定手段23
と、ラック軸力Frおよび前輪舵角δfに基づいて前輪
1の実横力(コーナリングフォース)Fyfを算出する
前輪横力演算手段24と、例えば車速と吸気管負圧との
関係から求めた駆動力、並びにブレーキ液圧から求めた
制動力に基づいて前輪1の実前後力Fxfを算出する前
輪前後力演算手段25と、前輪等価摩擦円データ、前輪
実横力Fyf、および前輪実前後力Fxfから、現在の
前輪の横力利用率ξfを算出する前輪横力利用率演算手
段26と、前輪横力利用率ξfに応じた操舵抵抗トルク
指令値Tcを設定するための操舵抵抗トルク設定手段2
7と、後輪6(非駆動輪)側の車速センサ16の出力で
得た車速V並びに操舵トルクセンサ15の出力で得たス
テアリングホイール2を介してステアリングシャフト1
4に作用する手動操舵トルクTsに基づいて操舵補助ト
ルク指令値Taを設定する操舵補助トルク設定手段28
と、操舵抵抗トルク指令値Tcおよび操舵補助トルク指
令値Taに基づいてパワーステアリング装置5のモータ
4の出力を制御する前輪用モータ駆動制御手段29とか
らなっている。
The power steering device 5 includes a rack shaft 3
Means 21 for calculating a rack axial force Fr acting on a vehicle, a road friction coefficient calculating means 22 for calculating a road friction coefficient μ, and an equivalent friction circle of the front wheel 1 and the rear wheel 6 based on the road friction coefficient μ. Frictional circle setting means 23 for setting
Front wheel lateral force calculating means 24 for calculating an actual lateral force (cornering force) Fyf of the front wheel 1 based on the rack axial force Fr and the front wheel steering angle δf, and driving obtained from, for example, a relationship between vehicle speed and intake pipe negative pressure. Front and rear force calculating means 25 for calculating the actual front and rear force Fxf of the front wheel 1 based on the force and the braking force obtained from the brake fluid pressure, front wheel equivalent friction circle data, front wheel actual lateral force Fyf, and front wheel actual front and rear force Fxf From the front wheel lateral force utilization ratio calculating means 26 for calculating the current front wheel lateral force utilization ratio ξf, and the steering resistance torque setting means 2 for setting the steering resistance torque command value Tc according to the front wheel lateral force utilization ratio ξf.
7 and the steering shaft 1 via the steering wheel 2 obtained from the output of the steering torque sensor 15 and the vehicle speed V obtained from the output of the vehicle speed sensor 16 on the rear wheel 6 (non-drive wheel) side.
Steering assist torque setting means 28 for setting steering assist torque command value Ta based on manual steering torque Ts acting on actuator 4
And a front wheel motor drive control unit 29 for controlling the output of the motor 4 of the power steering device 5 based on the steering resistance torque command value Tc and the steering assist torque command value Ta.

【0015】パワーステアリング装置5のモータ4に加
える操舵抵抗トルク指令値Tcは、後記する後輪横力利
用率演算手段が算出した後輪横力利用率ξrに基づいて
設定される補正値Tcr(操舵抵抗補正トルク設定手段
38で設定する)を加算するようにされており、後輪横
力利用率ξrも加味した操舵抵抗トルクを付加し得るよ
うになっている。
The steering resistance torque command value Tc to be applied to the motor 4 of the power steering device 5 is a correction value Tcr (R) which is set based on the rear wheel lateral force utilization rate ξr calculated by the rear wheel lateral force utilization rate calculating means described later. (Set by the steering resistance correction torque setting means 38) so that a steering resistance torque that also takes into account the rear wheel lateral force utilization rate Δr can be added.

【0016】後輪操舵装置7は、操舵ロッド8に与える
後輪6の基本舵角δrを、前輪舵角δf、車速V、およ
びヨーレイトγに基づいて最適に設定する後輪基本舵角
設定手段31と、操舵ロッド8に作用する軸力Flを算
出するロッド軸力演算手段32と、後輪6の実横力Fy
rを算出する後輪横力演算手段33と、ブレーキ液圧か
ら求めた制動力に基づいて後輪6の実前後力Fxrを算
出する後輪前後力演算手段34と、等価摩擦円データ、
後輪実横力Fyr、および後輪実前後力Fxrから、現
在の後輪6の横力利用率ξrを算出する後輪横力利用率
演算手段35と、前輪横力利用率ξfまたは後輪横力利
用率ξrに応じた後輪6の補正舵角δcを設定するため
の後輪補正舵角設定手段36と、後輪基本舵角設定手段
31と後輪補正舵角設定手段36との信号の加算値に基
づいて操舵ロッド8を駆動するモータ9を制御する後輪
用モータ駆動制御手段37とからなっている。
The rear wheel steering device 7 is a rear wheel basic steering angle setting means for optimally setting the basic steering angle δr of the rear wheel 6 given to the steering rod 8 based on the front wheel steering angle δf, the vehicle speed V and the yaw rate γ. 31, a rod axial force calculating means 32 for calculating an axial force Fl acting on the steering rod 8, and an actual lateral force Fy of the rear wheel 6.
r, rear wheel lateral force calculating means 34 for calculating the actual longitudinal force Fxr of the rear wheel 6 based on the braking force obtained from the brake fluid pressure, equivalent friction circle data,
Rear wheel lateral force utilization calculating means 35 for calculating the current lateral force utilization ξr of the rear wheel 6 from the rear wheel actual lateral force Fyr and the rear wheel actual longitudinal force Fxr, and the front wheel lateral force utilization ξf or the rear wheel The rear wheel correction steering angle setting means 36 for setting the correction steering angle δc of the rear wheel 6 according to the lateral force utilization rate ξr, the rear wheel basic steering angle setting means 31 and the rear wheel correction steering angle setting means 36 And a rear wheel motor drive control means 37 for controlling the motor 9 for driving the steering rod 8 based on the sum of the signals.

【0017】次に路面摩擦係数μの算出方法について説
明する。タイヤのコーナリングパワーCpは、図3に示
すように、路面摩擦係数μが低いほど減少するので、ラ
ック/ピニオン式操舵装置の場合、同一舵角でのラック
軸力Frは、路面摩擦係数μの低下に応じて小さくな
る。従って路面摩擦係数μは、前輪舵角δfに対する実
ラック軸力Frcと、車両の設計値や実験による計測値
の同定結果に基づいて内部モデルとして予め設定された
基準ラック軸力Frmとを比較すれば推定できる。
Next, a method of calculating the road surface friction coefficient μ will be described. As shown in FIG. 3, the cornering power Cp of the tire decreases as the road surface friction coefficient μ decreases. Therefore, in the case of the rack / pinion type steering device, the rack axial force Fr at the same steering angle is equal to the road surface friction coefficient μ. It becomes smaller as it decreases. Therefore, the road surface friction coefficient μ is obtained by comparing the actual rack axial force Frc with respect to the front wheel steering angle δf and the reference rack axial force Frm preset as an internal model based on the identification results of the design values of the vehicle and the measured values obtained by experiments. Can be estimated.

【0018】路面からの操舵抵抗につり合うラック軸力
Frは、ステアリングシャフト回りの粘性項、慣性項、
フリクション項およびモータ4回りのフリクション項は
微小なので省略すると、ステアリングシャフト14から
のラック軸力Fpとモータ4からのラック軸力Fmとの
和、つまり、 Fr=Fp+Fm で表されるが、以下に図4を参照してこの推定方法につ
いて説明する。
The rack axial force Fr, which balances the steering resistance from the road surface, is determined by the viscosity term around the steering shaft, the inertia term,
Since the friction term and the friction term around the motor 4 are minute, they are omitted. If omitted, it is expressed by the sum of the rack axial force Fp from the steering shaft 14 and the rack axial force Fm from the motor 4, that is, Fr = Fp + Fm. This estimation method will be described with reference to FIG.

【0019】先ず、ステアリングシャフト14からのラ
ック軸力Fpは、操舵トルクTsをピニオンのピッチ円
半径rpで割った値、つまり、 Fp=Ts/rp で表されるので、ピニオン軸力演算手段21aに操舵ト
ルクセンサ15の出力Tsを入力して得る。
First, since the rack axial force Fp from the steering shaft 14 is represented by a value obtained by dividing the steering torque Ts by the pitch circle radius rp of the pinion, that is, Fp = Ts / rp, the pinion axial force calculating means 21a , The output Ts of the steering torque sensor 15 is input.

【0020】次にモータ4からのラック軸力Fmは、モ
ータ4の出力軸トルクTmにモータ出力ギヤ比Nをかけ
た値、つまり、 Fm=N・Tm で表されるので、モータ4の電流値Im、並びに電圧値
Vmをモータ軸力演算手段21bに入力して得る。
Next, the rack axial force Fm from the motor 4 is represented by a value obtained by multiplying the output shaft torque Tm of the motor 4 by the motor output gear ratio N, that is, Fm = N · Tm. The value Im and the voltage value Vm are obtained by being input to the motor axial force calculating means 21b.

【0021】ここでモータ4の出力軸トルクTmは次式
で与えられる。 Tm=Kt・Im−Jm・θm”−Cm・θm’±Tf 但し、Kt:モータトルク定数 Im:モータ電流 Jm:モータの回転部分の慣性モーメント(設計値・定
数) θm’:モータ角速度 θm”:モータ角加速度(モータ角速度θm’の微分
値) Cm:モータ粘性係数 Tf:フリクショントルク
Here, the output shaft torque Tm of the motor 4 is given by the following equation. Tm = Kt · Im−Jm · θm ”−Cm · θm ′ ± Tf where Kt: Motor torque constant Im: Motor current Jm: Moment of inertia of motor rotating part (design value / constant) θm ′: Motor angular velocity θm” : Motor angular acceleration (differential value of motor angular velocity θm ') Cm: Motor viscosity coefficient Tf: Friction torque

【0022】なお、モータ角速度θm’は、モータ逆起
電力から次式により求める。 θm’=(Vm−Im・Rm)/Km 但し、Vm:モータ電圧 Rm:モータ抵抗(設計値・定数) Km:モータの誘導電圧定数
The motor angular velocity θm 'is obtained from the motor back electromotive force according to the following equation. θm ′ = (Vm−Im · Rm) / Km where Vm: motor voltage Rm: motor resistance (design value / constant) Km: motor induced voltage constant

【0023】以上により求めたステアリングシャフト1
4からのラック軸力Fpとモータ4からのラック軸力F
mとは、実用上は位相補償フィルタ21cを通すことに
より、Fp・Fm間の位相ずれを補正すると良い。
The steering shaft 1 obtained as described above
4 and the rack axial force F from the motor 4
In practice, it is preferable to correct the phase shift between Fp and Fm by passing through m through the phase compensation filter 21c.

【0024】上記のようにして求めた実ラック軸力値F
rcと予め設定されたモデルラック軸力値Frmとか
ら、前輪舵角δfの増加に対する実並びにモデルラック
軸力の増加率を求め(図5参照)、車両の応答が線形に
近似した舵角範囲内において、実ラック軸力増加率ΔF
rc/Δδfと、モデルラック軸力増加率ΔFrm/Δ
δfとの比ΔFrc/ΔFrmから、予め設定された路
面摩擦係数判定マップ(図6参照)を参照して路面摩擦
係数μを推定することができる。
Actual rack axial force value F obtained as described above
From rc and the preset model rack axial force value Frm, the actual and model rack axial force increase rates with respect to the increase in the front wheel steering angle δf are obtained (see FIG. 5), and the steering angle range in which the vehicle response is linearly approximated. Within the actual rack axial force increase rate ΔF
rc / Δδf and model rack axial force increase rate ΔFrm / Δ
From the ratio ΔFrc / ΔFrm to δf, the road friction coefficient μ can be estimated with reference to a preset road friction coefficient determination map (see FIG. 6).

【0025】タイヤの最大グリップ力Fmaxは、タイ
ヤと路面との間の摩擦係数μとタイヤの接地面に加わる
垂直荷重Wとの積(Fmax=μW)で与えられる。従
って、路面摩擦係数μが分かれば、タイヤの特性に基づ
いて予め設定しておいた摩擦円基本形状と、横加速度値
で補正された旋回時の輪重値とに基づいて、摩擦円の大
きさが設定できる。この摩擦円上に前後力Fxfを置け
ば、その時の最大横力Fyfmaxが得られる。
The maximum grip force Fmax of the tire is given by the product of the coefficient of friction μ between the tire and the road surface and the vertical load W applied to the contact surface of the tire (Fmax = μW). Therefore, if the road surface friction coefficient μ is known, the size of the friction circle is determined based on the basic shape of the friction circle set in advance based on the characteristics of the tire and the wheel load value during turning corrected with the lateral acceleration value. Can be set. If the longitudinal force Fxf is placed on this friction circle, the maximum lateral force Fyfmax at that time is obtained.

【0026】次に図7を参照して前輪1の接地点に加わ
る実横力Fyfの推定方法について説明する。先ず、実
ラック軸力Frcと実横力Fyfとのつり合いは、次式
で与えられる。 Frc・La=Fyf・T・cosδf すなわち、 Fy=Frc・La/T・cosδ 但し、La:ラック軸3とキングピン軸Kとの軸心間距
離(設計値・定数) T:トレール δf:前輪舵角(舵角センサの出力)
Next, a method of estimating the actual lateral force Fyf applied to the contact point of the front wheel 1 will be described with reference to FIG. First, the balance between the actual rack axial force Frc and the actual lateral force Fyf is given by the following equation. Frc · La = Fyf · T · cosδf That is, Fy = Frc · La / T · cosδ where La: distance between the center axes of rack shaft 3 and kingpin shaft K (design value / constant) T: trail δf: front wheel steering Angle (output of steering angle sensor)

【0027】ここでトレールTは、ホイールアライメン
トの機械的な設定で定まるキャスタートレールTcに、
車速Vに応じて変化するニューマチックトレールTp成
分を加えた値であり、予め設定したマップ39をECU
19のメモリーに格納しておき、車速Vに基づいて検索
する。
Here, the trail T is a caster rail Tc determined by the mechanical setting of the wheel alignment.
This is a value to which a pneumatic trail Tp component that changes according to the vehicle speed V is added.
19, and search based on the vehicle speed V.

【0028】このようにして求めた実横力Fyfと上記
の摩擦円から求めた最大横力Fyfmaxとから、横力
利用率演算手段26で次式から前輪1の横力利用率ξf
を算出する。 ξf=Fyf/Fyfmax
From the actual lateral force Fyf obtained in this way and the maximum lateral force Fyfmax obtained from the above-mentioned friction circle, the lateral force utilization calculating means 26 calculates the lateral force utilization ξf of the front wheel 1 from the following equation.
Is calculated. ξf = Fyf / Fyfmax

【0029】次いで、操舵抵抗トルク設定手段27、並
びに操舵抵抗補正トルク設定手段38に予め設定された
マップを参照し、前輪横力利用率ξf並びに後輪横力利
用率ξrに対応した操舵抵抗トルクTcf並びに操舵抵
抗補正トルクTcrを求める。
Next, referring to a map preset in the steering resistance torque setting means 27 and the steering resistance correction torque setting means 38, the steering resistance torque corresponding to the front wheel lateral force utilization factor Δf and the rear wheel lateral force utilization factor Δr is determined. Tcf and the steering resistance correction torque Tcr are obtained.

【0030】なお、後輪最大横力Fyrmax、および
後輪実横力Fyrも、上記のラック軸力が操舵ロッド8
に対して加わるモータ9からの軸力に代わるだけで、基
本的な求め方は前輪のそれと全く同様である。なお、実
ラック軸力Frcは、上記の計算によらずに操舵系の適
所にロードセルを設け、その出力から求めるようにして
も良い。
Note that the rear wheel maximum lateral force Fyrmax and the rear wheel actual lateral force Fyr are also the same as those of the above-described rack axial force.
The basic method is exactly the same as that for the front wheels, only in place of the axial force from the motor 9 acting on the front wheels. The actual rack axial force Frc may be obtained from an output of a load cell provided at an appropriate position in the steering system without using the above calculation.

【0031】このようにして決定された操舵抵抗トルク
Tcfと操舵抵抗補正トルクTcrとの加算値からなる
操舵抵抗トルク指令値Tcを、操舵補助トルク設定手段
38に予め設定されたマップを車速Vと手動操舵トルク
Tsとに基づいて検索して得られる通常のパワーステア
リング装置の補助操舵トルク指令値Taに加算すること
によって得られた制御指令値Tmでモータ4を制御する
ことにより、低μ路でコーナリングフォースが限界を超
えるような(横力利用率ξf・ξrが1以上)過大な操
舵を運転者が不用意に行うことを防止するための擬似的
な操舵抵抗トルクを発生させるようにモータ4が駆動さ
れ、つまりステアリングホイール2が相対的に切り難く
なるようにされる。
The steering resistance torque command value Tc, which is the sum of the steering resistance torque Tcf determined in this way and the steering resistance correction torque Tcr, is used as a vehicle speed V in a map preset in the steering assist torque setting means 38. By controlling the motor 4 with a control command value Tm obtained by adding to an auxiliary steering torque command value Ta of a normal power steering device obtained by searching based on the manual steering torque Ts, on a low μ road. The motor 4 generates a pseudo steering resistance torque for preventing the driver from inadvertently performing excessive steering such that the cornering force exceeds the limit (the lateral force utilization factor Δf · Δr is 1 or more). Is driven, that is, the steering wheel 2 is relatively difficult to turn.

【0032】さて、後輪6の横力利用率ξrが1を超え
ると、車体は旋回円の接線に対して内側を向く、つまり
スピン傾向となる。そこで本発明では、上述したよう
に、後輪6の横力利用率ξrが1に近づくに連れてパワ
ーステアリング装置に操舵抵抗力を発生させ、操舵補助
力を相対的に減らすものとした。これにより、運転者が
ステアリングホイール2の切り過ぎを認識して前輪舵角
を戻すので、ヨーイングモーメントが減少し、オーバー
ステア傾向が解消される。
When the lateral force utilization ratio r of the rear wheel 6 exceeds 1, the vehicle body turns inward with respect to the tangent to the turning circle, that is, tends to spin. Therefore, in the present invention, as described above, the steering resistance is generated in the power steering device as the lateral force utilization rate Δr of the rear wheel 6 approaches 1, and the steering assist force is relatively reduced. As a result, the driver recognizes that the steering wheel 2 is excessively turned and returns the front wheel steering angle, so that the yawing moment is reduced and the oversteer tendency is eliminated.

【0033】ところで、後輪も操舵する車両において
は、上記のように後輪舵角δrに基づいて後輪横力Fy
rを算出し得るが、後輪が操舵されない車両の場合は、
後輪の支持部材の適所にロードセルを設けて後輪の軸方
向荷重、つまりサイドフォースを検出すると共に、車速
V、横加速度Gy、及びヨーレイトγを元に車体スリッ
プ角βを以下の式で算出し、 β=∫(γ−G/V)dt サイドフォースと車体スリップ角βとからベクトル計算
して後輪横力Fyrを得れば良い。
In a vehicle in which the rear wheels are also steered, the rear wheel lateral force Fy is determined based on the rear wheel steering angle δr as described above.
r can be calculated, but for vehicles where the rear wheels are not steered,
A load cell is provided at an appropriate position on the support member of the rear wheel to detect the axial load of the rear wheel, that is, the side force, and calculate the vehicle body slip angle β based on the vehicle speed V, the lateral acceleration Gy, and the yaw rate γ by the following equation. Then, the rear wheel lateral force Fyr may be obtained by performing vector calculation from β = β (γ−G / V) dt side force and vehicle body slip angle β.

【0034】なお、上記は路面μに対する横方向グリッ
プ力の指標としてコーナリングフォースを用いる例を述
べたが、これは摩擦円の大きさによって安定に旋回可能
な横加速度の許容値が定まるので、実横加速度値の許容
値に対する割合を用いることもできる。
Although the above description has been made of an example in which the cornering force is used as an index of the lateral grip force on the road surface μ, the allowable value of the lateral acceleration that allows stable turning is determined by the size of the friction circle. The ratio of the lateral acceleration value to the allowable value can also be used.

【0035】[0035]

【発明の効果】このように本発明によれば、滑り易い路
面上での車両挙動の安定性をより一層高めることができ
る。
As described above, according to the present invention, the stability of vehicle behavior on a slippery road surface can be further enhanced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用される前後輪操舵車両の機械系の
概略構成図。
FIG. 1 is a schematic configuration diagram of a mechanical system of a front and rear wheel steering vehicle to which the present invention is applied.

【図2】本発明による制御系の概略構成図。FIG. 2 is a schematic configuration diagram of a control system according to the present invention.

【図3】コーナリングパワーと路面摩擦係数との関係線
図。
FIG. 3 is a relationship diagram between a cornering power and a road surface friction coefficient.

【図4】ラック軸力演算手段のブロック図。FIG. 4 is a block diagram of rack axial force calculating means.

【図5】舵角に対するラック軸力の増加線図。FIG. 5 is an increase diagram of a rack axial force with respect to a steering angle.

【図6】路面摩擦係数の判定マップ。FIG. 6 is a determination map of a road surface friction coefficient.

【図7】横力演算手段のブロック図。FIG. 7 is a block diagram of a lateral force calculating unit.

【図8】横力演算に関わる説明図。FIG. 8 is an explanatory diagram relating to lateral force calculation.

【符号の説明】[Explanation of symbols]

1 前輪 2 ステアリングホイール 3 ラック軸 4 電動モータ 5 電動パワーステアリング装置 6 後輪 7 後輪操舵装置 8 操舵ロッド 9 電動モータ 10 ナックルアーム 11 タイロッド 12・13 舵角センサ 14 ステアリングシャフト 15 操舵トルクセンサ 16 車速センサ 17 ヨーレイトセンサ 18 ブレーキ作動センサ 19 コンピュータユニット 21 ラック軸力演算手段 22 路面摩擦係数演算手段 23 等価摩擦円設定手段 24 前輪横力演算手段 25 前輪前後力演算手段 26 前輪横力利用率演算手段 27 操舵抵抗トルク設定手段 28 ステアリングシャフト 29 前輪用モータ駆動制御手段 31 後輪基本舵角設定手段 32 ロッド軸力演算手段 33 後輪横力演算手段 34 後輪前後力演算手段 35 後輪横力利用率演算手段 36 後輪補正舵角設定手段 37 後輪用モータ駆動制御手段 38 操舵抵抗補正トルク設定手段 39 トレールマップ Reference Signs List 1 front wheel 2 steering wheel 3 rack shaft 4 electric motor 5 electric power steering device 6 rear wheel 7 rear wheel steering device 8 steering rod 9 electric motor 10 knuckle arm 11 tie rod 12.13 steering angle sensor 14 steering shaft 15 steering torque sensor 16 vehicle speed Sensor 17 Yaw rate sensor 18 Brake operation sensor 19 Computer unit 21 Rack axial force calculating means 22 Road surface friction coefficient calculating means 23 Equivalent friction circle setting means 24 Front wheel lateral force calculating means 25 Front wheel longitudinal force calculating means 26 Front wheel lateral force utilization calculating means 27 Steering resistance torque setting means 28 Steering shaft 29 Front wheel motor drive control means 31 Rear wheel basic steering angle setting means 32 Rod axial force calculation means 33 Rear wheel lateral force calculation means 34 Rear wheel front and rear force calculation means 35 Rear wheel lateral force utilization rate Operator 36 rear wheel correction steering angle setting unit 37 rear wheel motor drive control means 38 steering resistance correction torque setting means 39 trail map

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B62D 119:00 137:00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI B62D 119: 00 137: 00

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 車両の前輪に舵角を与える操舵系に動力
を付加するモータと、該モータに発生させる操舵補助力
を制御する制御手段とを有する電動パワーステアリング
装置であって、 前記制御手段は、後輪が現在発生している横方向グリッ
プ力に対応する値を算出する演算手段を備え、該横方向
グリップ力対応値がタイヤの能力限界に近づくに連れて
前記操舵補助力を相対的に減少させるように制御するも
のであることを特徴とする電動パワーステアリング装
置。
1. An electric power steering apparatus comprising: a motor that applies power to a steering system that applies a steering angle to front wheels of a vehicle; and control means that controls a steering assist force generated by the motor. Comprises calculating means for calculating a value corresponding to the lateral grip force currently generated by the rear wheel, and the steering assist force is relatively controlled as the corresponding value of the lateral grip force approaches the performance limit of the tire. An electric power steering apparatus characterized in that the electric power steering apparatus is controlled so as to reduce the power consumption.
【請求項2】 後輪も操舵される車両に搭載されるもの
であることを特徴とする請求項1に記載の電動パワース
テアリング装置。
2. The electric power steering apparatus according to claim 1, wherein the rear wheels are also mounted on a steered vehicle.
JP20771197A 1997-08-01 1997-08-01 Electric power steering device Expired - Fee Related JP3660106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20771197A JP3660106B2 (en) 1997-08-01 1997-08-01 Electric power steering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20771197A JP3660106B2 (en) 1997-08-01 1997-08-01 Electric power steering device

Publications (2)

Publication Number Publication Date
JPH1148997A true JPH1148997A (en) 1999-02-23
JP3660106B2 JP3660106B2 (en) 2005-06-15

Family

ID=16544303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20771197A Expired - Fee Related JP3660106B2 (en) 1997-08-01 1997-08-01 Electric power steering device

Country Status (1)

Country Link
JP (1) JP3660106B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009096273A (en) * 2007-10-16 2009-05-07 Hitachi Ltd Collision avoidance control device
WO2009069242A1 (en) * 2007-11-26 2009-06-04 Honda Motor Co., Ltd. Rear-wheel steering vehicle
JP2010179844A (en) * 2009-02-06 2010-08-19 Nissan Motor Co Ltd Vehicle steering controller and steering control method for vehicle
US11390320B2 (en) 2016-09-20 2022-07-19 Hitachi Astemo, Ltd. Vehicle control system, vehicle control method, and electric power steering system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009096273A (en) * 2007-10-16 2009-05-07 Hitachi Ltd Collision avoidance control device
WO2009069242A1 (en) * 2007-11-26 2009-06-04 Honda Motor Co., Ltd. Rear-wheel steering vehicle
US8186477B2 (en) 2007-11-26 2012-05-29 Honta Motor Co., Ltd. Rear-wheel steering vehicle
JP5140662B2 (en) * 2007-11-26 2013-02-06 本田技研工業株式会社 Rear wheel steering vehicle
JP2010179844A (en) * 2009-02-06 2010-08-19 Nissan Motor Co Ltd Vehicle steering controller and steering control method for vehicle
US11390320B2 (en) 2016-09-20 2022-07-19 Hitachi Astemo, Ltd. Vehicle control system, vehicle control method, and electric power steering system
DE112017004712B4 (en) 2016-09-20 2023-03-16 Hitachi Astemo, Ltd. VEHICLE CONTROL SYSTEM, VEHICLE CONTROL PROCEDURE AND ELECTRICAL POWER STEERING SYSTEM

Also Published As

Publication number Publication date
JP3660106B2 (en) 2005-06-15

Similar Documents

Publication Publication Date Title
JP3525969B2 (en) Electric power steering device
JP3046108B2 (en) Steering force control method for vehicle with differential limiting device
JP4930007B2 (en) Steering angle control device for vehicle
EP1800995B1 (en) Controller of electric power steering device of vehicle having wheel slip controller acting on steered wheel
JP3532672B2 (en) Motor control device for steering system
JPH1149000A (en) Motor-driven power steering device
JP4007711B2 (en) Vehicle steering control device
JP3621229B2 (en) Electric power steering device
US8386128B2 (en) Method for adapting steering characteristics of a motor vehicle
JP3640508B2 (en) Electric power steering device
JP3676542B2 (en) Electric power steering device
JP3660106B2 (en) Electric power steering device
JP3060800B2 (en) Vehicle yawing momentum control system
JP3730341B2 (en) Electric power steering device
JPH1178826A (en) Controller for assisting driving operation
JP4556643B2 (en) Vehicle braking / driving force control device
JP4517555B2 (en) Electric power steering device for automobile
JP3019466B2 (en) Road friction coefficient detector
JP3876055B2 (en) Front and rear wheel steering vehicle
JP3694148B2 (en) Electric power steering device
JP3638182B2 (en) Electric motor control device for steering device
JP3033247B2 (en) Vehicle steering characteristic control device
JP4062754B2 (en) vehicle
JP3717305B2 (en) Electric power steering device
JPH10287146A (en) Vehicle motion control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees