JPH114543A - Restricting apparatus of variation in inrush current output of induction generator - Google Patents

Restricting apparatus of variation in inrush current output of induction generator

Info

Publication number
JPH114543A
JPH114543A JP9152751A JP15275197A JPH114543A JP H114543 A JPH114543 A JP H114543A JP 9152751 A JP9152751 A JP 9152751A JP 15275197 A JP15275197 A JP 15275197A JP H114543 A JPH114543 A JP H114543A
Authority
JP
Japan
Prior art keywords
converter
compensation
serial
series
induction generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9152751A
Other languages
Japanese (ja)
Other versions
JP3724122B2 (en
Inventor
Tatsunori Sato
達則 佐藤
Takaaki Kai
隆章 甲斐
Nobutaka Takeuchi
伸貴 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP15275197A priority Critical patent/JP3724122B2/en
Publication of JPH114543A publication Critical patent/JPH114543A/en
Application granted granted Critical
Publication of JP3724122B2 publication Critical patent/JP3724122B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to restrict an inrush current at linkage of an inducting generator and a variation in output voltage after the linkage. SOLUTION: An induction generator IG is connected to a system (S) through a serial transformer TRs. A parallel compensating converter 1 is connected to an upper-side system through a parallel transformer TRp. A serial compensating converter 2 is connected to a secondary side of the serial transformer TRs. Then, an inrush current at linkage is restricted through leakage impedance of the serial transformer TRs. The converters 1 and 2 are put under reactive power compensation control to restrict a variation in voltage. The serial compensating converter 2 is put under active power compensation control to restrict a variation in output. At the same time the serial converter is put under phase control to improve a power factor. In the serial compensation method, the apparatus is made small. In addition, a thyristor control circuit is preferably added. Then, the serial compensating converter is protected by generating a current from the thyristor control circuit when a failure current flows therein.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、誘導発電機の突
入電流および出力変動抑制する装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for suppressing inrush current and output fluctuation of an induction generator.

【0002】[0002]

【従来の技術】風力発電に用いられる発電機としては、
小形、軽量メンテナンスフリーおよび励磁装置、位相同
期回路が不要などの点からかご形誘導発電機が多く採用
されている。しかし、誘導発電機を系統に連系する場
合、突入電流が流れるためそれを抑制する必要がある。
この突入電流抑制方式としては後記表1に示す種々の方
式がある。
2. Description of the Related Art As a generator used for wind power generation,
A squirrel-cage induction generator is widely used because it is small, lightweight, maintenance-free, and does not require an excitation device or a phase-locked loop. However, when an induction generator is connected to a system, it is necessary to suppress an inrush current since it flows.
As the rush current suppressing method, there are various methods shown in Table 1 below.

【0003】また、風力発電機は構造が簡単で保守性能
の高く、騒音が低い固定翼ストール制御が主流である。
しかし、翼を固定しているために誘導発電機に与えるト
ルクが風力の変化によって変化し、それに伴い発電機出
力も変動し、配電系統に影響を与える。
[0003] In addition, a wind turbine has a simple structure, a high maintenance performance, and a low-noise fixed-wing stall control is mainly used.
However, since the wings are fixed, the torque applied to the induction generator changes due to a change in wind power, and accordingly, the generator output also changes, affecting the distribution system.

【0004】近年、系統補償装置として直列形系統補償
装置が注目され実用化に向けて研究が行われている。こ
れは次のような特長を有する。
[0004] In recent years, a series type system compensator has been attracting attention as a system compensator, and research has been conducted toward its practical use. This has the following features.

【0005】(a)SVG,SVCなど並列形系統補償
装置は、負荷容量と同じ容量の装置が必要となるが、直
列形は系統のリアクタンス分のみ電圧を補償すればよ
く、小容量化できる。
(A) A parallel type system compensator such as SVG or SVC requires a device having the same capacity as the load capacity. However, the series type only needs to compensate the voltage for the reactance of the system, and the capacity can be reduced.

【0006】(b)直列形系統補償装置は系統と直列に
接続された電圧源とみなすことができる。電圧の補償量
を調節することによって、上位系統の変動による下位系
統の電圧変動を抑制できる。
(B) The series type system compensator can be regarded as a voltage source connected in series with the system. By adjusting the amount of voltage compensation, voltage fluctuations in the lower system due to fluctuations in the higher system can be suppressed.

【0007】(c)補償電圧の位相を変化させて力率改
善が可能である。
(C) The power factor can be improved by changing the phase of the compensation voltage.

【0008】[0008]

【発明が解決しようとする課題】表1に従来風力発電機
の突入電流抑制方法の特徴を示す。
Table 1 shows the features of the conventional inrush current suppression method for wind power generators.

【0009】[0009]

【表1】 [Table 1]

【0010】表1から突入電流抑制する方式としてはソ
フトスタート方式が有効である。しかし、系統並列時の
突入電流を抑制することはできるが、連系後の電圧・出
力変動を抑制することができない。
As shown in Table 1, the soft start method is effective as a method for suppressing the inrush current. However, it is possible to suppress the rush current at the time of system parallel, but it is not possible to suppress the voltage / output fluctuation after interconnection.

【0011】この発明は、系統並列時の突入電流の抑制
と連系後の電圧・出力変動を抑制できる誘導発電機の突
入電流出力変動抑制装置を提供するものである。
The present invention provides an inrush current output fluctuation suppression device for an induction generator, which can suppress inrush current when the systems are paralleled and voltage / output fluctuation after interconnection.

【0012】[0012]

【課題を解決するための手段】本発明の誘導発電機の突
入電流出力変動抑制装置は、配電系統とこれに連系する
誘導発電機との間に直列変圧器を接続すると共に、シス
テム上位系統に並列変圧器を接続し、並列変圧器の二次
側に無効電力補償制御される並列補償用変換装置を接続
し、直列変圧器の二次側に無効電力補償制御および有効
電力補償制御または位相制御される直列補償用変換装置
を接続し、直列変圧器の洩れインピーダンスにより誘導
発電機の突入電流を抑制すると共に、並列補償用変換装
置および直列補償用変換装置で電圧変動の抑制と誘導発
電機の出力変動を抑制することを特徴とするものであ
る。
The inrush current output fluctuation suppressing device for an induction generator according to the present invention connects a series transformer between a distribution system and an induction generator interconnected with the distribution system, and further includes a system upper system. Connect a parallel transformer to the secondary transformer, connect a conversion device for parallel compensation controlled by reactive power compensation to the secondary side of the parallel transformer, and connect reactive power compensation control and active power compensation control or phase to the secondary side of the series transformer. A controlled series compensation converter is connected to suppress the inrush current of the induction generator due to the leakage impedance of the series transformer, and the parallel compensation converter and the series compensation converter suppress voltage fluctuations and reduce the induction generator. In which the output fluctuation is suppressed.

【0013】直列補償用変換装置にはサイリスタ制御回
路を接続して事故電流流入時の電流をサイリスタ制御回
路に流して直列補償用変換装置を保護するのが望まし
い。
Preferably, a thyristor control circuit is connected to the converter for series compensation, and a current at the time of the inflow of an accident current flows through the thyristor control circuit to protect the converter for series compensation.

【0014】[0014]

【発明の実施の形態】図1に実施の形態にかかる誘導発
電機の突入電流出力変動抑制装置のシステム構成を示
す。図において、IGは配電系統Sに直列変圧器T
S,遮断器CB2を介して接続された誘導発電機、1は
系統Sに遮断器CB1,並列変圧器TRPを介して接続
された並列形系統補償用電力変換装置(以下単に並列補
償用変換装置という)、2は上記直列変圧器TRSの2
次側に接続された直列形系統補償用電力変換装置(以下
単に並列補償用電力変換器という)、3は直列補償用変
換装置2と並列に接続された変換装置2のインバータを
保護するサイリスタ制御回路である。変換装置1と2の
直流側には共通の直流コンデンサCが接続されている。
FIG. 1 shows a system configuration of an inrush current output fluctuation suppressing device of an induction generator according to an embodiment. In the figure, IG is a series transformer T connected to the distribution system S.
R S, is connected through a circuit breaker CB 2 the induction generator, 1 breaker CB1 to the system S, parallel transformer TR P connected in parallel type systems compensating power converter via a (hereinafter simply parallel compensation 2 is the series transformer TR S 2
A series-type system compensation power converter (hereinafter simply referred to as a parallel compensation power converter) connected to the secondary side is a thyristor control 3 for protecting the inverter of the converter 2 connected in parallel with the series compensation converter 2. Circuit. A common DC capacitor C is connected to the DC side of the converters 1 and 2.

【0015】並列,直列補償用変換装置1,2のインバ
ータはIGBT,GTO等の自励式半導体素子を用いて
構成され、無効電力補償制御によりシステム上位側端子
電圧Vt及び下位側端子電圧Vgを調整する。また、直列
補償用変換装置2は事故電流流入時にサイリスタ制御回
路3に電流を流して保護する。
[0015] parallel, the inverter of the series compensation converter 1 and 2 IGBT, is constructed using a self-excited semiconductor device of GTO, etc., the system upper terminal voltage by the reactive power compensation control V t and the lower terminal voltage V g To adjust. Also, the converter 2 for series compensation protects the thyristor control circuit 3 by flowing a current when an accident current flows.

【0016】上記システムは並列側を電流源、直流側を
電圧源とした図2に示す等価回路で表すことができる。
The above system can be represented by an equivalent circuit shown in FIG. 2 where the parallel side is a current source and the DC side is a voltage source.

【0017】並列補償用変換装置1は系統Sに無効電力
jQPARを供給し、直列補償用変換装置2は系統Sに有
効・無効電力(PSER+jQSER)を供給する。電圧変動
の抑制は無効電力を補償すればよいので、並列,直列双
方の変換装置1,2を無効電力補償制御することによっ
て無効電力jQPAR,jQSERを変化させ端子電圧Vt
gの電圧変動を抑制することができる。したがって、
無効電力の補償を双方で分担することにより並列補償用
変換装置2の容量を小さくすることができる。
The converter 1 for parallel compensation supplies reactive power jQ PAR to the system S, and the converter 2 for series compensation supplies active / reactive power (P SER + jQ SER ) to the system S. Since the suppression of the voltage fluctuation can be achieved by compensating the reactive power, the reactive powers jQ PAR and jQ SER are changed by controlling the reactive power compensation of both the parallel and serial converters 1 and 2 to change the terminal voltages V t ,
Vg voltage fluctuation can be suppressed. Therefore,
By sharing the reactive power compensation between the two, the capacity of the parallel compensation converter 2 can be reduced.

【0018】また、誘導発電機IGの出力変動は直列補
償用変換装置2を有効電力補償制御することにより抑制
できる。また出力変動は変換装置2の位相制御によって
もでき、系統の力率改善が可能となる。
Further, the output fluctuation of the induction generator IG can be suppressed by performing the active power compensation control on the converter 2 for series compensation. Further, the output fluctuation can also be performed by the phase control of the converter 2, and the power factor of the system can be improved.

【0019】誘導発電機IG連系時の突入電流は直列変
圧器TRSの洩れインピーダンスZTRにより抑制され
る。
The inrush current at the time of IG connection of the induction generator is suppressed by the leakage impedance Z TR of the series transformer TR S.

【0020】[0020]

【発明の効果】この発明は、上述のように構成されてい
るので、以下に記載する効果を奏する。
Since the present invention is configured as described above, the following effects can be obtained.

【0021】(1)直列変圧器のインピーダンスにより
突入電流の抑制が可能である。
(1) Inrush current can be suppressed by the impedance of the series transformer.

【0022】(2)直列補償用変換器により発電機上位
系統電圧および出力の変動を抑制することが可能であ
る。
(2) It is possible to suppress fluctuations in the voltage and output of the upper system of the generator by the converter for series compensation.

【0023】(3)直列補償用変換器の位相制御により
力率改善が可能である。
(3) The power factor can be improved by controlling the phase of the series compensation converter.

【0024】(4)直列変圧器の採用によりシステムの
小型化が可能である。
(4) The size of the system can be reduced by employing a series transformer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の形態にかかるシステム構成図。FIG. 1 is a system configuration diagram according to an embodiment.

【図2】システム等価回路図。FIG. 2 is a system equivalent circuit diagram.

【符号の説明】[Explanation of symbols]

1…並列補償用変換器 2…直列補償用変換器 3…インバータ保護用サイリスタ制御回路 IG…誘導発電機 S…配電系統 TRP…並列変圧器 TRS…直列変圧器。1 ... Parallel compensation converter 2 ... series compensation converter 3 ... inverter protection thyristor control circuit IG ... induction generator S ... distribution system TR P ... parallel transformer TR S ... series transformer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 配電系統とこれに連系する誘導発電機と
の間に直列変圧器を接続すると共に、システム上位系統
に並列変圧器を接続し、 並列変圧器の二次側に無効電力補償制御される並列補償
用変換装置を接続し、 直列変圧器の二次側に無効電力補償制御および有効電力
補償制御または位相制御される直列補償用変換装置を接
続し、 直列変圧器の洩れインピーダンスにより誘導発電機の突
入電流を抑制すると共に、並列補償用変換装置および直
列補償用変換装置で電圧変動の抑制と誘導発電機の出力
変動を抑制することを特徴とする誘導発電機の突入電流
出力変動抑制装置。
1. A series transformer is connected between a distribution system and an induction generator connected to the distribution system, a parallel transformer is connected to a higher system of the system, and reactive power compensation is provided on a secondary side of the parallel transformer. Connect the controlled parallel compensation converter, connect the reactive power compensation control and the active power compensation control or the phase controlled series compensation converter to the secondary side of the series transformer, and use the leakage impedance of the series transformer. Inrush current output fluctuation of the induction generator, characterized by suppressing the inrush current of the induction generator, and suppressing the voltage fluctuation and the output fluctuation of the induction generator with the converter for parallel compensation and the converter for series compensation. Suppression device.
【請求項2】 請求項1において、 直列補償用変換装置に、事故電流流入時の電流を流して
直列補償用変換装置を保護するサイリスタ制御回路を接
続したことを特徴とする誘導発電機の突入電流出力変動
抑制装置。
2. The inrush of an induction generator according to claim 1, wherein a thyristor control circuit is connected to the series-compensation converter to protect the series-compensation converter by supplying a current when an accident current flows. Current output fluctuation suppression device.
JP15275197A 1997-06-11 1997-06-11 Inrush current output fluctuation suppression device for induction generator Expired - Fee Related JP3724122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15275197A JP3724122B2 (en) 1997-06-11 1997-06-11 Inrush current output fluctuation suppression device for induction generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15275197A JP3724122B2 (en) 1997-06-11 1997-06-11 Inrush current output fluctuation suppression device for induction generator

Publications (2)

Publication Number Publication Date
JPH114543A true JPH114543A (en) 1999-01-06
JP3724122B2 JP3724122B2 (en) 2005-12-07

Family

ID=15547378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15275197A Expired - Fee Related JP3724122B2 (en) 1997-06-11 1997-06-11 Inrush current output fluctuation suppression device for induction generator

Country Status (1)

Country Link
JP (1) JP3724122B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6924627B1 (en) 1999-09-13 2005-08-02 Aloys Wobben Method of reactive power regulation and aparatus for producing electrical energy in an electrical network
JP2006109568A (en) * 2004-10-01 2006-04-20 Mitsubishi Heavy Ind Ltd Generator, method of interconnecting generator to system, and program for controlling system interconnection of generator
JP2015180164A (en) * 2014-03-20 2015-10-08 三菱電機株式会社 Power generator voltage controller
CN109031179A (en) * 2018-07-04 2018-12-18 云南电网有限责任公司 Main transformer CT polarity and protection direction-adaptive method of calibration

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6924627B1 (en) 1999-09-13 2005-08-02 Aloys Wobben Method of reactive power regulation and aparatus for producing electrical energy in an electrical network
JP2006109568A (en) * 2004-10-01 2006-04-20 Mitsubishi Heavy Ind Ltd Generator, method of interconnecting generator to system, and program for controlling system interconnection of generator
JP2015180164A (en) * 2014-03-20 2015-10-08 三菱電機株式会社 Power generator voltage controller
CN109031179A (en) * 2018-07-04 2018-12-18 云南电网有限责任公司 Main transformer CT polarity and protection direction-adaptive method of calibration
CN109031179B (en) * 2018-07-04 2020-11-24 云南电网有限责任公司 Main transformer CT polarity and protection direction self-adaptive checking method

Also Published As

Publication number Publication date
JP3724122B2 (en) 2005-12-07

Similar Documents

Publication Publication Date Title
EP3514936A1 (en) Hybrid dc converter for offshore wind farm
Amaral et al. Operation of a grid-tied cascaded multilevel converter based on a forward solid-state transformer under unbalanced PV power generation
Zhuang et al. Dynamic performance of a STATCON at an HVDC inverter feeding a very weak AC system
US5406190A (en) Device for generating electrical energy having an A.C. generator coupled to a turbine
Chen Compensation schemes for a SCR converter in variable speed wind power systems
Ganthia et al. Shunt connected FACTS devices for LVRT capability enhancement in WECS
WO2006136801A2 (en) Improvements in electrical power converters
Anju et al. Co-ordination of SMES with STATCOM for mitigating SSR and damping power system oscillations in a series compensated wind power system
BR112020019779A2 (en) ELECTRIC POWER SYSTEM CONNECTED TO AN ELECTRICAL NETWORK, WIND TURBINE SYSTEM AND METHOD FOR OPERATING AN ELECTRIC POWER CONVERTER FOR A DOUBLE POWERED INDUCTION GENERATOR SYSTEM
CN110137977B (en) Converter station series connection adjusting system and control method
CN116264440A (en) Electric power system with active harmonic filter
Rong et al. Transformerless grid connected control of wind turbine based on H-MMC
JP3724122B2 (en) Inrush current output fluctuation suppression device for induction generator
Zhao et al. Research on topology and control strategy of railway power regulator based on MMC
JP2000175361A (en) Alternating current direct current hybrid power transmission system
CN114268121A (en) Hybrid high-voltage direct-current converter based on LCC and MMC and application thereof
Amini et al. Reactive power compensation in wind power plant using SVC and STATCOM
Zhang et al. Current source converters and their control
Hlaing et al. A permanent magnet synchronous generator control approach for stand-alone gas engine generation system
Yu et al. Startup Strategy of the HVDC System Based on Flexible Diode Rectifier for Offshore Wind Farms
Das et al. Counteracting the effects of symmetrical and asymmetrical voltage sags on DFIG-based wind power systems
CN114678879B (en) Negative sequence current compensation method and system for single-phase load power supply of traction network
Suresh et al. Dynamic performance of statcom under line to ground faults in power system
Dey et al. Coordinated control technique of PMSG based wind energy conversion system during repetitive grid fault
Dai et al. Input power factor compensation for PWM-CSC based high-power synchronous motor drives

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20030218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees