JPH1147640A - Cyclone system - Google Patents

Cyclone system

Info

Publication number
JPH1147640A
JPH1147640A JP21279397A JP21279397A JPH1147640A JP H1147640 A JPH1147640 A JP H1147640A JP 21279397 A JP21279397 A JP 21279397A JP 21279397 A JP21279397 A JP 21279397A JP H1147640 A JPH1147640 A JP H1147640A
Authority
JP
Japan
Prior art keywords
cyclone
gas
solid
diameter
dust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21279397A
Other languages
Japanese (ja)
Other versions
JP4300593B2 (en
Inventor
Teruyuki Okazaki
輝幸 岡崎
Ryuhei Kawabe
隆平 川部
Tomohiko Miyamoto
知彦 宮本
Hisayuki Orita
久幸 折田
Kazuo Ikeuchi
和雄 池内
Masaharu Kuramoto
正治 倉本
Sadao Ito
貞夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Chugoku Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Chugoku Electric Power Co Inc, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP21279397A priority Critical patent/JP4300593B2/en
Publication of JPH1147640A publication Critical patent/JPH1147640A/en
Application granted granted Critical
Publication of JP4300593B2 publication Critical patent/JP4300593B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separating Particles In Gases By Inertia (AREA)
  • Cyclones (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable blow down by using a pressure difference in a system by disposing a structure in which an outer diameter is set to specified times of an inner diameter of a waste gas inner cylinder at a lower part of a solid removing device arranged in a pressure vessel and connecting a solid particle removing part of the pressure vessel and outlet piping with piping. SOLUTION: A combustion gas generated in a pressure fluidized bed combustion device where a fluidized bed combustion of coal is executed is introduced to a cyclone 3 as the solid removing device through connecting piping 2. Relating to the cyclone 3, dust is separated by centrifugal force during a fluidization allowing to fall while revolving and a purified gas is discharged from the waste gas inner cylinder 7. At this time, a part of the gas in a dust hopper is introduced to a gas turbin 10 by bleeding by the blow down through the blow-down piping 9 connecting the dust hopper and the outlet piping 8. The structure having the diameter of 0.65 times of the inner diameter of the waste gas inner cylinder 7 of the cyclone 3 is disposed in a dust banker of the cyclone 3 to prevent a reversed inflow of the waste gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガス中の固体粒子
を遠心力で分離除去する固体除去装置(以下、サイクロ
ンという)に係り、特に複数機のサイクロンからなるマ
ルチサイクロンのダストホッパ(固体粒子回収部)から
ガスを抽気するようにしたサイクロンシステムに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid removing apparatus (hereinafter referred to as a cyclone) for separating and removing solid particles in a gas by centrifugal force, and more particularly to a multicyclone dust hopper (solid particle recovery) comprising a plurality of cyclones. Part) relates to a cyclone system in which gas is extracted from the cyclone system.

【0002】[0002]

【従来の技術】サイクロンは構造が簡単で、しかも可動
部分を伴わないので、広く工業的に普及した遠心集塵装
置である。
2. Description of the Related Art A cyclone is a centrifugal dust collector widely used industrially because it has a simple structure and has no moving parts.

【0003】サイクロンの集塵効率を向上させる手段と
して、まず、「サイクロン分離器」(1980,加藤中
道館)の143頁にあるように、構造物(渦芯遮断円錐
体)をサイクロン内に設置する方法がある。しかし、サ
イクロン内に構造物を設置すると、構造物の支持体が流
れの抵抗となって、旋回流が弱まるため、集塵効率が低
下する可能性がある。また、構造物とサイクロン本体と
の間にダストが沈積し、サイクロンを閉塞して、集塵効
率が低下する可能性もある。よって構造物を内部に設置
するサイクロンには最適な設計が必要となる。
As a means for improving the dust collection efficiency of a cyclone, first, as shown on page 143 of "Cyclone Separator" (1980, Kato Nakamichikan), a structure (vortex cut-off cone) is placed in the cyclone. There is a way to install. However, when the structure is installed in the cyclone, the support of the structure acts as a flow resistance, and the swirling flow is weakened, so that the dust collection efficiency may be reduced. Further, dust may accumulate between the structure and the cyclone main body, block the cyclone, and reduce the dust collection efficiency. Therefore, an optimal design is required for the cyclone in which the structure is installed.

【0004】次に、サイクロンの集塵効率を向上させる
手段として、「粉体工学ハンドブック」(1965,朝
倉書店)の396頁にあるように、サイクロン内のガス
の一部をサイクロン下部のダストホッパから抽気するブ
ローダウンがある。ところで、本発明が対象とする高温
高圧下のサイクロンシステムでブローダウンをする場
合、抽気されたガスをそのまま系外に排出すると、エネ
ルギ損失が大きくなる問題がある。そのため、ガスを系
内に戻す必要がある。ここで、ブローダウンしたガスを
リサイクルする技術としては、特開昭55−44368号公
報、特公平6−98255号公報に開示された例がある。前者
は集塵装置で分離された粉塵を排出管からガスとともに
抜き出し、サイクロンで分離したのち、ガスのみを排風
機を使用して集塵装置の上流に戻す装置を開示してい
る。後者は、ルーバー型の集塵器の下部にダスト抜き管
で接続されたダストホッパを設け、このダスト抜き管と
前記ルーバー型の集塵器の下流側の主排風機の上流側の
排ガスダクトを、ブローダウン系集塵器を介装したブロ
ーダウン管で接続した排ガス処理装置を開示している。
この装置では、転炉からのガスを冷却した後にルーバー
型の集塵器で脱塵する。いずれの装置も、ブローダウン
に排風機を用いるが、高温高圧下のサイクロンシステム
では、排風機が高温にさらされて強度上の問題があるた
め、排風機を使用したブローダウンはできないという問
題もある。
[0004] Next, as a means for improving the dust collection efficiency of the cyclone, a part of the gas in the cyclone is transferred from a dust hopper below the cyclone as described on page 396 of "Powder Engineering Handbook" (1965, Asakura Shoten). There is a blowdown to bleed. By the way, when blowdown is performed in a cyclone system under a high temperature and a high pressure, which is a target of the present invention, there is a problem that if the extracted gas is discharged to the outside of the system as it is, energy loss becomes large. Therefore, it is necessary to return the gas into the system. Here, as a technique for recycling blown-down gas, there are examples disclosed in JP-A-55-44368 and JP-B-6-98255. The former discloses a device in which dust separated by a dust collector is extracted together with a gas from a discharge pipe, separated by a cyclone, and then only the gas is returned to the upstream of the dust collector by using a blower. The latter is provided with a dust hopper connected to the lower part of the louver type dust collector by a dust extraction pipe, and this dust extraction pipe and the exhaust gas duct on the upstream side of the main exhaust fan on the downstream side of the louver type dust collector, It discloses an exhaust gas treatment device connected by a blowdown pipe provided with a blowdown dust collector.
In this apparatus, after cooling the gas from the converter, the dust is removed by a louver type dust collector. Both devices use an air blower for blowdown.However, in a cyclone system under high temperature and high pressure, there is also a problem that blowdown using an air blower cannot be performed because the blower is exposed to high temperature and has a problem in strength. is there.

【0005】[0005]

【発明が解決しようとする課題】よって、本発明の目的
はサイクロン内に構造物をもつ高温高圧下のサイクロン
システムにおいて、システム内の圧力差を利用してブロ
ーダウンを可能にすることである。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a cyclone system having a structure in a cyclone under a high temperature and a high pressure so that blowdown can be performed by utilizing a pressure difference in the system.

【0006】[0006]

【課題を解決するための手段】上記目的を達成する本発
明の手段は、円筒の接線方向に取り付けられた入口配管
から固体粒子を含んだガスを導入し、前記ガスに角運動
量を与え、ガス中の固体粒子を遠心力により分離除去す
る固体除去装置を圧力容器に内装し、固体除去装置の管
状の脚を経て該圧力容器に固体粒子を回収するととも
に、固体粒子を除去したガスを、該固体除去装置の上部
の中心軸線上に配置された排気内筒及び該排気内筒に接
続された出口配管を経て取り出すように構成されたサイ
クロンシステムにおいて、前記固体除去装置の下部の中
心軸線上に配置され上部が軸対象で外径が前記排気内筒
内径の0.65倍を超える径の構造物と、前記圧力容器の固
体粒子回収部と前記出口配管を結ぶ配管と、を有してな
ることを特徴とする。
Means of the present invention to achieve the above object is to introduce a gas containing solid particles from an inlet pipe tangentially attached to a cylinder, to impart an angular momentum to the gas, A solid removing device for separating and removing solid particles therein by centrifugal force is provided in a pressure vessel, and the solid particles are collected in the pressure vessel via a tubular leg of the solid removing device, and the gas from which the solid particles are removed is supplied to the pressure vessel. In a cyclone system configured to be taken out through an exhaust inner cylinder disposed on an upper central axis of the solid removing device and an outlet pipe connected to the exhaust inner cylinder, a cyclone system disposed on the lower central axis of the solid removing device A structure having a diameter of 0.65 times the outer diameter of the exhaust inner cylinder, which is disposed axially symmetrically with the upper part, and a pipe connecting the solid particle collection part of the pressure vessel and the outlet pipe, is provided. Features.

【0007】発明者等は、サイクロンの集塵性能を向上
させるべく、サイクロン管中心部にどのような構造物を
設置すべきかを検討した。まず、管中心部に構造物を有
するサイクロンのガス流動を計算した。計算によれば、
サイクロン中心部に構造物があると、構造物が流れに対
する抵抗体となり、構造物の下部では旋回力が弱まる。
したがって、旋回によって生じるサイクロン中心部の圧
力の低い領域は、構造物の下部に存在しなくなる。この
時、構造物の外径を排気内筒の径の0.65倍以上とすれ
ば、構造物の下部の圧力はサイクロン出口配管内の圧力
よりも高くなることを見出した。つまり、ダストホッパ
の圧力がサイクロン出口配管の圧力より高くなる。よっ
て、この状態でダストホッパとサイクロン出口配管を結
ぶブローダウン配管を設けることで、システム内の圧力
差を利用してブローダウンを行うことが可能となる。
The inventors have studied what kind of structure should be installed at the center of the cyclone tube in order to improve the dust collecting performance of the cyclone. First, the gas flow of a cyclone having a structure at the center of the pipe was calculated. According to calculations,
If there is a structure in the center of the cyclone, the structure becomes a resistance to the flow, and the swirling force is weakened below the structure.
Therefore, the low pressure region in the center of the cyclone caused by the turning does not exist below the structure. At this time, they found that if the outer diameter of the structure was 0.65 times or more the diameter of the exhaust inner cylinder, the pressure in the lower part of the structure would be higher than the pressure in the cyclone outlet pipe. That is, the pressure of the dust hopper becomes higher than the pressure of the cyclone outlet pipe. Therefore, by providing a blowdown pipe connecting the dust hopper and the cyclone outlet pipe in this state, it is possible to perform blowdown using a pressure difference in the system.

【0008】サイクロンの脚の内径を前記構造物の外径
より小さくすると、旋回する渦が前記構造物で遮断され
るため、サイクロンに流入したガスは前記構造物の下部
において、前記構造物の外径の内側(サイクロンの中心
軸線からの距離が前記構造物の半径よりも小さい領域)
に流入しない。
If the inner diameter of the legs of the cyclone is smaller than the outer diameter of the structure, the swirling vortex is blocked by the structure, so that the gas flowing into the cyclone flows below the structure outside the structure. Inside the diameter (region where the distance from the center axis of the cyclone is smaller than the radius of the structure)
Does not flow into

【0009】サイクロンの脚の内径を前記構造物の外径
より小さくすると、サイクロンに流入したガスは構造物
の下部において、構造物の外径の内側に流入しないた
め、構造物の下部において、構造物の径の内側(サイク
ロンの中心軸線からの距離が前記構造物の半径よりも小
さい領域)に構造物の支持体を設置すれば、構造物の支
持体は上流の旋回流に影響を及ぼさない。
If the inner diameter of the legs of the cyclone is smaller than the outer diameter of the structure, the gas flowing into the cyclone does not flow inside the outer diameter of the structure at the lower part of the structure. If the support of the structure is installed inside the diameter of the object (region where the distance from the center axis of the cyclone is smaller than the radius of the structure), the support of the structure does not affect the swirling flow upstream .

【0010】[0010]

【発明の実施の形態】図1に本発明の第1の実施例を示
す。本実施例のサイクロンシステムは、ガス入り側を加
圧流動層燃焼装置1に連絡配管2で接続され、ガス出側
をサイクロン出口配管8を介してガスタービン10に接
続されている。本実施例のサイクロンシステムは、図示
のように、半球形の壁面をなす頭部とこの頭部の開放端
の円形断面に同心状につながる円筒形の中間部と中間部
の他端に同心状に大径端がつながる円錐台形の底部とか
らなる圧力容器5と、前記頭部と中間部の間に圧力容器
5の中心軸線にほぼ垂直に配置されて圧力容器5内部を
頭部区画とダストホッパつまり固体粒子回収部をなす胴
側区画に分ける仕切壁5aと、圧力容器5の中心軸線上
に配置され頭部の壁面と仕切壁5aを貫通するガス導入
配管5bと、圧力容器5の胴側区画に軸線を圧力容器5
の中心軸線にほぼ平行させて内装され、前記ガス導入配
管5bにそれぞれ接続された複数のサイクロン3と、圧
力容器5の円錐台形状の底部の小径端に接続されたダス
ト回収配管6と、圧力容器5の頭部区画に接続されたサ
イクロン出口配管8と、サイクロン出口配管8と圧力容
器5の胴側区画を連通するブローダウン配管9と、を含
んで構成されている。
FIG. 1 shows a first embodiment of the present invention. In the cyclone system of this embodiment, the gas inlet side is connected to the pressurized fluidized bed combustion device 1 by the communication pipe 2, and the gas outlet side is connected to the gas turbine 10 via the cyclone outlet pipe 8. As shown in the drawing, the cyclone system of the present embodiment has a head having a hemispherical wall surface, a cylindrical intermediate portion concentrically connected to a circular cross section of the open end of the head, and a concentric center at the other end of the intermediate portion. A pressure vessel 5 comprising a truncated conical bottom portion to which a large-diameter end is connected, and a head section and a dust hopper disposed between the head and the intermediate portion, substantially perpendicular to the central axis of the pressure vessel 5. That is, a partition wall 5a that divides into a body-side section that forms a solid particle recovery section, a gas introduction pipe 5b that is arranged on the central axis of the pressure vessel 5 and penetrates the wall surface of the head and the partition wall 5a, Align the axis with the pressure vessel 5
A plurality of cyclones 3 that are installed substantially parallel to the central axis of the pressure vessel 5 and are connected to the gas introduction pipe 5b, a dust collection pipe 6 that is connected to a small-diameter end of a truncated cone-shaped bottom of the pressure vessel 5, It is configured to include a cyclone outlet pipe 8 connected to the head section of the container 5, and a blowdown pipe 9 communicating the cyclone outlet pipe 8 with the trunk-side section of the pressure vessel 5.

【0011】サイクロン3は、軸対称な形状の本体3a
と、本体3aとガス導入配管5bを接続する入口配管3
bと、本体3aの上部の中心軸線上に配置され一端が本
体3a内に開口するとともに他端が圧力容器5の頭部区
画内で開口する排気内筒7と、本体3aの下端に同心状
に接続され胴側区画内で開口する管状の脚4と、本体3
aの下部に内装され支持体12で本体3a下端に支持さ
れた構造物11と、を含んで構成されている。入口配管
3bは本体3aの外周に対して接線方向に接続され、排
気内筒7の本体3a内での開口位置は、入口配管3bの
接続位置よりも脚4側(以下、脚4側を下方、排気内筒
7側を上方として説明する)になっている。本体3a
は、入口配管3b及び排気内筒7が接続されている円筒
部と、この円筒部の下端に大径端が同心状に接続された
円錐形部と、この円錐形部の小径端に同心状に接続され
たダストバンカとからなり、前記管状の脚4はダストバ
ンカの下端に接続されている。
The cyclone 3 has an axisymmetric body 3a.
And an inlet pipe 3 connecting the main body 3a and the gas introduction pipe 5b
b, an exhaust inner cylinder 7 arranged on the central axis of the upper part of the main body 3a, one end of which opens into the main body 3a and the other end of which opens in the head section of the pressure vessel 5, and is concentric with the lower end of the main body 3a. A tubular leg 4 connected to the body and opening in the torso compartment;
a supported at the lower end of the main body 3a by a support 12 at the lower end of the main body 3a. The inlet pipe 3b is tangentially connected to the outer circumference of the main body 3a, and the opening position of the exhaust inner cylinder 7 in the main body 3a is closer to the leg 4 side (hereinafter, the leg 4 side is lower than the connection position of the inlet pipe 3b). , The exhaust inner cylinder 7 side will be described as an upper side). Body 3a
Is a cylindrical portion to which the inlet pipe 3b and the exhaust inner cylinder 7 are connected, a conical portion having a large-diameter end concentrically connected to the lower end of the cylindrical portion, and a concentric portion to the small-diameter end of the conical portion. The tubular leg 4 is connected to the lower end of the dust bunker.

【0012】構造物11は円錐形をなしていて、先端を
上に向け、ダストバンカに同心状に配置されている。構
造物11の先端部は前記円錐形部の小径端の中心に位置
し、その底面が支持体12により、ダストバンカの下端
部に支持されている。支持体12の大きさは、構造物1
1及び支持体12を本体3aの中心軸線方向に投影した
場合、支持体12の投影領域が構造物11の底面の投影
領域に収まる大きさとしてある。言い替えると、本体3
aの中心軸線から測った支持体12の最大半径は、本体
3aの中心軸線から測った構造物11の底面の外周の半
径よりも小さくなっている。そして、構造物11の底面
外径は、排気内筒7の内径の0.8倍となっており、脚4
の内径は構造物11の底面外径より細くなっている。ま
た、構造物11の底面外径は、前記円錐形部の小径端の
径よりも小さくなっている。
The structure 11 has a conical shape, and is arranged concentrically with the dust bunker with its tip facing upward. The front end of the structure 11 is located at the center of the small-diameter end of the conical portion, and the bottom surface is supported by the support 12 at the lower end of the dust bunker. The size of the support 12 is the structure 1
When the support 1 and the support 12 are projected in the direction of the central axis of the main body 3a, the projection area of the support 12 is set to a size that fits in the projection area on the bottom surface of the structure 11. In other words, body 3
The maximum radius of the support 12 measured from the central axis of a is smaller than the radius of the outer periphery of the bottom surface of the structure 11 measured from the central axis of the main body 3a. The outer diameter of the bottom surface of the structure 11 is 0.8 times the inner diameter of the inner cylinder 7 of the exhaust.
Is smaller than the outer diameter of the bottom surface of the structure 11. The outer diameter of the bottom surface of the structure 11 is smaller than the diameter of the small diameter end of the conical portion.

【0013】上記構成のサイクロンシステムにおけるガ
ス及びダストの流れは次のとおりである。まず、加圧流
動層燃焼装置1内に石炭と石灰石と空気が供給され、石
炭の流動層燃焼が行われる。流動層燃焼に生成された燃
焼ガス(固体粒子を含んだガス)は加圧流動層燃焼装置
1から排出され、連絡配管2、ガス導入配管5a、入口
配管3aを通ってサイクロン本体3aへ導入される。サ
イクロン本体3aへ導入されたガスは、サイクロン本体
3a内で旋回しながら下降し、サイクロン本体3aの下
部のある点で流れが下降から上昇へ反転する。ガスに含
まれていた固体粒子は旋回による遠心力でサイクロン本
体3aの内周壁面側に移動し、内周壁面に沿って落下す
る。サイクロン本体3aで固体粒子(以下、ダストとい
う)を除去し流れ方向を反転させたガスは、サイクロン
中心部を通って排気内筒7から流出する。排気内筒7か
ら流出したガスは、頭部区画を経てサイクロン出口配管
8からガスタービン10に導入される。また、胴側区画
(ダストホッパ)内のガスの一部は、胴側区画(ダスト
ホッパ)とサイクロン出口配管8を結ぶブローダウン配
管9を経てブローダウンによって抽気され、ガスタービ
ン10に導かれる。
The flow of gas and dust in the cyclone system having the above configuration is as follows. First, coal, limestone, and air are supplied into the pressurized fluidized bed combustion device 1 to perform coal fluidized bed combustion. The combustion gas (gas containing solid particles) generated in the fluidized bed combustion is discharged from the pressurized fluidized bed combustion device 1 and introduced into the cyclone body 3a through the communication pipe 2, the gas introduction pipe 5a, and the inlet pipe 3a. You. The gas introduced into the cyclone main body 3a descends while turning inside the cyclone main body 3a, and the flow reverses from descending to ascending at a point at the lower portion of the cyclone main body 3a. The solid particles contained in the gas move toward the inner peripheral wall of the cyclone main body 3a by centrifugal force due to the swirling, and fall along the inner peripheral wall. The gas from which the solid particles (hereinafter referred to as dust) are removed by the cyclone body 3a and whose flow direction is reversed flows out of the exhaust inner cylinder 7 through the center of the cyclone. The gas flowing out of the exhaust inner cylinder 7 is introduced into the gas turbine 10 from the cyclone outlet pipe 8 through the head section. Further, a part of the gas in the trunk side section (dust hopper) is extracted by blowdown through a blowdown pipe 9 connecting the trunk side section (dust hopper) and the cyclone outlet pipe 8, and is guided to the gas turbine 10.

【0014】一方、サイクロン本体3aの内周壁面に沿
って落下したダストは、ダストバンカを経て、サイクロ
ン本体3aを収納する圧力容器5の胴側区画内に、サイ
クロン本体3a下部のサイクロンの脚4から排出され、
ダスト回収配管6を通って回収される。
On the other hand, dust that has fallen along the inner peripheral wall surface of the cyclone body 3a passes through a dust bunker and enters the trunk side section of the pressure vessel 5 that houses the cyclone body 3a from the cyclone legs 4 below the cyclone body 3a. Discharged,
The dust is collected through the dust collection pipe 6.

【0015】図2に、サイクロン3内の中心軸から外周
部に向かう方向(半径方向)の圧力分布を示す。図のよ
うに、サイクロン上部から下部に向かう方向(中心軸方
向)には圧力はほとんど変わらず、サイクロン内の半径
方向圧力分布は中心部が低く、外周部が高い分布とな
る。サイクロンの中心から排気内筒7の半径の0.65倍の
距離の位置での圧力は、ほぼ排気内筒7の平均圧力、す
なわち、サイクロン出口配管8内の圧力に等しくなる。
ブローダウンをするためには、圧力容器5の胴側区画内
の圧力が上記平均圧力以上でなければならない。
FIG. 2 shows a pressure distribution in a direction (radial direction) from the central axis in the cyclone 3 to the outer peripheral portion. As shown in the figure, the pressure hardly changes in the direction from the upper part to the lower part of the cyclone (in the direction of the central axis), and the pressure distribution in the radial direction in the cyclone is low in the central part and high in the outer peripheral part. The pressure at a distance of 0.65 times the radius of the exhaust inner cylinder 7 from the center of the cyclone is substantially equal to the average pressure of the exhaust inner cylinder 7, that is, the pressure in the cyclone outlet pipe 8.
In order to perform blowdown, the pressure in the trunk-side section of the pressure vessel 5 must be equal to or higher than the above average pressure.

【0016】本発明のサイクロンシステムは、構造物1
1の外径が排気内筒7の径の0.65倍以上であるため、サ
イクロン中心部の、排気内筒7の平均圧力より圧力が低
い領域が下部に達するのが防止される。よって、圧力容
器5の胴側区画内の圧力は少なくとも排気内筒7の平均
圧力、すなわちサイクロン出口配管8内の圧力より高く
なって、排風機を使わなくてもシステム内の圧力差のみ
で胴側区画内のガスのサイクロン出口配管8へのブロー
ダウンが可能になる。
The cyclone system of the present invention has a structure 1
Since the outer diameter of 1 is at least 0.65 times the diameter of the exhaust inner cylinder 7, a region in the center of the cyclone where the pressure is lower than the average pressure of the exhaust inner cylinder 7 is prevented from reaching the lower part. Therefore, the pressure in the trunk-side section of the pressure vessel 5 becomes higher than at least the average pressure of the exhaust inner cylinder 7, that is, the pressure in the cyclone outlet pipe 8, so that the pressure difference in the system alone can be obtained without using an exhaust fan. The gas in the side compartment can be blown down to the cyclone outlet pipe 8.

【0017】図3にサイクロン本体3aの鉛直断面にお
けるガスの流線を示す。本図では、流れの上下方向の流
線を示し、周方向の流れは無視してある。図示のよう
に、サイクロンの脚4の内径を構造物11の底面外径よ
り小さくしてあるので、サイクロンに流入したガス流れ
は、構造物11下部において、構造物11の径の内側に
は流入しない。よって、構造物11下部において、構造
物11の径の内側の領域に構造物11を支える支持体1
2が存在しても、上部の旋回流れに影響を与えない。も
し旋回流が影響を受けると、旋回方向のガス速度が低下
し、ダストに働く遠心力も減少するため、集塵効率が低
下する。なお、支持体12はダストのつまり防止を考
え、図4のように数本の支柱によって構成することが望
ましい。
FIG. 3 shows gas flow lines in a vertical section of the cyclone body 3a. In this drawing, the vertical flow lines of the flow are shown, and the circumferential flow is ignored. As shown in the figure, since the inner diameter of the cyclone leg 4 is smaller than the outer diameter of the bottom surface of the structure 11, the gas flow flowing into the cyclone flows into the lower part of the structure 11 inside the diameter of the structure 11. do not do. Therefore, in the lower part of the structure 11, the support 1 that supports the structure 11 in a region inside the diameter of the structure 11.
The presence of 2 does not affect the upper swirl flow. If the swirling flow is affected, the gas velocity in the swirling direction decreases and the centrifugal force acting on the dust also decreases, so that the dust collection efficiency decreases. The support 12 is desirably formed of several columns as shown in FIG.

【0018】また、サイクロンの脚4の内径が構造物1
1の外径よりも太いと、旋回流が圧力容器5の胴側区画
内にまで達し、一度遠心分離され圧力容器5内に捕集さ
れたダストが、再び圧力容器5からサイクロン本体3a
に戻る流れに巻き上げられて、集塵率が低下する可能性
がある。しかし、上記実施例では、サイクロンの脚4の
内径は構造物11の外径より細いため、ガスの流れは、
圧力容器5内に達することなく反転、上昇してサイクロ
ンから排気内筒7を経て排出され、集塵率が低下する可
能性を回避することができる。
Also, the inner diameter of the cyclone leg 4 is
1, the swirl flow reaches the inside of the body side section of the pressure vessel 5, and the dust once separated by centrifugation and collected in the pressure vessel 5 is returned from the pressure vessel 5 to the cyclone body 3a.
There is a possibility that the dust collection rate may be reduced by being swirled by the flow returning to However, in the above embodiment, since the inner diameter of the cyclone leg 4 is smaller than the outer diameter of the structure 11, the gas flow is
It is possible to avoid the possibility that the dust is inverted and ascended without reaching the inside of the pressure vessel 5 to be discharged from the cyclone through the exhaust inner cylinder 7 to lower the dust collection rate.

【0019】[0019]

【発明の効果】本発明によれば、高温高圧下でシステム
内の圧力差のみでブローダウンが可能になる。
According to the present invention, blowdown can be performed only at a high pressure and a low pressure in a system under high temperature and high pressure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す系統構成図である。FIG. 1 is a system configuration diagram showing an embodiment of the present invention.

【図2】サイクロン本体内の半径方向の位置とその位置
の圧力との関係を示す概念図である。
FIG. 2 is a conceptual diagram showing a relationship between a radial position in a cyclone body and a pressure at that position.

【図3】図1に示すサイクロンの鉛直断面における流線
を示す断面図である。
3 is a sectional view showing streamlines in a vertical section of the cyclone shown in FIG. 1. FIG.

【図4】図1に示すサイクロンの構造物及び支持体を内
装した部分を拡大して示す斜視図である。
FIG. 4 is an enlarged perspective view showing a part in which the structure and the support of the cyclone shown in FIG. 1 are installed.

【符号の説明】[Explanation of symbols]

1 加圧流動層燃焼装置 2 連絡配管 3 サイクロン 3a 本体 3b 入口配管 4 サイクロンの脚 5 圧力容器 5a 仕切壁 5b ガス導入配管 6 ダスト回収配管 7 排気内筒 8 サイクロン出口配管 9 ブローダウン配管 10 ガスタービン 11 構造物 12 構造物の支持体 DESCRIPTION OF SYMBOLS 1 Pressurized fluidized bed combustion apparatus 2 Communication pipe 3 Cyclone 3a Main body 3b Inlet pipe 4 Cyclone leg 5 Pressure vessel 5a Partition wall 5b Gas introduction pipe 6 Dust recovery pipe 7 Exhaust inner cylinder 8 Cyclone outlet pipe 9 Blowdown pipe 10 Gas turbine 11 Structure 12 Support for Structure

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川部 隆平 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 宮本 知彦 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 折田 久幸 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 池内 和雄 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 倉本 正治 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 (72)発明者 伊藤 貞夫 広島県広島市中区小町4番33号 中国電力 株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Ryuhei Kawabe 7-1-1, Omikacho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd. Hitachi Research Laboratory, Ltd. (72) Inventor Tomohiko Miyamoto 7, Omikacho, Hitachi City, Ibaraki Prefecture No. 1-1 Inside Hitachi, Ltd.Hitachi Research Laboratory (72) Inventor Hisayuki Orita 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd.Hitachi Research Laboratory Co., Ltd. (72) Inventor Kazuo Ikeuchi Hitachi, Ibaraki Prefecture 3-1-1, Sachimachi Hitachi, Ltd. Hitachi Plant (72) Inventor Shoji Kuramoto 6-9 Takaracho, Kure City, Hiroshima Prefecture Babcock Hitachi Co., Ltd. Kure Plant (72) Inventor Sadao Ito Hiroshima City, Hiroshima Prefecture 4-33 Komachi, Naka-ku Chugoku Electric Power Co., Inc.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 円筒の接線方向に取り付けられた入口配
管から固体粒子を含んだガスを導入し、前記ガスに角運
動量を与え、ガス中の固体粒子を遠心力により分離除去
する固体除去装置を圧力容器に内装し、固体除去装置の
管状の脚を経て該圧力容器に固体粒子を回収するととも
に、固体粒子を除去したガスを、該固体除去装置の上部
の中心軸線上に配置された排気内筒及び該排気内筒に接
続された出口配管を経て取り出すように構成されたサイ
クロンシステムにおいて、前記固体除去装置の下部の中
心軸線上に配置され上部が軸対象で外径が前記排気内筒
内径の0.65倍を超える径の構造物と、前記圧力容器の固
体粒子回収部と前記出口配管を結ぶ配管と、を有してな
ることを特徴とするサイクロンシステム。
1. A solid removing device which introduces a gas containing solid particles from an inlet pipe attached in a tangential direction of a cylinder, gives angular momentum to the gas, and separates and removes the solid particles in the gas by centrifugal force. The solid particles are collected in the pressure vessel via the tubular legs of the solid removing device, and the gas from which the solid particles have been removed is discharged into the exhaust disposed on the central axis line of the upper portion of the solid removing device. In the cyclone system, which is configured to be taken out through a cylinder and an outlet pipe connected to the exhaust inner cylinder, the solid removing device is disposed on a lower central axis, the upper part is symmetrical, and the outer diameter is the inner diameter of the exhaust inner cylinder. A cyclone system comprising: a structure having a diameter exceeding 0.65 times the diameter of the pressure vessel; and a pipe connecting the solid particle collection section of the pressure vessel and the outlet pipe.
【請求項2】 請求項1に記載のサイクロンシステムに
おいて、固体除去装置の管状の脚の内径が前記構造物の
外径よりも小さいことを特徴とするサイクロンシステ
ム。
2. The cyclone system according to claim 1, wherein an inner diameter of the tubular leg of the solid removing device is smaller than an outer diameter of the structure.
【請求項3】 請求項2に記載のサイクロンシステムに
おいて、前記構造物は、該構造物の下方に配置され、か
つ、固体除去装置の中心軸線を中心とし前記構造物の外
径を外径とする円筒状の領域の内側に設置された支持体
を介して固体除去装置に支持されていることを特徴とす
るサイクロンシステム。
3. The cyclone system according to claim 2, wherein the structure is disposed below the structure, and an outer diameter of the structure is defined as an outer diameter about a center axis of the solid removing device. The cyclone system is supported by a solid removal device via a support provided inside a cylindrical region to be formed.
JP21279397A 1997-08-07 1997-08-07 Cyclone system Expired - Fee Related JP4300593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21279397A JP4300593B2 (en) 1997-08-07 1997-08-07 Cyclone system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21279397A JP4300593B2 (en) 1997-08-07 1997-08-07 Cyclone system

Publications (2)

Publication Number Publication Date
JPH1147640A true JPH1147640A (en) 1999-02-23
JP4300593B2 JP4300593B2 (en) 2009-07-22

Family

ID=16628481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21279397A Expired - Fee Related JP4300593B2 (en) 1997-08-07 1997-08-07 Cyclone system

Country Status (1)

Country Link
JP (1) JP4300593B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002724A (en) * 2011-06-16 2013-01-07 Jp Steel Plantech Co Waste heat recovery equipment, waste heat recovery method, and sintering machine system
JP2013532251A (en) * 2010-06-03 2013-08-15 エル. ブロック,ジョン Closed eddy current device
US9376931B2 (en) 2012-01-27 2016-06-28 General Electric Company Turbomachine passage cleaning system
WO2018135610A1 (en) * 2017-01-19 2018-07-26 三菱日立パワーシステムズ株式会社 Cyclone integrated type storage device, gasified combined power generating device, and method for isolating particles

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013532251A (en) * 2010-06-03 2013-08-15 エル. ブロック,ジョン Closed eddy current device
JP2015025455A (en) * 2010-06-03 2015-02-05 ブロック, ジョン エル.BROCK, John L. Muffler for combustion engine
JP2013002724A (en) * 2011-06-16 2013-01-07 Jp Steel Plantech Co Waste heat recovery equipment, waste heat recovery method, and sintering machine system
US9376931B2 (en) 2012-01-27 2016-06-28 General Electric Company Turbomachine passage cleaning system
WO2018135610A1 (en) * 2017-01-19 2018-07-26 三菱日立パワーシステムズ株式会社 Cyclone integrated type storage device, gasified combined power generating device, and method for isolating particles
CN110167677A (en) * 2017-01-19 2019-08-23 三菱日立电力系统株式会社 The one-piece type storage facility of cyclone separator, integrated gasification combined power generator, particle separation method

Also Published As

Publication number Publication date
JP4300593B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
WO1999042198A1 (en) Cleaning apparatus
KR101752361B1 (en) A Combined High Performance Horizontal Separation and Recovery Device of Fine Particles
US7648544B2 (en) Swirl tube separator
CN107282322A (en) A kind of high efficiency cyclonic dust collector of built-in guide vane
CN102716820A (en) Positive pressure running cyclone separator
GB2126499A (en) Steam separator
JPH1147640A (en) Cyclone system
RU2326717C2 (en) Vortex tube separator
US4565554A (en) Steam separating apparatus and separators used therein
CN204074519U (en) Pulverized coal preparation system New Type of Separator
EP0700728A1 (en) Horizontal cyclone separator for a fluidized bed reactor
CN113750654B (en) Nested multi-rotor cyclone dust removal device
JP5320514B1 (en) Dust catcher for blast furnace gas
JPS62213819A (en) Mist removal device
CN206081911U (en) Modified gas - solid separator device
JPS61153167A (en) Dust collector
EP0231931B1 (en) A cyclone with forced gas stream whirling
CN2164912Y (en) Inclined tube type cylindric multitube cyclone
CN111298993B (en) Cyclone venturi gas-solid separator
SU874207A1 (en) Cyclone separator
CN220195178U (en) Cyclone separator
RU2153916C1 (en) Method of dust collection and dust collector
CN209061403U (en) A kind of multicyclone
SU1510939A1 (en) Cyclone
JPH0244859Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090413

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees