JPH1144577A - Infrared sensor and optical sensor - Google Patents

Infrared sensor and optical sensor

Info

Publication number
JPH1144577A
JPH1144577A JP9201095A JP20109597A JPH1144577A JP H1144577 A JPH1144577 A JP H1144577A JP 9201095 A JP9201095 A JP 9201095A JP 20109597 A JP20109597 A JP 20109597A JP H1144577 A JPH1144577 A JP H1144577A
Authority
JP
Japan
Prior art keywords
light
optical axis
point
collecting element
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9201095A
Other languages
Japanese (ja)
Other versions
JP3838748B2 (en
Inventor
Kazumasa Takada
和政 高田
Kanji Nishii
完治 西井
Hirohisa Imai
博久 今井
Yasuyuki Kanazawa
靖之 金澤
Makoto Shibuya
誠 渋谷
Kazunari Nishii
一成 西井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP20109597A priority Critical patent/JP3838748B2/en
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to EP98933941A priority patent/EP0937971A4/en
Priority to KR1019997002668A priority patent/KR100353380B1/en
Priority to CA002267573A priority patent/CA2267573A1/en
Priority to CNB988010690A priority patent/CN100385215C/en
Priority to US09/269,530 priority patent/US6371925B1/en
Priority to PCT/JP1998/003333 priority patent/WO1999005489A1/en
Publication of JPH1144577A publication Critical patent/JPH1144577A/en
Application granted granted Critical
Publication of JP3838748B2 publication Critical patent/JP3838748B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Burglar Alarm Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To make compatible both a large light-detection amount and a small light-detection area by constituting a sensor of a condensing element condensing infrared rays radiated from an object to be measured, an infrared-detecting element and a casing, and setting the infrared-detecting element separately from a focal position of the condensing element. SOLUTION: An infrared-detecting element 4 is mounted to a casing 9 in a manner not to detect infrared rays not passing a refraction lens 3 and detect only infrared rays passing the refraction lens 3. An area where the light radiated from a point A does not pass is present at a position further away from the refraction lens 3 than an intersection FX of an optical path K1A and an optical axis and closer to the refraction lens 3 than an image point FA. The area is inside a triangle of the intersection FX, the image point FA and an image point FA'. The infrared-detecting element 4 is arranged inside the triangle, whereby an infrared sensor not detecting the light radiated from the points A, A' located at a boundary is obtained. Only infrared rays radiated from a required area in the vicinity of the optical axis are accordingly detected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は赤外センサおよび光
センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared sensor and an optical sensor.

【0002】[0002]

【従来の技術】従来より赤外センサには赤外受光素子を
用いて赤外線を検知するものが利用されている。以下、
図面を参照しながら上記した従来の赤外センサの一例に
ついて説明する。
2. Description of the Related Art Conventionally, an infrared sensor that detects infrared rays using an infrared light receiving element has been used. Less than,
An example of the above-described conventional infrared sensor will be described with reference to the drawings.

【0003】図45は第1の従来例である赤外センサの
構成を示すものである。図45において9は筐体、4は
赤外センサ、10は開口部である。
FIG. 45 shows the structure of a first conventional infrared sensor. In FIG. 45, 9 is a housing, 4 is an infrared sensor, and 10 is an opening.

【0004】以上のように構成された赤外センサについ
て、以下その動作について説明する。
The operation of the infrared sensor configured as described above will be described below.

【0005】まず、被測定物に開口部10が向けられ
る。被測定物から放射される赤外線は筐体の開口部を通
過して赤外線受光素子に入射する。赤外受光素子の出力
が赤外受光素子に入射する赤外線の強度に依存し、赤外
線受光素子に入射する赤外線の強度が被測定物の温度に
依存することを利用して、比測定物の温度を検出した
り、被測定物の有無判別などを行う。赤外センサの受光
領域の大きさは赤外受光素子4の大きさと開口部4の開
口径で幾何学的に決まる。受光部4と開口部10の開口
径を小さくすることで、赤外センサの受光領域を小さく
できる。
[0005] First, the opening 10 is directed to the object to be measured. Infrared rays emitted from the object to be measured pass through the opening of the housing and enter the infrared light receiving element. Taking advantage of the fact that the output of the infrared light receiving element depends on the intensity of the infrared light incident on the infrared light receiving element and the intensity of the infrared light incident on the infrared light receiving element depends on the temperature of the measured object, Is detected, and the presence or absence of an object to be measured is determined. The size of the light receiving area of the infrared sensor is geometrically determined by the size of the infrared light receiving element 4 and the diameter of the opening 4. By reducing the opening diameter of the light receiving section 4 and the opening 10, the light receiving area of the infrared sensor can be reduced.

【0006】図46は第2の従来例である赤外センサの
構成を示すものである。図46において、9は筐体、4
は赤外センサ、10は開口部、1は赤外センサを穴など
の凹部に固定するための筒状の固定部である。
FIG. 46 shows the configuration of a second conventional infrared sensor. In FIG. 46, 9 is a housing, 4
Denotes an infrared sensor, 10 denotes an opening, and 1 denotes a cylindrical fixing portion for fixing the infrared sensor to a concave portion such as a hole.

【0007】以上のように構成された赤外センサについ
て、以下その動作について説明する。
The operation of the infrared sensor configured as described above will be described below.

【0008】まず、穴などの凹部に固定部1を挿入して
赤外センサを固定する。被測定物から放射される赤外線
は固定部の開口部を通過して赤外線受光素子に入射す
る。赤外受光素子の出力が赤外受光素子に入射する赤外
線の強度に依存し、赤外線受光素子に入射する赤外線の
強度が被測定物の温度に依存することを利用して、被測
定物の温度を検出したり、被測定物の有無判別などを行
う。赤外センサの受光領域の大きさは赤外受光素子4の
大きさと開口部4の開口径で幾何学的に決まる。
First, the infrared sensor is fixed by inserting the fixing portion 1 into a concave portion such as a hole. Infrared rays emitted from the object to be measured pass through the opening of the fixed part and enter the infrared light receiving element. Taking advantage of the fact that the output of the infrared light receiving element depends on the intensity of the infrared light incident on the infrared light receiving element and the intensity of the infrared light incident on the infrared light receiving element depends on the temperature of the object, Is detected, and the presence or absence of an object to be measured is determined. The size of the light receiving area of the infrared sensor is geometrically determined by the size of the infrared light receiving element 4 and the diameter of the opening 4.

【0009】受光部4と開口部10の開口径を小さくす
ることで、赤外センサの受光領域を小さくできる。
The light receiving area of the infrared sensor can be reduced by reducing the opening diameter of the light receiving section 4 and the opening 10.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、第1の
従来例に示す構成では、狭い領域のみを測定する際に、
開口部10の大きさ、あるいは受光素子4を小さくする
ことによって受光領域を狭める必要がある。開口部1
0、受光素子4を小さくすれば受光領域も小さくなる
が、受光量も小さくなる問題が生じる。受光量が小さい
と、受光素子の出力のS/Nが悪化し、測定精度が低下
してしまう。
However, in the configuration shown in the first conventional example, when measuring only a narrow area,
It is necessary to narrow the light receiving area by reducing the size of the opening 10 or the light receiving element 4. Opening 1
0, if the light receiving element 4 is made smaller, the light receiving area becomes smaller, but there is a problem that the light receiving amount becomes smaller. When the amount of received light is small, the S / N of the output of the light receiving element is deteriorated, and the measurement accuracy is reduced.

【0011】また、第2の従来例に示す構成では、被測
定物に固定部が挿入されれば固定部が被測定物によって
温度変化を生じ、固定部から放射される赤外線量が変化
する。固定部からの光を受光しないためには受光領域を
小さくする必要がある。そこで、開口部10、受光素子
4を小さくすることによって受光領域を小さくできる
が、同時に受光量も小さくなる問題が生じる。受光量が
小さいと、受光素子の出力のS/Nが悪化し、測定精度
が低下してしまう。
Further, in the configuration shown in the second conventional example, when the fixed portion is inserted into the object to be measured, the temperature of the fixed portion changes due to the object to be measured, and the amount of infrared rays emitted from the fixed portion changes. In order not to receive the light from the fixed portion, it is necessary to reduce the light receiving area. Therefore, the light receiving area can be reduced by reducing the size of the opening 10 and the light receiving element 4, but there is a problem that the amount of received light also decreases. When the amount of received light is small, the S / N of the output of the light receiving element is deteriorated, and the measurement accuracy is reduced.

【0012】本発明は上記問題点に鑑み、大きい受光量
と小さい受光領域を両立させた赤外センサを提供するこ
とを目的とする。
In view of the above problems, an object of the present invention is to provide an infrared sensor that achieves both a large light receiving amount and a small light receiving area.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、本発明の第一の赤外センサは、少なくとも、被測定
物から放射される赤外線を集光する集光素子と、前記集
光素子で集光された赤外線を受光する赤外受光素子と、
前記集光素子と前記赤外受光素子を保持する筐体とから
構成され、前記赤外受光素子を前記集光素子の焦点位置
から離して設置することにより、受光領域を制限する。
受光素子によって被測定物から放射される赤外光を効率
よく集光することができるので、受光量を大きくでき
る。また、受光素子を、集光素子の焦点位置から離して
設置することで、不要な領域から集光素子に入射する光
を受光素子以外の位置へ進行させることができ、受光領
域を制限することができる。
In order to achieve the above object, a first infrared sensor according to the present invention comprises at least a light-collecting element for collecting infrared rays radiated from an object to be measured; An infrared light receiving element for receiving infrared light collected by the element,
The light receiving area is limited by including the light-collecting element and a housing for holding the infrared light-receiving element, and disposing the infrared light-receiving element away from the focal position of the light-collecting element.
Since the infrared light emitted from the object to be measured can be efficiently collected by the light receiving element, the amount of received light can be increased. In addition, by installing the light receiving element away from the focal point of the light collecting element, light incident on the light collecting element from an unnecessary area can travel to a position other than the light receiving element, thereby limiting the light receiving area. Can be.

【0014】上記の赤外センサにおいて、前記赤外受光
素子を、被測定物面における受光領域の境界に位置する
点から光軸に対して前記境界に位置する点と同じ側の前
記集光素子の縁を通過して前記集光素子による前記境界
に位置する点の像点へ到達する光路と光軸との交点より
も前記集光素子から遠く且つ前記集光素子による前記境
界に位置する点の像点よりも前記集光素子に近い領域に
設置することが望ましい。不要な領域からの赤外線を受
光素子以外の点へ集光することができ、受光領域を制限
することができる。
In the above-mentioned infrared sensor, the infrared light receiving element may be arranged such that the light receiving element is on the same side as a point located on the boundary with respect to the optical axis from a point located on the boundary of the light receiving area on the surface of the object to be measured. A point farther from the light-collecting element than the intersection of the optical path and the optical axis reaching the image point of the point located at the boundary by the light-collecting element through the edge of the light-collecting element and located at the boundary by the light-collecting element It is desirable that the light-emitting element be located in a region closer to the light-collecting element than the image point. Infrared rays from unnecessary areas can be focused on points other than the light receiving element, and the light receiving area can be limited.

【0015】また、上記の赤外センサにおいて、前記赤
外受光素子を、前記境界に位置する点から光軸に対して
前記境界に位置する点と同じ側の前記集光素子の縁を通
過して前記集光素子による前記境界に位置する点の像点
へ到達する光路と光軸との交点と、前記集光素子による
前記境界に位置する点の2つの像点とで形成される三角
形内に設置することが望ましい。この構成により、受光
領域を光軸付近に制限することができる。
Further, in the above-mentioned infrared sensor, the infrared light receiving element passes through the edge of the light-collecting element on the same side as the point located at the boundary with respect to the optical axis from the point located at the boundary. The triangle formed by the intersection of the optical axis and the optical path reaching the image point of the point located at the boundary by the light-collecting element and the two image points of the point located at the boundary by the light-collecting element It is desirable to install in With this configuration, the light receiving area can be limited to the vicinity of the optical axis.

【0016】また、上記赤外センサにおいて、前記赤外
受光素子を、被測定物面における受光領域の境界に位置
する点の前記集光素子による像点よりも前記集光素子か
ら遠い領域に設置することが望ましい。不要な領域から
の赤外線を受光素子以外の点へ集光することができ、受
光領域を制限することができる。
In the infrared sensor, the infrared light receiving element is located in a region farther from the light condensing element than an image point of the light condensing element at a point located on a boundary of the light receiving region on the object surface. It is desirable to do. Infrared rays from unnecessary areas can be focused on points other than the light receiving element, and the light receiving area can be limited.

【0017】また、上記赤外センサにおいて、前記赤外
受光素子を、前記境界に位置する点から光軸を挟んで前
記境界に位置する点と反対側の前記集光素子の縁を通過
して前記集光素子による前記境界に位置する点の像点へ
到達する2つの光路で挟まれた領域に設置することが望
ましい。この構成により、受光領域を光軸付近に制限す
ることができる。
Further, in the infrared sensor, the infrared light receiving element is passed through an edge of the light collecting element opposite to a point located on the boundary with respect to an optical axis from a point located on the boundary. It is preferable that the light-collecting element be installed in a region sandwiched between two optical paths reaching an image point of a point located at the boundary by the light-collecting element. With this configuration, the light receiving area can be limited to the vicinity of the optical axis.

【0018】また、上記目的を達成するために、本発明
の第二の赤外センサは、少なくとも、被測定物から放射
される赤外線を集光する集光素子と、前記集光素子で集
光された赤外線を受光する赤外受光素子と、前記集光素
子と前記赤外受光素子を保持する筐体と、被測定物に向
きを固定するための固定部とから構成され、前記赤外受
光素子を前記集光素子の位置から離して設置することに
より、受光領域を制限する。受光素子によって被測定物
から放射される赤外光を効率よく集光することができる
ので、受光量を大きくできる。また、受光素子を、集光
素子の焦点位置から離して設置することで、不要な領域
から集光素子に入射する光を受光素子以外の位置へ進行
させることができ、受光領域を制限することができる。
In order to achieve the above object, a second infrared sensor according to the present invention comprises a light-collecting element for condensing at least infrared light radiated from an object to be measured, and a light-condensing element. An infrared light receiving element for receiving the infrared light, a housing for holding the light condensing element and the infrared light receiving element, and a fixing portion for fixing a direction to an object to be measured. The light receiving area is limited by installing the element away from the position of the light collecting element. Since the infrared light emitted from the object to be measured can be efficiently collected by the light receiving element, the amount of received light can be increased. In addition, by installing the light receiving element away from the focal point of the light collecting element, light incident on the light collecting element from an unnecessary area can travel to a position other than the light receiving element, thereby limiting the light receiving area. Can be.

【0019】また、上記赤外センサにおいて、前記赤外
受光素子を、被測定物面における受光領域の境界に位置
する点から光軸に対して前記境界に位置する点と同じ側
の前記集光素子の縁を通過して前記集光素子による前記
境界に位置する点の像点へ到達する光路と光軸との交点
よりも前記集光素子から遠く且つ前記集光素子による前
記境界に位置する点の像点よりも前記集光素子に近い領
域に設置することが望ましい。不要な領域からの赤外線
を受光素子以外の点へ集光することができ、受光領域を
制限することができる。
In the above-mentioned infrared sensor, the infrared light receiving element may be arranged such that the light receiving element is located on the same side as a point located on the boundary with respect to the optical axis from a point located on the boundary of the light receiving area on the object surface. It is farther from the light-collecting element than the intersection of the optical path and the optical axis that passes through the edge of the element and reaches the image point of the point located at the boundary by the light-collecting element and is located at the boundary by the light-collecting element. It is desirable that the light source be installed in a region closer to the light-collecting element than the point image point. Infrared rays from unnecessary areas can be focused on points other than the light receiving element, and the light receiving area can be limited.

【0020】また、上記赤外センサにおいて、前記赤外
受光素子を、前記境界に位置する点から光軸に対して前
記境界に位置する点と同じ側の前記集光素子の縁を通過
して前記集光素子による前記境界に位置する点の像点へ
到達する光路と光軸との交点と、前記集光素子による前
記境界に位置する点の2つの像点とで形成される三角形
内に設置することが望ましい。この構成により、受光領
域を光軸付近に制限することができる。
In the infrared sensor, the infrared light receiving element may be moved from a point located at the boundary through an edge of the light collecting element on the same side as a point located at the boundary with respect to an optical axis. Within the triangle formed by the intersection of the optical path and the optical axis reaching the image point of the point located at the boundary by the light-collecting element, and two image points of the point located at the boundary by the light-collecting element It is desirable to install. With this configuration, the light receiving area can be limited to the vicinity of the optical axis.

【0021】また、上記赤外センサにおいて、前記赤外
受光素子を、被測定物面における受光領域の境界に位置
する点の前記集光素子による像点よりも前記集光素子か
ら遠い領域に設置することを設置することが望ましい。
不要な領域からの赤外線を受光素子以外の点へ集光する
ことができ、受光領域を制限することができる。
In the infrared sensor, the infrared light receiving element is located in a region farther from the light condensing element than an image point of the light condensing element at a point located on a boundary of the light receiving region on the object surface. It is desirable to set up.
Infrared rays from unnecessary areas can be focused on points other than the light receiving element, and the light receiving area can be limited.

【0022】また、上記赤外センサにおいて、前記赤外
受光素子を、前記境界に位置する点から光軸を挟んで前
記境界に位置する点と反対側の前記集光素子の縁を通過
して前記集光素子による前記境界に位置する点の像点へ
到達する2つの光路で挟まれた領域に設置することが望
ましい。この構成により、受光領域を光軸付近に制限す
ることができる。
In the above-mentioned infrared sensor, the infrared light receiving element is passed through an edge of the light collecting element opposite to a point located on the boundary with respect to an optical axis from a point located on the boundary. It is preferable that the light-collecting element be installed in a region sandwiched between two optical paths reaching an image point of a point located at the boundary by the light-collecting element. With this configuration, the light receiving area can be limited to the vicinity of the optical axis.

【0023】また、上記赤外センサにおいて、前記赤外
受光素子を、前記集光素子の縁から光軸に対して前記集
光素子の縁と同じ側の前記固定部の内壁に接するように
ひいた直線が前記固定部の先端の面と交叉する点から、
前記集光素子の縁を通過して前記固定部の先端の面と交
叉する点の前記集光素子による像点へ到達する光路と光
軸との交点よりも前記集光素子から遠く、且つ前記固定
部の先端の面と交叉する点の前記集光素子による像点よ
りも前記集光素子に近い領域に設置することが望まし
い。固定部以外の領域を受光領域とすることができるた
め固定部の温度変化の影響を受けない高精度な赤外セン
サが実現できる。また、受光領域を固定部からの光を受
光しない条件で最大限に受光量を大きくできるので、S
/Nが向上し検出精度を高められる。
In the above-mentioned infrared sensor, the infrared light receiving element is so arranged as to be in contact with the inner wall of the fixed portion on the same side as the edge of the light collecting element with respect to the optical axis from the edge of the light collecting element. From the point where the straight line intersects the surface of the tip of the fixed part,
The point passing through the edge of the light-collecting element and intersecting with the surface of the tip of the fixed portion is farther from the light-collecting element than the intersection of the optical path and the optical axis reaching the image point by the light-collecting element, and It is preferable that the light-receiving element be located in a region closer to the light-collecting element than an image point of the light-collecting element at a point crossing the front end surface of the fixed portion. Since a region other than the fixed portion can be used as a light receiving region, a highly accurate infrared sensor which is not affected by a temperature change of the fixed portion can be realized. Further, since the light receiving area can be maximized under the condition that the light receiving area does not receive the light from the fixed portion, S
/ N is improved, and the detection accuracy can be increased.

【0024】また、上記赤外センサにおいて、前記赤外
受光素子を、前記集光素子の縁から光軸に対して前記集
光素子の縁と同じ側の前記固定部の内壁に接するように
ひいた直線が前記固定部の先端の面と交叉する点から前
記集光素子の縁を通過して前記固定部の先端の面と交叉
する点の前記集光素子による2つの像点へ到達する光路
が光軸と交叉する点と、前記固定部先端の面と交叉する
点の前記集光素子による2つの像点とで形成される三角
形の内側に設置することが望ましい。固定部からの赤外
線を受光素子以外の点へ集光することができ、受光領域
を光軸付近に制限することができる。
In the above-mentioned infrared sensor, the infrared light receiving element is so arranged as to be in contact with the inner wall of the fixed portion on the same side as the edge of the light collecting element with respect to the optical axis from the edge of the light collecting element. An optical path that passes through the edge of the light-collecting element from a point where the straight line intersects the front end surface of the fixed portion to reach two image points of the light converging element at a point where the straight line intersects the front end surface of the fixed portion; Is desirably installed inside a triangle formed by a point intersecting with the optical axis and two image points of the light condensing element at a point intersecting with the surface of the fixed end. Infrared rays from the fixed part can be focused on points other than the light receiving element, and the light receiving area can be limited to the vicinity of the optical axis.

【0025】また、上記赤外センサにおいて、前記赤外
受光素子を、前記集光素子の焦点距離fと、前記赤外受
光素子の半径rs と、前記集光素子の縁から光軸に対し
て前記集光素子の縁と同じ側の前記固定部の内壁に接す
るようにひいた直線が前記固定部先端の面と交叉する点
と光軸との距離rαと、前記集光素子の縁から光軸に対
して前記集光素子の縁と同じ側の前記固定部の内壁に接
するようにひいた直線が前記固定部の先端の面と交叉す
る点と前記集光素子との距離Lαと、前記集光素子の半
径r3 を用いて、
In the above-mentioned infrared sensor, the infrared light receiving element may be arranged such that a focal length f of the light collecting element, a radius rs of the infrared light receiving element, and an optical axis from an edge of the light collecting element. The distance rα between the optical axis and a point where a straight line drawn so as to contact the inner wall of the fixed part on the same side as the edge of the light-collecting element, and the light from the edge of the light-collecting element A distance Lα between a point where a straight line drawn so as to be in contact with the inner wall of the fixed part on the same side as the edge of the light-collecting element with respect to an axis and a surface of the tip of the fixed part intersects the light-collecting element; Using the radius r3 of the light collecting element,

【0026】[0026]

【数5】 (Equation 5)

【0027】で与えられるL3 だけ前記集光素子の焦点
よりも集光素子から遠くに設置することが望ましい。こ
れにより、光軸付近に受光領域を制限し、固定部からの
赤外線を受光しない高安定な赤外センサが実現できる。
It is desirable that the light source is located farther from the light-collecting element than the focal point of the light-collecting element by L3 given by: Accordingly, a highly stable infrared sensor that limits the light receiving area near the optical axis and does not receive infrared light from the fixed portion can be realized.

【0028】また、上記赤外センサにおいて、前記赤外
受光素子を、前記集光素子の縁から光軸に対して前記集
光素子の縁と同じ側の前記固定部の内壁に接するように
ひいた直線が前記固定部の先端の面と交叉する点の前記
集光素子による像点よりも前記集光素子から遠い位置に
設置することが望ましい。固定部以外の領域を受光領域
とすることができるため固定部の温度変化の影響を受け
ない高精度な赤外センサが実現できる。また、受光領域
を固定部からの光を受光しない条件で最大限に受光量を
大きくできるので、S/Nが向上し検出精度を高められ
る。
In the infrared sensor, the infrared light receiving element is so arranged as to be in contact with the inner wall of the fixed portion on the same side as the edge of the light collecting element with respect to the optical axis from the edge of the light collecting element. It is desirable to set the point at which the straight line intersects with the surface of the tip of the fixed portion at a position farther from the light-collecting element than an image point by the light-collecting element. Since a region other than the fixed portion can be used as a light receiving region, a highly accurate infrared sensor which is not affected by a temperature change of the fixed portion can be realized. Further, since the light receiving amount can be maximized in the light receiving area under the condition that the light from the fixed portion is not received, the S / N is improved and the detection accuracy can be improved.

【0029】また、上記赤外センサにおいて、前記赤外
受光素子を、前記固定部の先端の面と交叉する2点から
光軸を挟んで前記固定部の先端の面と交叉するそれぞれ
の点と反対側の前記集光素子の縁を通過して前記固定部
の先端の面と交叉する2点の前記集光素子による像点へ
到達する2つの光路で挟まれた領域に設置することが望
ましい。固定部からの赤外線を受光素子以外の点へ集光
することができ、受光領域を光軸付近に制限することが
できる。
In the above-mentioned infrared sensor, the infrared light receiving element may be connected to two points intersecting the front end surface of the fixed portion with respective points intersecting the front end surface of the fixed portion across the optical axis. It is desirable that the light-receiving element be installed in a region between two optical paths that reach an image point of the light-collecting element at two points passing through the edge of the light-collecting element on the opposite side and intersecting the surface of the front end of the fixed part. . Infrared rays from the fixed part can be focused on points other than the light receiving element, and the light receiving area can be limited to the vicinity of the optical axis.

【0030】また、上記赤外センサにおいて、前記赤外
受光素子を、前記集光素子の焦点距離fと、前記赤外受
光素子の半径rs と、前記集光素子の縁から光軸に対し
て前記集光素子の縁と同じ側の前記固定部の内壁に接す
るようにひいた直線が前記固定部の先端の面と交叉する
点と光軸との距離rαと、前記集光素子の縁から光軸に
対して前記集光素子の縁と同じ側の前記固定部の内壁に
接するようにひいた直線が前記固定部先端の面と交叉す
る点と前記集光素子との距離Lαと、前記集光素子の半
径r3 を用いて、
In the above-mentioned infrared sensor, the infrared light receiving element may be arranged such that a focal length f of the light collecting element, a radius rs of the infrared light receiving element, and an optical axis from an edge of the light collecting element. The distance rα between the optical axis and a point where a straight line drawn so as to be in contact with the inner wall of the fixed part on the same side as the edge of the light-collecting element, and from the edge of the light-collecting element A distance Lα between a point where a straight line drawn so as to be in contact with the inner wall of the fixed part on the same side as the edge of the light-collecting element with respect to the optical axis intersects the surface of the tip of the fixed part and the light-collecting element; Using the radius r3 of the light collecting element,

【0031】[0031]

【数6】 (Equation 6)

【0032】で表されるL3 だけ前記集光素子の焦点よ
りも集光素子から遠くに設置することが望ましい。これ
により、光軸付近に受光領域を制限し、固定部からの赤
外線を受光しない高安定な赤外センサが実現できる。
It is desirable that the light-receiving element is disposed farther from the light-collecting element than the focal point of the light-collecting element by L3 represented by the following formula. Accordingly, a highly stable infrared sensor that limits the light receiving area near the optical axis and does not receive infrared light from the fixed portion can be realized.

【0033】また、上記目的を達成するために、本発明
の第三の赤外センサは、少なくとも、被測定物から放射
される赤外線を集光する集光素子と、前記集光素子で集
光された赤外線を受光する赤外受光素子と、前記集光素
子と前記赤外受光素子を保持する筐体と、被測定物に向
きを固定するための固定部と、前記集光素子の有効領域
を制限するレンズ開口絞りとから構成され、前記赤外受
光素子を前記集光素子の焦点から離して設置することに
より、受光領域を制限する。受光素子によって被測定物
から放射される赤外光を効率よく集光することができる
ので、受光量を大きくできる。また、受光素子を、集光
素子の焦点位置から離して設置することで、不要な領域
から集光素子に入射する光を受光素子以外の位置へ進行
させることができ、受光領域を制限することができる。
In order to achieve the above object, a third infrared sensor according to the present invention comprises a light-collecting element for condensing at least infrared light radiated from an object to be measured, and a light-condensing element. An infrared light receiving element for receiving the infrared light, a housing for holding the light collecting element and the infrared light receiving element, a fixing portion for fixing a direction to the device under test, and an effective area of the light collecting element And a lens aperture stop for limiting the light receiving area, and the light receiving area is limited by installing the infrared light receiving element away from the focal point of the light collecting element. Since the infrared light emitted from the object to be measured can be efficiently collected by the light receiving element, the amount of received light can be increased. In addition, by installing the light receiving element away from the focal point of the light collecting element, light incident on the light collecting element from an unnecessary area can travel to a position other than the light receiving element, thereby limiting the light receiving area. Can be.

【0034】また、上記赤外センサにおいて、前記赤外
受光素子を、前記レンズ開口絞りの縁から光軸に対して
前記レンズ開口絞りの縁と同じ側の前記固定部の内壁に
接するようにひいた直線が前記固定部の先端の面と交叉
する点から、前記レンズ開口絞りの縁を通過して、前記
固定部の先端の面と交叉する点の前記集光素子による像
点へ到達する光路と光軸との交点よりも前記集光素子か
ら遠く、且つ前記固定部の先端の面と交叉する点の前記
集光素子による像点よりも前記集光素子に近い領域に設
置することが望ましい。不要な領域から集光素子に入射
する光を受光素子以外の位置へ進行させることができ、
受光領域を制限することができる。
In the infrared sensor, the infrared light receiving element is so arranged as to be in contact with the inner wall of the fixed portion on the same side as the edge of the lens aperture stop with respect to the optical axis from the edge of the lens aperture stop. An optical path from a point where the straight line intersects the surface of the front end of the fixed portion, passes through the edge of the lens aperture stop, and reaches an image point of the light condensing element at a point where the straight line intersects the surface of the front end of the fixed portion. It is preferable that the light-emitting device be located in a region farther from the light-collecting element than the intersection of the light-collecting element with the optical axis and closer to the light-collecting element than an image point of the light-collecting element at a point that intersects with the front end surface of the fixed portion. . Light incident on the light-collecting element from an unnecessary area can be advanced to a position other than the light-receiving element,
The light receiving area can be limited.

【0035】また、上記の赤外センサにおいて、前記赤
外受光素子を、前記レンズ開口絞りの縁から光軸に対し
て前記レンズ開口絞りの縁と同じ側の前記固定部の内壁
に接するようにひいた直線が前記固定部の先端の面と交
叉する点から、前記レンズ開口絞りの縁を通過して、前
記固定部の先端の面と交叉する点の前記集光素子による
像点へ到達する光路と光軸との交点と、前記固定部の先
端の面と交叉する点の前記集光素子による2つの像点と
で形成される三角形の内側に設置することが望ましい。
前記固定部の先端から光軸に対して前記固定部の先端と
同じ側の前記レンズ開口絞りの縁を通過して前記集光素
子による前記固定部の先端の像点へ到達する光路と光軸
との交点よりも前記集光素子から遠く且つ前記集光素子
による前記固定部の先端の像点よりも前記集光素子に近
い領域に設置しても、光軸から離れた位置に前記受光素
子を設置すると固定部からの赤外線を受光してしまう。
この赤外線を受光しないようにすることができる。
In the infrared sensor, the infrared light receiving element may be in contact with the inner wall of the fixed portion on the same side as the edge of the lens aperture stop with respect to the optical axis from the edge of the lens aperture stop. From the point where the drawn straight line intersects the front end surface of the fixed portion, passes through the edge of the lens aperture stop, and reaches the image point of the light condensing element at the cross point with the front end surface of the fixed portion. It is desirable that the light source is installed inside a triangle formed by an intersection of an optical path and an optical axis and two image points formed by the light-collecting element at a point of intersection with the surface of the tip of the fixed portion.
An optical path and an optical axis that pass through the edge of the lens aperture stop on the same side as the tip of the fixed portion with respect to the optical axis from the tip of the fixed portion and reach the image point at the tip of the fixed portion by the light-collecting element; The light receiving element at a position far from the optical axis even if the light receiving element is located farther from the light condensing element than the intersection with the light condensing element and closer to the light condensing element than the image point of the tip of the fixed part by the light condensing element If it is installed, it will receive infrared rays from the fixed part.
This infrared ray can be prevented from being received.

【0036】また、上記赤外センサにおいて、前記赤外
受光素子を、前記集光素子の焦点距離fと、前記赤外受
光素子の半径rs と、前記レンズ開口絞りの縁から光軸
に対して前記レンズ開口絞りの縁と同じ側の前記固定部
の内壁に接するようにひいた直線が前記固定部先端の面
と交叉する点と光軸との距離rαと、前記レンズ開口絞
りの縁から光軸に対して前記レンズ開口絞りの縁と同じ
側の前記固定部の内壁に接するようにひいた直線が前記
固定部の先端の面と交叉する点と前記レンズ開口絞りと
の距離Lαと、前記レンズ開口絞りと前記集光素子との
距離L2 と、前記レンズ開口絞りの開口半径r2 を用い
て、
In the above-mentioned infrared sensor, the infrared light receiving element may be arranged such that a focal length f of the light condensing element, a radius rs of the infrared light receiving element, and an optical axis from an edge of the lens aperture stop. The distance rα between the optical axis and a point where a straight line drawn so as to be in contact with the inner wall of the fixed part on the same side as the edge of the lens aperture stop, and the light from the edge of the lens aperture stop A distance Lα between a point where a straight line drawn so as to be in contact with an inner wall of the fixed portion on the same side as an edge of the lens aperture stop with respect to an axis and a surface of a front end of the fixed portion and the lens aperture stop; Using the distance L2 between the lens aperture stop and the condenser element and the aperture radius r2 of the lens aperture stop,

【0037】[0037]

【数7】 (Equation 7)

【0038】で表されるL3 だけ前記集光素子の焦点よ
りも集光素子から遠くに設置し、且つ前記レンズ開口絞
りの縁から光軸に対して前記レンズ開口絞りの縁と同じ
側の前記固定部の内壁に接するようにひいた直線が前記
固定部の先端の面と交叉する点と光軸との距離rα、前
記固定部の先端以外の点と光軸との距離rB 、前記集光
素子の焦点距離f、前記集光素子と前記レンズ開口絞り
との距離L2 、前記集光素子の焦点と前記赤外受光素子
の距離L3 に、 rB ≧rα f( f+L3)>L3・L2 の関係が成り立つことが望ましい。これにより、光軸付
近に受光領域を制限し、固定部からの赤外線を受光しな
い高安定な赤外センサが実現できる。
The lens is located farther from the light-collecting element than the focal point of the light-collecting element by L3 represented by the following formula, and is located on the same side as the edge of the lens aperture stop with respect to the optical axis from the edge of the lens aperture stop. The distance rα between the optical axis and a point where a straight line drawn so as to be in contact with the inner wall of the fixed part intersects the surface of the tip of the fixed part, the distance rB between a point other than the tip of the fixed part and the optical axis, the light condensing The relationship of rB ≧ rαf (f + L3)> L3 · L2 to the focal length f of the element, the distance L2 between the condenser element and the lens aperture stop, and the distance L3 between the focal point of the condenser element and the infrared receiving element. It is desirable that the following holds. Accordingly, a highly stable infrared sensor that limits the light receiving area near the optical axis and does not receive infrared light from the fixed portion can be realized.

【0039】また、上記赤外センサにおいて、前記赤外
受光素子を、前記レンズ開口絞りの縁から光軸に対し前
記レンズ開口絞りの縁と同じ側の前記固定部の内壁に接
するようにひいた直線が前記固定部の先端の面と交叉す
る点の前記集光素子による像点よりも前記集光素子から
遠い領域に設置することが望ましい。不要な領域から集
光素子に入射する光を受光素子以外の位置へ進行させる
ことができ、受光領域を制限することができる。
In the above-mentioned infrared sensor, the infrared light receiving element is arranged so as to be in contact with the inner wall of the fixed portion on the same side as the edge of the lens aperture stop with respect to the optical axis from the edge of the lens aperture stop. It is desirable that the light source be installed in a region farther from the light-collecting element than an image point of the light-collecting element at a point where a straight line intersects the surface of the tip of the fixed part. Light incident on the light-collecting element from an unnecessary area can be advanced to a position other than the light-receiving element, and the light-receiving area can be limited.

【0040】また、上記赤外センサにおいて、前記赤外
受光素子を、前記固定部の先端の面と交叉する2点から
それぞれ光軸を挟んで前記固定部の先端の面と交叉する
点と反対側の前記レンズ開口絞りの縁を通過して前記固
定部の先端の面と交叉する2点の前記集光素子による像
点へ到達する2つの光路で挟まれた領域に設置すること
が望ましい。固定部からの赤外線を受光素子以外の点へ
集光することができ、受光領域を光軸付近に制限するこ
とができる。
In the infrared sensor, the infrared light receiving element may be located at two points crossing the front end surface of the fixed portion and opposite to the cross points of the front end surface of the fixed portion across the optical axis. It is preferable that the light source is disposed in a region between two optical paths reaching an image point formed by the light-collecting elements at two points passing through the edge of the lens aperture stop on the side and crossing the front end surface of the fixed portion. Infrared rays from the fixed part can be focused on points other than the light receiving element, and the light receiving area can be limited to the vicinity of the optical axis.

【0041】、前記赤外受光素子の半径rs と、前記レ
ンズ開口絞りの縁から光軸に対して前記レンズ開口絞り
の縁と同じ側の前記固定部の内壁に接するようにひいた
直線が前記固定部の先端の面と交叉する点と光軸との距
離rαと、前記レンズ開口絞りの縁から光軸に対して前
記レンズ開口絞りの縁と同じ側の前記固定部の内壁に接
するようにひいた直線が前記固定部先端の面と交叉する
点と前記レンズ開口絞りとの距離Lαと、前記レンズ開
口絞りと前記集光素子との距離L2 と、前記レンズ開口
絞りの開口半径r2 を用いて、
The radius rs of the infrared light receiving element and a straight line drawn from the edge of the lens aperture stop so as to be in contact with the inner wall of the fixed portion on the same side as the edge of the lens aperture stop with respect to the optical axis. The distance rα between the optical axis and a point intersecting with the surface of the front end of the fixed portion, so that the edge of the lens aperture stop is in contact with the inner wall of the fixed portion on the same side as the edge of the lens aperture stop with respect to the optical axis. The distance Lα between the point where the drawn straight line intersects the surface of the fixed part tip and the lens aperture stop, the distance L2 between the lens aperture stop and the condenser element, and the aperture radius r2 of the lens aperture stop are used. hand,

【0042】[0042]

【数8】 (Equation 8)

【0043】で表されるL3 だけ前記集光素子の焦点よ
りも集光素子から遠くに設置し、且つ前記レンズ開口絞
りの縁から光軸に対して前記レンズ開口絞りの縁と同じ
側の前記固定部の内壁に接するようにひいた直線が前記
固定部の先端の面と交叉する点と光軸との距離rα、前
記固定部の先端以外の点と光軸との距離rB 、前記集光
素子の焦点距離f、前記集光素子と前記レンズ開口絞り
との距離L2 、前記集光素子の焦点と前記赤外受光素子
の距離L3 に、 rB ≧rα f( f+L3)>L3・L2 の関係が成り立つことが望ましい。これにより、光軸付
近に受光領域を制限し、固定部からの赤外線を受光しな
い高安定な赤外センサが実現できる。
The lens is located farther from the light-collecting element than the focal point of the light-collecting element by L3, and is located on the same side as the edge of the lens aperture stop with respect to the optical axis from the edge of the lens aperture stop. The distance rα between the optical axis and a point where a straight line drawn so as to be in contact with the inner wall of the fixed part intersects the surface of the tip of the fixed part, the distance rB between a point other than the tip of the fixed part and the optical axis, The relationship of rB ≧ rαf (f + L3)> L3 · L2 to the focal length f of the element, the distance L2 between the condenser element and the lens aperture stop, and the distance L3 between the focal point of the condenser element and the infrared receiving element. It is desirable that the following holds. Accordingly, a highly stable infrared sensor that limits the light receiving area near the optical axis and does not receive infrared light from the fixed portion can be realized.

【0044】上記赤外センサの集光素子としては、屈折
レンズ、透過型回折レンズ、集光ミラー又は反射型回折
レンズを用いると好適である。
As the light collecting element of the infrared sensor, it is preferable to use a refraction lens, a transmission type diffraction lens, a light collection mirror or a reflection type diffraction lens.

【0045】上記目的を達成するために、本発明の光セ
ンサは、少なくとも、被測定物から放射あるいは反射さ
れる光を集光する集光素子と、前記集光素子で集光され
た光を受光する受光素子と、前記集光素子と前記受光素
子を保持する筐体とから構成され、前記受光素子を前記
集光素子の焦点位置から離して設置することにより、受
光領域を制限する。受光素子によって被測定物から放射
あるいは反射される光を効率よく集光することができる
ので、受光量を大きくできる。また、受光素子を、集光
素子の焦点位置から離して設置することで、不要な領域
から集光素子に入射する光を受光素子以外の位置へ進行
させることができ、受光領域を制限することができる。
In order to achieve the above object, an optical sensor according to the present invention comprises at least a condensing element for condensing light emitted or reflected from an object to be measured, and a light condensing element for condensing the light condensed by the condensing element. The light receiving element includes a light receiving element that receives light, a light-receiving element, and a housing that holds the light-receiving element. The light-receiving area is limited by installing the light-receiving element away from the focal position of the light-collecting element. Since light emitted or reflected from the object to be measured can be efficiently collected by the light receiving element, the amount of received light can be increased. In addition, by installing the light receiving element away from the focal point of the light collecting element, light incident on the light collecting element from an unnecessary area can travel to a position other than the light receiving element, thereby limiting the light receiving area. Can be.

【0046】上記の光センサにおいて、前記受光素子
を、被測定物面における受光領域の境界に位置する点か
ら光軸に対して前記境界に位置する点と同じ側の前記集
光素子の縁を通過して前記集光素子による前記境界に位
置する点の像点へ到達する光路と光軸との交点よりも前
記集光素子から遠く且つ前記集光素子による前記境界に
位置する点の像点よりも前記集光素子に近い領域に設置
することが望ましい。不要な領域からの光を受光素子以
外の点へ集光することができ、受光領域を制限すること
ができる。
In the above-described optical sensor, the light receiving element may be formed by connecting an edge of the light collecting element on a same side as a point located on the boundary with respect to an optical axis from a point located on the boundary of the light receiving region on the surface of the measured object. An image point of a point that is farther from the light-collecting element than an intersection of an optical path and an optical axis that passes through the light-collecting element and reaches the image point of the point located at the boundary, and that is located at the boundary by the light-collecting element It is desirable to install the light source in a region closer to the light-collecting element. Light from an unnecessary area can be focused on a point other than the light receiving element, and the light receiving area can be limited.

【0047】また、上記の光センサにおいて、前記受光
素子を、前記境界に位置する点から光軸に対して前記境
界に位置する点と同じ側の前記集光素子の縁を通過して
前記集光素子による前記境界に位置する点の像点へ到達
する光路と光軸との交点と、前記集光素子による前記境
界に位置する点の2つの像点とで形成される三角形内に
設置することが望ましい。この構成により、受光領域を
光軸付近に制限することができる。
In the above-mentioned optical sensor, the light receiving element is moved from a point located at the boundary to an edge of the light-collecting element on the same side of the optical axis as a point located at the boundary. It is installed in a triangle formed by an intersection of an optical path reaching an image point of a point located at the boundary by an optical element and an optical axis, and two image points of a point located at the boundary by the light-collecting element. It is desirable. With this configuration, the light receiving area can be limited to the vicinity of the optical axis.

【0048】また、上記光センサにおいて、前記受光素
子を、被測定物面における受光領域の境界に位置する点
の前記集光素子による像点よりも前記集光素子から遠い
領域に設置することが望ましい。不要な領域からの光を
受光素子以外の点へ集光することができ、受光領域を制
限することができる。
In the above optical sensor, the light receiving element may be installed in a region farther from the light condensing element than an image point by the light condensing element at a point located on a boundary of the light receiving area on the surface of the object to be measured. desirable. Light from an unnecessary area can be focused on a point other than the light receiving element, and the light receiving area can be limited.

【0049】また、上記光センサにおいて、前記受光素
子を、前記境界に位置する点から光軸を挟んで前記境界
に位置する点と反対側の前記集光素子の縁を通過して前
記集光素子による前記境界に位置する点の像点へ到達す
る2つの光路で挟まれた領域に設置することが望まし
い。この構成により、受光領域を光軸付近に制限するこ
とができる。
In the above-mentioned optical sensor, the light-receiving element passes the light-collecting element through an edge of the light-collecting element opposite to a point located on the boundary with respect to an optical axis from a point located on the boundary. It is desirable that the device be installed in a region between two optical paths reaching an image point of a point located at the boundary by the element. With this configuration, the light receiving area can be limited to the vicinity of the optical axis.

【0050】[0050]

【発明の実施の形態】以下、本発明の実施の形態を各実
施例について、図面を参照しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0051】図1は本発明の第一の実施例における赤外
センサを示すものである。図1において、3は屈折レン
ズ、4は赤外線受光素子、9は筐体、A、A’は受光し
たい領域と受光したくない領域の境界に位置する点、B
は受光したくない領域の点、Fは屈折レンズの焦点、F
A は屈折レンズ3によるAの像点、FA'は屈折レンズ3
によるA’の像点、FB は屈折レンズ3によるBの像
点、K1AはAから光軸に対して同じ側のレンズ開口絞り
2の開口部の縁を通過してFA へ進行する光(マージナ
ル光線)の光路、K2AはAから光軸と平行に進んで焦点
Fを通過してFAに到達する光の光路、K3AはAから屈
折レンズ3の中心を通過してFA に到達する光の光路、
K4AはAから光軸を挟んで反対側のレンズ開口絞り2の
開口部の縁を通過してFA に到達する光(マージナル光
線)の光路、K1A' はA’から光軸に対して同じ側のレ
ンズ開口絞り2の開口部の縁を通過してFA'へ進行する
光(マージナル光線)の光路、K2A' はA’から光軸と
平行に進んで焦点Fを通過してFA'に到達する光の光
路、K3A' はA’から屈折レンズ3の中心を通過してF
A'に到達する光の光路、K4A' はAから光軸を挟んで反
対側のレンズ開口絞り2の開口部の縁を通過してFA'に
到達する光(マージナル光線)の光路、K3BはBから屈
折レンズ3の中心を通過してFB に到達する光の光路、
FX は光路K1Aと光路K1A' の交点である。
FIG. 1 shows an infrared sensor according to a first embodiment of the present invention. In FIG. 1, 3 is a refraction lens, 4 is an infrared light receiving element, 9 is a housing, A and A 'are points located at the boundary between a region to receive light and a region to not receive light, B
Is the point in the area where you do not want to receive light, F is the focal point of the refractive lens, F
A is the image point of A by the refraction lens 3, and FA 'is the refraction lens 3.
A 'is the image point of A', FB is the image point of B by the refracting lens 3, K1A is the light traveling from A to the FA through the edge of the aperture of the lens aperture stop 2 on the same side with respect to the optical axis (marginal). K2A is the optical path of light traveling parallel to the optical axis from A and passing through the focal point F to reach FA, and K3A is the optical path of light passing from A through the center of the refractive lens 3 and reaching FA. ,
K4A is the optical path of the light (marginal ray) that passes through the edge of the opening of the lens aperture stop 2 opposite to the optical axis from A and reaches FA, and K1A 'is the same side as A' from the optical axis with respect to the optical axis. K2A 'is an optical path of light (marginal ray) that passes through the edge of the aperture of the lens aperture stop 2 and travels to FA'. The light travels from A 'in parallel with the optical axis and passes through the focal point F to reach FA'. K3A 'passes through the center of the refraction lens 3 from A' to F3
K4A 'is an optical path of light reaching A', K3B is an optical path of light (marginal ray) passing through the edge of the opening of lens aperture stop 2 on the opposite side of A from the optical axis and reaching FA '. An optical path of light from B passing through the center of the refractive lens 3 and reaching FB;
FX is the intersection of optical path K1A and optical path K1A '.

【0052】測定したい領域から放射される赤外線のみ
を赤外受光素子で受光するような光学系を設計する。
An optical system is designed so that only infrared rays radiated from the region to be measured are received by the infrared light receiving element.

【0053】赤外受光素子4を筐体9に取り付け、屈折
レンズ3を通過しない赤外線を赤外受光素子4で受光し
ないようにする。屈折レンズ3を通った赤外線のみ受光
する構成にした上で以下の設計を行う。
The infrared light receiving element 4 is attached to the housing 9 so that infrared light that does not pass through the refractive lens 3 is not received by the infrared light receiving element 4. The following design is performed after a configuration is adopted in which only infrared light that has passed through the refractive lens 3 is received.

【0054】Aから放射される光は光路K1A、K2A、K
3A、K4Aなどを通ってAの像点FAに到達する。幾何光
学で周知の通り、Aの像点FA は光軸を挟んでAと反対
側に形成される。図1中に示すように、光路K2Aを通る
光は、屈折レンズ3を通過してFで光軸と交叉したのち
光軸から離れながらFA に到達する。同じように、光路
K1Aを通る光は、屈折レンズ3を通過して光軸と交叉し
たのち光軸から離れながらFA に到達する。光路K3Aを
通る光は、屈折レンズ3で光軸と交叉したのち光軸から
離れながらFA に到達する。光路K4Aを通る光は、光軸
と交叉して屈折レンズ3を通過し、屈折レンズ3を通過
してからは光軸と交叉せずにFA に到達する。このよう
に、光路K1Aと光軸が交叉する点FX よりも屈折レンズ
から離れた位置かつFA よりも屈折レンズ3に近い位置
で、Aから放射される光が通過しない領域が存在する。
この領域は、FX とFA とFA'が形成する三角形の内側
となる。この三角形の内側に赤外受光素子4を設置する
ことで、A、A’から放射される光を受光しない赤外セ
ンサが得られる。
The light radiated from A has optical paths K1A, K2A, K
It reaches the image point FA of A through 3A, K4A and the like. As is well known in geometrical optics, the image point FA of A is formed on the opposite side of A with respect to the optical axis. As shown in FIG. 1, the light passing through the optical path K2A passes through the refraction lens 3, crosses the optical axis at F, and then reaches FA while leaving the optical axis. Similarly, light passing through the optical path K1A passes through the refraction lens 3, crosses the optical axis, and then reaches FA while leaving the optical axis. The light passing through the optical path K3A crosses the optical axis by the refraction lens 3, and then reaches FA while leaving the optical axis. The light passing through the optical path K4A crosses the optical axis and passes through the refraction lens 3, and after passing through the refraction lens 3, reaches the FA without crossing the optical axis. As described above, there is a region where the light emitted from A does not pass at a position farther from the refraction lens than the point FX where the optical path K1A intersects the optical axis and closer to the refraction lens 3 than FA.
This region is inside the triangle formed by FX, FA and FA '. By installing the infrared light receiving element 4 inside this triangle, an infrared sensor that does not receive light emitted from A and A ′ can be obtained.

【0055】受光したい領域の外側にある、受光したく
ない領域中のB点は、Aよりも光軸から遠いため、屈折
レンズ3によるBの像点FB がFA より光軸から遠くな
ることは周知の通りである。従って、FX とFA とFA'
が形成する三角形の内側に赤外受光素子を設置すること
によってA、A’から放射される赤外線を受光しないよ
うにすれば、自動的にBからの赤外線も受光しない構成
となる。
Since the point B outside the region where light is to be received and in the region where light reception is not desired is farther from the optical axis than A, the image point FB of B by the refracting lens 3 may be farther from the optical axis than FA. As is well known. Therefore, FX, FA and FA '
By disposing the infrared light receiving element inside the triangle formed by the light receiving element so as not to receive the infrared light radiated from A and A ′, the infrared light from B is not automatically received.

【0056】以上のように、FX とFA とFA'が形成す
る三角形の内側に赤外受光素子4を設置することによっ
て、光軸付近の受光したい領域から放射される赤外線の
みを受光するような赤外センサが得られる。
As described above, by installing the infrared light receiving element 4 inside the triangle formed by FX, FA, and FA ', it is possible to receive only the infrared light radiated from the light receiving area near the optical axis. An infrared sensor is obtained.

【0057】図2は本発明の第二の実施例における赤外
センサを示すものである。図2において、3は屈折レン
ズ、4は赤外線受光素子、9は筐体、A、A’は受光し
たい領域と受光したくない領域の境界に位置する点、B
は受光したくない領域の点、Fは屈折レンズの焦点、F
A は屈折レンズ3によるAの像点、FA'は屈折レンズ3
によるA’の像点、FB は屈折レンズ3によるBの像
点、K1AはAから光軸に対して同じ側のレンズ開口絞り
2の開口部の縁を通過してFA へ進行する光(マージナ
ル光線)の光路、K2AはAから光軸と平行に進んで焦点
Fを通過してFAに到達する光の光路、K3AはAから屈
折レンズ3の中心を通過してFA に到達する光の光路、
K4AはAから光軸を挟んで反対側のレンズ開口絞り2の
開口部の縁を通過してFA に到達する光(マージナル光
線)の光路、K1A' はA’から光軸に対して同じ側のレ
ンズ開口絞り2の開口部の縁を通過してFA'へ進行する
光(マージナル光線)の光路、K2A' はA’から光軸と
平行に進んで焦点Fを通過してFA'に到達する光の光
路、K3A' はA’から屈折レンズ3の中心を通過してF
A'に到達する光の光路、K4A' はAから光軸を挟んで反
対側のレンズ開口絞り2の開口部の縁を通過してFA'に
到達する光(マージナル光線)の光路、K3BはBから屈
折レンズ3の中心を通過してFB に到達する光の光路、
FX は光路K1Aと光路K1A' の交点、FY は光路K4Aと
光路K4A' の交点である。
FIG. 2 shows an infrared sensor according to a second embodiment of the present invention. In FIG. 2, 3 is a refractive lens, 4 is an infrared light receiving element, 9 is a housing, A and A 'are points located at the boundary between a region where light reception is desired and a region where light reception is not desired, B
Is the point in the area where you do not want to receive light, F is the focal point of the refractive lens, F
A is the image point of A by the refraction lens 3, and FA 'is the refraction lens 3.
A 'is the image point of A', FB is the image point of B by the refracting lens 3, K1A is the light traveling from A to the FA through the edge of the aperture of the lens aperture stop 2 on the same side with respect to the optical axis (marginal). K2A is the optical path of light traveling parallel to the optical axis from A and passing through the focal point F to reach FA, and K3A is the optical path of light passing from A through the center of the refractive lens 3 and reaching FA. ,
K4A is the optical path of the light (marginal ray) that passes through the edge of the opening of the lens aperture stop 2 opposite to the optical axis from A and reaches FA, and K1A 'is the same side as A' from the optical axis with respect to the optical axis. K2A 'is an optical path of light (marginal ray) that passes through the edge of the aperture of the lens aperture stop 2 and travels to FA'. The light travels from A 'in parallel with the optical axis and passes through the focal point F to reach FA'. K3A 'passes through the center of the refraction lens 3 from A' to F3
K4A 'is an optical path of light reaching A', K3B is an optical path of light (marginal ray) passing through the edge of the opening of lens aperture stop 2 on the opposite side of A from the optical axis and reaching FA '. An optical path of light from B passing through the center of the refractive lens 3 and reaching FB;
FX is the intersection of the optical paths K1A and K1A ', and FY is the intersection of the optical paths K4A and K4A'.

【0058】測定したい領域から放射される赤外線のみ
を赤外受光素子で受光するような光学系を設計する。
An optical system is designed so that only infrared rays radiated from the area to be measured are received by the infrared light receiving element.

【0059】赤外受光素子4を筐体9に取り付け、屈折
レンズ3を通過しない赤外線を赤外受光素子4で受光し
ないようにする。屈折レンズ3を通った赤外線のみ受光
する構成にした上で以下の設計を行う。
The infrared light receiving element 4 is attached to the housing 9 so that infrared light not passing through the refractive lens 3 is not received by the infrared light receiving element 4. The following design is performed after a configuration is adopted in which only infrared light that has passed through the refractive lens 3 is received.

【0060】Aから放射される光は光路K1A、K2A、K
3A、K4Aなどを通ってAの像点FAに到達する。幾何光
学で周知の通り、Aの像点FA は光軸を挟んでAと反対
側に形成される。図2中に示すように、光路K2Aを通る
光は、屈折レンズ3を通過してFで光軸と交叉してFA
に到達し光軸から離れていく。同じように、光路K1Aを
通る光は、屈折レンズ3を通過して光軸と交叉してFA
に到達し光軸から離れていく。光路K3Aを通る光は、屈
折レンズ3で光軸と交叉してFA に到達し光軸から離れ
ていく。光路K4Aを通る光は、光軸と交叉して屈折レン
ズ3を通過し、屈折レンズ3を通過してからは光軸と交
叉せずにFA に到達し、その後光軸に近づくかあるいは
遠ざかっていく。このように、Aの像点FA よりも屈折
レンズから離れた位置でAから放射される光が通過しな
い領域が存在する。この領域は、FA よりも屈折レンズ
3から遠い部分の光路K4Aと、FA'よりも屈折レンズ3
から遠い部分の光路K4A' で挟まれた領域である。この
領域に赤外センサを設置することで、A、A’から放射
される赤外線を受光しない光学系が実現できる。
The light radiated from A has optical paths K1A, K2A, K
It reaches the image point FA of A through 3A, K4A and the like. As is well known in geometrical optics, the image point FA of A is formed on the opposite side of A with respect to the optical axis. As shown in FIG. 2, the light passing through the optical path K2A passes through the refracting lens 3 and intersects the optical axis at F at FA.
And moves away from the optical axis. Similarly, the light passing through the optical path K1A passes through the refractive lens 3 and intersects the optical axis, and
And moves away from the optical axis. The light passing through the optical path K3A crosses the optical axis by the refraction lens 3, reaches FA, and moves away from the optical axis. The light passing through the optical path K4A crosses the optical axis and passes through the refracting lens 3, and after passing through the refracting lens 3, reaches the FA without crossing the optical axis, and thereafter approaches or moves away from the optical axis. Go. As described above, there is a region where the light emitted from A does not pass at a position farther from the refraction lens than the image point FA of A. This area includes the optical path K4A at a portion farther from the refraction lens 3 than FA and the refraction lens 3
This is a region interposed between the optical paths K4A 'at a portion far from the optical path. By installing an infrared sensor in this region, an optical system that does not receive infrared rays radiated from A and A ′ can be realized.

【0061】受光したい領域の外側にある、受光したく
ない領域中のBはAよりも光軸から遠いため、屈折レン
ズ3によるBの像点FB がFA より光軸から遠くなるこ
とは周知の通りである。従って、FA よりも屈折レンズ
3から遠い部分の光路K4Aと、FA'よりも屈折レンズ3
から遠い部分の光路K4A' で挟まれた領域内に赤外受光
素子を設置することによってA、A’から放射される赤
外線を受光しないようにすれば、自動的にBから放射さ
れる赤外線も受光しない構成となる。
It is well known that B in the region outside the region where light is to be received and not desired to be received is farther from the optical axis than A, so that the image point FB of B by the refracting lens 3 is farther from the optical axis than FA. It is on the street. Therefore, the optical path K4A at a portion farther from the refracting lens 3 than FA and the refracting lens 3 than FA '.
If the infrared ray radiated from A and A 'is prevented from being received by installing the infrared ray detector in the area between the optical paths K4A' far from the The configuration does not receive light.

【0062】以上のように、FA よりも屈折レンズ3か
ら遠い部分の光路K4Aと、FA'よりも屈折レンズ3から
遠い部分の光路K4A' で挟まれた領域内に赤外受光素子
4を設置することによって、光軸付近の受光したい領域
から放射される赤外線のみを受光するような赤外センサ
が得られる。
As described above, the infrared light receiving element 4 is installed in a region between the optical path K4A farther from the refractive lens 3 than FA and the optical path K4A 'farther from the refractive lens 3 than FA'. By doing so, it is possible to obtain an infrared sensor that receives only infrared rays radiated from a region near the optical axis that is desired to be received.

【0063】図3は本発明の第三の実施例における赤外
センサを示すものである。図3において、3は屈折レン
ズ、4は赤外線受光素子、9は筐体、1は穴の内部など
凹部にある受光したい領域に赤外センサを固定して向け
るための固定部、A、A’は受光したい領域と受光した
くない領域の境界に位置する点、Bは受光したくない領
域の点、Fは屈折レンズの焦点、FA は屈折レンズ3に
よるAの像点、FA'は屈折レンズ3によるA’の像点、
FB は屈折レンズ3によるBの像点、K1AはAから光軸
に対して同じ側のレンズ開口絞り2の開口部の縁を通過
してFA へ進行する光(マージナル光線)の光路、K2A
はAから光軸と平行に進んで焦点Fを通過してFA に到
達する光の光路、K3AはAから屈折レンズ3の中心を通
過してFA に到達する光の光路、K4AはAから光軸を挟
んで反対側のレンズ開口絞り2の開口部の縁を通過して
FA に到達する光(マージナル光線)の光路、K1A' は
A’から光軸に対して同じ側のレンズ開口絞り2の開口
部の縁を通過してFA'へ進行する光(マージナル光線)
の光路、K2A' はA’から光軸と平行に進んで焦点Fを
通過してFA'に到達する光の光路、K3A' はA’から屈
折レンズ3の中心を通過してFA'に到達する光の光路、
K4A' はAから光軸を挟んで反対側のレンズ開口絞り2
の開口部の縁を通過してFA'に到達する光(マージナル
光線)の光路、K3BはBから屈折レンズ3の中心を通過
してFB に到達する光の光路、FX は光路K1Aと光路K
1A' の交点である。
FIG. 3 shows an infrared sensor according to a third embodiment of the present invention. In FIG. 3, reference numeral 3 denotes a refraction lens, 4 denotes an infrared light receiving element, 9 denotes a housing, 1 denotes a fixing portion for fixing and directing the infrared sensor to a light receiving region in a concave portion such as the inside of a hole, and A and A '. Is a point located at a boundary between a region to receive light and a region not to receive light, B is a point in a region not to receive light, F is a focal point of the refractive lens, FA is an image point of A by the refractive lens 3, and FA 'is a refractive lens. 3, the image point of A ′,
FB is an image point of B by the refraction lens 3, K1A is an optical path of light (marginal ray) which travels to A through the edge of the opening of the lens aperture stop 2 on the same side with respect to the optical axis, and K2A.
Is the optical path of light traveling parallel to the optical axis from A and passing through the focal point F to reach FA; K3A is the optical path of light passing from A through the center of the refractive lens 3 to reach FA; K1A 'is the optical path of light (marginal ray) passing through the edge of the aperture of the lens aperture stop 2 on the opposite side with respect to the axis and reaching FA, and K1A' is the lens aperture stop 2 on the same side from A 'with respect to the optical axis. Light that travels to FA 'through the edge of the opening (marginal ray)
K2A 'is an optical path of light traveling from A' in parallel with the optical axis and passing through the focal point F to reach FA ', and K3A' reaches FA 'from A' through the center of the refractive lens 3 Light path of light
K4A 'is a lens aperture stop 2 on the opposite side of A from the optical axis.
K3B is an optical path of light (marginal ray) that passes through the edge of the opening and reaches FA ', K3B is an optical path of light passing from B through the center of the refractive lens 3 to FB, and FX is an optical path K1A and an optical path K.
It is the intersection of 1A '.

【0064】光軸付近にある測定したい領域から放射さ
れる赤外線のみを赤外受光素子で受光するような光学系
を設計する。
An optical system is designed such that only infrared rays radiated from a region to be measured near the optical axis are received by the infrared light receiving element.

【0065】赤外受光素子4を筐体9に取り付け、屈折
レンズ3を通過する赤外線のみを赤外受光素子4で受光
しするようにする。屈折レンズ3を通った赤外線のみ受
光する構成にした上で以下の設計を行う。
The infrared light receiving element 4 is attached to the housing 9 so that only the infrared light passing through the refractive lens 3 is received by the infrared light receiving element 4. The following design is performed after a configuration is adopted in which only infrared light that has passed through the refractive lens 3 is received.

【0066】Aから放射される光は光路K1A、K2A、K
3A、K4Aなどを通ってAの像点FAに到達する。幾何光
学で周知の通り、Aの像点FA は光軸を挟んでAと反対
側に形成される。図3中に示すように、光路K2Aを通る
光は、屈折レンズ3を通過してFで光軸と交叉したのち
光軸から離れながらFA に到達する。同じように、光路
K1Aを通る光は、屈折レンズ3を通過して光軸と交叉し
たのち光軸から離れながらFA に到達する。光路K3Aを
通る光は、屈折レンズ3で光軸と交叉したのち光軸から
離れながらFA に到達する。光路K4Aを通る光は、光軸
と交叉して屈折レンズ3を通過し、屈折レンズ3を通過
してからは光軸と交叉せずにFA に到達する。このよう
に、光路K1Aと光軸が交叉する点FX よりも屈折レンズ
から離れた位置かつFA よりも屈折レンズ3に近い位置
で、Aから放射される光が通過しない領域が存在する。
この領域は、FX とFA とFA'が形成する三角形の内側
となる。この三角形の内側に赤外受光素子4を設置する
ことで、A、A’から放射される光を受光しない赤外セ
ンサが得られる。
The light radiated from A is divided into optical paths K1A, K2A, K
It reaches the image point FA of A through 3A, K4A and the like. As is well known in geometrical optics, the image point FA of A is formed on the opposite side of A with respect to the optical axis. As shown in FIG. 3, light passing through the optical path K2A passes through the refracting lens 3, crosses the optical axis at F, and then reaches FA while leaving the optical axis. Similarly, light passing through the optical path K1A passes through the refraction lens 3, crosses the optical axis, and then reaches FA while leaving the optical axis. The light passing through the optical path K3A crosses the optical axis by the refraction lens 3, and then reaches FA while leaving the optical axis. The light passing through the optical path K4A crosses the optical axis and passes through the refraction lens 3, and after passing through the refraction lens 3, reaches the FA without crossing the optical axis. As described above, there is a region where the light emitted from A does not pass at a position farther from the refraction lens than the point FX where the optical path K1A intersects the optical axis and closer to the refraction lens 3 than FA.
This region is inside the triangle formed by FX, FA and FA '. By installing the infrared light receiving element 4 inside this triangle, an infrared sensor that does not receive light emitted from A and A ′ can be obtained.

【0067】固定部1を、光路K1A、光路K1A' よりも
光軸から遠くなるように設置する。
The fixed section 1 is installed so as to be farther from the optical axis than the optical paths K1A and K1A '.

【0068】固定部1から放射される赤外線は、受光し
たい領域と同じ面の受光したくない領域から放射される
光と置き換えられる。受光したい領域の外側にある受光
したくない領域中のB点はAよりも光軸から遠いため、
屈折レンズ3によるBの像点FB がFA より光軸から遠
くなることは周知の通りである。従って、FX とFA と
FA'が形成する三角形の内側に赤外受光素子を設置する
ことによってA、A’から放射される赤外線を受光しな
いようにすれば、自動的にBからの赤外線も受光しない
構成となる。つまり、自動的に固定部1から放射される
赤外線を受光しない構成となる。
The infrared rays radiated from the fixed portion 1 are replaced with the light radiated from the area on the same surface as the area on which light is not desired to be received. Since point B in the area not to receive light outside the area to receive light is farther from the optical axis than A,
It is well known that the image point FB of B by the refracting lens 3 is farther from the optical axis than FA. Therefore, if an infrared light receiving element is installed inside the triangle formed by FX, FA and FA 'so as not to receive the infrared light radiated from A and A', the infrared light from B is automatically received. No configuration. That is, the configuration is such that infrared rays emitted from the fixing unit 1 are not automatically received.

【0069】以上のように、FX とFA とFA'が形成す
る三角形の内側に赤外受光素子4を設置し、光路K1A、
K1A'よりも光軸から遠くに固定部1を設けることによっ
て、穴の内部など凹部にある受光したい領域に赤外セン
サを固定して向けることができて、固定部から放射され
る赤外線を受光せずに光軸付近の受光したい領域から放
射される赤外線のみを受光するような赤外センサが得ら
れる。
As described above, the infrared light receiving element 4 is installed inside the triangle formed by FX, FA, and FA ', and the optical path K1A,
By providing the fixing portion 1 farther from the optical axis than K1A ', the infrared sensor can be fixed and directed to an area where light reception is desired in a concave portion such as the inside of a hole, and infrared rays emitted from the fixing portion are received. An infrared sensor that receives only infrared rays radiated from an area to be received near the optical axis without receiving the light is obtained.

【0070】なお、筐体9と固定部1は一体であっても
構わない。
The housing 9 and the fixing part 1 may be integrated.

【0071】図4は本発明の第四の実施例における赤外
センサを示すものである。図4において、3は屈折レン
ズ、4は赤外線受光素子、9は筐体、1は穴の内部など
凹部にある受光したい領域に赤外センサを固定して向け
るための固定部、A、A’は受光したい領域と受光した
くない領域の境界に位置する点、Bは受光したくない領
域の点、Fは屈折レンズの焦点、FA は屈折レンズ3に
よるAの像点、FA'は屈折レンズ3によるA’の像点、
FB は屈折レンズ3によるBの像点、K1AはAから光軸
に対して同じ側のレンズ開口絞り2の開口部の縁を通過
してFA へ進行する光(マージナル光線)の光路、K2A
はAから光軸と平行に進んで焦点Fを通過してFA に到
達する光の光路、K3AはAから屈折レンズ3の中心を通
過してFA に到達する光の光路、K4AはAから光軸を挟
んで反対側のレンズ開口絞り2の開口部の縁を通過して
FA に到達する光(マージナル光線)の光路、K1A' は
A’から光軸に対して同じ側のレンズ開口絞り2の開口
部の縁を通過してFA'へ進行する光(マージナル光線)
の光路、K2A' はA’から光軸と平行に進んで焦点Fを
通過してFA'に到達する光の光路、K3A' はA’から屈
折レンズ3の中心を通過してFA'に到達する光の光路、
K4A' はAから光軸を挟んで反対側のレンズ開口絞り2
の開口部の縁を通過してFA'に到達する光(マージナル
光線)の光路、K3BはBから屈折レンズ3の中心を通過
してFB に到達する光の光路、FX は光路K1Aと光路K
1A' の交点である。
FIG. 4 shows an infrared sensor according to a fourth embodiment of the present invention. In FIG. 4, reference numeral 3 denotes a refraction lens, 4 denotes an infrared light receiving element, 9 denotes a housing, 1 denotes a fixing portion for fixing and pointing the infrared sensor to a region to receive light in a concave portion such as the inside of a hole, and A and A ′. Is a point located at a boundary between a region to receive light and a region not to receive light, B is a point in a region not to receive light, F is a focal point of the refractive lens, FA is an image point of A by the refractive lens 3, and FA 'is a refractive lens. 3, the image point of A ′,
FB is an image point of B by the refraction lens 3, K1A is an optical path of light (marginal ray) which travels to A through the edge of the opening of the lens aperture stop 2 on the same side with respect to the optical axis, and K2A.
Is the optical path of light traveling parallel to the optical axis from A and passing through the focal point F to reach FA; K3A is the optical path of light passing from A through the center of the refractive lens 3 to reach FA; K1A 'is the optical path of light (marginal ray) passing through the edge of the aperture of the lens aperture stop 2 on the opposite side with respect to the axis and reaching FA, and K1A' is the lens aperture stop 2 on the same side from A 'with respect to the optical axis. Light that travels to FA 'through the edge of the opening (marginal ray)
K2A 'is an optical path of light traveling from A' in parallel with the optical axis and passing through the focal point F to reach FA ', and K3A' reaches FA 'from A' through the center of the refractive lens 3 Light path of light
K4A 'is a lens aperture stop 2 on the opposite side of A from the optical axis.
K3B is an optical path of light (marginal ray) that passes through the edge of the opening and reaches FA ', K3B is an optical path of light passing from B through the center of the refractive lens 3 to FB, and FX is an optical path K1A and an optical path K.
It is the intersection of 1A '.

【0072】光軸付近にある測定したい領域から放射さ
れる赤外線のみを赤外受光素子で受光するような光学系
を設計する。
An optical system is designed such that only infrared rays radiated from a region to be measured near the optical axis are received by the infrared light receiving element.

【0073】赤外受光素子4を、屈折レンズ3を通過す
る赤外線のみを赤外受光素子4で受光するように筐体9
に取り付ける。屈折レンズ3を通った赤外線のみ受光す
る構成にした上で以下の設計を行う。
The infrared light receiving element 4 is arranged such that only the infrared light passing through the refractive lens 3 is received by the infrared light receiving element 4.
Attach to The following design is performed after a configuration is adopted in which only infrared light that has passed through the refractive lens 3 is received.

【0074】Aから放射される光は光路K1A、K2A、K
3A、K4Aなどを通ってAの像点FAに到達する。幾何光
学で周知の通り、Aの像点FA は光軸を挟んでAと反対
側に形成される。図4中に示すように、光路K2Aを通る
光は、屈折レンズ3を通過してFで光軸と交叉してFA
に到達し光軸から離れていく。同じように、光路K1Aを
通る光は、屈折レンズ3を通過して光軸と交叉してFA
に到達し光軸から離れていく。光路K3Aを通る光は、屈
折レンズ3で光軸と交叉してFA に到達し光軸から離れ
ていく。光路K4Aを通る光は、光軸と交叉して屈折レン
ズ3を通過し、屈折レンズ3を通過してからは光軸と交
叉せずにFA に到達し、その後光軸に近づくかあるいは
遠ざかっていく。このように、Aの像点FA よりも屈折
レンズから離れた位置でAから放射される光が通過しな
い領域が存在する。この領域は、FA よりも屈折レンズ
3から遠い部分の光路K4Aと、FA'よりも屈折レンズ3
から遠い部分の光路K4A' で挟まれた領域である。この
領域に赤外センサを設置することで、A、A’から放射
される赤外線を受光しない光学系が実現できる。
The light radiated from A has optical paths K1A, K2A, K
It reaches the image point FA of A through 3A, K4A and the like. As is well known in geometrical optics, the image point FA of A is formed on the opposite side of A with respect to the optical axis. As shown in FIG. 4, light passing through the optical path K2A passes through the refracting lens 3 and intersects the optical axis at F at FA.
And moves away from the optical axis. Similarly, the light passing through the optical path K1A passes through the refractive lens 3 and intersects the optical axis, and
And moves away from the optical axis. The light passing through the optical path K3A crosses the optical axis by the refraction lens 3, reaches FA, and moves away from the optical axis. The light passing through the optical path K4A crosses the optical axis and passes through the refracting lens 3, and after passing through the refracting lens 3, reaches the FA without crossing the optical axis, and thereafter approaches or moves away from the optical axis. Go. As described above, there is a region where the light emitted from A does not pass at a position farther from the refraction lens than the image point FA of A. This area includes the optical path K4A at a portion farther from the refraction lens 3 than FA and the refraction lens 3
This is a region interposed between the optical paths K4A 'at a portion far from the optical path. By installing an infrared sensor in this region, an optical system that does not receive infrared rays radiated from A and A ′ can be realized.

【0075】固定部1を、光路K1A、光路K1A' よりも
光軸から遠くなるように設置する。
The fixed part 1 is installed so as to be farther from the optical axis than the optical paths K1A and K1A '.

【0076】固定部1から放射される赤外線は、受光し
たくない領域から放射される光と置き換えられる。受光
したい領域の外側にある受光したくない領域中のB点は
Aよりも光軸から遠いため、屈折レンズ3によるBの像
点FB がFA より光軸から遠くなることは幾何光学で周
知の通りである。従って、FA よりも屈折レンズ3から
遠い部分の光路K4Aと、FA'よりも屈折レンズ3から遠
い部分の光路K4A' で挟まれた領域内に赤外受光素子を
設置することによってA、A’から放射される赤外線を
受光しないようにすれば、自動的にBから放射される赤
外線も受光しない構成となる。つまり、自動的に固定部
1から放射される赤外線を受光しない構成となる。
The infrared rays radiated from the fixed part 1 are replaced with the light radiated from the area where it is not desired to receive light. It is well known in geometrical optics that point B in the area outside the area where light is not desired to be received is farther from the optical axis than A, so that image point FB of B by refracting lens 3 is farther from the optical axis than FA. It is on the street. Therefore, by installing the infrared light receiving elements in a region between the optical path K4A farther from the refracting lens 3 than FA and the optical path K4A 'farther from the refracting lens 3 than FA', A and A ' By not receiving the infrared rays radiated from B, the configuration is such that the infrared rays radiated from B are not automatically received. That is, the configuration is such that infrared rays emitted from the fixing unit 1 are not automatically received.

【0077】以上のように、FA よりも屈折レンズ3か
ら遠い部分の光路K4Aと、FA'よりも屈折レンズ3から
遠い部分の光路K4A' で挟まれた領域内に赤外受光素子
4を設置し、固定部1をAと屈折レンズ3の間で光路K
1A、K1A'よりも光軸から遠くに設けることによって、穴
の内部など凹部にある受光したい領域に赤外センサを安
定した状態で向けることができ、固定部から放射される
赤外線を受光せずに光軸付近の受光したい領域から放射
される赤外線のみを受光するような赤外センサが得られ
る。
As described above, the infrared light receiving element 4 is installed in a region sandwiched between the optical path K4A farther from the refractive lens 3 than FA and the optical path K4A 'farther from the refractive lens 3 than FA'. Then, the fixed portion 1 is moved between the A and the refractive lens 3 by an optical path K.
By providing the infrared sensor farther from the optical axis than 1A and K1A ', the infrared sensor can be stably directed to the area where light is to be received, such as the inside of a hole, in a concave portion, without receiving infrared light radiated from the fixed part. Thus, an infrared sensor that receives only infrared rays radiated from a region desired to be received near the optical axis can be obtained.

【0078】なお、筐体9と固定部1は一体であっても
構わない。
Note that the housing 9 and the fixed portion 1 may be integrated.

【0079】図5は本発明の第五の実施例における赤外
センサを示すものである。図5において、3は屈折レン
ズ、4は赤外線受光素子、9は筐体、1は穴の内部など
凹部にある受光したい領域に赤外センサを固定して向け
るための固定部、α、α’は屈折レンズ3の縁からこの
縁と光軸に対して同じ側の固定部1内面へ接する直線が
固定部先端面と交わる点、Fは屈折レンズ3の焦点、F
α、Fα’はそれぞれ屈折レンズ3によるα、α’の像
点、K1 αはαから光軸に対して同じ側の屈折レンズ3
の縁を通過してFαへ進行する光(マージナル光線)の
光路、K2 αはαから光軸と平行に進んで焦点Fを通過
してFαに到達する光の光路、K3 αはαから屈折レン
ズ3の中心を通過してFαに到達する光の光路、K4 α
はαから光軸を挟んで反対側の屈折レンズ3の縁を通過
してFαに到達する光(マージナル光線)の光路、K1
α' はα’から光軸に対して同じ側の屈折レンズ3の縁
を通過してFα' へ進行する光(マージナル光線)の光
路、K2 α' はα’から光軸と平行に進んで焦点Fを通
過してFα' に到達する光の光路、K3 α' はα’から
屈折レンズ3の中心を通過してFα' に到達する光の光
路、K4 α' はα’から光軸を挟んで反対側の屈折レン
ズ3の縁を通過してFα' に到達する光(マージナル光
線)の光路、FX は光路K1 αと光軸との交点である。
FIG. 5 shows an infrared sensor according to a fifth embodiment of the present invention. In FIG. 5, reference numeral 3 denotes a refraction lens, 4 denotes an infrared light receiving element, 9 denotes a housing, 1 denotes a fixing portion for fixing and directing the infrared sensor to a light receiving region such as the inside of a hole in a concave portion, and α and α ′. Is a point where a straight line contacting the edge of the refractive lens 3 and the inner surface of the fixed part 1 on the same side with respect to the optical axis intersects the front end face of the fixed part, F is the focal point of the refractive lens 3, F
α and Fα ′ are image points of α and α ′ by the refraction lens 3, respectively, and K1 α is the refraction lens 3 on the same side of the optical axis from α.
K2α is the optical path of the light that travels in parallel to the optical axis from α and passes through the focal point F to reach Fα, and K3α is the refraction from α. K4α, the optical path of the light passing through the center of the lens 3 and reaching Fα
K1 is an optical path of light (marginal ray) passing through the edge of the refraction lens 3 on the opposite side of the optical axis and reaching Fα from α.
α ′ is an optical path of light (marginal ray) that travels from α ′ to Fα ′ through the edge of the refraction lens 3 on the same side with respect to the optical axis, and K 2 α ′ travels from α ′ in parallel with the optical axis. K3α 'is the optical path of the light that reaches Fα' after passing through the focal point F, K3α 'is the optical path of the light that reaches Fα' through the center of the refractive lens 3 from α ', and K4α' is the optical axis from α '. FX is the optical path of light (marginal ray) passing through the edge of the refracting lens 3 on the opposite side and reaching Fα ', and FX is the intersection of the optical path K1α with the optical axis.

【0080】穴の内壁など凹部から放射される赤外光の
みを受光するような光学系を設計する。
An optical system designed to receive only infrared light radiated from a concave portion such as an inner wall of a hole is designed.

【0081】赤外受光素子4を筐体9に取り付け、屈折
レンズ3を通過する赤外線のみを赤外受光素子4で受光
するようにする。屈折レンズ3を通った赤外線のみ受光
する構成にした上で以下の設計を行う。
The infrared light receiving element 4 is attached to the housing 9 so that only the infrared light passing through the refractive lens 3 is received by the infrared light receiving element 4. The following design is performed after a configuration is adopted in which only infrared light that has passed through the refractive lens 3 is received.

【0082】被測定物からの赤外光のみを受光するため
には、固定部1から放射される赤外光を受光しないよう
にすればよい。そのため、受光したい領域と受光したく
ない領域の境界に位置する点を仮想し、この点から、光
軸に対してこの仮想した境界に位置する点と同じ側の屈
折レンズ3の縁を通過する光(マージナル光線)の光路
よりも、光軸から遠くに位置するように固定部1を設置
すればよい。そこで、上記仮想の境界に位置する点を、
屈折レンズ3の縁からこの縁と光軸に対して同じ側の固
定部1内面へ接する直線が固定部先端面と交わる点α、
α’として、FαとFα’とFX で形成される三角形の
内側に赤外受光素子4を設置する。これにより、固定部
1をαと屈折レンズ3の間で光路K1 α、K1 α' より
も光軸から遠くに位置させることになるため、固定部か
らの光を受光しない光学系が得られる。
In order to receive only the infrared light from the object to be measured, the infrared light radiated from the fixed portion 1 may be prevented from being received. Therefore, a point located at the boundary between the region where light reception is desired and the region where light reception is not desired is imagined, and from this point, the light passes through the edge of the refractive lens 3 on the same side as the point located at the virtual boundary with respect to the optical axis. What is necessary is just to install the fixing | fixed part 1 so that it may be located far from an optical axis rather than the optical path of light (marginal ray). Therefore, the point located on the virtual boundary is
A point α at which a straight line contacting from the edge of the refracting lens 3 to the inner surface of the fixed portion 1 on the same side with respect to the edge and the optical axis intersects the fixed portion tip surface;
As α ′, the infrared light receiving element 4 is installed inside a triangle formed by Fα, Fα ′ and FX. As a result, the fixed unit 1 is located farther from the optical axis than the optical paths K1α and K1α 'between α and the refracting lens 3, so that an optical system that does not receive light from the fixed unit is obtained.

【0083】上記について詳細を以下に述べる。αから
放射される光は光路K1 α、K2 α、K3 α、K4 αな
どを通ってαの像点Fαに到達する。幾何光学で周知の
通り、αの像点Fαは光軸を挟んでαと反対側に形成さ
れる。図5中に示すように、光路K2 αを通る光は、屈
折レンズ3を通過してFで光軸と交叉したのち光軸から
離れながらFαに到達する。同じように、光路K1 αを
通る光は、屈折レンズ3を通過して光軸と交叉したのち
光軸から離れながらFαに到達する。光路K3αを通る
光は、屈折レンズ3で光軸と交叉したのち光軸から離れ
ながらFαに到達する。光路K4 αを通る光は、光軸と
交叉して屈折レンズ3を通過し、屈折レンズ3を通過し
てからは光軸と交叉せずにFαに到達する。このよう
に、光路K1 αと光軸が交叉する点FX よりも屈折レン
ズから離れた位置かつFαよりも屈折レンズ3に近い位
置で、αから放射される光が通過しない領域が存在す
る。同じように、α’についても、光路K1 α' と光軸
が交叉する点よりも屈折レンズから離れた位置かつF
α' よりも屈折レンズ3に近い位置で、α’から放射さ
れる光が通過しない領域が存在する。この、Fα、F
α' 、FX で形成される三角形の内側よりに赤外受光素
子4を設置することで、α、α' から放射される光を受
光しない赤外センサが得られる。αと屈折レンズ3の間
の光路K1 αより光軸から遠い部分からの光は、αと同
じ面内で光軸からの距離がαより大きい点からの光と置
き換えられる。この点の屈折レンズ3による交点はFα
よりも光軸から遠くなることは幾何光学で周知の通りで
ある。そのため、αからの光を受光しないようにすれ
ば、αよりも光軸から遠い点からの光を受光せず、従っ
て固定部1からの光を受光しない。同様に、α’と屈折
レンズ3の間の光路K1 α' より光軸から遠い部分から
の光は、α' と同じ面内で光軸からの距離がα’より大
きい点からの光と置き換えられる。この点の屈折レンズ
3による交点はFα’よりも光軸から遠くなることは幾
何光学で周知の通りである。そのため、α’からの光を
受光しないようにすれば、α’よりも光軸から遠い点か
らの光を受光せず、従って固定部1からの光を受光しな
い。このように、FαとFα' とFX で形成される三角
形の内側に赤外受光素子4を設置することでα、α’か
ら放射される赤外線を受光しないようにすれば、自動的
に固定部1から放射される赤外線も受光しない構成とな
る。
The above is described in detail below. The light emitted from α reaches the image point Fα of α through the optical paths K1α, K2α, K3α, K4α, and the like. As is well known in geometrical optics, the image point Fα of α is formed on the opposite side of α with respect to the optical axis. As shown in FIG. 5, light passing through the optical path K2.alpha. Passes through the refracting lens 3, crosses the optical axis at F, and reaches F.alpha. Similarly, the light passing through the optical path K1α passes through the refractive lens 3, crosses the optical axis, and reaches Fα while leaving the optical axis. The light passing through the optical path K3α crosses the optical axis by the refraction lens 3 and then reaches Fα while leaving the optical axis. Light passing through the optical path K4α crosses the optical axis and passes through the refraction lens 3, and after passing through the refraction lens 3, reaches Fα without crossing the optical axis. As described above, there is an area where light emitted from α does not pass at a position farther from the refraction lens than the point FX where the optical path K1α intersects the optical axis and closer to the refraction lens 3 than Fα. Similarly, α ′ is located at a position farther from the refraction lens than the point where the optical path intersects with the optical path K1α ′ and F
At a position closer to the refractive lens 3 than α ′, there is a region through which light emitted from α ′ does not pass. This Fα, F
By installing the infrared light receiving element 4 inside the triangle formed by α 'and FX, an infrared sensor that does not receive light emitted from α and α' can be obtained. Light from a portion farther from the optical axis than the optical path K1 α between α and the refractive lens 3 is replaced with light from a point whose distance from the optical axis is larger than α in the same plane as α. The intersection of this point with the refractive lens 3 is Fα
It is well known in geometrical optics that it is farther from the optical axis than it is. Therefore, if light from α is not received, light from a point farther from the optical axis than α will not be received, and therefore no light from the fixed portion 1 will be received. Similarly, light from a portion farther from the optical axis than the optical path K1 α 'between α' and the refractive lens 3 is replaced with light from a point whose distance from the optical axis is larger than α 'in the same plane as α'. Can be It is well known in geometrical optics that the intersection of this point with the refraction lens 3 is farther from the optical axis than Fα ′. Therefore, if light from α ′ is not received, light from a point farther from the optical axis than α ′ will not be received, and therefore no light from the fixed portion 1 will be received. As described above, by disposing the infrared light receiving element 4 inside the triangle formed by Fα, Fα ′ and FX so as not to receive the infrared rays radiated from α and α ′, the fixing part is automatically set. The configuration is such that infrared rays radiated from 1 are not received.

【0084】以下、αからの光を受光しないような赤外
受光素子4の位置を求める。
Hereinafter, the position of the infrared light receiving element 4 which does not receive the light from α will be obtained.

【0085】赤外受光素子4はFA よりも屈折レンズ3
に近い。この時、(1)式、(2)式が成り立つ。
The infrared light receiving element 4 is a refracting lens 3 more than FA.
Close to. At this time, equations (1) and (2) hold.

【0086】Lα≧f+L3 (1) ∴L3≦Lα−f (2) 図5に示すように、受光面は光路K1 αと光軸が交わる
点とFαとの間であるので、αからFαまでの各光路の
うち受光面で赤外受光素子4に最も近づくものはK1 α
である。したがって、αからの光を赤外受光素子4で受
光しないためには、(3)式を満たす必要がある。
Lα ≧ f + L3 (1) ∴L3 ≦ Lα−f (2) As shown in FIG. 5, the light receiving surface is located between the point where the optical axis intersects the optical path K1α with the optical axis and Fα. Of the light paths closest to the infrared light receiving element 4 on the light receiving surface is K1α.
It is. Therefore, in order for the light from α to not be received by the infrared light receiving element 4, it is necessary to satisfy the expression (3).

【0087】rαs1>rs (3) rαSここで、幾何光学で周知の通りr3 、rαF 、r
αS1、L3 、fは幾何関係として(4)式、(5)式を
満たす。
Rαs1> rs (3) rαS where r3, rαF, r
αS1, L3, and f satisfy Equations (4) and (5) as geometric relationships.

【0088】[0088]

【数9】 (Equation 9)

【0089】(5)式を(3)式へ代入することで
(6)式が得られる。
By substituting equation (5) into equation (3), equation (6) is obtained.

【0090】[0090]

【数10】 (Equation 10)

【0091】(2)(6)式から、αから放射される光
を赤外受光素子4で受光しないための条件は(7)式と
なる。
From the expressions (2) and (6), the condition for not receiving the light radiated from α by the infrared light receiving element 4 is the expression (7).

【0092】[0092]

【数11】 [Equation 11]

【0093】さらに、幾何光学で周知の通り、rα、L
α、L2 、rαF 、LαF は幾何関係として(8)式、
(9)式を満たす。
Further, as is well known in geometrical optics, rα, L
α, L2, rαF, and LαF are expressed by the following equation (8) as a geometric relationship.
Equation (9) is satisfied.

【0094】[0094]

【数12】 (Equation 12)

【0095】(9)式を(7)式へ代入することによ
り、αから放射される光を赤外受光素子4で受しないた
めの条件は(10)式となる。
By substituting the expression (9) into the expression (7), the condition for preventing the light radiated from α from being received by the infrared light receiving element 4 becomes the expression (10).

【0096】[0096]

【数13】 (Equation 13)

【0097】また、ガウスの公式から(11)式、(1
2)式が成り立つ。
Also, from Gauss's formula, equation (11), (1
2) Formula holds.

【0098】[0098]

【数14】 [Equation 14]

【0099】(12)式を(11)式に代入することに
より、αから放射される光を赤外受光素子4で受光しな
いための条件は(13)式となる。
By substituting the expression (12) into the expression (11), the condition for not receiving the light radiated from α by the infrared light receiving element 4 becomes the expression (13).

【0100】[0100]

【数15】 (Equation 15)

【0101】以上のように、固定部1先端のαから放射
される光を赤外受光素子4で受光しないためには、
(7)式、或いは(10)式、或いは(13)式を満た
すよう光学系を設計する必要がある。(7)式、(1
0)式、(13)式で与えられるL3 だけ、受光素子4
を屈折レンズ3の焦点からずらして設置することで、固
定部1から放射される赤外線を赤外受光素子4で受光せ
ずに被測定物体から放射光のみを赤外受光素子4で受光
させることができるため、固定部1の温度変化に起因す
る測定誤差を防ぐことができる。
As described above, in order for the infrared light receiving element 4 not to receive the light radiated from α at the tip of the fixed portion 1,
It is necessary to design the optical system to satisfy the expression (7), the expression (10), or the expression (13). Equation (7), (1
0) and L3 given by equation (13).
Is shifted from the focal point of the refraction lens 3 so that the infrared light emitted from the object to be measured is received only by the infrared light receiving element 4 without receiving the infrared light emitted from the fixed portion 1 by the infrared light receiving element 4. Therefore, it is possible to prevent a measurement error due to a temperature change of the fixing unit 1.

【0102】なお、筐体9と固定部1は一体であっても
構わない。
Note that the housing 9 and the fixed portion 1 may be integrated.

【0103】図6は本発明の第六の実施例における赤外
センサを示すものである。図6において、3は屈折レン
ズ、4は赤外線受光素子、9は筐体、1は穴の内部など
凹部にある受光したい領域に赤外センサを固定して向け
るための固定部、α、α’は屈折レンズ3の縁からこの
縁と光軸に対して同じ側の固定部1内面へ接する直線が
固定部先端面と交わる点、Fは屈折レンズ3の焦点、F
α、Fα’はそれぞれ屈折レンズ3によるα、α’の像
点、K1 αはαから光軸に対して同じ側の屈折レンズ3
の縁を通過してFαへ進行する光(マージナル光線)の
光路、K2 αはαから光軸と平行に進んで焦点Fを通過
してFαに到達する光の光路、K3 αはαから屈折レン
ズ3の中心を通過してFαに到達する光の光路、K4 α
はαから光軸を挟んで反対側の屈折レンズ3の縁を通過
してFαに到達する光(マージナル光線)の光路、K1
α' はα’から光軸に対して同じ側の屈折レンズ3の縁
を通過してFα' へ進行する光(マージナル光線)の光
路、K2 α' はα’から光軸と平行に進んで焦点Fを通
過してFα' に到達する光の光路、K3 α' はα’から
屈折レンズ3の中心を通過してFα' に到達する光の光
路、K4 α' はα’から光軸を挟んで反対側の屈折レン
ズ3の縁を通過してFα' に到達する光(マージナル光
線)の光路、FX は光路K1 αと光軸との交点である。
FIG. 6 shows an infrared sensor according to a sixth embodiment of the present invention. In FIG. 6, reference numeral 3 denotes a refractive lens, 4 denotes an infrared light receiving element, 9 denotes a housing, 1 denotes a fixing portion for fixing and directing the infrared sensor to a light receiving region in a concave portion such as the inside of a hole, α and α ′. Is a point where a straight line contacting the edge of the refractive lens 3 and the inner surface of the fixed part 1 on the same side with respect to the optical axis intersects the front end face of the fixed part, F is the focal point of the refractive lens 3, F
α and Fα ′ are image points of α and α ′ by the refraction lens 3, respectively, and K1 α is the refraction lens 3 on the same side of the optical axis from α.
K2α is the optical path of the light that travels in parallel to the optical axis from α and passes through the focal point F to reach Fα, and K3α is the refraction from α. K4α, the optical path of the light passing through the center of the lens 3 and reaching Fα
K1 is an optical path of light (marginal ray) passing through the edge of the refraction lens 3 on the opposite side of the optical axis and reaching Fα from α.
α ′ is an optical path of light (marginal ray) that travels from α ′ to Fα ′ through the edge of the refraction lens 3 on the same side with respect to the optical axis, and K 2 α ′ travels from α ′ in parallel with the optical axis. K3α 'is the optical path of the light that reaches Fα' after passing through the focal point F, K3α 'is the optical path of the light that reaches Fα' through the center of the refractive lens 3 from α ', and K4α' is the optical axis from α '. FX is the optical path of light (marginal ray) passing through the edge of the refracting lens 3 on the opposite side and reaching Fα ', and FX is the intersection of the optical path K1α with the optical axis.

【0104】穴の内壁など凹部から放射される赤外光の
みを受光するような光学系を設計する。
An optical system designed to receive only infrared light radiated from a concave portion such as an inner wall of a hole is designed.

【0105】赤外受光素子4を筐体9に取り付け、屈折
レンズ3を通過する赤外線のみを赤外受光素子4で受光
するようにする。屈折レンズ3を通った赤外線のみ受光
する構成にした上で以下の設計を行う。
The infrared light receiving element 4 is mounted on the housing 9 so that only the infrared light passing through the refractive lens 3 is received by the infrared light receiving element 4. The following design is performed after a configuration is adopted in which only infrared light that has passed through the refractive lens 3 is received.

【0106】被測定物からの赤外光のみを受光するため
には、固定部1から放射される赤外光を受光しないよう
にすればよい。そのため、受光したい領域と受光したく
ない領域の境界に位置する点を仮想し、この点から、光
軸に対してこの仮想した境界に位置する点と同じ側の屈
折レンズ3の縁を通過する光(マージナル光線)の光路
よりも、光軸から遠くに位置するように固定部1を設置
すればよい。そこで、上記仮想の境界に位置する点を、
屈折レンズ3の縁からこの縁と光軸に対して同じ側の固
定部1内面へ接する直線が固定部先端面と交わる点α、
α’として、Fαよりも屈折レンズ3から遠い部分の光
路K4 αと、Fα' よりも屈折レンズ3から遠い部分の
光路K4 α' で挟まれた領域に赤外センサを設置する。
これにより、固定部1をαと屈折レンズ3の間で光路K
1 α、K1 α' よりも光軸から遠くに位置させることに
なるため、固定部からの光を受光しない光学系が得られ
る。
In order to receive only the infrared light from the object to be measured, the infrared light radiated from the fixed portion 1 may not be received. Therefore, a point located at the boundary between the region where light reception is desired and the region where light reception is not desired is imagined, and from this point, the light passes through the edge of the refractive lens 3 on the same side as the point located at the virtual boundary with respect to the optical axis. What is necessary is just to install the fixing | fixed part 1 so that it may be located far from an optical axis rather than the optical path of light (marginal ray). Therefore, the point located on the virtual boundary is
A point α at which a straight line contacting from the edge of the refracting lens 3 to the inner surface of the fixed portion 1 on the same side with respect to the edge and the optical axis intersects the fixed portion tip surface;
As α ', an infrared sensor is installed in a region between the optical path K4α farther from the refracting lens 3 than Fα and the optical path K4α' farther from the refracting lens 3 than Fα '.
As a result, the fixed portion 1 moves the optical path K between α and the refractive lens 3.
Since it is located farther from the optical axis than 1α and K1α ', an optical system that does not receive light from the fixed portion can be obtained.

【0107】上記について詳細を以下に述べる。The details will be described below.

【0108】αから放射される光は光路K1 α、K2
α、K3 α、K4 αなどを通ってαの像点Fαに到達す
る。幾何光学で周知の通り、αの像点Fαは光軸を挟ん
でαと反対側に形成される。図6中に示すように、光路
K2 αを通る光は、屈折レンズ3を通過してFで光軸と
交叉してFαに到達し光軸から離れていく。同じよう
に、光路K1 αを通る光は、屈折レンズ3を通過して光
軸と交叉してFαに到達し光軸から離れていく。光路K
3 αを通る光は、屈折レンズ3で光軸と交叉してFαに
到達し光軸から離れていく。光路K4 αを通る光は、光
軸と交叉して屈折レンズ3を通過し、屈折レンズ3を通
過してからは光軸と交叉せずにFαに到達し、その後光
軸に近づくかあるいは遠ざかっていく。このように、α
の像点Fαよりも屈折レンズから離れた位置でαから放
射される光が通過しない領域が存在する。同じように
α’についても、αの像点Fαよりも屈折レンズから離
れた位置でαから放射される光が通過しない領域が存在
する。この、Fαよりも屈折レンズ3から遠い部分の光
路K4 αと、Fα' よりも屈折レンズ3から遠い部分の
光路K4 α' で挟まれた領域内に赤外受光素子を設置す
ることによってα、α’から放射される赤外線を受光し
ない赤外センサが得られる。αと屈折レンズ3の間の光
路K1 αより光軸から遠い部分からの光は、αと同じ面
内で光軸からの距離がαより大きい点からの光と置き換
えられる。この点の屈折レンズ3による交点はFαより
も光軸から遠くなることは幾何光学で周知の通りであ
る。そのため、αからの光を受光しないようにすれば、
αよりも光軸から遠い点からの光を受光せず、従って固
定部1からの光を受光しない。同様に、α’と屈折レン
ズ3の間の光路K1 α' より光軸から遠い部分からの光
は、α' と同じ面内で光軸からの距離がα’より大きい
点からの光と置き換えられる。この点の屈折レンズ3に
よる交点はFα’よりも光軸から遠くなることは幾何光
学で周知の通りである。そのため、α’からの光を受光
しないようにすれば、α’よりも光軸から遠い点からの
光を受光せず、従って固定部1からの光を受光しない。
このように、Fαよりも屈折レンズ3から遠い部分の光
路K4 αと、Fα' よりも屈折レンズ3から遠い部分の
光路K4 α' で挟まれた領域に赤外受光素子4を設置す
ることでα、α’から放射される赤外線を受光しないよ
うにすれば、自動的に固定部1から放射される赤外線も
受光しない構成となる。
The light radiated from α has optical paths K1 α, K2
It reaches the image point Fα of α through α, K3α, K4α and the like. As is well known in geometrical optics, the image point Fα of α is formed on the opposite side of α with respect to the optical axis. As shown in FIG. 6, the light passing through the optical path K2α passes through the refraction lens 3, crosses the optical axis at F, reaches Fα, and moves away from the optical axis. Similarly, the light passing through the optical path K1α passes through the refractive lens 3, crosses the optical axis, reaches Fα, and moves away from the optical axis. Optical path K
The light passing through 3α crosses the optical axis by the refraction lens 3, reaches Fα, and moves away from the optical axis. The light passing through the optical path K4α crosses the optical axis and passes through the refraction lens 3, and after passing through the refraction lens 3, reaches Fα without crossing the optical axis and thereafter approaches or moves away from the optical axis. To go. Thus, α
There is a region where light emitted from α does not pass at a position farther from the refraction lens than the image point Fα. Similarly, for α ′, there is a region where light emitted from α does not pass at a position further away from the refraction lens than the α image point Fα. By installing an infrared light receiving element in an area sandwiched between the optical path K4α farther from the refractive lens 3 than Fα and the optical path K4α ′ farther from the refractive lens 3 than Fα ′, α, An infrared sensor that does not receive infrared light emitted from α ′ is obtained. Light from a portion farther from the optical axis than the optical path K1 α between α and the refractive lens 3 is replaced with light from a point whose distance from the optical axis is larger than α in the same plane as α. It is well known in geometrical optics that the intersection of this point with the refracting lens 3 is farther from the optical axis than Fα. Therefore, if the light from α is not received,
It does not receive light from a point farther from the optical axis than α, and therefore does not receive light from the fixed part 1. Similarly, light from a portion farther from the optical axis than the optical path K1 α 'between α' and the refractive lens 3 is replaced with light from a point whose distance from the optical axis is larger than α 'in the same plane as α'. Can be It is well known in geometrical optics that the intersection of this point with the refraction lens 3 is farther from the optical axis than Fα ′. Therefore, if light from α ′ is not received, light from a point farther from the optical axis than α ′ will not be received, and therefore no light from the fixed portion 1 will be received.
As described above, the infrared light receiving element 4 is provided in a region between the optical path K4α farther from the refraction lens 3 than Fα and the optical path K4α ′ farther from the refraction lens 3 than Fα ′. If infrared rays emitted from α and α 'are not received, infrared rays emitted from the fixing unit 1 are not automatically received.

【0109】以下、αからの光を受光しないような赤外
受光素子4の位置を求める。
Hereinafter, the position of the infrared light receiving element 4 which does not receive the light from α will be obtained.

【0110】赤外受光素子4はFαよりも屈折レンズ3
から遠い。この時、(14)式、(15)式が成り立
つ。
The infrared light receiving element 4 is a refracting lens 3 more than Fα.
Far from. At this time, equations (14) and (15) hold.

【0111】LαF≦f+L3 (14) ∴L3≧LαF−f (15) 図6に示すように、受光面はFαよりも屈折レンズ3か
ら遠いので、αからFαまでの各光路のうち受光面で赤
外受光素子4に最も近づくものはK4 αである。したが
って、αからの光を赤外受光素子4で受光しないために
は、(16)式を満たす必要がある。
LαF ≦ f + L3 (14) ∴L3 ≧ LαF−f (15) As shown in FIG. 6, since the light receiving surface is farther from the refracting lens 3 than Fα, the light receiving surface of each light path from α to Fα The one that comes closest to the infrared light receiving element 4 is K4α. Therefore, in order for the light from α to not be received by the infrared light receiving element 4, it is necessary to satisfy the expression (16).

【0112】rαs4>rs (16) ここで、幾何光学で周知の通りr3 、rαF 、LαF 、
rαS4、L3 、fは幾何関係として(17)式、(1
8)式を満たす。
Rαs4> rs (16) Here, as is well known in geometrical optics, r3, rαF, LαF,
rαS4, L3, and f are expressed by the following equation (17) as a geometric relationship.
8) Formula is satisfied.

【0113】[0113]

【図16】 FIG. 16

【0114】(18)式を(16)式へ代入することで
(19)式が得られる。
The expression (19) is obtained by substituting the expression (18) into the expression (16).

【0115】[0115]

【図17】 FIG.

【0116】(15)(19)式から、αから放射され
る光を赤外受光素子4で受光しないための条件は(2
0)式となる。
From the equations (15) and (19), the condition for not receiving the light radiated from α by the infrared light receiving element 4 is (2)
0).

【0117】[0117]

【図18】 FIG.

【0118】さらに、幾何光学で周知の通り、rα、L
α、L2 、rαF 、LαF は幾何関係として(21)
式、(22)式を満たす。
Further, as is well known in geometrical optics, rα, L
α, L2, rαF, and LαF are expressed by a geometric relationship (21)
Equation (22) is satisfied.

【0119】[0119]

【図19】 FIG.

【0120】(22)式を(20)式へ代入することに
より、αから放射される光を赤外受光素子4で受光しな
いための条件は(23)式となる。
By substituting the expression (22) into the expression (20), the condition for not receiving the light radiated from α by the infrared receiving element 4 becomes the expression (23).

【0121】[0121]

【図20】 FIG.

【0122】また、ガウスの公式から(24)式、(2
5)式が成り立つ。
Also, from Gauss's formula, equation (24), (2
5) Formula holds.

【0123】[0123]

【図21】 FIG. 21

【0124】(25)式を(23)式に代入することに
より、αから放射される光を赤外受光素子4で受光しな
いための条件は(26)式となる。
By substituting equation (25) into equation (23), the condition for preventing the light radiated from α from being received by the infrared light receiving element 4 is given by equation (26).

【0125】[0125]

【図22】 FIG.

【0126】以上のように、αから放射される光を赤外
受光素子4で受光しないためには、(20)式、或いは
(23)式、或いは(26)式の条件を満たすよう光学
系を設計する必要がある。(20)式、(23)式、
(26)式で与えられるL3 だけ、受光素子4を屈折レ
ンズ3の焦点からずらして設置することで、固定部1か
ら放射される赤外線を赤外受光素子4で受光せずに被測
定物体から放射光のみを赤外受光素子4で受光させるこ
とができるため、固定部1の温度変化に起因する測定誤
差を防ぐことができる。
As described above, in order to prevent the light radiated from α from being received by the infrared receiving element 4, the optical system must satisfy the condition of the expression (20), the expression (23) or the expression (26). Need to be designed. Expression (20), Expression (23),
By disposing the light receiving element 4 from the focal point of the refraction lens 3 by L3 given by the equation (26), the infrared light radiated from the fixed part 1 is not received by the infrared light receiving element 4 but is received from the object to be measured. Since only the emitted light can be received by the infrared light receiving element 4, a measurement error caused by a temperature change of the fixed portion 1 can be prevented.

【0127】なお、筐体9と固定部1は一体であっても
構わない。
Note that the housing 9 and the fixed portion 1 may be integrated.

【0128】図7、8は本発明の第七の実施例における
赤外センサの光学系を示すものである。図7、8におい
て、3は屈折レンズ、4は赤外線受光素子、9は筐体、
1は穴の内部など凹部にある受光したい領域に赤外セン
サを固定して向けるための固定部、2は屈折レンズ3の
有効領域を決めるためのレンズ開口絞り、α、α’はレ
ンズ開口絞り2の縁からこの縁と光軸に対して同じ側の
固定部1内面へ接する直線が固定部先端面と交わる点、
Aは固定部1先端の点、Bは固定部1先端以外の点、F
は屈折レンズ3の焦点、Fα、Fα’はそれぞれ屈折レ
ンズ3によるα、α’の像点、FA は屈折レンズ3によ
るAの像点、FB は屈折レンズ3によるBの像点、K1
αはαから光軸に対して同じ側のレンズ開口絞り2の開
口部の縁を通過してFαへ進行する光(マージナル光
線)の光路、K2 αはαから光軸と平行に進んで焦点F
を通過してFαに到達する光の光路、K3 αはαから屈
折レンズ3の中心を通過してFαに到達する光の光路、
K4 αはαから光軸を挟んで反対側のレンズ開口絞り2
の開口部の縁を通過してFαに到達する光(マージナル
光線)の光路、K1AはAから光軸に対して同じ側のレン
ズ開口絞り2の開口部の縁を通過してFA へ進行する光
(マージナル光線)の光路、K2AはAから光軸と平行に
進んで焦点Fを通過してFA に到達する光の光路、K3A
はAから屈折レンズ3の中心を通過してFA に到達する
光の光路、K4AはAから光軸を挟んで反対側のレンズ開
口絞り2の開口部の縁を通過してFA に到達する光(マ
ージナル光線)の光路、K1BはBから光軸に対して同じ
側のレンズ開口絞り2の開口部の縁を通過してFB へ進
行する光(マージナル光線)の光路、K2BはBから光軸
と平行に進んで焦点Fを通過してFB に到達する光の光
路、K3BはBから屈折レンズ3の中心を通過してFB に
到達する光の光路、K4BはBから光軸を挟んで反対側の
レンズ開口絞り2の開口部の縁を通過してFB に到達す
る光(マージナル光線)の光路、FαS1は光路K1 αと
受光面との交点、FAS1 は光路K1Aと受光面との交点、
FBS1 は光路K1Bとセンサ面との交点、rαはα点での
固定部1の開口半径、rA はA点での固定部1の開口半
径、rB はB点での固定部1の開口半径、r2 はレンズ
開口絞り2の開口半径、r3 α1 は光路K1 αの屈折レ
ンズ3における光軸からの距離、r3A1 は光路K1Aの屈
折レンズ3における光軸からの距離、r3B1 は光路K1B
の屈折レンズ3における光軸からの距離、rsは赤外受光
素子4の半径、rαS1はFαS1と光軸との距離、rAS1
はFAS1 と光軸との距離、rBS1 はFBS1 と光軸との距
離、rAFはFA と光軸との距離、rBFはFB と光軸との
距離、L αはαからレンズ開口絞り2までの距離、LAは
Aからレンズ開口絞り2までの距離、LB はBからレン
ズ開口絞り2までの距離、L2 はレンズ開口絞り2から
屈折レンズ3までの距離、fは屈折レンズ3の焦点距
離、L3 はFから赤外受光素子4までの距離、LαF は
屈折レンズ3からFαまでの距離、LAFは屈折レンズ3
からFA までの距離、LBFは屈折レンズ3からFB まで
の距離である。
FIGS. 7 and 8 show an optical system of an infrared sensor according to a seventh embodiment of the present invention. 7 and 8, 3 is a refractive lens, 4 is an infrared light receiving element, 9 is a housing,
1 is a fixing portion for fixing and pointing the infrared sensor to a region where light is to be received in a concave portion such as the inside of a hole, 2 is a lens aperture stop for determining an effective area of the refraction lens 3, and α and α 'are lens aperture stops. A point at which a straight line contacting from the edge of No. 2 to the inner surface of the fixed portion 1 on the same side with respect to this edge and the optical axis intersects the fixed portion tip end face
A is a point at the tip of the fixed part 1, B is a point other than the tip of the fixed part 1, F
Is the focal point of the refractive lens 3, Fα and Fα ′ are the image points of α and α ′ by the refractive lens 3, FA is the image point of A by the refractive lens 3, FB is the image point of B by the refractive lens 3, and K1
α is an optical path of light (marginal ray) which travels to Fα through the edge of the opening of the lens aperture stop 2 on the same side of the optical axis from α, and K2α travels from α in parallel with the optical axis and focuses. F
K3 α is the optical path of light that reaches Fα through α and passes through the center of the refractive lens 3 from α.
K4 α is a lens aperture stop 2 on the opposite side of the optical axis from α.
K1A passes through the edge of the aperture of the lens aperture stop 2 on the same side of the optical axis from A, and travels to FA through the optical path of the light (marginal ray) that passes through the edge of the aperture and reaches Fα. The optical path of light (marginal ray), K2A, is the optical path of light that travels in parallel with the optical axis from A, passes through the focal point F, and reaches FA.
Is the optical path of the light from A passing through the center of the refracting lens 3 to reach FA, and K4A is the light from A passing through the edge of the opening of the lens aperture stop 2 on the opposite side of the optical axis and reaching FA. K1B is the optical path of the (marginal ray), K1B is the optical path of the light (marginal ray) passing through the edge of the aperture of the lens aperture stop 2 on the same side with respect to the optical axis and traveling to FB, and K2B is the optical axis of B from the optical axis. K3B is the optical path of light that travels in parallel to the focal point F and reaches FB, K3B is the optical path of light that passes from B to the center of the refracting lens 3 and reaches FB, and K4B is the opposite optical axis from B across the optical axis. The optical path of the light (marginal ray) passing through the edge of the aperture of the lens aperture stop 2 on the side and reaching FB, FαS1 is the intersection of the optical path K1α with the light receiving surface, FAS1 is the intersection of the optical path K1A and the light receiving surface,
FBS1 is the intersection between the optical path K1B and the sensor surface, rα is the opening radius of the fixed part 1 at the point α, rA is the opening radius of the fixed part 1 at the point A, rB is the opening radius of the fixed part 1 at the point B, r2 is the aperture radius of the lens aperture stop 2, r3 .alpha.1 is the distance of the optical path K1 .alpha. from the optical axis of the refractive lens 3, r3A1 is the distance of the optical path K1A from the optical axis of the refractive lens 3, and r3B1 is the optical path K1B.
, The distance from the optical axis of the refractive lens 3, rs is the radius of the infrared light receiving element 4, rαS1 is the distance between FαS1 and the optical axis, rAS1
Is the distance between FAS1 and the optical axis, rBS1 is the distance between FBS1 and the optical axis, rAF is the distance between FA and the optical axis, rBF is the distance between FB and the optical axis, L α is the distance from α to the lens aperture stop 2. Distance, LA is the distance from A to lens aperture stop 2, LB is the distance from B to lens aperture stop 2, L2 is the distance from lens aperture stop 2 to refraction lens 3, f is the focal length of refraction lens 3, L3 Is the distance from F to the infrared light receiving element 4, LαF is the distance from the refractive lens 3 to Fα, and LAF is the refractive lens 3
LFA is the distance from the refractive lens 3 to FB.

【0129】固定部のあらゆる点から放射される光を赤
外受光素子4で受光しないような光学設計条件を求め
る。そのために、αから放射される光を仮想し、この光
を赤外受光素子4で受光しないための設計条件を求めた
のち、固定部1のα以外の点から放射される光を赤外受
光素子4で受光しない条件を追加する。
Optical design conditions are determined so that light emitted from any point of the fixed portion is not received by the infrared light receiving element 4. For this purpose, the light radiated from α is imagined, and a design condition for preventing the light from being received by the infrared light receiving element 4 is determined. A condition that light is not received by the element 4 is added.

【0130】まず、固定部1のαから放射される赤外光
を受光しないよう、以下のように赤外受光素子4の位置
を決める。
First, the position of the infrared light receiving element 4 is determined as follows so as not to receive the infrared light radiated from α of the fixed portion 1.

【0131】αから放射される光は光路K1 α、K2
α、K3 α、K4 αなどを通ってαの像点Fαに到達す
る。幾何光学で周知の通り、αの像点Fαは光軸を挟ん
でαと反対側に形成される。図7中に示すように、光路
K2 αを通る光は、屈折レンズ3を通過してFで光軸と
交叉したのち光軸から離れながらFαに到達する。同じ
ように、光路K1 αを通る光は、屈折レンズ3を通過し
て光軸と交叉したのち光軸から離れながらFαに到達す
る。光路K3 αを通る光は、屈折レンズ3で光軸と交叉
したのち光軸から離れながらFαに到達する。光路K4
αを通る光は、光軸と交叉して屈折レンズ3を通過し、
屈折レンズ3を通過してからは光軸と交叉せずにFαに
到達する。このように、光路K1 αと光軸が交叉する点
よりも屈折レンズから離れた位置かつFαよりも屈折レ
ンズ3に近い位置で、αから放射される光が通過しない
領域が存在する。この、光路K1 αと光軸が交叉する点
よりも屈折レンズ3から離れ且つFαよりも屈折レンズ
3に近い位置に赤外受光素子4を設置することで、αか
ら放射される光を受光しない赤外センサが得られる。
The light radiated from α has optical paths K 1 α, K 2
It reaches the image point Fα of α through α, K3α, K4α and the like. As is well known in geometrical optics, the image point Fα of α is formed on the opposite side of α with respect to the optical axis. As shown in FIG. 7, the light passing through the optical path K2.alpha. Passes through the refracting lens 3, crosses the optical axis at F, and reaches F.alpha. Similarly, the light passing through the optical path K1α passes through the refractive lens 3, crosses the optical axis, and reaches Fα while leaving the optical axis. The light passing through the optical path K3α crosses the optical axis by the refraction lens 3 and then reaches Fα while leaving the optical axis. Optical path K4
The light passing through α crosses the optical axis, passes through the refractive lens 3, and
After passing through the refractive lens 3, the light reaches Fα without crossing the optical axis. As described above, there is a region where the light emitted from α does not pass at a position farther from the refraction lens than the point where the optical path K1α intersects the optical axis and closer to the refraction lens 3 than Fα. By arranging the infrared light receiving element 4 at a position farther from the refraction lens 3 than at the point where the optical path K1 α intersects the optical axis and closer to the refraction lens 3 than Fα, the light radiated from α is not received. An infrared sensor is obtained.

【0132】以下、L3 を求める。Hereinafter, L3 is obtained.

【0133】赤外受光素子4はFαよりも屈折レンズ3
に近い。この時、(27)式、(28)式が成り立つ。
The infrared light receiving element 4 is a refracting lens 3 more than Fα.
Close to. At this time, equations (27) and (28) hold.

【0134】Lα≧f+L3 (27) ∴L3≦Lα−f (28) 図7に示すように、受光面は光路K1 αと光軸が交わる
点とFαとの間であるので、αからFαまでの各光路の
うち受光面で赤外受光素子4に最も近づくものはK1 α
である。したがって、αからの光を赤外受光素子4で受
光しないためには、(29)式を満たす必要がある。
Lα ≧ f + L3 (27) ∴L3 ≦ Lα−f (28) As shown in FIG. 7, the light receiving surface is located between the point where the optical axis intersects the optical path K1α and the optical axis and Fα. Of the light paths closest to the infrared light receiving element 4 on the light receiving surface is K1α.
It is. Therefore, in order for the light from α to not be received by the infrared light receiving element 4, it is necessary to satisfy the expression (29).

【0135】rαs1>rs (29) ここで、幾何光学で周知の通りr3 α1 、rαF 、Lα
F 、rαS1、L3 、fは幾何関係として(30)式、
(31)式を満たす。
Rαs1> rs (29) Here, as is well known in geometrical optics, r3α1, rαF, Lα
F, rαS1, L3, and f are expressed by the following equation (30) as a geometric relationship:
Equation (31) is satisfied.

【0136】[0136]

【数23】 (Equation 23)

【0137】(31)式を(29)式へ代入することで
(32)式が得られる。
By substituting equation (31) into equation (29), equation (32) is obtained.

【0138】[0138]

【数24】 (Equation 24)

【0139】(28)(32)式から、αから放射され
る光を赤外受光素子4で受光しないための条件は(3
3)式となる。
From the equations (28) and (32), the condition for not receiving the light radiated from α by the infrared light receiving element 4 is (3)
3) Equation is obtained.

【0140】[0140]

【数25】 (Equation 25)

【0141】さらに、幾何光学で周知の通り、rα、L
α、L2 、rαF 、LαF は幾何関係として(34)
式、(35)式を満たす。
Further, as is well known in geometrical optics, rα, L
α, L2, rαF, and LαF are expressed as a geometric relationship (34)
Equation (35) is satisfied.

【0142】[0142]

【数26】 (Equation 26)

【0143】(35)式を(33)式へ代入することに
より、αから放射される光を赤外受光素子4で受しない
ための条件は(36)式となる。
By substituting the equation (35) into the equation (33), the condition for preventing the light radiated from α from being received by the infrared receiving element 4 becomes the equation (36).

【0144】[0144]

【数27】 [Equation 27]

【0145】また、ガウスの公式から(37)式、(3
8)式が成り立つ。
Also, from Gauss's formula, equation (37), (3
8) Equation holds.

【0146】[0146]

【数28】 [Equation 28]

【0147】(38)式を(36)式に代入することに
より、αから放射される光を赤外受光素子4で受光しな
いための条件は(39)式となる。
By substituting the equation (38) into the equation (36), the condition for not receiving the light radiated from α by the infrared receiving element 4 becomes the equation (39).

【0148】[0148]

【数29】 (Equation 29)

【0149】また、幾何光学で周知の通り、r2 、r
α、Lα、r3 α1 、L2 は幾何関係として(40)
式、(41)式を満たす。
As is well known in geometrical optics, r2, r
α, Lα, r3α1 and L2 are expressed as geometric relationships (40)
Equation (41) is satisfied.

【0150】[0150]

【数30】 [Equation 30]

【0151】(41)式を(39)式へ代入することに
より、αから放射される光を赤外受光素子4で受光しな
いための条件は(42)式となる。
By substituting equation (41) into equation (39), the condition for not receiving the light radiated from α by the infrared light receiving element 4 is given by equation (42).

【0152】[0152]

【数31】 (Equation 31)

【0153】以上のように、固定部1先端のαから放射
される光を赤外受光素子4で受光しないためには、(3
3)式、或いは(36)式、或いは(39)式、或いは
(42)式の条件を満たすよう光学系を設計する必要が
ある。
As described above, in order to prevent the light radiated from α at the tip of the fixed portion 1 from being received by the infrared light receiving element 4, (3
It is necessary to design the optical system so as to satisfy the condition of the expression (3), the expression (36), the expression (39), or the expression (42).

【0154】(33)式、或いは(36)式、或いは
(39)式、或いは(42)式の条件を満たすよう光学
系を設計した赤外センサが、固定部のα以外の点からの
放射光も受光しない、すなわち固定部のあらゆる点から
放射される光も受光しない条件を示す。そのために、図
8を用いてA、Bからの光を受光しない条件を以下に求
める。
An infrared sensor whose optical system is designed so as to satisfy the condition of the expression (33), the expression (36), the expression (39) or the expression (42) emits light from a point other than α of the fixed portion. A condition is shown in which no light is received, that is, no light emitted from any point of the fixed portion is received. For this purpose, a condition for not receiving light from A and B will be described below with reference to FIG.

【0155】まず、Aから放射される光を受光しない条
件を求める。図8に示すように、AからFA までの各光
路のうち受光面で赤外受光素子4に最も近づくものはK
1Aである。Aとαが一致しない固定部形状の場合にはK
1AはAとレンズ開口絞り2との間で固定部1によって遮
光され、各光路は受光面で赤外受光素子4にK1Aよりは
近づかない。そこで、Aから放射される光を赤外受光素
子4で受光しない条件を、K1Aと受光面との交点である
FAS1 と光軸との距離rAS1 がrs よりも大きいことと
する。つまり次式が成りたてばAから放射される光を赤
外受光素子4で受光しない。
First, a condition for not receiving the light radiated from A is determined. As shown in FIG. 8, of the light paths from A to FA, the light path closest to the infrared light receiving element 4 on the light receiving surface is K
1A. In the case of a fixed part shape where A and α do not match, K
1A is shielded from light by the fixed part 1 between A and the lens aperture stop 2, and each optical path does not approach the infrared light receiving element 4 on the light receiving surface more than K1A. Therefore, the condition that the light radiated from A is not received by the infrared light receiving element 4 is that the distance rAS1 between the optical axis and FAS1, which is the intersection of K1A and the light receiving surface, is larger than rs. That is, if the following equation is satisfied, the light radiated from A is not received by the infrared light receiving element 4.

【0156】rAS1 >rs (43) また、幾何光学で周知の通り、r3A1 、rAF、LA 、r
As1 、f、L3 は幾何関係として(44)式、(45)
式を満たす。
RAS1> rs (43) As is well known in geometrical optics, r3A1, rAF, LA, r
As1, f, and L3 are expressed by the geometrical relation (44) and (45).
Satisfy the formula.

【0157】[0157]

【数32】 (Equation 32)

【0158】また、幾何光学で周知の通りrA 、LA 、
L2 、rAF、LAFは幾何関係として(46)式、(4
7)式を満たす。
As is well known in geometrical optics, rA, LA,
L2, rAF, and LAF are expressed by the following equation (46) as a geometric relationship.
7) Formula is satisfied.

【0159】[0159]

【数33】 [Equation 33]

【0160】(47)式を(45)式に代入することに
より(48)式が得られる。
By substituting equation (47) into equation (45), equation (48) is obtained.

【0161】[0161]

【数34】 (Equation 34)

【0162】また、ガウスの公式から(49)式、(5
0)式が成り立つ。
Also, from Gauss's formula, equation (49), (5
Equation (0) holds.

【0163】[0163]

【数35】 (Equation 35)

【0164】(50)式を(48)式に代入することに
より(51)式が得られる。
By substituting equation (50) into equation (48), equation (51) is obtained.

【0165】[0165]

【数36】 [Equation 36]

【0166】また、幾何光学で周知の通り、r2 、rA
、LA 、r3A1 、L2 は幾何関係として(52)式、
(53)式を満たす。
As is well known in geometrical optics, r2, rA
, LA, r3A1 and L2 are expressed by the following equation (52) as a geometric relationship.
Formula (53) is satisfied.

【0167】[0167]

【数37】 (37)

【0168】(53)式を(51)式に代入することに
よって(54)式が得られる。
By substituting equation (53) into equation (51), equation (54) is obtained.

【0169】[0169]

【数38】 (38)

【0170】rAS1 と同じくrαS1は(55)式のよう
になる。
As in the case of rAS1, rαS1 is given by equation (55).

【0171】[0171]

【数39】 [Equation 39]

【0172】Aは固定部先端の点で、αはレンズ開口絞
り2の縁からこの縁と光軸に対して同じ側の固定部1内
面へ接する直線が固定部先端面と交わる点であるので、
レンズ開口絞り2からA、αまでの距離は相等しく(5
6)式が成り立ち、光軸からAまでの距離は光軸からα
までの距離以上であり(57)式が成り立つ。
A is a point at the tip of the fixed portion, and α is a point where a straight line contacting the edge of the lens aperture stop 2 and the inner surface of the fixed portion 1 on the same side with respect to the optical axis intersects the tip of the fixed portion. ,
The distances from the lens aperture stop 2 to A and α are equal (5
Equation 6) holds, and the distance from the optical axis to A is α from the optical axis.
(57) holds.

【0173】LA=Lα (56) rA≧rα (57) (56)式を(55)式に代入することで(58)式が
得られる。
LA = Lα (56) rA ≧ rα (57) By substituting equation (56) into equation (55), equation (58) is obtained.

【0174】[0174]

【数40】 (Equation 40)

【0175】rαS1は(29)式の関係を満たすので、
rAS1 がrαS1よりも大きい、すなわち次の(59)式
を満たせば、自動的にrAS1 が(43)式の関係を満た
す。
Since rαS1 satisfies the relationship of equation (29),
If rAS1 is larger than rαS1, that is, if the following expression (59) is satisfied, rAS1 automatically satisfies the relationship of expression (43).

【0176】rAS1 >rαS1 (59) (55)(58)式を(59)式に代入することにより
(60)式が得られる。
RAS1> rαS1 (59) By substituting equations (55) and (58) into equation (59), equation (60) is obtained.

【0177】 (rA−r2)×(f(f+L3)−L3・L2)>(rα−r2)×(f(f +L3)−L3・L2) (60) (57)式より、(60)式は(61)式のようにな
る。
(RA−r2) × (f (f + L3) −L3 · L2)> (rα−r2) × (f (f + L3) −L3 · L2) (60) From equation (57), equation (60) Is as shown in equation (61).

【0178】f(f+L3)>L3・L2 (61) 以上のように、固定部1の仮想点αおよび先端点Aから
放射される光を赤外受光素子4で受光しないためには
(33)式、或いは(36)式、或いは(39)式、或
いは(42)式の条件を満たし、且つ(61)式を満た
す必要がある。
F (f + L3)> L3 · L2 (61) As described above, the light radiated from the virtual point α and the tip point A of the fixed part 1 is not received by the infrared light receiving element 4 (33). It is necessary to satisfy the condition of the expression, the expression (36), the expression (39), or the expression (42), and the expression (61).

【0179】次に、Bから放射される光を受光しない条
件を求める。Bから放射される光はK1B、K2B、K3B、
K4Bなどを通ってBの像点FB に到達する。Bは固定部
の先端以外の点であるので、固定部先端面の点αよりも
Bの方が屈折レンズ3に近い。したがって、幾何光学で
周知の通り、屈折レンズ3の像点Fαよりも像点FBの
方が屈折レンズ3から遠くなる。すなわち(62)式が
成り立つ。
Next, a condition for not receiving light emitted from B will be determined. The light emitted from B is K1B, K2B, K3B,
It reaches the image point FB of B through K4B and the like. Since B is a point other than the tip of the fixed portion, B is closer to the refractive lens 3 than the point α on the tip surface of the fixed portion. Therefore, as is well known in geometrical optics, the image point FB is farther from the refraction lens 3 than the image point Fα of the refraction lens 3. That is, equation (62) holds.

【0180】LBF>LαF (62) 屈折レンズ3から受光面までの距離は屈折レンズ3から
Fαまでの距離よりも小さい。したがって(62)式よ
り、屈折レンズ3から受光面までの距離は屈折レンズ3
からFB までの距離よりも小さいことになる。このと
き、図8に示すようにBからFB までの各光路のうち受
光面で赤外受光素子4に最も近づくものはK1Bである。
Bから放射される光を赤外受光素子4で受光しないため
には、K1Bと受光面との交点であるFBS1 と光軸との距
離rBS1 がrs よりも大きい必要がある。つまり(6
3)式が成り立つ必要がある。
LBF> LαF (62) The distance from the refractive lens 3 to the light receiving surface is smaller than the distance from the refractive lens 3 to Fα. Therefore, according to equation (62), the distance from the refractive lens 3 to the light receiving surface is
Is smaller than the distance from to FB. At this time, as shown in FIG. 8, K1B is the light path closest to the infrared light receiving element 4 on the light receiving surface among the optical paths from B to FB.
In order to prevent the light radiated from B from being received by the infrared light receiving element 4, the distance rBS1 between the optical axis and FBS1, which is the intersection of K1B and the light receiving surface, needs to be larger than rs. That is, (6
3) The equation needs to be satisfied.

【0181】rBS1 >rs (63) また、幾何光学で周知の通り、r3B1 、rBF、LB 、r
Bs1 、f、L3 は幾何関係として(64)式、(65)
式を満たす。
RBS1> rs (63) As is well known in geometrical optics, r3B1, rBF, LB, r
Bs1, f, and L3 are expressed by the following equations (64) and (65) as geometric relationships.
Satisfy the formula.

【0182】[0182]

【数41】 [Equation 41]

【0183】また、幾何光学で周知の通りrB 、LB 、
L2 、rBF、LBFは幾何関係として(66)式、(6
7)式を満たす。
As is well known in geometrical optics, rB, LB,
L2, rBF, and LBF are expressed by the following equation (66) as a geometric relationship.
7) Formula is satisfied.

【0184】[0184]

【数42】 (Equation 42)

【0185】(67)式を(65)式に代入することに
より(68)式が得られる。
By substituting equation (67) into equation (65), equation (68) is obtained.

【0186】[0186]

【数43】 [Equation 43]

【0187】また、ガウスの公式から(69)式、(7
0)式が成り立つ。
Also, from Gauss's formula, equation (69), (7
Equation (0) holds.

【0188】[0188]

【数44】 [Equation 44]

【0189】(70)式を(68)式に代入することに
より(71)式が得られる。
By substituting equation (70) into equation (68), equation (71) is obtained.

【0190】[0190]

【数45】 [Equation 45]

【0191】また、幾何光学で周知の通り、r2 、rB
、LB 、r3B1 、L2 は幾何関係として(72)式、
(73)式を満たす。
As is well known in geometrical optics, r2, rB
, LB, r3B1 and L2 are expressed by the following equation (72) as a geometric relationship.
Formula (73) is satisfied.

【0192】[0192]

【数46】 [Equation 46]

【0193】(73)式を(71)式に代入することに
よって(74)式が得られる。
By substituting equation (73) into equation (71), equation (74) is obtained.

【0194】[0194]

【数47】 [Equation 47]

【0195】rBS1 と同じくrαS1は(75)式のよう
になる。
As in the case of rBS1, rαS1 is given by equation (75).

【0196】[0196]

【数48】 [Equation 48]

【0197】rαS1は(29)式の関係を満たすので、
rBS1 がrαS1よりも大きい、すなわち(76)式を満
たせば自動的にrBS1 が(63)式の関係を満たすこと
になる。
Since rαS1 satisfies the relationship of equation (29),
If rBS1 is larger than rαS1, that is, if equation (76) is satisfied, rBS1 automatically satisfies the relation of equation (63).

【0198】rBS1 >rαS1 (76) (74)(75)式を(76)式に代入することにより
(77)式が得られる。
RBS1> rαS1 (76) By substituting equations (74) and (75) into equation (76), equation (77) is obtained.

【0199】[0199]

【数49】 [Equation 49]

【0200】ここで、αは固定部1先端面の点であるの
で、Lα、LB に(78)式、(79)式の関係が成り
立つ。
Here, since α is a point on the tip end surface of the fixed portion 1, Lα and LB satisfy the relations of equations (78) and (79).

【0201】[0201]

【数50】 [Equation 50]

【0202】(33)式、或いは(36)式、或いは
(39)式、或いは(42)式の条件を満たし、且つ
(61)式を満たすよう光学系を設計した赤外センサ
が、あらゆる先端面以外の点からの放射光も受光しない
ためには、B各点について(77)式の関係が成り立つ
必要がある。
An infrared sensor that satisfies the condition of the expression (33), the expression (36), the expression (39), or the expression (42), and the optical system designed to satisfy the expression (61), In order not to receive the radiated light from points other than the surface, the relationship of the equation (77) needs to be established for each point B.

【0203】したがって、(61)式、(79)式の関
係を考慮することにより、(80)式が成り立つ必要が
ある。
Therefore, it is necessary to satisfy the expression (80) by considering the relationship between the expressions (61) and (79).

【0204】rB−r2≧rα−r2 (80) ∴rB≧rα (81) 以上のように、固定部1から放射される光を赤外受光素
子4で受光しないためには(33)式、或いは(36)
式、或いは(39)式、或いは(42)式の条件を満た
し、且つ(61)式を満たし、さらに(81)式を満た
す必要がある。
RB−r2 ≧ rα−r2 (80) ∴rB ≧ rα (81) As described above, in order to prevent the light radiated from the fixed part 1 from being received by the infrared light receiving element 4, the following equation (33) is used. Or (36)
It is necessary to satisfy the condition of the expression, the expression (39), or the expression (42), the expression (61), and the expression (81).

【0205】赤外受光素子4を、(33)式あるいは
(36)式あるいは(39)式あるいは(42)式で与
えられる量だけ屈折レンズ3の焦点面から離して設け、
かつ(61)式と(81)式を満たす光学設計にするこ
とによって、固定部から放射される赤外線を赤外受光素
子4で受光せずに被測定物体から放射光のみを赤外受光
素子4で受光させることができるため、固定部の温度変
化に起因する測定誤差を防ぐことができる。
The infrared light receiving element 4 is provided away from the focal plane of the refractive lens 3 by an amount given by the expression (33), (36), (39), or (42).
In addition, by adopting an optical design that satisfies the formulas (61) and (81), the infrared light radiated from the object to be measured is received only by the infrared light , It is possible to prevent a measurement error caused by a temperature change of the fixed portion.

【0206】なお、筐体9と固定部1、レンズ開口絞り
2は一体であっても構わない。
The housing 9, the fixed section 1, and the lens aperture stop 2 may be integrated.

【0207】図9、10、11は本発明の第8の実施例
における赤外センサの光学系を示すものである。図9、
10、11において、3は屈折レンズ、4は赤外線受光
素子、9は筐体、1は穴の内部など凹部にある受光した
い領域に赤外センサを固定して向けるための固定部、2
は屈折レンズ3の有効領域を決めるためのレンズ開口絞
り、α、α’はレンズ開口絞り2の縁からこの縁と光軸
に対して同じ側の固定部1内面へ接する直線が固定部先
端面と交わる点、Aは固定部1先端の点、Bは固定部1
の先端以外の点、Fは屈折レンズ3の焦点、Fα、F
α’はそれぞれ屈折レンズ3によるα、α’の像点、F
A は屈折レンズ3によるAの像点、FB は屈折レンズ3
によるBの像点、K1 αはαから光軸に対して同じ側の
レンズ開口絞り2の開口部の縁を通過してFαへ進行す
る光(マージナル光線)の光路、K2 αはαから光軸と
平行に進んで焦点Fを通過してFαに到達する光の光
路、K3 αはαから屈折レンズ3の中心を通過してFα
に到達する光の光路、K4 αはαから光軸を挟んで反対
側のレンズ開口絞り2の開口部の縁を通過してFαに到
達する光(マージナル光線)の光路、K1AはAから光軸
に対して同じ側のレンズ開口絞り2の開口部の縁を通過
してFA へ進行する光(マージナル光線)の光路、K2A
はAから光軸と平行に進んで焦点Fを通過してFA に到
達する光の光路、K3AはAから屈折レンズ3の中心を通
過してFA に到達する光の光路、K4AはAから光軸を挟
んで反対側のレンズ開口絞り2の開口部の縁を通過して
FA に到達する光(マージナル光線)の光路、K1BはB
から光軸に対して同じ側のレンズ開口絞り2の開口部の
縁を通過してFB へ進行する光(マージナル光線)の光
路、K2BはBから光軸と平行に進んで焦点Fを通過して
FB に到達する光の光路、K3BはBから屈折レンズ3の
中心を通過してFB に到達する光の光路、K4BはBから
光軸を挟んで反対側のレンズ開口絞り2の開口部の縁を
通過してFB に到達する光(マージナル光線)の光路、
FαS4は光路K4 αと受光面との交点、FAS4は光路K4
Aと受光面との交点、FBS4 は光路K4Bとセンサ面との
交点、FαS1は光路K1Aと受光面との交点、FBS1 は光
路K1Bとセンサ面との交点、rαはα点での固定部1の
開口半径、rA はA点での固定部1の開口半径、rB は
B点での固定部1の開口半径、r2 はレンズ開口絞り2
の開口半径、r3 α4 は光路K4αの屈折レンズ3にお
ける光軸からの距離、r3A4 は光路K4Aの屈折レン
ズ3における光軸からの距離、r3B4 は光路K4Bの屈折
レンズ3における光軸からの距離、r3 α1 は光路K1
αの屈折レンズ3における光軸からの距離、r3B1 は光
路K1Bの屈折レンズ3における光軸からの距離、rsは赤
外受光素子4の半径、rαS4はFαS4と光軸との距離、
rAS4 はFAS4 と光軸との距離、rBS4 はFBS4と光軸
との距離、rαS1はFαS1と光軸との距離、rBS1 はF
BS1 と光軸との距離、rαF はFαと光軸との距離、r
AFはFA と光軸との距離、rBFはFB と光軸との距離、
L αはαからレンズ開口絞り2までの距離、LAはAから
レンズ開口絞り2までの距離、LB はBからレンズ開口
絞り2までの距離、L2 はレンズ開口絞り2から屈折レ
ンズ3までの距離、fは屈折レンズ3の焦点距離、L3
はFから赤外受光素子4までの距離、LαF は屈折レン
ズ3からFαまでの距離、LAFは屈折レンズ3からFA
までの距離、LBFは屈折レンズ3からFB までの距離で
ある。
FIGS. 9, 10 and 11 show an optical system of an infrared sensor according to the eighth embodiment of the present invention. FIG.
In 10 and 11, 3 is a refraction lens, 4 is an infrared light receiving element, 9 is a housing, 1 is a fixing portion for fixing and pointing the infrared sensor to an area to receive light in a concave portion such as the inside of a hole, 2
Is a lens aperture stop for determining the effective area of the refraction lens 3, and α and α 'are straight lines contacting the edge of the lens aperture stop 2 and the inner surface of the fixed part 1 on the same side with respect to this edge and the optical axis. A is the point at the tip of the fixed part 1 and B is the fixed part 1
F is the focal point of the refractive lens 3, Fα, F
α ′ is the image point of α and α ′ by the refracting lens 3, respectively, F
A is the image point of A by the refraction lens 3 and FB is the refraction lens 3
Is the image point of B, K1α is the optical path of light (marginal ray) traveling from α to Fα through the edge of the opening of the lens aperture stop 2 on the same side with respect to the optical axis, and K2α is the light from α. The optical path of light traveling parallel to the axis and passing through the focal point F and reaching Fα, K3α is Fα passing through the center of the refractive lens 3 from α.
K4α is an optical path of light (marginal ray) passing through the edge of the opening of the lens aperture stop 2 on the opposite side from α with respect to the optical axis and reaching Fα, and K1A is an optical path from A. The optical path of light (marginal ray) that passes through the edge of the aperture of the lens aperture stop 2 on the same side with respect to the axis and travels to FA, K2A
Is the optical path of light traveling parallel to the optical axis from A and passing through the focal point F to reach FA; K3A is the optical path of light passing from A through the center of the refractive lens 3 to reach FA; K1B is the optical path of light (marginal ray) passing through the edge of the opening of the lens aperture stop 2 opposite to the axis and reaching the FA.
K2B passes through the edge of the aperture of the lens aperture stop 2 on the same side with respect to the optical axis and travels to FB (marginal ray). K2B travels from B in parallel with the optical axis and passes through the focal point F. K3B is the optical path of the light that reaches FB from B through the center of the refracting lens 3, and K4B is the optical path of the lens aperture stop 2 opposite the optical axis from B across the optical axis. The optical path of the light (marginal ray) that reaches the FB through the edge,
FαS4 is the intersection of the optical path K4α with the light receiving surface, and FAS4 is the optical path K4
FBS4 is the intersection between the optical path K1B and the light receiving surface, FBS1 is the intersection between the optical path K1A and the light receiving surface, FBS1 is the intersection between the optical path K1B and the sensor surface, and rα is the fixed part 1 at the α point. RA is the opening radius of the fixed part 1 at the point A, rB is the opening radius of the fixed part 1 at the point B, and r2 is the lens aperture stop 2.
R3α4 is the distance of the optical path K4α from the optical axis of the refractive lens 3, r3A4 is the distance of the optical path K4A from the optical axis of the refractive lens 3, r3B4 is the distance of the optical path K4B from the optical axis of the refractive lens 3, r3 α1 is the optical path K1
α is the distance of the refracting lens 3 from the optical axis, r3B1 is the distance of the optical path K1B from the optical axis of the refracting lens 3, rs is the radius of the infrared light receiving element 4, rαS4 is the distance between FαS4 and the optical axis,
rAS4 is the distance between FAS4 and the optical axis, rBS4 is the distance between FBS4 and the optical axis, rαS1 is the distance between FαS1 and the optical axis, and rBS1 is FBS.
The distance between BS1 and the optical axis, rαF is the distance between Fα and the optical axis, r
AF is the distance between FA and the optical axis, rBF is the distance between FB and the optical axis,
L α is the distance from α to the lens aperture stop 2, LA is the distance from A to the lens aperture stop 2, LB is the distance from B to the lens aperture stop 2, L2 is the distance from the lens aperture stop 2 to the refractive lens 3. , F is the focal length of the refractive lens 3, L3
Is the distance from F to the infrared light receiving element 4, LαF is the distance from the refractive lens 3 to Fα, and LAF is the distance from the refractive lens 3 to FA.
, LBF is the distance from the refractive lens 3 to FB.

【0208】固定部1上のαから放射される赤外光を仮
想し、この光を受光しないよう以下に示すように赤外受
光素子4の位置を決める。
The infrared light radiated from α on the fixed portion 1 is assumed, and the position of the infrared light receiving element 4 is determined as described below so as not to receive this light.

【0209】αから放射される光は光路K1 α、K2
α、K3 α、K4 αなどを通ってαの像点Fαに到達す
る。幾何光学で周知の通り、αの像点Fαは光軸を挟ん
でαと反対側に形成される。図9中に示すように、光路
K2 αを通る光は、屈折レンズ3を通過してFで光軸と
交叉してFαに到達し光軸から離れていく。同じよう
に、光路K1 αを通る光は、屈折レンズ3を通過して光
軸と交叉してFαに到達し光軸から離れていく。光路K
3 αを通る光は、屈折レンズ3で光軸と交叉してFαに
到達し光軸から離れていく。光路K4 αを通る光は、光
軸と交叉して屈折レンズ3を通過し、屈折レンズ3を通
過してからは光軸と交叉せずにFαに到達し、その後光
軸に近づくかあるいは遠ざかっていく。このように、α
の像点Fαよりも屈折レンズから離れた位置でαから放
射される光が通過しない領域が存在する。この、αの像
点Fαよりも屈折レンズ3から離れた位置に赤外受光素
子4を設置することで、αから放射される光を受光しな
い赤外センサが得られる。以下、屈折レンズ3の焦点か
ら受光面までの距離L3 を求める。
The light radiated from α has optical paths K1 α, K2
It reaches the image point Fα of α through α, K3α, K4α and the like. As is well known in geometrical optics, the image point Fα of α is formed on the opposite side of α with respect to the optical axis. As shown in FIG. 9, light passing through the optical path K2.alpha. Passes through the refractive lens 3, crosses the optical axis at F, reaches F.alpha., And leaves the optical axis. Similarly, the light passing through the optical path K1α passes through the refractive lens 3, crosses the optical axis, reaches Fα, and moves away from the optical axis. Optical path K
The light passing through 3α crosses the optical axis by the refraction lens 3, reaches Fα, and moves away from the optical axis. The light passing through the optical path K4α crosses the optical axis and passes through the refraction lens 3, and after passing through the refraction lens 3, reaches Fα without crossing the optical axis and thereafter approaches or moves away from the optical axis. To go. Thus, α
There is a region where light emitted from α does not pass at a position farther from the refraction lens than the image point Fα. By installing the infrared light receiving element 4 at a position farther from the refractive lens 3 than the image point Fα of α, an infrared sensor that does not receive light emitted from α can be obtained. Hereinafter, the distance L3 from the focal point of the refracting lens 3 to the light receiving surface is obtained.

【0210】赤外受光素子4はFαよりも屈折レンズ3
から遠い。この時、(82)式、(83)式が成り立
つ。
The infrared light receiving element 4 is a refracting lens 3 more than Fα.
Far from. At this time, equations (82) and (83) hold.

【0211】LαF≦f+L3 (82) ∴L3≧LαF−f (83) 図9に示すように、受光面はFαよりも屈折レンズ3か
ら遠いので、αからFαまでの各光路のうち受光面で赤
外受光素子4に最も近づくものはK4 αである。したが
って、αからの光を赤外受光素子4で受光しないために
は、(84)式を満たす必要がある。
LαF ≦ f + L3 (82) ∴L3 ≧ LαF-f (83) As shown in FIG. 9, since the light receiving surface is farther from the refracting lens 3 than Fα, the light receiving surface of each light path from α to Fα The one that comes closest to the infrared light receiving element 4 is K4α. Therefore, in order for the infrared light receiving element 4 not to receive the light from α, it is necessary to satisfy the expression (84).

【0212】rαs4>rs (84) ここで、幾何光学で周知の通りr3 α4 、rαF 、Lα
F 、rαS4、L3 、fは幾何関係として(85)式、
(86)式を満たす。
Rαs4> rs (84) Here, as is well known in geometrical optics, r3α4, rαF, Lα
F, rαS4, L3, and f are expressed by the following equation (85) as a geometric relationship:
Equation (86) is satisfied.

【0213】[0213]

【数51】 (Equation 51)

【0214】(86)式を(84)式へ代入することで
(87)式が得られる。
By substituting equation (86) into equation (84), equation (87) is obtained.

【0215】[0215]

【数52】 (Equation 52)

【0216】(83)(87)式から、αから放射され
る光を赤外受光素子4で受光しないための条件は(8
8)式となる。
From the equations (83) and (87), the condition for not receiving the light radiated from α by the infrared light receiving element 4 is (8
8)

【0217】[0219]

【数53】 (Equation 53)

【0218】さらに、幾何光学で周知の通り、rα、L
α、L2 、rαF 、LαF は幾何関係として(89)
式、(90)式を満たす。
Furthermore, as is well known in geometrical optics, rα, L
α, L2, rαF, and LαF are expressed as a geometric relationship (89)
Equation (90) is satisfied.

【0219】[0219]

【数54】 (Equation 54)

【0220】(90)式を(88)式へ代入することに
より、αから放射される光を赤外受光素子4で受光しな
いための条件は(91)式となる。
By substituting the expression (90) into the expression (88), the condition for not receiving the light radiated from α by the infrared receiving element 4 becomes the expression (91).

【0221】[0221]

【数55】 [Equation 55]

【0222】また、ガウスの公式から(92)式、(9
3)式が成り立つ。
Further, from Gauss's formula, equation (92), (9
3) Equation holds.

【0223】[0223]

【数56】 [Equation 56]

【0224】(93)式を(91)式に代入することに
より、αから放射される光を赤外受光素子4で受光しな
いための条件は(94)式となる。
By substituting equation (93) into equation (91), the condition for not receiving the light radiated from α by the infrared light receiving element 4 is given by equation (94).

【0225】[0225]

【数57】 [Equation 57]

【0226】また、幾何光学で周知の通り、r2 、r
α、Lα、r3 α4 、L2 は幾何関係として(95)
式、(96)式を満たす。
As is well known in geometrical optics, r 2, r
α, Lα, r3α4, L2 are expressed as a geometric relationship (95)
Equation (96) is satisfied.

【0227】[0227]

【数58】 [Equation 58]

【0228】(96)式を(94)式へ代入することに
より、αから放射される光を赤外受光素子4で受光しな
いための条件は(97)式となる。
By substituting the expression (96) into the expression (94), the condition for not receiving the light radiated from α by the infrared receiving element 4 becomes the expression (97).

【0229】[0229]

【数59】 [Equation 59]

【0230】以上のように、αから放射される光を赤外
受光素子4で受光しないためには、(88)式、或いは
(91)式、或いは(94)式、或いは(97)式の条
件を満たすよう光学系を設計する必要がある。
As described above, in order to prevent the light radiated from α from being received by the infrared light receiving element 4, the expression (88), the expression (91), the expression (94), or the expression (97) It is necessary to design an optical system to satisfy the conditions.

【0231】(88)式、或いは(91)式、或いは
(94)式、或いは(97)式の条件を満たすよう光学
系を設計した赤外センサが、固定部のα以外の点からの
放射光も受光しない、すなわち固定部のあらゆる点から
放射される光も受光しない条件を示す。そのために、図
10、11を用いてA、Bからの光を受光しない条件を
以下に求める。
An infrared sensor whose optical system is designed so as to satisfy the condition of the expression (88), the expression (91), the expression (94), or the expression (97) emits light from a point other than α of the fixed portion. A condition is shown in which no light is received, that is, no light emitted from any point of the fixed portion is received. For this purpose, conditions for not receiving light from A and B will be obtained below with reference to FIGS.

【0232】まず、図10により、Aから放射される光
を受光しない条件を求める。Aから屈折レンズ3までの
距離とαから屈折レンズ3間での距離は等しいので、幾
何光学で周知の通り屈折レンズ3によるA、αの像点F
A 、Fαは同一面内に形成される。従って、受光面がF
αよりも屈折レンズ3から遠いので、受光面はFA より
も遠くになる。そのため、図10に示すようにAからF
A までの各光路のうち受光面で赤外受光素子4に最も近
づくものはK4A である。Aから放射される光を赤外受
光素子4で受光しないためには、K4Aと受光面との交点
であるFAS4 と光軸との距離rAS4 がrs よりも大きい
必要がある。つまり(98)式が成り立つ必要がある。
First, the condition for not receiving the light radiated from A is determined according to FIG. Since the distance from A to the refractive lens 3 and the distance from α to the refractive lens 3 are equal, the image point F of A and α by the refractive lens 3 is known as geometrical optics.
A and Fα are formed in the same plane. Therefore, the light receiving surface is F
Since it is farther from the refractive lens 3 than α, the light receiving surface is farther than FA. Therefore, as shown in FIG.
K4A is the light path closest to the infrared light receiving element 4 on the light receiving surface among the optical paths up to A. In order to prevent the light emitted from A from being received by the infrared light receiving element 4, the distance rAS4 between the optical axis and FAS4, which is the intersection of K4A and the light receiving surface, needs to be larger than rs. That is, equation (98) needs to be satisfied.

【0233】rAS4>rs (98) また、幾何光学で周知の通り、r3A4 、rAF、LAF、r
As4 、f、L3 は幾何関係として(99)式(100)
式を満たす。
RAS4> rs (98) As is well known in geometrical optics, r3A4, rAF, LAF, r
As4, f, and L3 are expressed as a geometric relationship in equation (99), equation (100).
Satisfy the formula.

【0234】[0234]

【数60】 [Equation 60]

【0235】また、幾何光学で周知の通りrA 、LA 、
L2 、rAF、LAFは幾何関係として(101)式、(1
02)式を満たす。
As is well known in geometrical optics, rA, LA,
L2, rAF, and LAF are expressed by the following equation (101) as a geometric relationship.
02) is satisfied.

【0236】[0236]

【数61】 [Equation 61]

【0237】(102)式を(100)式に代入するこ
とにより(103)式が得られる。
By substituting equation (102) into equation (100), equation (103) is obtained.

【0238】[0238]

【数62】 (Equation 62)

【0239】また、ガウスの公式から(104)式、
(105)式が成り立つ。
Also, from Gauss's formula, equation (104)
Equation (105) holds.

【0240】[0240]

【数63】 [Equation 63]

【0241】(105)式を(103)式に代入するこ
とにより(106)式が得られる。
By substituting equation (105) into equation (103), equation (106) is obtained.

【0242】[0242]

【数64】 [Equation 64]

【0243】また、幾何光学で周知の通り、r2 、rA
、LA 、r3A4 、L2 は幾何関係として(107)
式、(108)式を満たす。
As is well known in geometrical optics, r2, rA
, LA, r3A4, and L2 are expressed as geometric relationships (107)
Equation (108) is satisfied.

【0244】[0244]

【数65】 [Equation 65]

【0245】(108)式を(106)式に代入するこ
とによって(109)式が得られる。
By substituting equation (108) into equation (106), equation (109) is obtained.

【0246】[0246]

【数66】 [Equation 66]

【0247】rAS4と同じくrαS4は(110)式のよ
うになる。
Similar to rAS4, rαS4 is given by equation (110).

【0248】[0248]

【数67】 [Equation 67]

【0249】rαS4は(84)式の関係を満たすので、
(111)式を満たせば、自動的にrAS4 が(98)式
の関係を満たすことになる。
Since rαS4 satisfies the relationship of equation (84),
If equation (111) is satisfied, rAS4 automatically satisfies the relation of equation (98).

【0250】r AS4>rαS4 (111) (109)(110)式を(111)式に代入すること
により(112)式が得られる。
R AS4> r α S4 (111) By substituting the expressions (109) and (110) into the expression (111), the expression (112) is obtained.

【0251】[0251]

【数68】 [Equation 68]

【0252】Aは固定部先端の点で、αはレンズ開口絞
り2の縁からこの縁と光軸に対して同じ側の固定部1内
面へ接する直線が固定部先端面と交わる点であるので、
レンズ開口絞り2からA、αまでの距離は相等しく(1
13)式が成り立ち、光軸からAまでの距離は光軸から
αまでの距離以上であり(114)式が成り立つ。
A is a point at the tip of the fixed portion, and α is a point where a straight line contacting the edge of the lens aperture stop 2 and the inner surface of the fixed portion 1 on the same side with respect to this edge and the optical axis intersects the tip of the fixed portion. ,
The distances from the lens aperture stop 2 to A and α are equal (1
Expression 13) holds, and the distance from the optical axis to A is equal to or greater than the distance from the optical axis to α, and Expression (114) holds.

【0253】LA=Lα (113) rA≧rα (114) (113)式より、(112)式の条件は(115)式
のようになる。
LA = Lα (113) rA ≧ rα (114) From the expression (113), the condition of the expression (112) is as shown in the expression (115).

【0254】 (r2+rA)×(f(f+L3)−L3・L2)>(r2+rα)×(f(f +L3)−L3・L2) (115) (114)式より、(115)式の条件は(116)
式、(117)式のようになる。
(R2 + rA) × (f (f + L3) −L3 · L2)> (r2 + rα) × (f (f + L3) −L3 · L2) (115) From the expression (114), the condition of the expression (115) is as follows. 116)
Equation (117) is obtained.

【0255】 f(f+L3)−L3・L2>0 (116) ∴f(f+L3)>L3・L2 (117) (88)式、或いは(91)式、或いは(94)式、或
いは(97)式の条件を満たすよう光学定数や各位置関
係を設計した赤外センサが、固定部先端Aからの放射光
も受光しないためには、(117)式の条件を満たす光
学設計である必要がある。
F (f + L3) −L3 · L2> 0 (116) f (f + L3)> L3 · L2 (117) Equation (88), Equation (91), Equation (94), or Equation (97) In order that the infrared sensor designed with the optical constants and each positional relationship so as to satisfy the condition (1) does not receive the radiation light from the fixed portion tip A, the optical design needs to satisfy the condition of the expression (117).

【0256】次に、Bから放射される光を受光しない条
件を求める。Bから放射される光はK1B、K2B、K3B、
K4Bなどを通ってBの像点FB に到達する。BからFB
までの各光路のうち受光面で赤外受光素子4に最も近づ
くものは、図10に示すように像点FB が受光面よりも
屈折レンズ3に近い場合にはK4Bであり、図11に示す
ように像点FB が受光面よりも屈折レンズ3に近い場合
はK1Bである。
Next, a condition for not receiving light emitted from B is determined. The light emitted from B is K1B, K2B, K3B,
It reaches the image point FB of B through K4B and the like. B to FB
The light path closest to the infrared light receiving element 4 on the light receiving surface is K4B when the image point FB is closer to the refraction lens 3 than the light receiving surface, as shown in FIG. When the image point FB is closer to the refraction lens 3 than the light receiving surface, K1B is determined.

【0257】まず図10に示すように、FB が受光面よ
りも屈折レンズ3に近く、したがってBからFB までの
各光路のうち受光面で赤外受光素子4に最も近づくもの
がK4Bである場合について、Bから放射される光を赤外
受光素子4で受光しない条件を示す。
First, as shown in FIG. 10, when FB is closer to the refraction lens 3 than the light receiving surface, and K4B is closest to the infrared light receiving element 4 in the light receiving surface among the optical paths from B to FB. The following shows a condition in which light emitted from B is not received by the infrared light receiving element 4.

【0258】Bから放射される光を赤外受光素子4で受
光しないためには、K4Bと受光面との交点であるFBS4
と光軸との距離rBS4 がrs よりも大きい必要がある。
つまり(118)式が成り立つ必要がある。
In order to prevent the light radiated from B from being received by the infrared light receiving element 4, it is necessary to use the FBS4 at the intersection of K4B and the light receiving surface.
The distance rBS4 between the optical axis and the optical axis needs to be larger than rs.
That is, equation (118) needs to be satisfied.

【0259】r BS4>rs (118) また、幾何光学で周知の通り、r3B4 、rBF、LBF、r
Bs4 、f、L3 は幾何関係として(119)式、(12
0)式を満たす。
R BS4> rs (118) As is well known in geometrical optics, r 3B4, rBF, LBF, r
Bs4, f, and L3 are expressed by the following equation (119) as a geometric relationship.
0) is satisfied.

【0260】[0260]

【数69】 [Equation 69]

【0261】また、幾何光学で周知の通りrB 、LB 、
L2 、rBF、LBFは幾何関係として(121)式、(1
22)式を満たす。
As is well known in geometrical optics, rB, LB,
L2, rBF, and LBF are expressed by the following equation (121) as a geometric relationship.
22) Formula is satisfied.

【0262】[0262]

【数70】 [Equation 70]

【0263】(122)式を(120)式に代入するこ
とにより(123)式が得られる。
By substituting equation (122) into equation (120), equation (123) is obtained.

【0264】[0264]

【数71】 [Equation 71]

【0265】また、ガウスの公式から(124)式、
(125)式が成り立つ。
Also, from Gauss's formula, equation (124)
Equation (125) holds.

【0266】[0266]

【数72】 [Equation 72]

【0267】(125)式を(123)式に代入するこ
とにより(126)式が得られる。
By substituting equation (125) into equation (123), equation (126) is obtained.

【0268】[0268]

【数73】 [Equation 73]

【0269】また、幾何光学で周知の通り、r2 、rB
、LB 、r3B4 、L2 は幾何関係として(127)
式、(128)式を満たす。
As is well known in geometrical optics, r2, rB
, LB, r3B4, and L2 are expressed as geometric relationships (127)
Equation (128) is satisfied.

【0270】[0270]

【数74】 [Equation 74]

【0271】(128)式を(126)式に代入するこ
とによって(129)式が得られる。
By substituting equation (128) into equation (126), equation (129) is obtained.

【0272】[0272]

【数75】 [Equation 75]

【0273】rBS4 と同じくrαS4は(130)式のよ
うになる。
Similarly to rBS4, rαS4 is given by equation (130).

【0274】[0274]

【数76】 [Equation 76]

【0275】rαS4は(84)式の関係を満たすので、
(131)式を満たせば、自動的にrBS4 が(118)
式の関係を満たすことになる。
Since rαS4 satisfies the relationship of equation (84),
If equation (131) is satisfied, rBS4 automatically becomes (118)
This satisfies the relationship of the expression.

【0276】r BS4>rαS4 (131) (129)(130)式を(131)式に代入すること
により(132)式が得られる。
R BS4> rα S4 (131) (129) By substituting equation (130) into equation (131), equation (132) is obtained.

【0277】[0277]

【数77】 [Equation 77]

【0278】ここで、αは固定部1先端面の点であるの
で、Lα、LB に(133)式、(134)式の関係が
成り立つ。
Here, since α is a point on the tip end surface of the fixed portion 1, the relations of equations (133) and (134) hold for Lα and LB.

【0279】[0279]

【数78】 [Equation 78]

【0280】(88)式、或いは(91)式、或いは
(94)式、或いは(97)式の条件を満たし、(11
7)式の条件をよう光学定数や各位置関係を設計した赤
外センサが、固定部の先端以外の点からの放射光も受光
しない、すなわち固定部のあらゆる点から放射される光
も受光しないためには、あらゆるBについて(132)
式の関係が成り立つ必要がある。したがって、(13
4)式(117)式を考慮して、(135)式が成り立
つ必要がある。
The condition of the expression (88), the expression (91), the expression (94), or the expression (97) is satisfied, and (11)
The infrared sensor designed with the optical constants and each positional relationship according to the condition of the expression 7) does not receive the light emitted from any point other than the tip of the fixed part, that is, does not receive the light emitted from any point of the fixed part. To do this, for any B (132)
It is necessary that the relationship of the expressions hold. Therefore, (13
4) In consideration of equation (117), equation (135) needs to be satisfied.

【0281】 r2+rB≧r2+rα (135) ∴rB≧rα (136) 以上のように、固定部1から放射される光を赤外受光素
子4で受光しないためには(88)式、或いは(91)
式、或いは(94)式、或いは(97)式の条件を満た
し、且つ(117)式の条件を満たし、さらに(13
6)式を満たす必要がある。
R2 + rB ≧ r2 + rα (135) ∴rB ≧ rα (136) As described above, in order for the light radiated from the fixed portion 1 not to be received by the infrared light receiving element 4, the formula (88) or (91)
Expression (94) or Expression (97) is satisfied, the expression (117) is satisfied, and (13)
6) Formula must be satisfied.

【0282】次に、図11に示すように、FB が受光面
よりも屈折レンズ3から遠く、したがってBからFB ま
での各光路のうち受光面で赤外受光素子4に最も近づく
ものがK1Bである場合について、Bから放射される光を
赤外受光素子4で受光しない条件を示す。
Next, as shown in FIG. 11, FB is farther from the refracting lens 3 than the light receiving surface, and therefore K1B is the light receiving surface of each optical path from B to FB which comes closest to the infrared light receiving element 4. In a certain case, a condition in which light emitted from B is not received by the infrared light receiving element 4 is shown.

【0283】Bから放射される光を赤外受光素子4で受
光しないためには、K1Bと受光面との交点であるFBS1
と光軸との距離rBS1 がrs よりも大きい必要がある。
つまり(137)式が成り立つ必要がある。
In order to prevent the light radiated from B from being received by the infrared light receiving element 4, it is necessary to use FBS1 which is the intersection of K1B and the light receiving surface.
The distance rBS1 between the optical axis and the optical axis needs to be larger than rs.
That is, equation (137) needs to be satisfied.

【0284】rBS1 >rs (137) また、幾何光学で周知の通り、r3B1 、rB 、LB 、r
Bs1 、f、L3 は幾何関係として(138)式、(13
9)式を満たす。
RBS1> rs (137) As is well known in geometrical optics, r3B1, rB, LB, r
Bs1, f, and L3 are expressed by the following equation (138) as a geometric relationship.
9) Formula is satisfied.

【0285】[0285]

【数79】 [Expression 79]

【0286】また、幾何光学で周知の通りrB 、LB 、
L2 、rBF、LBFは幾何関係として(140)式、(1
41)式を満たす。
As is well known in geometrical optics, rB, LB,
L2, rBF, and LBF are expressed by the following equation (140) as a geometric relationship.
41) Formula is satisfied.

【0287】[0287]

【数80】 [Equation 80]

【0288】(141)式を(139)式に代入するこ
とにより(142)式が得られる。
By substituting equation (141) into equation (139), equation (142) is obtained.

【0289】[0289]

【数81】 [Equation 81]

【0290】また、ガウスの公式から(143)式、
(144)式が成り立つ。
Also, from Gauss's formula, equation (143)
Equation (144) holds.

【0291】[0291]

【数82】 (Equation 82)

【0292】(144)式を(142)式に代入するこ
とにより(145)式が得られる。
By substituting equation (144) into equation (142), equation (145) is obtained.

【0293】[0293]

【数83】 [Equation 83]

【0294】また、幾何光学で周知の通り、r2 、rB
、LB 、r3B1 、L2 は幾何関係として(146)
式、(147)式を満たす。
As is well known in geometrical optics, r2, rB
, LB, r3B1 and L2 are represented as geometric relationships (146)
Equation (147) is satisfied.

【0295】[0295]

【数84】 [Equation 84]

【0296】(147)式を(145)式に代入するこ
とによって(148)式が得られる。
By substituting equation (147) into equation (145), equation (148) is obtained.

【0297】[0297]

【数85】 [Equation 85]

【0298】rBS1 と同じくrαS1は(149)式のよ
うになる。
Similarly to rBS1, rαS1 is given by the following equation (149).

【0299】[0299]

【数86】 [Equation 86]

【0300】ここで、αからFαまでの各光路のうち受
光面で赤外受光素子4に最も近づくものはK4 αであ
り、(150)式が成り立つ。
Here, of the light paths from α to Fα, the light path closest to the infrared light receiving element 4 on the light receiving surface is K4α, and the equation (150) is established.

【0301】rαS1>rαS4 (150) rαS4は(84)式の関係を満たすので、(151)式
を満たせば、自動的にrBS1 が(137)式の関係を満
たすことになる。
RαS1> rαS4 (150) Since rαS4 satisfies the relationship of Expression (84), if Expression (151) is satisfied, rBS1 automatically satisfies the relationship of Expression (137).

【0302】rBS1 >rαS1 (151) (148)(149)式を(151)式に代入すること
により(152)式が得られる。
RBS1> rαS1 (151) (148) By substituting equation (149) into equation (151), equation (152) is obtained.

【0303】[0303]

【数87】 [Equation 87]

【0304】ここで、αは固定部1先端面の点であるの
で、Lα、LB に(153)式、(154)式の関係が
成り立つ。
Here, since α is a point on the tip end surface of the fixed portion 1, the relations of equations (153) and (154) hold for Lα and LB.

【0305】[0305]

【数88】 [Equation 88]

【0306】(88)式、或いは(91)式、或いは
(94)式、或いは(97)式の条件を満たし、且つ
(117)式と(136)式を満たす光学設計である赤
外センサが、固定部の先端面以外の点からの放射光も受
光しない、すなわち固定部のあらゆる点から放射される
光も受光しないためには、あらゆるBについて(15
2)式の関係が成り立つ必要がある。したがって、(1
54)式、(117)式を考慮して、(155)式が成
り立つ必要がある。
An infrared sensor having an optical design that satisfies the condition of the expression (88), the expression (91), the expression (94), or the expression (97) and the expressions (117) and (136) is used. In order to not receive the light emitted from any point other than the tip end surface of the fixed portion, that is, to not receive the light emitted from any point of the fixed portion, it is necessary to set (15
2) The relationship of the expression needs to be satisfied. Therefore, (1
The expression (155) needs to be satisfied in consideration of the expressions (54) and (117).

【0307】rB−r2≧rα−r2 (155) ∴rB≧rα (156) (156)式と、(136)式は等しい。したがって、
以上のように、固定部1から放射される光を赤外受光素
子4で受光しないためには(88)式、或いは(91)
式、或いは(94)式、或いは(97)式の条件を満た
し、且つ(117)式を満たし、さらに(136)式を
満たす必要がある。
RB−r2 ≧ rα−r2 (155) ∴rB ≧ rα (156) Equations (156) and (136) are equal. Therefore,
As described above, in order to prevent the light radiated from the fixed portion 1 from being received by the infrared light receiving element 4, the expression (88) or (91)
It is necessary to satisfy the condition of the expression, the expression (94), or the expression (97), the expression (117), and the expression (136).

【0308】以上のように本実施例によれば、赤外受光
素子4を、(88)式あるいは(91)式あるいは(9
4)式あるいは(97)式で与えられる量だけ屈折レン
ズ3の焦点から離して設け、かつ(117)式と(13
6)式を満たす光学設計にすることによって、固定部1
から放射される赤外線を赤外受光素子4で受光せずに被
測定物体から放射光のみを赤外受光素子4で受光させる
ことができるため、固定部の温度変化に起因する測定誤
差を防ぐことができる。
As described above, according to the present embodiment, the infrared light receiving element 4 is replaced by the expression (88), the expression (91) or the expression (9).
The lens is provided away from the focal point of the refractive lens 3 by an amount given by the expression (4) or (97), and the expressions (117) and (13)
6) By using an optical design that satisfies the expression,
The infrared light from the object to be measured can be received by the infrared light receiving element 4 without receiving the infrared light emitted by the infrared light receiving element 4 from the object to be measured, thereby preventing a measurement error due to a temperature change of the fixed portion. Can be.

【0309】なお、筐体9と固定部1、レンズ開口絞り
2は一体であっても構わない。
The housing 9, the fixed section 1, and the lens aperture stop 2 may be integrated.

【0310】図12は本発明の第9の実施例における赤
外センサを示すものである。図12において、5は透過
型回折レンズ、4は赤外線受光素子、9は筐体、A、
A’は受光したい領域と受光したくない領域の境界に位
置する点、Bは受光したくない領域の点、Fは透過型回
折レンズの焦点、FA は透過型回折レンズ5によるAの
像点、FA'は透過型回折レンズ5によるA’の像点、F
B は透過型回折レンズ5によるBの像点、K1AはAから
光軸に対して同じ側のレンズ開口絞り2の開口部の縁を
通過してFA へ進行する光(マージナル光線)の光路、
K2AはAから光軸と平行に進んで焦点Fを通過してFA
に到達する光の光路、K3AはAから透過型回折レンズ5
の中心を通過してFA に到達する光の光路、K4AはAか
ら光軸を挟んで反対側のレンズ開口絞り2の開口部の縁
を通過してFA に到達する光(マージナル光線)の光
路、K1A' はA’から光軸に対して同じ側のレンズ開口
絞り2の開口部の縁を通過してFA'へ進行する光(マー
ジナル光線)の光路、K2A' はA’から光軸と平行に進
んで焦点Fを通過してFA'に到達する光の光路、K3A'
はA’から透過型回折レンズ5の中心を通過してFA'に
到達する光の光路、K4A' はAから光軸を挟んで反対側
のレンズ開口絞り2の開口部の縁を通過してFA'に到達
する光(マージナル光線)の光路、K3BはBから透過型
回折レンズ5の中心を通過してFB に到達する光の光
路、FX は光路K1Aと光路K1A' の交点である。
FIG. 12 shows an infrared sensor according to the ninth embodiment of the present invention. 12, 5 is a transmission type diffraction lens, 4 is an infrared light receiving element, 9 is a housing, A,
A 'is a point located at a boundary between a region where light reception is desired and a region where light reception is not desired, B is a point of a region where light reception is not desired, F is a focal point of the transmission type diffraction lens, and FA is an image point of A by the transmission type diffraction lens 5. , FA ′ is the image point of A ′ by the transmission type diffraction lens 5, F ′
B is an image point of B by the transmission type diffractive lens 5, K1A is an optical path of light (marginal ray) which travels to A through the edge of the aperture of the lens aperture stop 2 on the same side with respect to the optical axis from A.
K2A travels from A in parallel with the optical axis, passes through the focal point F, and
K3A is the transmission diffractive lens 5 from A
K4A is an optical path of light (marginal ray) passing through the center of the lens and arriving at FA through K4A, passing through the edge of the opening of the lens aperture stop 2 on the opposite side with respect to the optical axis with respect to the optical axis. , K1A 'is the optical path of light (marginal ray) traveling from A' to FA 'through the edge of the aperture of the lens aperture stop 2 on the same side with respect to the optical axis, and K2A' is the optical path from A 'to the optical axis. The optical path of light traveling parallel and passing through the focal point F to reach FA ', K3A'
Is the optical path of the light from A 'to reach FA' through the center of the transmissive diffraction lens 5, and K4A 'is the light path from A passing through the edge of the opening of the lens aperture stop 2 on the opposite side of the optical axis with respect to the optical axis. The optical path of the light (marginal ray) reaching FA ', K3B is the optical path of light passing from B through the center of the transmissive diffraction lens 5 and reaching FB, and FX is the intersection of the optical paths K1A and K1A'.

【0311】測定したい領域から放射される赤外線のみ
を赤外受光素子で受光するような光学系を設計する。
An optical system is designed such that only infrared rays radiated from a region to be measured are received by an infrared light receiving element.

【0312】赤外受光素子4を筐体9に取り付け、透過
型回折レンズ5を通過しない赤外線を赤外受光素子4で
受光しないようにする。透過型回折レンズ5を通った赤
外線のみ受光する構成にした上で以下の設計を行う。
[0312] The infrared light receiving element 4 is attached to the housing 9 so that infrared light not passing through the transmission type diffraction lens 5 is not received by the infrared light receiving element 4. The following design is performed after a configuration is adopted in which only infrared rays passing through the transmission diffraction lens 5 are received.

【0313】Aから放射される光は光路K1A、K2A、K
3A、K4Aなどを通ってAの像点FAに到達する。幾何光
学で周知の通り、Aの像点FA は光軸を挟んでAと反対
側に形成される。図12中に示すように、光路K2Aを通
る光は、透過型回折レンズ5を通過してFで光軸と交叉
したのち光軸から離れながらFA に到達する。同じよう
に、光路K1Aを通る光は、透過型回折レンズ5を通過し
て光軸と交叉したのち光軸から離れながらFA に到達す
る。光路K3Aを通る光は、透過型回折レンズ5で光軸と
交叉したのち光軸から離れながらFA に到達する。光路
K4Aを通る光は、光軸と交叉して透過型回折レンズ5を
通過し、透過型回折レンズ5を通過してからは光軸と交
叉せずにFA に到達する。このように、光路K1Aと光軸
が交叉する点FX よりも透過型回折レンズから離れた位
置かつFA よりも透過型回折レンズ5に近い位置で、A
から放射される光が通過しない領域が存在する。この領
域は、FX とFA とFA'が形成する三角形の内側とな
る。この三角形の内側に赤外受光素子4を設置すること
で、A、A’から放射される光を受光しない赤外センサ
が得られる。
The light radiated from A has optical paths K1A, K2A, K
It reaches the image point FA of A through 3A, K4A and the like. As is well known in geometrical optics, the image point FA of A is formed on the opposite side of A with respect to the optical axis. As shown in FIG. 12, the light passing through the optical path K2A passes through the transmission type diffractive lens 5, crosses the optical axis at F, and then reaches FA while leaving the optical axis. Similarly, the light passing through the optical path K1A passes through the transmissive diffraction lens 5, crosses the optical axis, and then reaches FA while leaving the optical axis. The light passing through the optical path K3A crosses the optical axis by the transmission type diffractive lens 5, and then reaches FA while leaving the optical axis. The light passing through the optical path K4A crosses the optical axis and passes through the transmission diffraction lens 5, and after passing through the transmission diffraction lens 5, reaches the FA without crossing the optical axis. As described above, at a position farther from the transmission diffraction lens than the point FX where the optical path K1A and the optical axis intersect and closer to the transmission diffraction lens 5 than FA, A
There is an area through which the light emitted from does not pass. This region is inside the triangle formed by FX, FA and FA '. By installing the infrared light receiving element 4 inside this triangle, an infrared sensor that does not receive light emitted from A and A ′ can be obtained.

【0314】受光したい領域の外側にある、受光したく
ない領域中のB点は、Aよりも光軸から遠いため、透過
型回折レンズ5によるBの像点FB がFA より光軸から
遠くなることは周知の通りである。従って、FX とFA
とFA'が形成する三角形の内側に赤外受光素子を設置す
ることによってA、A’から放射される赤外線を受光し
ないようにすれば、自動的にBからの赤外線も受光しな
い構成となる。
The point B outside the region where light is to be received and in the region where light reception is not desired is farther from the optical axis than A, so that the image point FB of B by the transmission type diffraction lens 5 is farther from the optical axis than FA. This is well known. Therefore, FX and FA
By disposing an infrared light receiving element inside the triangle formed by F and FA 'so as not to receive infrared light radiated from A and A', it is possible to automatically receive no infrared light from B.

【0315】以上のように、FX とFA とFA'が形成す
る三角形の内側に赤外受光素子4を設置することによっ
て、光軸付近の受光したい領域から放射される赤外線の
みを受光するような赤外センサが得られる。
As described above, by installing the infrared light receiving element 4 inside the triangle formed by FX, FA, and FA ', it becomes possible to receive only infrared light radiated from the light receiving area near the optical axis. An infrared sensor is obtained.

【0316】図13は本発明の第10の実施例における
赤外センサを示すものである。図13において、5は透
過型回折レンズ、4は赤外線受光素子、9は筐体、A、
A’は受光したい領域と受光したくない領域の境界に位
置する点、Bは受光したくない領域の点、Fは透過型回
折レンズの焦点、FA は透過型回折レンズ5によるAの
像点、FA'は透過型回折レンズ5によるA’の像点、F
B は透過型回折レンズ5によるBの像点、K1AはAから
光軸に対して同じ側のレンズ開口絞り2の開口部の縁を
通過してFA へ進行する光(マージナル光線)の光路、
K2AはAから光軸と平行に進んで焦点Fを通過してFA
に到達する光の光路、K3AはAから透過型回折レンズ5
の中心を通過してFA に到達する光の光路、K4AはAか
ら光軸を挟んで反対側のレンズ開口絞り2の開口部の縁
を通過してFA に到達する光(マージナル光線)の光
路、K1A' はA’から光軸に対して同じ側のレンズ開口
絞り2の開口部の縁を通過してFA'へ進行する光(マー
ジナル光線)の光路、K2A'はA’から光軸と平行に進
んで焦点Fを通過してFA'に到達する光の光路、K3A'
はA’から透過型回折レンズ5の中心を通過してFA'に
到達する光の光路、K4A' はAから光軸を挟んで反対側
のレンズ開口絞り2の開口部の縁を通過してFA'に到達
する光(マージナル光線)の光路、K3BはBから透過型
回折レンズ5の中心を通過してFB に到達する光の光
路、FX は光路K1Aと光路K1A' の交点、FY は光路K
4Aと光路K4A' の交点である。
FIG. 13 shows an infrared sensor according to the tenth embodiment of the present invention. In FIG. 13, 5 is a transmission type diffraction lens, 4 is an infrared light receiving element, 9 is a housing, A,
A 'is a point located at a boundary between a region where light reception is desired and a region where light reception is not desired, B is a point of a region where light reception is not desired, F is a focal point of the transmission type diffraction lens, and FA is an image point of A by the transmission type diffraction lens 5. , FA ′ is the image point of A ′ by the transmission type diffraction lens 5, F ′
B is an image point of B by the transmission type diffractive lens 5, K1A is an optical path of light (marginal ray) which travels to A through the edge of the aperture of the lens aperture stop 2 on the same side with respect to the optical axis from A.
K2A travels from A in parallel with the optical axis, passes through the focal point F, and
K3A is the transmission diffractive lens 5 from A
K4A is an optical path of light (marginal ray) passing through the center of the lens and arriving at FA through K4A, passing through the edge of the opening of the lens aperture stop 2 on the opposite side with respect to the optical axis with respect to the optical axis. , K1A 'is the optical path of the light (marginal ray) that travels from A' to FA 'through the edge of the opening of the lens aperture stop 2 on the same side as the optical axis, and K2A' is the optical path from A 'to the optical axis. The optical path of light traveling parallel and passing through the focal point F to reach FA ', K3A'
Is the optical path of the light from A 'to reach FA' through the center of the transmissive diffraction lens 5, and K4A 'is the light path from A passing through the edge of the opening of the lens aperture stop 2 on the opposite side of the optical axis with respect to the optical axis. K3B is the optical path of light (marginal ray) reaching FA ', K3B is the optical path of light passing from the center of the transmissive diffractive lens 5 to FB, FX is the intersection of optical paths K1A and K1A', and FY is the optical path K
This is the intersection of 4A and the optical path K4A '.

【0317】測定したい領域から放射される赤外線のみ
を赤外受光素子で受光するような光学系を設計する。
An optical system is designed so that only infrared rays radiated from the area to be measured are received by the infrared light receiving element.

【0318】赤外受光素子4を筐体9に取り付け、透過
型回折レンズ5を通過しない赤外線を赤外受光素子4で
受光しないようにする。透過型回折レンズ5を通った赤
外線のみ受光する構成にした上で以下の設計を行う。
The infrared light receiving element 4 is mounted on the housing 9 so that infrared light not passing through the transmission type diffraction lens 5 is not received by the infrared light receiving element 4. The following design is performed after a configuration is adopted in which only infrared rays passing through the transmission diffraction lens 5 are received.

【0319】Aから放射される光は光路K1A、K2A、K
3A、K4Aなどを通ってAの像点FAに到達する。幾何光
学で周知の通り、Aの像点FA は光軸を挟んでAと反対
側に形成される。図13中に示すように、光路K2Aを通
る光は、透過型回折レンズ5を通過してFで光軸と交叉
してFA に到達し光軸から離れていく。同じように、光
路K1Aを通る光は、透過型回折レンズ5を通過して光軸
と交叉してFA に到達し光軸から離れていく。光路K3A
を通る光は、透過型回折レンズ5で光軸と交叉してFA
に到達し光軸から離れていく。光路K4Aを通る光は、光
軸と交叉して透過型回折レンズ5を通過し、透過型回折
レンズ5を通過してからは光軸と交叉せずにFA に到達
し、その後光軸に近づくかあるいは遠ざかっていく。こ
のように、Aの像点FA よりも透過型回折レンズから離
れた位置でAから放射される光が通過しない領域が存在
する。この領域は、FA よりも透過型回折レンズ5から
遠い部分の光路K4Aと、FA'よりも透過型回折レンズ5
から遠い部分の光路K4A'で挟まれた領域である。この
領域に赤外センサを設置することで、A、A’から放射
される赤外線を受光しない光学系が実現できる。
The light emitted from A has optical paths K1A, K2A, K
It reaches the image point FA of A through 3A, K4A and the like. As is well known in geometrical optics, the image point FA of A is formed on the opposite side of A with respect to the optical axis. As shown in FIG. 13, the light passing through the optical path K2A passes through the transmission type diffractive lens 5, crosses the optical axis at F, reaches FA, and moves away from the optical axis. Similarly, the light passing through the optical path K1A passes through the transmissive diffraction lens 5, crosses the optical axis, reaches FA, and moves away from the optical axis. Optical path K3A
Passes through the transmission type diffraction lens 5 and intersects with the optical axis.
And moves away from the optical axis. The light passing through the optical path K4A crosses the optical axis and passes through the transmission type diffraction lens 5, and after passing through the transmission type diffraction lens 5, reaches the FA without crossing the optical axis and thereafter approaches the optical axis. Or go away. As described above, there is a region where the light emitted from A does not pass at a position farther from the transmission diffraction lens than the image point FA of A. This region includes an optical path K4A at a portion farther from the transmission diffraction lens 5 than FA, and a transmission diffraction lens 5
This is an area sandwiched between the optical paths K4A 'far from the optical path K4A'. By installing an infrared sensor in this region, an optical system that does not receive infrared rays radiated from A and A ′ can be realized.

【0320】受光したい領域の外側にある、受光したく
ない領域中のBはAよりも光軸から遠いため、透過型回
折レンズ5によるBの像点FB がFA より光軸から遠く
なることは周知の通りである。従って、FA よりも透過
型回折レンズ5から遠い部分の光路K4Aと、FA'よりも
透過型回折レンズ5から遠い部分の光路K4A' で挟まれ
た領域内に赤外受光素子を設置することによってA、
A’から放射される赤外線を受光しないようにすれば、
自動的にBから放射される赤外線も受光しない構成とな
る。
Since B, which is located outside the region where light is to be received and is not desired to be received, is farther from the optical axis than A, it is unlikely that the image point FB of B by the transmission type diffraction lens 5 is farther from the optical axis than FA. As is well known. Therefore, by installing the infrared light receiving element in a region between the optical path K4A farther from the transmission diffraction lens 5 than FA and the light path K4A 'farther from the transmission diffraction lens 5 than FA'. A,
If you do not receive the infrared radiation emitted from A ',
The configuration is such that infrared rays emitted from B are not automatically received.

【0321】以上のように、FA よりも透過型回折レン
ズ5から遠い部分の光路K4Aと、FA'よりも透過型回折
レンズ5から遠い部分の光路K4A' で挟まれた領域内に
赤外受光素子4を設置することによって、光軸付近の受
光したい領域から放射される赤外線のみを受光するよう
な赤外センサが得られる。
As described above, the infrared light is received in the region between the optical path K4A farther from the transmission diffraction lens 5 than FA and the light path K4A 'farther from the transmission diffraction lens 5 than FA'. By installing the element 4, an infrared sensor that receives only infrared light emitted from a light receiving area near the optical axis can be obtained.

【0322】図14は本発明の第11の実施例における
赤外センサを示すものである。図14において、5は透
過型回折レンズ、4は赤外線受光素子、9は筐体、1は
穴の内部など凹部にある受光したい領域に赤外センサを
固定して向けるための固定部、A、A’は受光したい領
域と受光したくない領域の境界に位置する点、Bは受光
したくない領域の点、Fは透過型回折レンズの焦点、F
A は透過型回折レンズ5によるAの像点、FA'は透過型
回折レンズ5によるA’の像点、FB は透過型回折レン
ズ5によるBの像点、K1AはAから光軸に対して同じ側
のレンズ開口絞り2の開口部の縁を通過してFA へ進行
する光(マージナル光線)の光路、K2AはAから光軸と
平行に進んで焦点Fを通過してFA に到達する光の光
路、K3AはAから透過型回折レンズ5の中心を通過して
FA に到達する光の光路、K4AはAから光軸を挟んで反
対側のレンズ開口絞り2の開口部の縁を通過してFA に
到達する光(マージナル光線)の光路、K1A' はA’か
ら光軸に対して同じ側のレンズ開口絞り2の開口部の縁
を通過してFA'へ進行する光(マージナル光線)の光
路、K2A' はA’から光軸と平行に進んで焦点Fを通過
してFA'に到達する光の光路、K3A' はA’から透過型
回折レンズ5の中心を通過してFA'に到達する光の光
路、K4A' はAから光軸を挟んで反対側のレンズ開口絞
り2の開口部の縁を通過してFA'に到達する光(マージ
ナル光線)の光路、K3BはBから透過型回折レンズ5の
中心を通過してFB に到達する光の光路、FX は光路K
1Aと光路K1A' の交点である。
FIG. 14 shows an infrared sensor according to the eleventh embodiment of the present invention. In FIG. 14, 5 is a transmission type diffractive lens, 4 is an infrared light receiving element, 9 is a housing, 1 is a fixing portion for fixing and pointing the infrared sensor to a region where light is desired to be received, such as the inside of a hole, and A, A 'is a point located at a boundary between a region where light reception is desired and a region where light reception is not desired, B is a point of a region where light reception is not desired, F is a focal point of a transmission type diffraction lens, F
A is the image point of A by the transmission diffraction lens 5, FA 'is the image point of A' by the transmission diffraction lens 5, FB is the image point of B by the transmission diffraction lens 5, and K1A is from A to the optical axis. An optical path of light (marginal ray) passing through the edge of the opening of the lens aperture stop 2 on the same side to the FA (marginal ray), K2A travels in parallel with the optical axis from A, passes through the focal point F and reaches the FA. K3A passes through the center of the transmission type diffractive lens 5 from A to reach FA, and K4A passes from A through the edge of the opening of the lens aperture stop 2 on the opposite side with respect to the optical axis. K1A 'is the optical path of the light (marginal ray) reaching FA through the light (marginal ray) which travels from A' to FA 'through the edge of the opening of the lens aperture stop 2 on the same side with respect to the optical axis. K2A 'is an optical path of light traveling from A' in parallel with the optical axis and passing through the focal point F to reach FA ', and K3A' is K4A 'passes through the center of the transmissive diffractive lens 5 and reaches FA', and K4A 'passes through the edge of the aperture of the lens aperture stop 2 on the opposite side of A from the optical axis and FA'. K3B is the optical path of the light (marginal ray) reaching B, the optical path of the light passing from B through the center of the transmissive diffraction lens 5 to FB, and FX is the optical path K
It is the intersection of 1A and the optical path K1A '.

【0323】光軸付近にある測定したい領域から放射さ
れる赤外線のみを赤外受光素子で受光するような光学系
を設計する。
An optical system is designed such that only infrared rays radiated from a region to be measured near the optical axis are received by the infrared light receiving element.

【0324】赤外受光素子4を筐体9に取り付け、透過
型回折レンズ5を通過する赤外線のみを赤外受光素子4
で受光しするようにする。透過型回折レンズ5を通った
赤外線のみ受光する構成にした上で以下の設計を行う。
[0324] The infrared light receiving element 4 is attached to the housing 9, and only the infrared light passing through the transmission type diffraction lens 5 is received by the infrared light receiving element 4.
To receive light. The following design is performed after a configuration is adopted in which only infrared rays passing through the transmission diffraction lens 5 are received.

【0325】Aから放射される光は光路K1A、K2A、K
3A、K4Aなどを通ってAの像点FAに到達する。幾何光
学で周知の通り、Aの像点FA は光軸を挟んでAと反対
側に形成される。図14中に示すように、光路K2Aを通
る光は、透過型回折レンズ5を通過してFで光軸と交叉
したのち光軸から離れながらFA に到達する。同じよう
に、光路K1Aを通る光は、透過型回折レンズ5を通過し
て光軸と交叉したのち光軸から離れながらFA に到達す
る。光路K3Aを通る光は、透過型回折レンズ5で光軸と
交叉したのち光軸から離れながらFA に到達する。光路
K4Aを通る光は、光軸と交叉して透過型回折レンズ5を
通過し、透過型回折レンズ5を通過してからは光軸と交
叉せずにFA に到達する。このように、光路K1Aと光軸
が交叉する点FX よりも透過型回折レンズから離れた位
置かつFA よりも透過型回折レンズ5に近い位置で、A
から放射される光が通過しない領域が存在する。この領
域は、FX とFA とFA'が形成する三角形の内側とな
る。この三角形の内側に赤外受光素子4を設置すること
で、A、A’から放射される光を受光しない赤外センサ
が得られる。
The light radiated from A has optical paths K1A, K2A, K
It reaches the image point FA of A through 3A, K4A and the like. As is well known in geometrical optics, the image point FA of A is formed on the opposite side of A with respect to the optical axis. As shown in FIG. 14, light passing through the optical path K2A passes through the transmission type diffractive lens 5, crosses the optical axis at F, and then reaches FA while leaving the optical axis. Similarly, the light passing through the optical path K1A passes through the transmissive diffraction lens 5, crosses the optical axis, and then reaches FA while leaving the optical axis. The light passing through the optical path K3A crosses the optical axis by the transmission type diffractive lens 5, and then reaches FA while leaving the optical axis. The light passing through the optical path K4A crosses the optical axis and passes through the transmission diffraction lens 5, and after passing through the transmission diffraction lens 5, reaches the FA without crossing the optical axis. As described above, at a position farther from the transmission diffraction lens than the point FX where the optical path K1A and the optical axis intersect and closer to the transmission diffraction lens 5 than FA, A
There is an area through which the light emitted from does not pass. This region is inside the triangle formed by FX, FA and FA '. By installing the infrared light receiving element 4 inside this triangle, an infrared sensor that does not receive light emitted from A and A ′ can be obtained.

【0326】固定部1を、光路K1A、光路K1A' よりも
光軸から遠くなるように設置する。
The fixed part 1 is set so as to be farther from the optical axis than the optical paths K1A and K1A '.

【0327】固定部1から放射される赤外線は、受光し
たい領域と同じ面の受光したくない領域から放射される
光と置き換えられる。受光したい領域の外側にある受光
したくない領域中のB点はAよりも光軸から遠いため、
透過型回折レンズ5によるBの像点FB がFA より光軸
から遠くなることは周知の通りである。従って、FX と
FA とFA'が形成する三角形の内側に赤外受光素子を設
置することによってA、A’から放射される赤外線を受
光しないようにすれば、自動的にBからの赤外線も受光
しない構成となる。つまり、自動的に固定部1から放射
される赤外線を受光しない構成となる。
[0327] The infrared rays radiated from the fixed part 1 are replaced with the light radiated from the area not to receive light on the same surface as the area to receive light. Since point B in the area not to receive light outside the area to receive light is farther from the optical axis than A,
It is well known that the image point FB of B by the transmission diffraction lens 5 is farther from the optical axis than FA. Therefore, if an infrared light receiving element is installed inside the triangle formed by FX, FA and FA 'so as not to receive the infrared light radiated from A and A', the infrared light from B is automatically received. No configuration. That is, the configuration is such that infrared rays emitted from the fixing unit 1 are not automatically received.

【0328】以上のように、FX とFA とFA'が形成す
る三角形の内側に赤外受光素子4を設置し、光路K1A、
K1A'よりも光軸から遠くに固定部1を設けることによっ
て、穴の内部など凹部にある受光したい領域に赤外セン
サを固定して向けることができて、固定部から放射され
る赤外線を受光せずに光軸付近の受光したい領域から放
射される赤外線のみを受光するような赤外センサが得ら
れる。
As described above, the infrared light receiving element 4 is installed inside the triangle formed by FX, FA, and FA ', and the optical path K1A,
By providing the fixing portion 1 farther from the optical axis than K1A ', the infrared sensor can be fixed and directed to an area where light reception is desired in a concave portion such as the inside of a hole, and infrared rays emitted from the fixing portion are received. An infrared sensor that receives only infrared rays radiated from an area to be received near the optical axis without receiving the light is obtained.

【0329】なお、筐体9と固定部1は一体であっても
構わない。
Note that the housing 9 and the fixed portion 1 may be integrated.

【0330】図15は本発明の第12の実施例における
赤外センサを示すものである。図15において、5は透
過型回折レンズ、4は赤外線受光素子、9は筐体、1は
穴の内部など凹部にある受光したい領域に赤外センサを
固定して向けるための固定部、A、A’は受光したい領
域と受光したくない領域の境界に位置する点、Bは受光
したくない領域の点、Fは透過型回折レンズの焦点、F
A は透過型回折レンズ5によるAの像点、FA'は透過型
回折レンズ5によるA’の像点、FB は透過型回折レン
ズ5によるBの像点、K1AはAから光軸に対して同じ側
のレンズ開口絞り2の開口部の縁を通過してFA へ進行
する光(マージナル光線)の光路、K2AはAから光軸と
平行に進んで焦点Fを通過してFA に到達する光の光
路、K3AはAから透過型回折レンズ5の中心を通過して
FA に到達する光の光路、K4AはAから光軸を挟んで反
対側のレンズ開口絞り2の開口部の縁を通過してFA に
到達する光(マージナル光線)の光路、K1A' はA’か
ら光軸に対して同じ側のレンズ開口絞り2の開口部の縁
を通過してFA'へ進行する光(マージナル光線)の光
路、K2A' はA’から光軸と平行に進んで焦点Fを通過
してFA'に到達する光の光路、K3A' はA’から透過型
回折レンズ5の中心を通過してFA'に到達する光の光
路、K4A' はAから光軸を挟んで反対側のレンズ開口絞
り2の開口部の縁を通過してFA'に到達する光(マージ
ナル光線)の光路、K3BはBから透過型回折レンズ5の
中心を通過してFB に到達する光の光路、FX は光路K
1Aと光路K1A' の交点である。
FIG. 15 shows an infrared sensor according to the twelfth embodiment of the present invention. In FIG. 15, 5 is a transmission type diffractive lens, 4 is an infrared light receiving element, 9 is a housing, 1 is a fixing portion for fixing and directing the infrared sensor to a light receiving area such as the inside of a hole in a concave portion, A, A 'is a point located at a boundary between a region where light reception is desired and a region where light reception is not desired, B is a point of a region where light reception is not desired, F is a focal point of a transmission type diffraction lens, F
A is the image point of A by the transmission diffraction lens 5, FA 'is the image point of A' by the transmission diffraction lens 5, FB is the image point of B by the transmission diffraction lens 5, and K1A is from A to the optical axis. An optical path of light (marginal ray) passing through the edge of the opening of the lens aperture stop 2 on the same side to the FA (marginal ray), K2A travels in parallel with the optical axis from A, passes through the focal point F and reaches the FA. K3A passes through the center of the transmission type diffractive lens 5 from A to reach FA, and K4A passes from A through the edge of the opening of the lens aperture stop 2 on the opposite side with respect to the optical axis. K1A 'is the optical path of the light (marginal ray) reaching FA through the light (marginal ray) which travels from A' to FA 'through the edge of the opening of the lens aperture stop 2 on the same side with respect to the optical axis. K2A 'is an optical path of light traveling from A' in parallel with the optical axis and passing through the focal point F to reach FA ', and K3A' is K4A 'passes through the center of the transmissive diffractive lens 5 and reaches FA', and K4A 'passes through the edge of the aperture of the lens aperture stop 2 on the opposite side of A from the optical axis and FA'. K3B is the optical path of the light (marginal ray) reaching B, the optical path of the light passing from B through the center of the transmissive diffraction lens 5 to FB, and FX is the optical path K
It is the intersection of 1A and the optical path K1A '.

【0331】光軸付近にある測定したい領域から放射さ
れる赤外線のみを赤外受光素子で受光するような光学系
を設計する。
An optical system is designed such that only infrared rays radiated from a region to be measured near the optical axis are received by the infrared light receiving element.

【0332】赤外受光素子4を、透過型回折レンズ5を
通過する赤外線のみを赤外受光素子4で受光するように
筐体9に取り付ける。透過型回折レンズ5を通った赤外
線のみ受光する構成にした上で以下の設計を行う。
[0332] The infrared light receiving element 4 is mounted on the housing 9 so that only the infrared light passing through the transmission type diffraction lens 5 is received by the infrared light receiving element 4. The following design is performed after a configuration is adopted in which only infrared rays passing through the transmission diffraction lens 5 are received.

【0333】Aから放射される光は光路K1A、K2A、K
3A、K4Aなどを通ってAの像点FAに到達する。幾何光
学で周知の通り、Aの像点FA は光軸を挟んでAと反対
側に形成される。図15中に示すように、光路K2Aを通
る光は、透過型回折レンズ5を通過してFで光軸と交叉
してFA に到達し光軸から離れていく。同じように、光
路K1Aを通る光は、透過型回折レンズ5を通過して光軸
と交叉してFA に到達し光軸から離れていく。光路K3A
を通る光は、透過型回折レンズ5で光軸と交叉してFA
に到達し光軸から離れていく。光路K4Aを通る光は、光
軸と交叉して透過型回折レンズ5を通過し、透過型回折
レンズ5を通過してからは光軸と交叉せずにFA に到達
し、その後光軸に近づくかあるいは遠ざかっていく。こ
のように、Aの像点FA よりも透過型回折レンズから離
れた位置でAから放射される光が通過しない領域が存在
する。この領域は、FA よりも透過型回折レンズ5から
遠い部分の光路K4Aと、FA'よりも透過型回折レンズ5
から遠い部分の光路K4A'で挟まれた領域である。この
領域に赤外センサを設置することで、A、A’から放射
される赤外線を受光しない光学系が実現できる。
The light radiated from A has optical paths K1A, K2A, K
It reaches the image point FA of A through 3A, K4A and the like. As is well known in geometrical optics, the image point FA of A is formed on the opposite side of A with respect to the optical axis. As shown in FIG. 15, the light passing through the optical path K2A passes through the transmission type diffractive lens 5, crosses the optical axis at F, reaches FA, and moves away from the optical axis. Similarly, the light passing through the optical path K1A passes through the transmissive diffraction lens 5, crosses the optical axis, reaches FA, and moves away from the optical axis. Optical path K3A
Passes through the transmission type diffraction lens 5 and intersects with the optical axis.
And moves away from the optical axis. The light passing through the optical path K4A crosses the optical axis and passes through the transmission type diffraction lens 5, and after passing through the transmission type diffraction lens 5, reaches the FA without crossing the optical axis and thereafter approaches the optical axis. Or go away. As described above, there is a region where the light emitted from A does not pass at a position farther from the transmission diffraction lens than the image point FA of A. This region includes an optical path K4A at a portion farther from the transmission diffraction lens 5 than FA, and a transmission diffraction lens 5
This is an area sandwiched between the optical paths K4A 'far from the optical path K4A'. By installing an infrared sensor in this region, an optical system that does not receive infrared rays radiated from A and A ′ can be realized.

【0334】固定部1を、光路K1A、光路K1A' よりも
光軸から遠くなるように設置する。
[0334] The fixed part 1 is installed so as to be farther from the optical axis than the optical paths K1A and K1A '.

【0335】固定部1から放射される赤外線は、受光し
たくない領域から放射される光と置き換えられる。受光
したい領域の外側にある受光したくない領域中のB点は
Aよりも光軸から遠いため、透過型回折レンズ5による
Bの像点FB がFA より光軸から遠くなることは幾何光
学で周知の通りである。従って、FA よりも透過型回折
レンズ5から遠い部分の光路K4Aと、FA'よりも透過型
回折レンズ5から遠い部分の光路K4A' で挟まれた領域
内に赤外受光素子を設置することによってA、A’から
放射される赤外線を受光しないようにすれば、自動的に
Bから放射される赤外線も受光しない構成となる。つま
り、自動的に固定部1から放射される赤外線を受光しな
い構成となる。
[0335] The infrared rays radiated from the fixed part 1 are replaced with the light radiated from the area not desired to be received. Since the point B in the area outside the area where light is not desired to be received is farther from the optical axis than A, the fact that the image point FB of B by the transmission type diffractive lens 5 is farther from the optical axis than FA is due to geometrical optics. As is well known. Therefore, by installing the infrared light receiving element in a region between the optical path K4A farther from the transmission diffraction lens 5 than FA and the light path K4A 'farther from the transmission diffraction lens 5 than FA'. If the infrared rays radiated from A and A ′ are not received, the configuration is such that the infrared rays radiated from B are not automatically received. That is, the configuration is such that infrared rays emitted from the fixing unit 1 are not automatically received.

【0336】以上のように、FA よりも透過型回折レン
ズ5から遠い部分の光路K4Aと、FA'よりも透過型回折
レンズ5から遠い部分の光路K4A' で挟まれた領域内に
赤外受光素子4を設置し、固定部1をAと透過型回折レ
ンズ5の間で光路K1A、K1A'よりも光軸から遠くに設け
ることによって、穴の内部など凹部にある受光したい領
域に赤外センサを安定した状態で向けることができ、固
定部から放射される赤外線を受光せずに光軸付近の受光
したい領域から放射される赤外線のみを受光するような
赤外センサが得られる。
As described above, the infrared light is received in the region between the optical path K4A farther from the transmission diffraction lens 5 than FA and the light path K4A 'farther from the transmission diffraction lens 5 than FA'. The element 4 is installed, and the fixed part 1 is provided farther from the optical axis than the optical paths K1A and K1A 'between A and the transmission type diffractive lens 5, so that an infrared sensor is provided in an area where light is to be received in a concave part such as the inside of a hole. Can be directed in a stable state, and an infrared sensor that receives only infrared rays emitted from an area near the optical axis and desired to be received without receiving infrared rays emitted from the fixed portion can be obtained.

【0337】なお、筐体9と固定部1は一体であっても
構わない。
Note that the housing 9 and the fixed portion 1 may be integrated.

【0338】図16は本発明の第13の実施例における
赤外センサを示すものである。図16において、5は透
過型回折レンズ、4は赤外線受光素子、9は筐体、1は
穴の内部など凹部にある受光したい領域に赤外センサを
固定して向けるための固定部、α、α’は透過型回折レ
ンズ5の縁からこの縁と光軸に対して同じ側の固定部1
内面へ接する直線が固定部先端面と交わる点、Fは透過
型回折レンズ5の焦点、Fα、Fα’はそれぞれ透過型
回折レンズ5によるα、α’の像点、K1 αはαから光
軸に対して同じ側の透過型回折レンズ5の縁を通過して
Fαへ進行する光(マージナル光線)の光路、K2 αは
αから光軸と平行に進んで焦点Fを通過してFαに到達
する光の光路、K3 αはαから透過型回折レンズ5の中
心を通過してFαに到達する光の光路、K4 αはαから
光軸を挟んで反対側の透過型回折レンズ5の縁を通過し
てFαに到達する光(マージナル光線)の光路、K1
α'はα’から光軸に対して同じ側の透過型回折レンズ
5の縁を通過してFα' へ進行する光(マージナル光
線)の光路、K2 α' はα’から光軸と平行に進んで焦
点Fを通過してFα' に到達する光の光路、K3 α' は
α’から透過型回折レンズ5の中心を通過してFα' に
到達する光の光路、K4 α' はα’から光軸を挟んで反
対側の透過型回折レンズ5の縁を通過してFα' に到達
する光(マージナル光線)の光路、FX は光路K1 αと
光軸との交点である。
FIG. 16 shows an infrared sensor according to a thirteenth embodiment of the present invention. In FIG. 16, reference numeral 5 denotes a transmissive diffraction lens, 4 denotes an infrared light receiving element, 9 denotes a housing, 1 denotes a fixing portion for fixing and pointing the infrared sensor to a light receiving region in a concave portion such as the inside of a hole, α, α ′ is the fixed part 1 on the same side from the edge of the transmission diffraction lens 5 with respect to this edge and the optical axis.
The point at which the straight line in contact with the inner surface intersects the front end surface of the fixed portion, F is the focal point of the transmission type diffraction lens 5, Fα and Fα ′ are the image points of α and α ′ by the transmission type diffraction lens 5, respectively, and K1 α is the optical axis from α. , The optical path of light (marginal ray) passing through the edge of the transmission type diffractive lens 5 on the same side and traveling to Fα, K2α travels from α in parallel with the optical axis, passes through the focal point F, and reaches Fα. K3α is the optical path of light passing from α to the center of the transmissive diffractive lens 5 and arriving at Fα, and K4α is the transmissive diffractive lens 5 on the opposite side of the optical axis from α. The optical path of light (marginal ray) passing through and reaching Fα, K1
α ′ is the optical path of light (marginal ray) passing through the edge of the transmissive diffraction lens 5 on the same side from α ′ to the optical axis and traveling to Fα ′, and K2 α ′ is parallel to the optical axis from α ′. K3α 'is the optical path of the light that proceeds to pass through the focal point F and reaches Fα', K3α 'is the optical path of the light from α' that passes through the center of the transmissive diffraction lens 5 and reaches Fα ', and K4α' is α ' Is the optical path of light (marginal ray) passing through the edge of the transmissive diffraction lens 5 on the opposite side of the optical axis and reaching Fα ', FX is the intersection of the optical path K1α with the optical axis.

【0339】穴の内壁など凹部から放射される赤外光の
みを受光するような光学系を設計する。
An optical system designed to receive only infrared light radiated from a concave portion such as an inner wall of a hole is designed.

【0340】赤外受光素子4を筐体9に取り付け、透過
型回折レンズ5を通過する赤外線のみを赤外受光素子4
で受光するようにする。透過型回折レンズ5を通った赤
外線のみ受光する構成にした上で以下の設計を行う。
The infrared light receiving element 4 is attached to the housing 9 and only infrared light passing through the transmission type diffraction lens 5 is
To receive light. The following design is performed after a configuration is adopted in which only infrared rays passing through the transmission diffraction lens 5 are received.

【0341】被測定物からの赤外光のみを受光するため
には、固定部1から放射される赤外光を受光しないよう
にすればよい。そのため、受光したい領域と受光したく
ない領域の境界に位置する点を仮想し、この点から、光
軸に対してこの仮想した境界に位置する点と同じ側の透
過型回折レンズ5の縁を通過する光(マージナル光線)
の光路よりも、光軸から遠くに位置するように固定部1
を設置すればよい。そこで、上記仮想の境界に位置する
点を、透過型回折レンズ5の縁からこの縁と光軸に対し
て同じ側の固定部1内面へ接する直線が固定部先端面と
交わる点α、α’として、FαとFα’とFX で形成さ
れる三角形の内側に赤外受光素子4を設置する。これに
より、固定部1をαと透過型回折レンズ5の間で光路K
1 α、K1 α' よりも光軸から遠くに位置させることに
なるため、固定部からの光を受光しない光学系が得られ
る。
In order to receive only infrared light from the object to be measured, infrared light emitted from the fixed section 1 may be prevented from being received. Therefore, a point located at the boundary between the region to receive light and the region not to receive light is imagined, and from this point, the edge of the transmission type diffraction lens 5 on the same side as the point located at this imaginary boundary with respect to the optical axis. Light passing through (marginal rays)
The fixed part 1 is located farther from the optical axis than the optical path of
Should be installed. Therefore, the points located at the above-mentioned virtual boundary are defined as points α and α ′ where the straight line contacting the edge of the transmission type diffraction lens 5 and the inner surface of the fixed part 1 on the same side with respect to this edge and the optical axis intersects with the fixed part tip face The infrared light receiving element 4 is set inside a triangle formed by Fα, Fα ′ and FX. As a result, the fixed portion 1 moves the optical path K between α and the transmission type diffraction lens 5.
Since it is located farther from the optical axis than 1α and K1α ', an optical system that does not receive light from the fixed portion can be obtained.

【0342】上記について詳細を以下に述べる。αから
放射される光は光路K1 α、K2 α、K3 α、K4 αな
どを通ってαの像点Fαに到達する。幾何光学で周知の
通り、αの像点Fαは光軸を挟んでαと反対側に形成さ
れる。図16中に示すように、光路K2 αを通る光は、
透過型回折レンズ5を通過してFで光軸と交叉したのち
光軸から離れながらFαに到達する。同じように、光路
K1 αを通る光は、透過型回折レンズ5を通過して光軸
と交叉したのち光軸から離れながらFαに到達する。光
路K3 αを通る光は、透過型回折レンズ5で光軸と交叉
したのち光軸から離れながらFαに到達する。光路K4
αを通る光は、光軸と交叉して透過型回折レンズ5を通
過し、透過型回折レンズ5を通過してからは光軸と交叉
せずにFαに到達する。このように、光路K1 αと光軸
が交叉する点FX よりも透過型回折レンズから離れた位
置かつFαよりも透過型回折レンズ5に近い位置で、α
から放射される光が通過しない領域が存在する。同じよ
うに、α’についても、光路K1 α' と光軸が交叉する
点よりも透過型回折レンズから離れた位置かつFα' よ
りも透過型回折レンズ5に近い位置で、α’から放射さ
れる光が通過しない領域が存在する。この、Fα、F
α' 、FX で形成される三角形の内側よりに赤外受光素
子4を設置することで、α、α' から放射される光を受
光しない赤外センサが得られる。αと透過型回折レンズ
5の間の光路K1 αより光軸から遠い部分からの光は、
αと同じ面内で光軸からの距離がαより大きい点からの
光と置き換えられる。この点の透過型回折レンズ5によ
る交点はFαよりも光軸から遠くなることは幾何光学で
周知の通りである。そのため、αからの光を受光しない
ようにすれば、αよりも光軸から遠い点からの光を受光
せず、従って固定部1からの光を受光しない。同様に、
α’と透過型回折レンズ5の間の光路K1 α' より光軸
から遠い部分からの光は、α' と同じ面内で光軸からの
距離がα’より大きい点からの光と置き換えられる。こ
の点の透過型回折レンズ5による交点はFα’よりも光
軸から遠くなることは幾何光学で周知の通りである。そ
のため、α’からの光を受光しないようにすれば、α’
よりも光軸から遠い点からの光を受光せず、従って固定
部1からの光を受光しない。このように、FαとFα'
とFXで形成される三角形の内側に赤外受光素子4を設
置することでα、α’から放射される赤外線を受光しな
いようにすれば、自動的に固定部1から放射される赤外
線も受光しない構成となる。
The above is described in detail below. The light emitted from α reaches the image point Fα of α through the optical paths K1α, K2α, K3α, K4α, and the like. As is well known in geometrical optics, the image point Fα of α is formed on the opposite side of α with respect to the optical axis. As shown in FIG. 16, the light passing through the optical path K2α is
After passing through the transmission diffraction lens 5 and intersecting with the optical axis at F, the light reaches Fα while moving away from the optical axis. Similarly, the light passing through the optical path K1α passes through the transmissive diffraction lens 5, crosses the optical axis, and reaches Fα while leaving the optical axis. The light passing through the optical path K3α crosses the optical axis by the transmission type diffraction lens 5 and then reaches Fα while leaving the optical axis. Optical path K4
The light passing through α crosses the optical axis and passes through the transmissive diffraction lens 5, and after passing through the transmissive diffraction lens 5, reaches Fα without crossing the optical axis. Thus, at a position farther from the transmission diffraction lens than the point FX where the optical path K1α intersects the optical axis and closer to the transmission diffraction lens 5 than Fα, α
There is an area through which the light emitted from does not pass. Similarly, α ′ is also radiated from α ′ at a position farther from the transmission diffraction lens than at the point where the optical path K1 α ′ intersects with the optical axis and closer to the transmission diffraction lens 5 than Fα ′. There is an area through which light does not pass. This Fα, F
By installing the infrared light receiving element 4 inside the triangle formed by α 'and FX, an infrared sensor that does not receive light emitted from α and α' can be obtained. Light from a portion farther from the optical axis than the optical path K1 α between α and the transmission type diffraction lens 5 is
It is replaced with light from a point whose distance from the optical axis is larger than α in the same plane as α. It is well known in geometrical optics that the intersection of this point with the transmission type diffraction lens 5 is farther from the optical axis than Fα. Therefore, if light from α is not received, light from a point farther from the optical axis than α will not be received, and therefore no light from the fixed portion 1 will be received. Similarly,
Light from a portion farther from the optical axis than the optical path K1 α 'between α' and the transmission type diffractive lens 5 is replaced with light from a point larger than α 'in the same plane as α'. . It is well known in geometrical optics that the intersection of this point with the transmission type diffraction lens 5 is farther from the optical axis than Fα ′. Therefore, if light from α ′ is not received, α ′
No light from a point farther from the optical axis is received, and therefore no light from the fixed part 1 is received. Thus, Fα and Fα ′
By installing the infrared light receiving element 4 inside the triangle formed by F and FX so as not to receive the infrared light radiated from α and α ', the infrared light radiated from the fixed part 1 is automatically received. No configuration.

【0343】以下、αからの光を受光しないような赤外
受光素子4の位置を求める。
In the following, the position of the infrared light receiving element 4 which does not receive the light from α will be obtained.

【0344】赤外受光素子4はFA よりも透過型回折レ
ンズ5に近い。この時、既述の(1)式(以下同じ)、
(2)式が成り立つ。
The infrared light receiving element 4 is closer to the transmission type diffraction lens 5 than to FA. At this time, the above-described equation (1) (the same applies hereinafter),
Equation (2) holds.

【0345】図16に示すように、受光面は光路K1 α
と光軸が交わる点とFαとの間であるので、αからFα
までの各光路のうち受光面で赤外受光素子4に最も近づ
くものはK1 αである。したがって、αからの光を赤外
受光素子4で受光しないためには、(3)式を満たす必
要がある。
As shown in FIG. 16, the light receiving surface has an optical path K1 α
Is between the point where the optical axis intersects with the optical axis and Fα.
The light path closest to the infrared light receiving element 4 on the light receiving surface is K1α. Therefore, in order for the light from α to not be received by the infrared light receiving element 4, it is necessary to satisfy the expression (3).

【0346】ここで、幾何光学で周知の通りr3 、rα
F 、rαS1、L3 、fは幾何関係として(4)式、
(5)式を満たす。
Here, as is well known in geometrical optics, r3, rα
F, rαS1, L3, and f are expressed by the following equation (4) as a geometric relationship.
Equation (5) is satisfied.

【0347】(5)式を(3)式へ代入することで
(6)式が得られる。
By substituting equation (5) into equation (3), equation (6) is obtained.

【0348】(2)(6)式から、αから放射される光
を赤外受光素子4で受光しないための条件は(7)式と
なる。
(2) From the expression (6), the condition for not receiving the light radiated from α by the infrared light receiving element 4 is the expression (7).

【0349】さらに、幾何光学で周知の通り、rα、L
α、L2 、rαF 、LαF は幾何関係として(8)式、
(9)式を満たす。
Further, as is well known in geometrical optics, rα, L
α, L2, rαF, and LαF are expressed by the following equation (8) as a geometric relationship.
Equation (9) is satisfied.

【0350】(9)式を(7)式へ代入することによ
り、αから放射される光を赤外受光素子4で受しないた
めの条件は(10)式となる。
By substituting the expression (9) into the expression (7), the condition for preventing the light radiated from α from being received by the infrared light receiving element 4 becomes the expression (10).

【0351】また、ガウスの公式から(11)式、(1
2)式が成り立つ。
Also, from Gauss's formula, equation (11), (1
2) Formula holds.

【0352】(12)式を(11)式に代入することに
より、αから放射される光を赤外受光素子4で受光しな
いための条件は(13)式となる。
By substituting equation (12) into equation (11), the condition for not receiving the light radiated from α by the infrared light receiving element 4 is given by equation (13).

【0353】以上のように、固定部1先端のαから放射
される光を赤外受光素子4で受光しないためには、
(7)式、或いは(10)式、或いは(13)式を満た
すよう光学系を設計する必要がある。(7)式、(1
0)式、(13)式で与えられるL3 だけ、受光素子4
を透過型回折レンズ5の焦点からずらして設置すること
で、固定部1から放射される赤外線を赤外受光素子4で
受光せずに被測定物体から放射光のみを赤外受光素子4
で受光させることができるため、固定部1の温度変化に
起因する測定誤差を防ぐことができる。
As described above, in order to prevent the light radiated from α at the tip of the fixed portion 1 from being received by the infrared light receiving element 4,
It is necessary to design the optical system to satisfy the expression (7), the expression (10), or the expression (13). Equation (7), (1
0) and L3 given by equation (13).
Is displaced from the focal point of the transmissive diffraction lens 5 so that the infrared light emitted from the fixed part 1 is not received by the infrared light receiving element 4 and only the radiation light from the measured object is received by the infrared light receiving element 4.
, It is possible to prevent a measurement error due to a temperature change of the fixed unit 1.

【0354】なお、筐体9と固定部1は一体であっても
構わない。
Note that the housing 9 and the fixed portion 1 may be integrated.

【0355】図17は本発明の第14の実施例における
赤外センサを示すものである。図17において、5は透
過型回折レンズ、4は赤外線受光素子、9は筐体、1は
穴の内部など凹部にある受光したい領域に赤外センサを
固定して向けるための固定部、α、α’は透過型回折レ
ンズ5の縁からこの縁と光軸に対して同じ側の固定部1
内面へ接する直線が固定部先端面と交わる点、Fは透過
型回折レンズ5の焦点、Fα、Fα’はそれぞれ透過型
回折レンズ5によるα、α’の像点、K1 αはαから光
軸に対して同じ側の透過型回折レンズ5の縁を通過して
Fαへ進行する光(マージナル光線)の光路、K2 αは
αから光軸と平行に進んで焦点Fを通過してFαに到達
する光の光路、K3 αはαから透過型回折レンズ5の中
心を通過してFαに到達する光の光路、K4 αはαから
光軸を挟んで反対側の透過型回折レンズ5の縁を通過し
てFαに到達する光(マージナル光線)の光路、K1
α'はα’から光軸に対して同じ側の透過型回折レンズ
5の縁を通過してFα' へ進行する光(マージナル光
線)の光路、K2 α' はα’から光軸と平行に進んで焦
点Fを通過してFα' に到達する光の光路、K3 α' は
α’から透過型回折レンズ5の中心を通過してFα' に
到達する光の光路、K4 α' はα’から光軸を挟んで反
対側の透過型回折レンズ5の縁を通過してFα' に到達
する光(マージナル光線)の光路、FX は光路K1 αと
光軸との交点である。
FIG. 17 shows an infrared sensor according to a fourteenth embodiment of the present invention. In FIG. 17, 5 is a transmission type diffractive lens, 4 is an infrared light receiving element, 9 is a housing, 1 is a fixing portion for fixing and directing the infrared sensor to a light receiving area in a concave portion such as the inside of a hole, α, α ′ is the fixed part 1 on the same side from the edge of the transmission diffraction lens 5 with respect to this edge and the optical axis.
The point at which the straight line in contact with the inner surface intersects the front end surface of the fixed portion, F is the focal point of the transmission type diffraction lens 5, Fα and Fα ′ are the image points of α and α ′ by the transmission type diffraction lens 5, respectively, and K1 α is the optical axis from α. , The optical path of light (marginal ray) passing through the edge of the transmission type diffractive lens 5 on the same side and traveling to Fα, K2α travels from α in parallel with the optical axis, passes through the focal point F, and reaches Fα. K3α is the optical path of light passing from α to the center of the transmissive diffractive lens 5 and arriving at Fα, and K4α is the transmissive diffractive lens 5 on the opposite side of the optical axis from α. The optical path of light (marginal ray) passing through and reaching Fα, K1
α ′ is the optical path of light (marginal ray) passing through the edge of the transmissive diffraction lens 5 on the same side from α ′ to the optical axis and traveling to Fα ′, and K2 α ′ is parallel to the optical axis from α ′. K3α 'is the optical path of the light that proceeds to pass through the focal point F and reaches Fα', K3α 'is the optical path of the light from α' that passes through the center of the transmissive diffraction lens 5 and reaches Fα ', and K4α' is α ' Is the optical path of light (marginal ray) passing through the edge of the transmissive diffraction lens 5 on the opposite side of the optical axis and reaching Fα ', FX is the intersection of the optical path K1α with the optical axis.

【0356】穴の内壁など凹部から放射される赤外光の
みを受光するような光学系を設計する。
An optical system designed to receive only infrared light radiated from a concave portion such as an inner wall of a hole is designed.

【0357】赤外受光素子4を筐体9に取り付け、透過
型回折レンズ5を通過する赤外線のみを赤外受光素子4
で受光するようにする。透過型回折レンズ5を通った赤
外線のみ受光する構成にした上で以下の設計を行う。
The infrared light receiving element 4 is attached to the housing 9 and only infrared light passing through the transmission type diffraction lens 5 is
To receive light. The following design is performed after a configuration is adopted in which only infrared rays passing through the transmission diffraction lens 5 are received.

【0358】被測定物からの赤外光のみを受光するため
には、固定部1から放射される赤外光を受光しないよう
にすればよい。そのため、受光したい領域と受光したく
ない領域の境界に位置する点を仮想し、この点から、光
軸に対してこの仮想した境界に位置する点と同じ側の透
過型回折レンズ5の縁を通過する光(マージナル光線)
の光路よりも、光軸から遠くに位置するように固定部1
を設置すればよい。そこで、上記仮想の境界に位置する
点を、透過型回折レンズ5の縁からこの縁と光軸に対し
て同じ側の固定部1内面へ接する直線が固定部先端面と
交わる点α、α’として、Fαよりも透過型回折レンズ
5から遠い部分の光路K4 αと、Fα'よりも透過型回
折レンズ5から遠い部分の光路K4 α' で挟まれた領域
に赤外センサを設置する。これにより、固定部1をαと
透過型回折レンズ5の間で光路K1 α、K1 α' よりも
光軸から遠くに位置させることになるため、固定部から
の光を受光しない光学系が得られる。
In order to receive only infrared light from the object to be measured, infrared light emitted from the fixed section 1 may be prevented from being received. Therefore, a point located at the boundary between the region to receive light and the region not to receive light is imagined, and from this point, the edge of the transmission type diffraction lens 5 on the same side as the point located at this imaginary boundary with respect to the optical axis. Light passing through (marginal rays)
The fixed part 1 is located farther from the optical axis than the optical path of
Should be installed. Therefore, the points located at the above-mentioned virtual boundary are defined as points α and α ′ where the straight line contacting the edge of the transmission type diffraction lens 5 and the inner surface of the fixed part 1 on the same side with respect to this edge and the optical axis intersects with the fixed part tip face. An infrared sensor is installed in a region between the optical path K4α farther from the transmission diffraction lens 5 than Fα and the optical path K4α ′ farther from the transmission diffraction lens 5 than Fα ′. As a result, the fixed unit 1 is located farther from the optical axis than the optical paths K1α and K1α 'between α and the transmission type diffraction lens 5, so that an optical system that does not receive light from the fixed unit is obtained. Can be

【0359】上記について詳細を以下に述べる。The above is described in detail below.

【0360】αから放射される光は光路K1 α、K2
α、K3 α、K4 αなどを通ってαの像点Fαに到達す
る。幾何光学で周知の通り、αの像点Fαは光軸を挟ん
でαと反対側に形成される。図17中に示すように、光
路K2 αを通る光は、透過型回折レンズ5を通過してF
で光軸と交叉してFαに到達し光軸から離れていく。同
じように、光路K1 αを通る光は、透過型回折レンズ5
を通過して光軸と交叉してFαに到達し光軸から離れて
いく。光路K3 αを通る光は、透過型回折レンズ5で光
軸と交叉してFαに到達し光軸から離れていく。光路K
4 αを通る光は、光軸と交叉して透過型回折レンズ5を
通過し、透過型回折レンズ5を通過してからは光軸と交
叉せずにFαに到達し、その後光軸に近づくかあるいは
遠ざかっていく。このように、αの像点Fαよりも透過
型回折レンズから離れた位置でαから放射される光が通
過しない領域が存在する。同じようにα’についても、
αの像点Fαよりも透過型回折レンズから離れた位置で
αから放射される光が通過しない領域が存在する。こ
の、Fαよりも透過型回折レンズ5から遠い部分の光路
K4 αと、Fα' よりも透過型回折レンズ5から遠い部
分の光路K4 α' で挟まれた領域内に赤外受光素子を設
置することによってα、α’から放射される赤外線を受
光しない赤外センサが得られる。αと透過型回折レンズ
5の間の光路K1αより光軸から遠い部分からの光は、
αと同じ面内で光軸からの距離がαより大きい点からの
光と置き換えられる。この点の透過型回折レンズ5によ
る交点はFαよりも光軸から遠くなることは幾何光学で
周知の通りである。そのため、αからの光を受光しない
ようにすれば、αよりも光軸から遠い点からの光を受光
せず、従って固定部1からの光を受光しない。同様に、
α’と透過型回折レンズ5の間の光路K1 α' より光軸
から遠い部分からの光は、α' と同じ面内で光軸からの
距離がα’より大きい点からの光と置き換えられる。こ
の点の透過型回折レンズ5による交点はFα’よりも光
軸から遠くなることは幾何光学で周知の通りである。そ
のため、α’からの光を受光しないようにすれば、α’
よりも光軸から遠い点からの光を受光せず、従って固定
部1からの光を受光しない。このように、Fαよりも透
過型回折レンズ5から遠い部分の光路K4 αと、Fα'
よりも透過型回折レンズ5から遠い部分の光路K4 α'
で挟まれた領域に赤外受光素子4を設置することでα、
α’から放射される赤外線を受光しないようにすれば、
自動的に固定部1から放射される赤外線も受光しない構
成となる。
The light radiated from α has the optical paths K1 α, K2
It reaches the image point Fα of α through α, K3α, K4α and the like. As is well known in geometrical optics, the image point Fα of α is formed on the opposite side of α with respect to the optical axis. As shown in FIG. 17, light passing through the optical path K2α passes through the transmission type diffraction lens 5 and
Crosses the optical axis to reach Fα and moves away from the optical axis. Similarly, light passing through the optical path K1α is
And crosses the optical axis to reach Fα and moves away from the optical axis. The light passing through the optical path K3α crosses the optical axis by the transmission type diffraction lens 5, reaches Fα and moves away from the optical axis. Optical path K
The light passing through 4α crosses the optical axis and passes through the transmission type diffraction lens 5, and after passing through the transmission type diffraction lens 5, reaches Fα without crossing the optical axis and thereafter approaches the optical axis. Or go away. As described above, there is an area where light emitted from α does not pass at a position farther from the transmission diffraction lens than the image point Fα of α. Similarly, for α ',
There is an area where light emitted from α does not pass at a position farther from the transmission diffraction lens than the image point Fα of α. An infrared light receiving element is provided in an area between the optical path K4α farther from the transmissive diffraction lens 5 than Fα and the optical path K4α ′ farther from the transmissive diffraction lens 5 than Fα ′. Thus, an infrared sensor that does not receive infrared rays emitted from α and α ′ can be obtained. Light from a portion farther from the optical axis than the optical path K1α between α and the transmission type diffraction lens 5 is
It is replaced with light from a point whose distance from the optical axis is larger than α in the same plane as α. It is well known in geometrical optics that the intersection of this point with the transmission type diffraction lens 5 is farther from the optical axis than Fα. Therefore, if light from α is not received, light from a point farther from the optical axis than α will not be received, and therefore no light from the fixed portion 1 will be received. Similarly,
Light from a portion farther from the optical axis than the optical path K1 α 'between α' and the transmission type diffractive lens 5 is replaced with light from a point larger than α 'in the same plane as α'. . It is well known in geometrical optics that the intersection of this point with the transmission type diffraction lens 5 is farther from the optical axis than Fα ′. Therefore, if light from α ′ is not received, α ′
No light from a point farther from the optical axis is received, and therefore no light from the fixed part 1 is received. As described above, the optical path K4α at a portion farther from the transmission diffraction lens 5 than Fα and Fα ′
Optical path K4 α 'at a portion farther from transmission diffractive lens 5 than
By placing the infrared light receiving element 4 in the area between
If you do not receive infrared rays emitted from α ',
The infrared ray emitted from the fixing unit 1 is not automatically received.

【0361】以下、αからの光を受光しないような赤外
受光素子4の位置を求める。
Hereinafter, the position of the infrared light receiving element 4 which does not receive the light from α will be obtained.

【0362】赤外受光素子4はFαよりも透過型回折レ
ンズ5から遠い。この時、(14)式、(15)式が成
り立つ。図17に示すように、受光面はFαよりも透過
型回折レンズ5から遠いので、αからFαまでの各光路
のうち受光面で赤外受光素子4に最も近づくものはK4
αである。したがって、αからの光を赤外受光素子4で
受光しないためには、(16)式を満たす必要がある。
The infrared light receiving element 4 is farther from the transmission diffraction lens 5 than Fα. At this time, equations (14) and (15) hold. As shown in FIG. 17, since the light receiving surface is farther from the transmission type diffractive lens 5 than Fα, of the light paths from α to Fα, the light receiving surface closest to the infrared light receiving element 4 is K4.
α. Therefore, in order for the light from α to not be received by the infrared light receiving element 4, it is necessary to satisfy the expression (16).

【0363】ここで、幾何光学で周知の通りr3 、rα
F 、LαF 、rαS4、L3 、fは幾何関係として(1
7)式、(18)式を満たす。
Here, as is well known in geometrical optics, r3, rα
F, LαF, rαS4, L3, and f are expressed as (1
Equations (7) and (18) are satisfied.

【0364】(18)式を(16)式へ代入することで
(19)式が得られる。
By substituting equation (18) into equation (16), equation (19) is obtained.

【0365】(15)(19)式から、αから放射され
る光を赤外受光素子4で受光しないための条件は(2
0)式となる。
From the equations (15) and (19), the condition for not receiving the light radiated from α by the infrared light receiving element 4 is (2)
0).

【0366】さらに、幾何光学で周知の通り、rα、L
α、L2 、rαF 、LαF は幾何関係として(21)
式、(22)式を満たす。
Further, as is well known in geometrical optics, rα, L
α, L2, rαF, and LαF are expressed by a geometric relationship (21)
Equation (22) is satisfied.

【0367】(22)式を(20)式へ代入することに
より、αから放射される光を赤外受光素子4で受光しな
いための条件は(23)式となる。
By substituting the expression (22) into the expression (20), the condition for not receiving the light radiated from α by the infrared receiving element 4 becomes the expression (23).

【0368】また、ガウスの公式から(24)式、(2
5)式が成り立つ。
Further, from Gauss's formula, equation (24), (2
5) Formula holds.

【0369】(25)式を(23)式に代入することに
より、αから放射される光を赤外受光素子4で受光しな
いための条件は(26)式となる。
By substituting equation (25) into equation (23), the condition for preventing the light radiated from α from being received by the infrared light receiving element 4 is given by equation (26).

【0370】以上のように、αから放射される光を赤外
受光素子4で受光しないためには、(20)式、或いは
(23)式、或いは(26)式の条件を満たすよう光学
系を設計する必要がある。(20)式、(23)式、
(26)式で与えられるL3 だけ、受光素子4を透過型
回折レンズ5の焦点からずらして設置することで、固定
部1から放射される赤外線を赤外受光素子4で受光せず
に被測定物体から放射光のみを赤外受光素子4で受光さ
せることができるため、固定部1の温度変化に起因する
測定誤差を防ぐことができる。
As described above, in order to prevent the light radiated from α from being received by the infrared light receiving element 4, the optical system must satisfy the condition of the expression (20), the expression (23) or the expression (26). Need to be designed. Expression (20), Expression (23),
By disposing the light receiving element 4 from the focal point of the transmission type diffractive lens 5 by L3 given by the equation (26), the infrared light emitted from the fixed part 1 is measured without being received by the infrared light receiving element 4. Since only the radiated light from the object can be received by the infrared light receiving element 4, a measurement error due to a temperature change of the fixed portion 1 can be prevented.

【0371】なお、筐体9と固定部1は一体であっても
構わない。
Note that the housing 9 and the fixed portion 1 may be integrated.

【0372】図18、19は本発明の第15の実施例に
おける赤外センサの光学系を示すものである。図18、
19において、5は透過型回折レンズ、4は赤外線受光
素子、9は筐体、1は穴の内部など凹部にある受光した
い領域に赤外センサを固定して向けるための固定部、2
は透過型回折レンズ5の有効領域を決めるためのレンズ
開口絞り、α、α’はレンズ開口絞り2の縁からこの縁
と光軸に対して同じ側の固定部1内面へ接する直線が固
定部先端面と交わる点、Aは固定部1先端の点、Bは固
定部1先端以外の点、Fは透過型回折レンズ5の焦点、
Fα、Fα’はそれぞれ透過型回折レンズ5によるα、
α’の像点、FA は透過型回折レンズ5によるAの像
点、FB は透過型回折レンズ5によるBの像点、K1 α
はαから光軸に対して同じ側のレンズ開口絞り2の開口
部の縁を通過してFαへ進行する光(マージナル光線)
の光路、K2 αはαから光軸と平行に進んで焦点Fを通
過してFαに到達する光の光路、K3 αはαから透過型
回折レンズ5の中心を通過してFαに到達する光の光
路、K4 αはαから光軸を挟んで反対側のレンズ開口絞
り2の開口部の縁を通過してFαに到達する光(マージ
ナル光線)の光路、K1AはAから光軸に対して同じ側の
レンズ開口絞り2の開口部の縁を通過してFA へ進行す
る光(マージナル光線)の光路、K2AはAから光軸と平
行に進んで焦点Fを通過してFA に到達する光の光路、
K3AはAから透過型回折レンズ5の中心を通過してFA
に到達する光の光路、K4AはAから光軸を挟んで反対側
のレンズ開口絞り2の開口部の縁を通過してFA に到達
する光(マージナル光線)の光路、K1BはBから光軸に
対して同じ側のレンズ開口絞り2の開口部の縁を通過し
てFB へ進行する光(マージナル光線)の光路、K2Bは
Bから光軸と平行に進んで焦点Fを通過してFB に到達
する光の光路、K3BはBから透過型回折レンズ5の中心
を通過してFB に到達する光の光路、K4BはBから光軸
を挟んで反対側のレンズ開口絞り2の開口部の縁を通過
してFB に到達する光(マージナル光線)の光路、Fα
S1は光路K1 αと受光面との交点、FAS1 は光路K1Aと
受光面との交点、FBS1 は光路K1Bとセンサ面との交
点、rαはα点での固定部1の開口半径、rA はA点で
の固定部1の開口半径、rB はB点での固定部1の開口
半径、r2はレンズ開口絞り2の開口半径、r3 α1 は
光路K1 αの透過型回折レンズ5における光軸からの距
離、r3A1 は光路K1Aの透過型回折レンズ5における光
軸からの距離、r3B1 は光路K1Bの透過型回折レンズ5
における光軸からの距離、rsは赤外受光素子4の半径、
rαS1はFαS1と光軸との距離、rAS1 はFAS1 と光軸
との距離、rBS1 はFBS1 と光軸との距離、rAFはFA
と光軸との距離、rBFはFB と光軸との距離、L αはα
からレンズ開口絞り2までの距離、LAはAからレンズ開
口絞り2までの距離、LB はBからレンズ開口絞り2ま
での距離、L2はレンズ開口絞り2から透過型回折レン
ズ5までの距離、fは透過型回折レンズ5の焦点距離、
L3 はFから赤外受光素子4までの距離、LαF は透過
型回折レンズ5からFαまでの距離、LAFは透過型回折
レンズ5からFA までの距離、LBFは透過型回折レンズ
5からFB までの距離である。
FIGS. 18 and 19 show an optical system of an infrared sensor according to a fifteenth embodiment of the present invention. FIG.
In 19, 5 is a transmission type diffraction lens, 4 is an infrared light receiving element, 9 is a housing, 1 is a fixing portion for fixing and directing the infrared sensor to a light receiving region such as the inside of a hole in a concave portion, 2
Is a lens aperture stop for determining the effective area of the transmission type diffractive lens 5, and α and α 'are fixed portions which are straight lines that contact the edge of the lens aperture stop 2 and the inner surface of the fixed portion 1 on the same side with respect to this edge and the optical axis. A point intersecting with the tip surface, A is a point at the tip of the fixed part 1, B is a point other than the tip of the fixed part 1, F is a focal point of the transmission type diffraction lens 5,
Fα and Fα ′ are α, α by the transmission diffraction lens 5, respectively.
The image point of α ', FA is the image point of A by the transmission type diffraction lens 5, FB is the image point of B by the transmission type diffraction lens 5, K1 α
Is a light (marginal ray) traveling from α to Fα through the edge of the opening of the lens aperture stop 2 on the same side with respect to the optical axis.
K2α is an optical path of light that travels in parallel with the optical axis from α and passes through the focal point F to reach Fα, and K3α is light that travels from α and passes through the center of the transmissive diffraction lens 5 to reach Fα. K4α is an optical path of light (marginal ray) passing through the edge of the opening of the lens aperture stop 2 on the opposite side from α with respect to the optical axis and reaching Fα, and K1A is a light path from A to the optical axis. An optical path of light (marginal ray) passing through the edge of the opening of the lens aperture stop 2 on the same side to the FA (marginal ray), K2A travels in parallel with the optical axis from A, passes through the focal point F and reaches the FA. Light path,
K3A passes through the center of the transmission diffractive lens 5 from A, and
K4A is the optical path of light (marginal ray) from A to the FA that passes through the edge of the opening of the lens aperture stop 2 on the opposite side of the optical axis and reaches FA, and K1B is the optical axis from B The light path of light (marginal ray) passing through the edge of the aperture of the lens aperture stop 2 on the same side and traveling to FB, K2B travels from B in parallel with the optical axis, passes through the focal point F, and enters FB. K3B is the optical path of the light that reaches, and K3B is the optical path of the light that passes from the center of the transmissive diffractive lens 5 to FB, and K4B is the edge of the opening of the lens aperture stop 2 on the opposite side of the optical axis from B. The optical path of the light (marginal ray) that passes through and reaches FB, Fα
S1 is the intersection of the optical path K1α and the light receiving surface, FAS1 is the intersection of the optical path K1A and the light receiving surface, FBS1 is the intersection of the optical path K1B and the sensor surface, rα is the opening radius of the fixed part 1 at the α point, and rA is A The radius of the opening of the fixed part 1 at the point, rB is the opening radius of the fixed part 1 at the point B, r2 is the opening radius of the lens aperture stop 2, and r3 α1 is the optical path K1 α from the optical axis of the transmission diffraction lens 5 The distance, r3A1 is the distance of the optical path K1A from the optical axis in the transmission type diffraction lens 5, and r3B1 is the transmission type diffraction lens 5 of the optical path K1B.
, The distance from the optical axis at, rs is the radius of the infrared light receiving element 4,
rαS1 is the distance between FαS1 and the optical axis, rAS1 is the distance between FAS1 and the optical axis, rBS1 is the distance between FBS1 and the optical axis, and rAF is FA
, The distance between FB and the optical axis, and L α is α
, The distance from A to the lens aperture stop 2, LB is the distance from B to the lens aperture stop 2, L2 is the distance from the lens aperture stop 2 to the transmission diffraction lens 5, f Is the focal length of the transmission diffraction lens 5,
L3 is the distance from F to the infrared light receiving element 4, LαF is the distance from the transmission diffraction lens 5 to Fα, LAF is the distance from the transmission diffraction lens 5 to FA, LBF is the distance from the transmission diffraction lens 5 to FB. Distance.

【0373】固定部のあらゆる点から放射される光を赤
外受光素子4で受光しないような光学設計条件を求め
る。そのために、αから放射される光を仮想し、この光
を赤外受光素子4で受光しないための設計条件を求めた
のち、固定部1のα以外の点から放射される光を赤外受
光素子4で受光しない条件を追加する。
An optical design condition is determined such that light emitted from any point of the fixed portion is not received by the infrared light receiving element 4. For this purpose, the light radiated from α is imagined, and a design condition for preventing the light from being received by the infrared light receiving element 4 is determined. A condition that light is not received by the element 4 is added.

【0374】まず、固定部1のαから放射される赤外光
を受光しないよう、以下のように赤外受光素子4の位置
を決める。
First, the position of the infrared light receiving element 4 is determined as follows so as not to receive the infrared light radiated from α of the fixed portion 1.

【0375】αから放射される光は光路K1 α、K2
α、K3 α、K4 αなどを通ってαの像点Fαに到達す
る。幾何光学で周知の通り、αの像点Fαは光軸を挟ん
でαと反対側に形成される。図18中に示すように、光
路K2 αを通る光は、透過型回折レンズ5を通過してF
で光軸と交叉したのち光軸から離れながらFαに到達す
る。同じように、光路K1 αを通る光は、透過型回折レ
ンズ5を通過して光軸と交叉したのち光軸から離れなが
らFαに到達する。光路K3 αを通る光は、透過型回折
レンズ5で光軸と交叉したのち光軸から離れながらFα
に到達する。光路K4 αを通る光は、光軸と交叉して透
過型回折レンズ5を通過し、透過型回折レンズ5を通過
してからは光軸と交叉せずにFαに到達する。このよう
に、光路K1 αと光軸が交叉する点よりも透過型回折レ
ンズから離れた位置かつFαよりも透過型回折レンズ5
に近い位置で、αから放射される光が通過しない領域が
存在する。この、光路K1 αと光軸が交叉する点よりも
透過型回折レンズ5から離れ且つFαよりも透過型回折
レンズ5に近い位置に赤外受光素子4を設置すること
で、αから放射される光を受光しない赤外センサが得ら
れる。以下、L3 を求める。
The light radiated from α has optical paths K1 α, K2
It reaches the image point Fα of α through α, K3α, K4α and the like. As is well known in geometrical optics, the image point Fα of α is formed on the opposite side of α with respect to the optical axis. As shown in FIG. 18, light passing through the optical path K2α passes through the transmission type diffraction lens 5 and
And crosses the optical axis, and then reaches Fα while moving away from the optical axis. Similarly, the light passing through the optical path K1α passes through the transmissive diffraction lens 5, crosses the optical axis, and reaches Fα while leaving the optical axis. The light passing through the optical path K3α crosses the optical axis by the transmission type diffraction lens 5 and then separates from the optical axis to Fα.
To reach. The light passing through the optical path K4α crosses the optical axis and passes through the transmission type diffraction lens 5, and after passing through the transmission type diffraction lens 5, reaches Fα without crossing the optical axis. As described above, the position of the transmission diffraction lens 5 farther from the transmission diffraction lens than the point where the optical path K1α intersects the optical axis and the transmission diffraction lens 5
At a position close to, there is a region through which light emitted from α does not pass. By arranging the infrared light receiving element 4 at a position farther from the transmissive diffraction lens 5 than the point where the optical path K1α intersects with the optical axis and closer to the transmissive diffraction lens 5 than Fα, the light is radiated from α. An infrared sensor that does not receive light is obtained. Hereinafter, L3 is obtained.

【0376】赤外受光素子4はFαよりも透過型回折レ
ンズ5に近い。この時、(27)式、(28)式が成り
立つ。
The infrared light receiving element 4 is closer to the transmission diffraction lens 5 than Fα. At this time, equations (27) and (28) hold.

【0377】図18に示すように、受光面は光路K1 α
と光軸が交わる点とFαとの間であるので、αからFα
までの各光路のうち受光面で赤外受光素子4に最も近づ
くものはK1 αである。したがって、αからの光を赤外
受光素子4で受光しないためには、(29)式を満たす
必要がある。
As shown in FIG. 18, the light receiving surface has an optical path K1 α
Is between the point where the optical axis intersects with the optical axis and Fα.
The light path closest to the infrared light receiving element 4 on the light receiving surface is K1α. Therefore, in order for the light from α to not be received by the infrared light receiving element 4, it is necessary to satisfy the expression (29).

【0378】ここで、幾何光学で周知の通りr3 α1 、
rαF 、LαF 、rαS1、L3 、fは幾何関係として
(30)式、(31)式を満たす。
Here, as is well known in geometrical optics, r3 α1,
rαF, LαF, rαS1, L3, and f satisfy Equations (30) and (31) as geometric relationships.

【0379】(31)式を(29)式へ代入することで
(32)式が得られる。
By substituting equation (31) into equation (29), equation (32) is obtained.

【0380】(28)(32)式から、αから放射され
る光を赤外受光素子4で受光しないための条件は(3
3)式となる。
From the expressions (28) and (32), the condition for not receiving the light radiated from α by the infrared receiving element 4 is (3)
3) Equation is obtained.

【0381】さらに、幾何光学で周知の通り、rα、L
α、L2 、rαF 、LαF は幾何関係として(34)
式、(35)式を満たす。
Further, as is well known in geometrical optics, rα, L
α, L2, rαF, and LαF are expressed as a geometric relationship (34)
Equation (35) is satisfied.

【0382】(35)式を(33)式へ代入することに
より、αから放射される光を赤外受光素子4で受しない
ための条件は(36)式となる。
By substituting equation (35) into equation (33), the condition for preventing the light radiated from α from being received by the infrared light receiving element 4 is given by equation (36).

【0383】また、ガウスの公式から(37)式、(3
8)式が成り立つ。
Further, from Gauss's formula, equation (37), (3
8) Equation holds.

【0384】(38)式を(36)式に代入することに
より、αから放射される光を赤外受光素子4で受光しな
いための条件は(39)式となる。
By substituting the equation (38) into the equation (36), the condition for not receiving the light radiated from α by the infrared light receiving element 4 becomes the equation (39).

【0385】また、幾何光学で周知の通り、r2 、r
α、Lα、r3 α1 、L2 は幾何関係として(40)
式、(41)式を満たす。
As is well known in geometrical optics, r 2, r
α, Lα, r3α1 and L2 are expressed as geometric relationships (40)
Equation (41) is satisfied.

【0386】(41)式を(39)式へ代入することに
より、αから放射される光を赤外受光素子4で受光しな
いための条件は(42)式となる。
By substituting equation (41) into equation (39), the condition for not receiving the light radiated from α by the infrared light receiving element 4 is given by equation (42).

【0387】以上のように、固定部1先端のαから放射
される光を赤外受光素子4で受光しないためには、(3
3)式、或いは(36)式、或いは(39)式、或いは
(42)式の条件を満たすよう光学系を設計する必要が
ある。
As described above, in order for the infrared light receiving element 4 not to receive the light radiated from α at the tip of the fixed portion 1, (3
It is necessary to design the optical system so as to satisfy the condition of the expression (3), the expression (36), the expression (39), or the expression (42).

【0388】(33)式、或いは(36)式、或いは
(39)式、或いは(42)式の条件を満たすよう光学
系を設計した赤外センサが、固定部のα以外の点からの
放射光も受光しない、すなわち固定部のあらゆる点から
放射される光も受光しない条件を示す。そのために、図
19を用いてA、Bからの光を受光しない条件を以下に
求める。
The infrared sensor whose optical system is designed so as to satisfy the condition of the expression (33), the expression (36), the expression (39), or the expression (42) emits light from a point other than α of the fixed portion. A condition is shown in which no light is received, that is, no light is emitted from any point of the fixed portion. For this purpose, a condition for not receiving light from A and B will be described below with reference to FIG.

【0389】まず、Aから放射される光を受光しない条
件を求める。図19に示すように、AからFA までの各
光路のうち受光面で赤外受光素子4に最も近づくものは
K1Aである。Aとαが一致しない固定部形状の場合には
K1AはAとレンズ開口絞り2との間で固定部1によって
遮光され、各光路は受光面で赤外受光素子4にK1Aより
は近づかない。そこで、Aから放射される光を赤外受光
素子4で受光しない条件を、K1Aと受光面との交点であ
るFAS1 と光軸との距離rAS1 がrs よりも大きいこと
とする。つまり(43)式が成りたてばAから放射され
る光を赤外受光素子4で受光しない。
First, a condition for not receiving light radiated from A is determined. As shown in FIG. 19, of the light paths from A to FA, the light path closest to the infrared light receiving element 4 on the light receiving surface is K1A. In the case of a fixed portion shape in which A and α do not match, K1A is shielded from light by the fixed portion 1 between A and the lens aperture stop 2, and each optical path does not approach the infrared light receiving element 4 closer to the infrared light receiving element 4 than K1A. Therefore, the condition that the light radiated from A is not received by the infrared light receiving element 4 is that the distance rAS1 between the optical axis and FAS1, which is the intersection of K1A and the light receiving surface, is larger than rs. That is, if the expression (43) is satisfied, the light radiated from A is not received by the infrared light receiving element 4.

【0390】また、幾何光学で周知の通り、r3A1 、r
AF、LA 、rAs1 、f、L3 は幾何関係として(44)
式、(45)式を満たす。
As is well known in geometrical optics, r3A1, r3
AF, LA, rAs1, f, and L3 are represented as geometric relationships (44)
Equation (45) is satisfied.

【0391】また、幾何光学で周知の通りrA 、LA 、
L2 、rAF、LAFは幾何関係として(46)式、(4
7)式を満たす。
As is well known in geometrical optics, rA, LA,
L2, rAF, and LAF are expressed by the following equation (46) as a geometric relationship.
7) Formula is satisfied.

【0392】(47)式を(45)式に代入することに
より(48)式が得られる。
By substituting equation (47) into equation (45), equation (48) is obtained.

【0393】また、ガウスの公式から(49)式、(5
0)式が成り立つ。
Also, from Gauss's formula, equation (49), (5
Equation (0) holds.

【0394】(50)式を(48)式に代入することに
より(51)式が得られる。
By substituting equation (50) into equation (48), equation (51) is obtained.

【0395】また、幾何光学で周知の通り、r2 、rA
、LA 、r3A1 、L2 は幾何関係として(52)式、
(53)式を満たす。
As is well known in geometrical optics, r2, rA
, LA, r3A1 and L2 are expressed by the following equation (52) as a geometric relationship.
Formula (53) is satisfied.

【0396】(53)式を(51)式に代入することに
よって(54)式が得られる。
By substituting equation (53) into equation (51), equation (54) is obtained.

【0397】rAS1 と同じくrαS1は(55)式のよう
になる。
Similarly to rAS1, rαS1 is as shown in equation (55).

【0398】Aは固定部先端の点で、αはレンズ開口絞
り2の縁からこの縁と光軸に対して同じ側の固定部1内
面へ接する直線が固定部先端面と交わる点であるので、
レンズ開口絞り2からA、αまでの距離は相等しく(5
6)式が成り立ち、光軸からAまでの距離は光軸からα
までの距離以上であり(57)式が成り立つ。
A is the point at the tip of the fixed part, and α is the point at which the straight line that contacts the edge of the lens aperture stop 2 and the inner surface of the fixed part 1 on the same side with respect to the optical axis intersects the tip of the fixed part. ,
The distances from the lens aperture stop 2 to A and α are equal (5
Equation 6) holds, and the distance from the optical axis to A is α from the optical axis.
(57) holds.

【0399】(56)式を(55)式に代入することで
(58)式が得られる。
By substituting equation (56) into equation (55), equation (58) is obtained.

【0400】rαS1は(29)式の関係を満たすので、
rAS1 がrαS1よりも大きい、すなわち(59)式を満
たせば、自動的にrAS1 が(43)式の関係を満たす。
Since rαS1 satisfies the relationship of equation (29),
If rAS1 is larger than rαS1, that is, if equation (59) is satisfied, rAS1 automatically satisfies the relation of equation (43).

【0401】(55)(58)式を(59)式に代入す
ることにより(60)式が得られる。
(55) By substituting equation (58) into equation (59), equation (60) is obtained.

【0402】(57)式より、(60)式は(61)式
のようになる。
From equation (57), equation (60) becomes like equation (61).

【0403】以上のように、固定部1の仮想点αおよび
先端点Aから放射される光を赤外受光素子4で受光しな
いためには(33)式、或いは(36)式、或いは(3
9)式、或いは(42)式の条件を満たし、且つ(6
1)式を満たす必要がある。
As described above, in order to prevent the light radiated from the virtual point α and the tip point A of the fixed portion 1 from being received by the infrared light receiving element 4, the expression (33), the expression (36), or the expression (3)
The condition of the expression 9) or the expression (42) is satisfied, and (6)
It is necessary to satisfy the expression 1).

【0404】次に、Bから放射される光を受光しない条
件を求める。Bから放射される光はK1B、K2B、K3B、
K4Bなどを通ってBの像点FB に到達する。Bは固定部
の先端以外の点であるので、固定部先端面の点αよりも
Bの方が透過型回折レンズ5に近い。したがって、幾何
光学で周知の通り、透過型回折レンズ5の像点Fαより
も像点FB の方が透過型回折レンズ5から遠くなる。す
なわち(62)式が成り立つ。
Next, a condition for not receiving light emitted from B will be determined. The light emitted from B is K1B, K2B, K3B,
It reaches the image point FB of B through K4B and the like. Since B is a point other than the tip of the fixed portion, B is closer to the transmission diffraction lens 5 than the point α on the tip surface of the fixed portion. Therefore, as is well known in geometrical optics, the image point FB is farther from the transmission type diffraction lens 5 than the image point Fα of the transmission type diffraction lens 5. That is, equation (62) holds.

【0405】透過型回折レンズ5から受光面までの距離
は透過型回折レンズ5からFαまでの距離よりも小さ
い。したがって(62)式より、透過型回折レンズ5か
ら受光面までの距離は透過型回折レンズ5からFB まで
の距離よりも小さいことになる。
The distance from the transmission type diffraction lens 5 to the light receiving surface is smaller than the distance from the transmission type diffraction lens 5 to Fα. Therefore, from equation (62), the distance from the transmission type diffraction lens 5 to the light receiving surface is smaller than the distance from the transmission type diffraction lens 5 to FB.

【0406】このとき、図19に示すようにBからFB
までの各光路のうち受光面で赤外受光素子4に最も近づ
くものはK1Bである。Bから放射される光を赤外受光素
子4で受光しないためには、K1Bと受光面との交点であ
るFBS1 と光軸との距離rBS1がrs よりも大きい必要
がある。つまり(63)式が成り立つ必要がある。
At this time, as shown in FIG.
The light path closest to the infrared light receiving element 4 on the light receiving surface is K1B among the respective optical paths up to. In order to prevent the light emitted from B from being received by the infrared light receiving element 4, the distance rBS1 between the optical axis and FBS1, which is the intersection of K1B and the light receiving surface, needs to be larger than rs. That is, equation (63) needs to be satisfied.

【0407】また、幾何光学で周知の通り、r3B1 、r
BF、LB 、rBs1 、f、L3 は幾何関係として(64)
式、(65)式を満たす。
Further, as is well known in geometrical optics, r3B1,
BF, LB, rBs1, f and L3 are expressed as a geometric relation (64)
Equation (65) is satisfied.

【0408】また、幾何光学で周知の通りrB 、LB 、
L2 、rBF、LBFは幾何関係として(66)式、(6
7)式を満たす。
As is well known in geometrical optics, rB, LB,
L2, rBF, and LBF are expressed by the following equation (66) as a geometric relationship.
7) Formula is satisfied.

【0409】(67)式を(65)式に代入することに
より(68)式が得られる。
The equation (68) is obtained by substituting the equation (67) into the equation (65).

【0410】また、ガウスの公式から(69)式、(7
0)式が成り立つ。
Further, from Gauss's formula, equation (69), (7
Equation (0) holds.

【0411】(70)式を(68)式に代入することに
より(71)式が得られる。
The equation (71) is obtained by substituting the equation (70) into the equation (68).

【0412】また、幾何光学で周知の通り、r2 、rB
、LB 、r3B1 、L2 は幾何関係として(72)式、
(73)式を満たす。
As is well known in geometrical optics, r2, rB
, LB, r3B1 and L2 are expressed by the following equation (72) as a geometric relationship.
Formula (73) is satisfied.

【0413】(73)式を(71)式に代入することに
よって(74)式が得られる。
The equation (74) can be obtained by substituting the equation (73) into the equation (71).

【0414】rBS1 と同じくrαS1は(75)式のよう
になる。
Similarly to rBS1, rαS1 is given by equation (75).

【0415】rαS1は(29)式の関係を満たすので、
rBS1 がrαS1よりも大きい、すなわち(76)式を満
たせば自動的にrBS1 が(63)式の関係を満たすこと
になる。
Since rαS1 satisfies the relationship of equation (29),
If rBS1 is larger than rαS1, that is, if equation (76) is satisfied, rBS1 automatically satisfies the relation of equation (63).

【0416】(74)(75)式を(76)式に代入す
ることにより(77)式が得られる。
(77) By substituting equations (75) and (76) into equation (76), equation (77) is obtained.

【0417】ここで、αは固定部1先端面の点であるの
で、Lα、LB に(78)式、(79)式の関係が成り
立つ。
Here, since α is a point on the tip end surface of the fixed portion 1, the relations of equations (78) and (79) hold for Lα and LB.

【0418】(33)式、或いは(36)式、或いは
(39)式、或いは(42)式の条件を満たし、且つ
(61)式を満たすよう光学系を設計した赤外センサ
が、あらゆる先端面以外の点からの放射光も受光しない
ためには、B各点について(77)式の関係が成り立つ
必要がある。
An infrared sensor which satisfies the condition of the expression (33), the expression (36), the expression (39), or the expression (42), and the optical system designed to satisfy the expression (61), In order not to receive the radiated light from points other than the surface, the relationship of the equation (77) needs to be established for each point B.

【0419】したがって、(61)式、(79)式の関
係を考慮することにより、(80)式が成り立つ必要が
ある。
Therefore, it is necessary to satisfy Expression (80) by considering the relationship between Expressions (61) and (79).

【0420】以上のように、固定部1から放射される光
を赤外受光素子4で受光しないためには(33)式、或
いは(36)式、或いは(39)式、或いは(42)式
の条件を満たし、且つ(61)式を満たし、さらに(8
1)式を満たす必要がある。
As described above, in order to prevent the light radiated from the fixed portion 1 from being received by the infrared receiving element 4, the expression (33), the expression (36), the expression (39), or the expression (42) And the condition (61) is satisfied, and (8)
It is necessary to satisfy the expression 1).

【0421】赤外受光素子4を、(33)式あるいは
(36)式あるいは(39)式あるいは(42)式で与
えられる量だけ透過型回折レンズ5の焦点面から離して
設け、かつ(61)式と(81)式を満たす光学設計に
することによって、固定部から放射される赤外線を赤外
受光素子4で受光せずに被測定物体から放射光のみを赤
外受光素子4で受光させることができるため、固定部の
温度変化に起因する測定誤差を防ぐことができる。
The infrared light receiving element 4 is provided away from the focal plane of the transmission type diffraction lens 5 by an amount given by the expression (33), (36), (39) or (42), and (61) ) And (81), the infrared light emitted from the fixed object is not received by the infrared light receiving element 4 but only the radiated light from the measured object is received by the infrared light receiving element 4. Therefore, it is possible to prevent a measurement error caused by a temperature change of the fixed portion.

【0422】なお、筐体9と固定部1、レンズ開口絞り
2は一体であっても構わない。
[0422] The housing 9, the fixed portion 1, and the lens aperture stop 2 may be integrated.

【0423】図20、21、22は本発明の第16の実
施例における赤外センサの光学系を示すものである。図
20、21、22において、5は透過型回折レンズ、4
は赤外線受光素子、9は筐体、1は穴の内部など凹部に
ある受光したい領域に赤外センサを固定して向けるため
の固定部、2は透過型回折レンズ5の有効領域を決める
ためのレンズ開口絞り、α、α’はレンズ開口絞り2の
縁からこの縁と光軸に対して同じ側の固定部1内面へ接
する直線が固定部先端面と交わる点、Aは固定部1先端
の点、Bは固定部1の先端以外の点、Fは透過型回折レ
ンズ5の焦点、Fα、Fα’はそれぞれ透過型回折レン
ズ5によるα、α’の像点、FA は透過型回折レンズ5
によるAの像点、FB は透過型回折レンズ5によるBの
像点、K1 αはαから光軸に対して同じ側のレンズ開口
絞り2の開口部の縁を通過してFαへ進行する光(マー
ジナル光線)の光路、K2 αはαから光軸と平行に進ん
で焦点Fを通過してFαに到達する光の光路、K3 αは
αから透過型回折レンズ5の中心を通過してFαに到達
する光の光路、K4 αはαから光軸を挟んで反対側のレ
ンズ開口絞り2の開口部の縁を通過してFαに到達する
光(マージナル光線)の光路、K1AはAから光軸に対し
て同じ側のレンズ開口絞り2の開口部の縁を通過してF
A へ進行する光(マージナル光線)の光路、K2AはAか
ら光軸と平行に進んで焦点Fを通過してFA に到達する
光の光路、K3AはAから透過型回折レンズ5の中心を通
過してFA に到達する光の光路、K4AはAから光軸を挟
んで反対側のレンズ開口絞り2の開口部の縁を通過して
FA に到達する光(マージナル光線)の光路、K1BはB
から光軸に対して同じ側のレンズ開口絞り2の開口部の
縁を通過してFB へ進行する光(マージナル光線)の光
路、K2BはBから光軸と平行に進んで焦点Fを通過して
FB に到達する光の光路、K3BはBから透過型回折レン
ズ5の中心を通過してFB に到達する光の光路、K4Bは
Bから光軸を挟んで反対側のレンズ開口絞り2の開口部
の縁を通過してFB に到達する光(マージナル光線)の
光路、FαS4は光路K4 αと受光面との交点、FAS4 は
光路K4Aと受光面との交点、FBS4 は光路K4Bとセンサ
面との交点、FαS1は光路K1Aと受光面との交点、FBS
1 は光路K1Bとセンサ面との交点、rαはα点での固定
部1の開口半径、rA はA点での固定部1の開口半径、
rB はB点での固定部1の開口半径、r2 はレンズ開口
絞り2の開口半径、r3 α4 は光路K4 αの透過型回折
レンズ5における光軸からの距離、r3A4 は光路K4Aの
透過型回折レンズ5における光軸からの距離、r3B4 は
光路K4Bの透過型回折レンズ5における光軸からの距
離、r3 α1 は光路K1 αの透過型回折レンズ5におけ
る光軸からの距離、r3B1 は光路K1Bの透過型回折レン
ズ5における光軸からの距離、rsは赤外受光素子4の半
径、rαS4はFαS4と光軸との距離、rAS4 はFAS4 と
光軸との距離、rBS4 はFBS4 と光軸との距離、rαS1
はFαS1と光軸との距離、rBS1 はFBS1 と光軸との距
離、rαF はFαと光軸との距離、rAFはFA と光軸と
の距離、rBFはFB と光軸との距離、L αはαからレン
ズ開口絞り2までの距離、LAはAからレンズ開口絞り2
までの距離、LB はBからレンズ開口絞り2までの距
離、L2 はレンズ開口絞り2から透過型回折レンズ5ま
での距離、fは透過型回折レンズ5の焦点距離、L3 は
Fから赤外受光素子4までの距離、LαF は透過型回折
レンズ5からFαまでの距離、LAFは透過型回折レンズ
5からFA までの距離、LBFは透過型回折レンズ5から
FB までの距離である。
FIGS. 20, 21, and 22 show an optical system of an infrared sensor according to a sixteenth embodiment of the present invention. 20, 21, and 22, reference numeral 5 denotes a transmission diffraction lens,
Is an infrared light receiving element, 9 is a housing, 1 is a fixing portion for fixing and pointing the infrared sensor to a light receiving region in a concave portion such as the inside of a hole, and 2 is a fixing portion for determining an effective region of the transmission type diffraction lens 5. Α, α ′ are points where a straight line contacting the edge of the lens aperture stop 2 from the edge of the lens aperture stop 2 to the inner surface of the fixed portion 1 on the same side with respect to the optical axis intersects with the front surface of the fixed portion, and A is the tip of the fixed portion 1 Point, B is a point other than the tip of the fixed portion 1, F is the focal point of the transmission type diffraction lens 5, Fα and Fα ′ are the image points of α and α ′ by the transmission type diffraction lens 5, respectively, and FA is the transmission type diffraction lens 5.
Is the image point of A, FB is the image point of B by the transmission type diffraction lens 5, and K1α is the light traveling from α to Fα through the edge of the opening of the lens aperture stop 2 on the same side with respect to the optical axis. The optical path of (marginal ray), K2α is the optical path of light traveling parallel to the optical axis from α and passing through the focal point F to reach Fα, and K3α is Fα passing from α and passing through the center of the transmissive diffraction lens 5. K4α is an optical path of light (marginal ray) passing through the edge of the opening of the lens aperture stop 2 on the opposite side from α with respect to the optical axis and reaching Fα, and K1A is an optical path from A. Passing through the edge of the aperture of the lens aperture stop 2 on the same side with respect to the axis,
The optical path of the light (marginal ray) traveling to A, K2A is the optical path of the light traveling parallel to the optical axis from A and passing through the focal point F to reach FA, and K3A is passing from A to the center of the transmission diffractive lens 5. K4A is the optical path of the light that reaches FA, K4A is the optical path of the light (marginal ray) that passes through the edge of the opening of the lens aperture stop 2 on the opposite side of the optical axis from A and reaches FA, and K1B is B
K2B passes through the edge of the aperture of the lens aperture stop 2 on the same side with respect to the optical axis and travels to FB (marginal ray). K2B travels from B in parallel with the optical axis and passes through the focal point F. K3B is the optical path of light that reaches FB from B through the center of the transmission type diffractive lens 5, and K4B is the aperture of the lens aperture stop 2 opposite the optical axis from B with respect to the optical axis. The optical path of the light (marginal ray) passing through the edge of the part and reaching FB, FαS4 is the intersection of the optical path K4α with the light receiving surface, FAS4 is the intersection of the optical path K4A and the light receiving surface, and FBS4 is the optical path K4B and the sensor surface. , The intersection of the optical path K1A and the light receiving surface, FBS
1 is the intersection of the optical path K1B and the sensor surface, rα is the opening radius of the fixed part 1 at the point α, rA is the opening radius of the fixed part 1 at the point A,
rB is the aperture radius of the fixed portion 1 at the point B, r2 is the aperture radius of the lens aperture stop 2, r3.alpha.4 is the distance of the optical path K4.alpha. from the optical axis of the transmission diffraction lens 5, and r3A4 is the transmission diffraction of the optical path K4A. The distance of the lens 5 from the optical axis, r3B4 is the distance of the optical path K4B from the optical axis of the transmission diffraction lens 5, r3 α1 is the distance of the optical path K1 α from the optical axis of the transmission diffraction lens 5, and r3B1 is the distance of the optical path K1B. The distance from the optical axis in the transmission diffraction lens 5, rs is the radius of the infrared light receiving element 4, rαS4 is the distance between FαS4 and the optical axis, rAS4 is the distance between FAS4 and the optical axis, and rBS4 is the distance between FBS4 and the optical axis. Distance, rαS1
Is the distance between FαS1 and the optical axis, rBS1 is the distance between FBS1 and the optical axis, rαF is the distance between Fα and the optical axis, rAF is the distance between FA and the optical axis, rBF is the distance between FB and the optical axis, L α is the distance from α to the lens aperture stop 2, and LA is the distance from A to the lens aperture stop 2.
, LB is the distance from B to the lens aperture stop 2, L2 is the distance from the lens aperture stop 2 to the transmission diffraction lens 5, f is the focal length of the transmission diffraction lens 5, L3 is the infrared reception from F. LαF is the distance from the transmission diffraction lens 5 to Fα, LAF is the distance from the transmission diffraction lens 5 to FA, and LBF is the distance from the transmission diffraction lens 5 to FB.

【0424】固定部1上のαから放射される赤外光を仮
想し、この光を受光しないよう以下に示すように赤外受
光素子4の位置を決める。
The infrared light emitted from α on the fixed portion 1 is assumed, and the position of the infrared light receiving element 4 is determined as described below so as not to receive this light.

【0425】αから放射される光は光路K1 α、K2
α、K3 α、K4 αなどを通ってαの像点Fαに到達す
る。幾何光学で周知の通り、αの像点Fαは光軸を挟ん
でαと反対側に形成される。図20中に示すように、光
路K2 αを通る光は、透過型回折レンズ5を通過してF
で光軸と交叉してFαに到達し光軸から離れていく。同
じように、光路K1 αを通る光は、透過型回折レンズ5
を通過して光軸と交叉してFαに到達し光軸から離れて
いく。光路K3 αを通る光は、透過型回折レンズ5で光
軸と交叉してFαに到達し光軸から離れていく。光路K
4 αを通る光は、光軸と交叉して透過型回折レンズ5を
通過し、透過型回折レンズ5を通過してからは光軸と交
叉せずにFαに到達し、その後光軸に近づくかあるいは
遠ざかっていく。このように、αの像点Fαよりも透過
型回折レンズから離れた位置でαから放射される光が通
過しない領域が存在する。この、αの像点Fαよりも透
過型回折レンズ5から離れた位置に赤外受光素子4を設
置することで、αから放射される光を受光しない赤外セ
ンサが得られる。以下、透過型回折レンズ5の焦点から
受光面までの距離L3 を求める。
The light radiated from α has optical paths K1 α, K2
It reaches the image point Fα of α through α, K3α, K4α and the like. As is well known in geometrical optics, the image point Fα of α is formed on the opposite side of α with respect to the optical axis. As shown in FIG. 20, light passing through the optical path K2α passes through the transmission type diffraction lens 5 and
Crosses the optical axis to reach Fα and moves away from the optical axis. Similarly, light passing through the optical path K1α is
And crosses the optical axis to reach Fα and moves away from the optical axis. The light passing through the optical path K3α crosses the optical axis by the transmission type diffraction lens 5, reaches Fα and moves away from the optical axis. Optical path K
The light passing through 4α crosses the optical axis and passes through the transmission type diffraction lens 5, and after passing through the transmission type diffraction lens 5, reaches Fα without crossing the optical axis and thereafter approaches the optical axis. Or go away. As described above, there is an area where light emitted from α does not pass at a position farther from the transmission diffraction lens than the image point Fα of α. By installing the infrared light receiving element 4 at a position further away from the transmission diffraction lens 5 than the image point Fα of α, an infrared sensor that does not receive light emitted from α can be obtained. Hereinafter, the distance L3 from the focal point of the transmission type diffraction lens 5 to the light receiving surface is obtained.

【0426】赤外受光素子4はFαよりも透過型回折レ
ンズ5から遠い。この時、(82)式、(83)式が成
り立つ。図20に示すように、受光面はFαよりも透過
型回折レンズ5から遠いので、αからFαまでの各光路
のうち受光面で赤外受光素子4に最も近づくものはK4
αである。したがって、αからの光を赤外受光素子4で
受光しないためには、(84)式を満たす必要がある。
The infrared light receiving element 4 is farther from the transmission diffraction lens 5 than Fα. At this time, equations (82) and (83) hold. As shown in FIG. 20, since the light receiving surface is farther from the transmission diffractive lens 5 than Fα, of the light paths from α to Fα, the light receiving surface closest to the infrared light receiving element 4 is K4.
α. Therefore, in order for the infrared light receiving element 4 not to receive the light from α, it is necessary to satisfy the expression (84).

【0427】ここで、幾何光学で周知の通りr3 α4 、
rαF 、LαF 、rαS4、L3 、fは幾何関係として
(85)式、(86)式を満たす。
Here, as is well known in geometrical optics, r3 α4,
rαF, LαF, rαS4, L3, and f satisfy the equations (85) and (86) as geometric relationships.

【0428】(86)式を(84)式へ代入することで
(87)式が得られる。
The equation (87) is obtained by substituting the equation (86) into the equation (84).

【0429】(83)(87)式から、αから放射され
る光を赤外受光素子4で受光しないための条件は(8
8)式となる。
From the equations (83) and (87), the condition for not receiving the light radiated from α by the infrared light receiving element 4 is (8
8)

【0430】さらに、幾何光学で周知の通り、rα、L
α、L2 、rαF 、LαF は幾何関係として(89)
式、(90)式を満たす。
Furthermore, as is well known in geometrical optics, rα, L
α, L2, rαF, and LαF are expressed as a geometric relationship (89)
Equation (90) is satisfied.

【0431】(90)式を(88)式へ代入することに
より、αから放射される光を赤外受光素子4で受光しな
いための条件は(91)式となる。
By substituting equation (90) into equation (88), the condition for not receiving the light radiated from α by the infrared light receiving element 4 is given by equation (91).

【0432】また、ガウスの公式から(92)式、(9
3)式が成り立つ。
Further, from Gauss's formula, equation (92), (9
3) Equation holds.

【0433】(93)式を(91)式に代入することに
より、αから放射される光を赤外受光素子4で受光しな
いための条件は(94)式となる。
By substituting the expression (93) into the expression (91), the condition for preventing the light radiated from α from being received by the infrared receiving element 4 becomes the expression (94).

【0434】また、幾何光学で周知の通り、r2 、r
α、Lα、r3 α4 、L2 は幾何関係として(95)
式、(96)式を満たす。
As is well known in geometrical optics, r2, r
α, Lα, r3α4, L2 are expressed as a geometric relationship (95)
Equation (96) is satisfied.

【0435】(96)式を(94)式へ代入することに
より、αから放射される光を赤外受光素子4で受光しな
いための条件は(97)式となる。
By substituting the expression (96) into the expression (94), the condition for preventing the light radiated from α from being received by the infrared receiving element 4 becomes the expression (97).

【0436】以上のように、αから放射される光を赤外
受光素子4で受光しないためには、(88)式、或いは
(91)式、或いは(94)式、或いは(97)式の条
件を満たすよう光学系を設計する必要がある。
As described above, in order to prevent the light radiated from α from being received by the infrared light receiving element 4, the expression (88), the expression (91), the expression (94), or the expression (97) is used. It is necessary to design an optical system to satisfy the conditions.

【0437】(88)式、或いは(91)式、或いは
(94)式、或いは(97)式の条件を満たすよう光学
系を設計した赤外センサが、固定部のα以外の点からの
放射光も受光しない、すなわち固定部のあらゆる点から
放射される光も受光しない条件を示す。そのために、図
21、22を用いてA、Bからの光を受光しない条件を
以下に求める。
The infrared sensor whose optical system is designed to satisfy the condition of the expression (88), the expression (91), the expression (94) or the expression (97) emits light from a point other than α on the fixed portion. A condition is shown in which no light is received, that is, no light is emitted from any point of the fixed portion. For this purpose, conditions for not receiving light from A and B will be obtained below with reference to FIGS.

【0438】まず、図21により、Aから放射される光
を受光しない条件を求める。Aから透過型回折レンズ5
までの距離とαから透過型回折レンズ5間での距離は等
しいので、幾何光学で周知の通り透過型回折レンズ5に
よるA、αの像点FA 、Fαは同一面内に形成される。
従って、受光面がFαよりも透過型回折レンズ5から遠
いので、受光面はFA よりも遠くになる。そのため、図
21に示すようにAからFA までの各光路のうち受光面
で赤外受光素子4に最も近づくものはK4A である。A
から放射される光を赤外受光素子4で受光しないために
は、K4Aと受光面との交点であるFAS4 と光軸との距離
rAS4 がrs よりも大きい必要がある。
First, a condition for not receiving the light radiated from A is determined according to FIG. A to transmission diffractive lens 5
And the distance between α and the transmission diffractive lens 5 are equal, so that the image points FA and Fα of A and α by the transmission diffractive lens 5 are formed in the same plane as is well known in geometrical optics.
Accordingly, since the light receiving surface is farther from the transmission diffraction lens 5 than Fα, the light receiving surface is farther than FA. Therefore, as shown in FIG. 21, K4A is the light path closest to the infrared light receiving element 4 on the light receiving surface among the light paths from A to FA. A
In order not to receive the light radiated from the infrared light receiving element 4, the distance rAS4 between the optical axis and FAS4, which is the intersection point between K4A and the light receiving surface, needs to be larger than rs.

【0439】つまり(98)式が成り立つ必要がある。That is, equation (98) needs to be satisfied.

【0440】また、幾何光学で周知の通り、r3A4 、r
AF、LAF、rAs4 、f、L3 は幾何関係として(99)
式、(100)式を満たす。
As is well known in geometrical optics, r3A4, r3
AF, LAF, rAs4, f, and L3 are expressed as a geometric relationship (99)
Equation (100) is satisfied.

【0441】また、幾何光学で周知の通りrA 、LA 、
L2 、rAF、LAFは幾何関係として(101)式、(1
02)式を満たす。
As is well known in geometrical optics, rA, LA,
L2, rAF, and LAF are expressed by the following equation (101) as a geometric relationship.
02) is satisfied.

【0442】(102)式を(100)式に代入するこ
とにより(103)式が得られる。
By substituting equation (102) into equation (100), equation (103) is obtained.

【0443】また、ガウスの公式から(104)式、
(105)式が成り立つ。
Also, from Gauss's formula, equation (104)
Equation (105) holds.

【0444】(105)式を(103)式に代入するこ
とにより(106)式が得られる。
By substituting equation (105) into equation (103), equation (106) is obtained.

【0445】また、幾何光学で周知の通り、r2 、rA
、LA 、r3A4 、L2 は幾何関係として(107)
式、(108)式を満たす。
As is well known in geometrical optics, r2, rA
, LA, r3A4, and L2 are expressed as geometric relationships (107)
Equation (108) is satisfied.

【0446】(108)式を(106)式に代入するこ
とによって(109)式が得られる。
By substituting equation (108) into equation (106), equation (109) is obtained.

【0447】rAS4 と同じくrαS4は(110)式のよ
うになる。
Similarly to rAS4, rαS4 is as shown in equation (110).

【0448】rαS4は(84)式の関係を満たすので、
(111)式を満たせば、自動的にrAS4 が(98)式
の関係を満たすことになる。
Since rαS4 satisfies the relationship of equation (84),
If equation (111) is satisfied, rAS4 automatically satisfies the relation of equation (98).

【0449】(109)(110)式を(111)式に
代入することにより(112)式が得られる。
(109) By substituting equation (110) into equation (111), equation (112) is obtained.

【0450】Aは固定部先端の点で、αはレンズ開口絞
り2の縁からこの縁と光軸に対して同じ側の固定部1内
面へ接する直線が固定部先端面と交わる点であるので、
レンズ開口絞り2からA、αまでの距離は相等しく(1
13)式が成り立ち、光軸からAまでの距離は光軸から
αまでの距離以上であり(114)式が成り立つ。
A is the point at the tip of the fixed part, and α is the point at which the straight line contacting the edge of the lens aperture stop 2 and the inner surface of the fixed part 1 on the same side with respect to the optical axis intersects the tip of the fixed part. ,
The distances from the lens aperture stop 2 to A and α are equal (1
Expression 13) holds, and the distance from the optical axis to A is equal to or greater than the distance from the optical axis to α, and Expression (114) holds.

【0451】(113)式より、(112)式の条件は
(115)式のようになる。
From the expression (113), the condition of the expression (112) is as shown in the expression (115).

【0452】(114)式より、(115)式の条件は
(116)式、(117)式のようになる。
From the expression (114), the conditions of the expression (115) are as shown in the expressions (116) and (117).

【0453】(88)式、或いは(91)式、或いは
(94)式、或いは(97)式の条件を満たすよう光学
定数や各位置関係を設計した赤外センサが、固定部先端
Aからの放射光も受光しないためには、(117)式の
条件を満たす光学設計である必要がある。
The infrared sensor, whose optical constants and positional relationships are designed to satisfy the conditions of Expression (88), Expression (91), Expression (94), or Expression (97), In order not to receive the radiated light, the optical design needs to satisfy the condition of the expression (117).

【0454】次に、Bから放射される光を受光しない条
件を求める。Bから放射される光はK1B、K2B、K3B、
K4Bなどを通ってBの像点FB に到達する。BからFB
までの各光路のうち受光面で赤外受光素子4に最も近づ
くものは、図21に示すように像点FB が受光面よりも
透過型回折レンズ5に近い場合にはK4Bであり、図22
に示すように像点FB が受光面よりも透過型回折レンズ
5に近い場合はK1Bである。
Next, a condition for not receiving light emitted from B will be determined. The light emitted from B is K1B, K2B, K3B,
It reaches the image point FB of B through K4B and the like. B to FB
The light path closest to the infrared light receiving element 4 on the light receiving surface is K4B when the image point FB is closer to the transmission diffraction lens 5 than the light receiving surface as shown in FIG.
If the image point FB is closer to the transmission diffraction lens 5 than the light receiving surface as shown in FIG.

【0455】まず図21に示すように、FB が受光面よ
りも透過型回折レンズ5に近く、したがってBからFB
までの各光路のうち受光面で赤外受光素子4に最も近づ
くものがK4Bである場合について、Bから放射される光
を赤外受光素子4で受光しない条件を示す。
First, as shown in FIG. 21, FB is closer to the transmissive diffraction lens 5 than the light receiving surface.
In the case where K4B is the light receiving surface closest to the infrared light receiving element 4 among the light paths up to K4B, the conditions under which the light emitted from B is not received by the infrared light receiving element 4 are shown.

【0456】Bから放射される光を赤外受光素子4で受
光しないためには、K4Bと受光面との交点であるFBS4
と光軸との距離rBS4 がrs よりも大きい必要がある。
つまり(118)式が成り立つ必要がある。
In order for the infrared light receiving element 4 not to receive the light radiated from B, it is necessary to use FBS4, which is the intersection of K4B and the light receiving surface.
The distance rBS4 between the optical axis and the optical axis needs to be larger than rs.
That is, equation (118) needs to be satisfied.

【0457】また、幾何光学で周知の通り、r3B4 、r
BF、LBF、rBs4 、f、L3 は幾何関係として(11
9)式、(120)式を満たす。
As is well known in geometrical optics, r3B4, r3
BF, LBF, rBs4, f, and L3 are represented as (11
Equations 9) and (120) are satisfied.

【0458】また、幾何光学で周知の通りrB 、LB 、
L2 、rBF、LBFは幾何関係として(121)式、(1
22)式を満たす。
Further, as is well known in geometrical optics, rB, LB,
L2, rBF, and LBF are expressed by the following equation (121) as a geometric relationship.
22) Formula is satisfied.

【0459】(122)式を(120)式に代入するこ
とにより(123)式が得られる。
By substituting equation (122) into equation (120), equation (123) is obtained.

【0460】また、ガウスの公式から(124)式、
(125)式が成り立つ。
Also, from Gauss's formula, equation (124)
Equation (125) holds.

【0461】(125)式を(123)式に代入するこ
とにより(126)式が得られる。
By substituting equation (125) into equation (123), equation (126) is obtained.

【0462】また、幾何光学で周知の通り、r2 、rB
、LB 、r3B4 、L2 は幾何関係として(127)
式、(128)式を満たす。
As is well known in geometrical optics, r2, rB
, LB, r3B4, and L2 are expressed as geometric relationships (127)
Equation (128) is satisfied.

【0463】(128)式を(126)式に代入するこ
とによって(129)式が得られる。
By substituting equation (128) into equation (126), equation (129) is obtained.

【0464】rBS4 と同じくrαS4は(130)式のよ
うになる。
[0464] Similarly to rBS4, rαS4 is given by equation (130).

【0465】rαS4は(84)式の関係を満たすので、
(131)式を満たせば、自動的にrBS4 が(118)
式の関係を満たすことになる。
Since rαS4 satisfies the relationship of equation (84),
If equation (131) is satisfied, rBS4 automatically becomes (118)
This satisfies the relationship of the expression.

【0466】(129)(130)式を(131)式に
代入することにより(132)式が得られる。
(129) By substituting equation (130) into equation (131), equation (132) is obtained.

【0467】ここで、αは固定部1先端面の点であるの
で、Lα、LB に(133)式、(134)式の関係が
成り立つ。
Here, since α is a point on the tip end surface of the fixed portion 1, the relations of the equations (133) and (134) hold for Lα and LB.

【0468】(88)式、或いは(91)式、或いは
(94)式、或いは(97)式の条件を満たし、(11
7)式の条件をよう光学定数や各位置関係を設計した赤
外センサが、固定部の先端以外の点からの放射光も受光
しない、すなわち固定部のあらゆる点から放射される光
も受光しないためには、あらゆるBについて(132)
式の関係が成り立つ必要がある。したがって、(13
4)式(117)式を考慮して、(135)式が成り立
つ必要がある。 以上のように、固定部1から放射され
る光を赤外受光素子4で受光しないためには(88)
式、或いは(91)式、或いは(94)式、或いは(9
7)式の条件を満たし、且つ(117)式の条件を満た
し、さらに(136)式を満たす必要がある。
The condition of the expression (88), the expression (91), the expression (94), or the expression (97) is satisfied, and (11)
The infrared sensor designed with the optical constants and each positional relationship according to the condition of the expression 7) does not receive the light emitted from any point other than the tip of the fixed part, that is, does not receive the light emitted from any point of the fixed part. To do this, for any B (132)
It is necessary that the relationship of the expressions hold. Therefore, (13
4) In consideration of equation (117), equation (135) needs to be satisfied. As described above, in order to prevent the light radiated from the fixed portion 1 from being received by the infrared light receiving element 4, (88)
Expression, or Expression (91), Expression (94), or Expression (9)
It is necessary to satisfy the condition of the expression (7), the condition of the expression (117), and the expression (136).

【0469】次に、図22に示すように、FB が受光面
よりも透過型回折レンズ5から遠く、したがってBから
FB までの各光路のうち受光面で赤外受光素子4に最も
近づくものがK1Bである場合について、Bから放射され
る光を赤外受光素子4で受光しない条件を示す。
Next, as shown in FIG. 22, FB is farther from the transmissive diffractive lens 5 than the light receiving surface, and therefore, among the optical paths from B to FB, the one closest to the infrared light receiving element 4 on the light receiving surface. In the case of K1B, a condition that light emitted from B is not received by the infrared light receiving element 4 is shown.

【0470】Bから放射される光を赤外受光素子4で受
光しないためには、K1Bと受光面との交点であるFBS1
と光軸との距離rBS1 がrs よりも大きい必要がある。
つまり(137)式が成り立つ必要がある。
In order to prevent the light radiated from B from being received by the infrared light receiving element 4, it is necessary to use FBS1 at the intersection of K1B and the light receiving surface.
The distance rBS1 between the optical axis and the optical axis needs to be larger than rs.
That is, equation (137) needs to be satisfied.

【0471】また、幾何光学で周知の通り、r3B1 、r
B 、LB 、rBs1 、f、L3 は幾何関係として(13
8)式、(139)式を満たす。
As is well known in geometrical optics, r3B1, r3
B, LB, rBs1, f, and L3 are expressed as geometric relationships (13
8) and (139) are satisfied.

【0472】また、幾何光学で周知の通りrB 、LB 、
L2 、rBF、LBFは幾何関係として(140)式、(1
41)式を満たす。
Further, as is well known in geometrical optics, rB, LB,
L2, rBF, and LBF are expressed by the following equation (140) as a geometric relationship.
41) Formula is satisfied.

【0473】(141)式を(139)式に代入するこ
とにより(142)式が得られる。
By substituting equation (141) into equation (139), equation (142) is obtained.

【0474】また、ガウスの公式から(143)式、
(144)式が成り立つ。
Also, from Gauss's formula, equation (143)
Equation (144) holds.

【0475】(144)式を(142)式に代入するこ
とにより(145)式が得られる。
By substituting equation (144) into equation (142), equation (145) is obtained.

【0476】また、幾何光学で周知の通り、r2 、rB
、LB 、r3B1 、L2 は幾何関係として(146)
式、(147)式を満たす。
As is well known in geometrical optics, r2, rB
, LB, r3B1 and L2 are represented as geometric relationships (146)
Equation (147) is satisfied.

【0477】(147)式を(145)式に代入するこ
とによって(148)式が得られる。
By substituting equation (147) into equation (145), equation (148) is obtained.

【0478】rBS1 と同じくrαS1は(149)式のよ
うになる。
Similarly to rBS1, rαS1 is as shown in equation (149).

【0479】ここで、αからFαまでの各光路のうち受
光面で赤外受光素子4に最も近づくものはK4 αであ
り、(150)式が成り立つ。
Here, of the respective optical paths from α to Fα, the one closest to the infrared light receiving element 4 on the light receiving surface is K4α, and the equation (150) is established.

【0480】rαS4は(84)式の関係を満たすので、
(151)式を満たせば、自動的にrBS1 が(137)
式の関係を満たすことになる。
Since rαS4 satisfies the relationship of equation (84),
If equation (151) is satisfied, rBS1 automatically becomes (137)
This satisfies the relationship of the expression.

【0481】(148)(149)式を(151)式に
代入することにより(152)式が得られる。
(148) By substituting equation (149) into equation (151), equation (152) is obtained.

【0482】ここで、αは固定部1先端面の点であるの
で、Lα、LB に(153)式、(154)式の関係が
成り立つ。
Here, since α is a point on the tip end surface of the fixed portion 1, the relations of the equations (153) and (154) are established for Lα and LB.

【0483】(88)式、或いは(91)式、或いは
(94)式、或いは(97)式の条件を満たし、且つ
(117)式と(136)式を満たす光学設計である赤
外センサが、固定部の先端面以外の点からの放射光も受
光しない、すなわち固定部のあらゆる点から放射される
光も受光しないためには、あらゆるBについて(15
2)式の関係が成り立つ必要がある。したがって、(1
54)式、(117)式を考慮して、(155)式が成
り立つ必要がある。
An infrared sensor having an optical design that satisfies the condition of the expression (88), the expression (91), the expression (94), or the expression (97) and the expressions (117) and (136) is used. In order to not receive the light emitted from any point other than the tip end surface of the fixed portion, that is, to not receive the light emitted from any point of the fixed portion, it is necessary to set (15
2) The relationship of the expression needs to be satisfied. Therefore, (1
The expression (155) needs to be satisfied in consideration of the expressions (54) and (117).

【0484】(156)式と、(136)式は等しい。
したがって、以上のように、固定部1から放射される光
を赤外受光素子4で受光しないためには(88)式、或
いは(91)式、或いは(94)式、或いは(97)式
の条件を満たし、且つ(117)式を満たし、さらに
(136)式を満たす必要がある。
The equations (156) and (136) are equal.
Therefore, as described above, in order to prevent the light radiated from the fixed portion 1 from being received by the infrared light receiving element 4, the expression (88), the expression (91), the expression (94), or the expression (97) is used. It is necessary to satisfy the condition, satisfy the expression (117), and further satisfy the expression (136).

【0485】以上のように本実施例によれば、赤外受光
素子4を、(88)式あるいは(91)式あるいは(9
4)式あるいは(97)式で与えられる量だけ透過型回
折レンズ5の焦点から離して設け、かつ(117)式と
(136)式を満たす光学設計にすることによって、固
定部1から放射される赤外線を赤外受光素子4で受光せ
ずに被測定物体から放射光のみを赤外受光素子4で受光
させることができるため、固定部の温度変化に起因する
測定誤差を防ぐことができる。
As described above, according to the present embodiment, the infrared light receiving element 4 is replaced by the expression (88), the expression (91), or the expression (9).
By providing an optical design that is provided away from the focal point of the transmissive diffraction lens 5 by an amount given by Expression 4) or Expression (97) and that satisfies Expressions (117) and (136), radiation from the fixed unit 1 is obtained. Since only infrared radiation from the object to be measured can be received by the infrared light receiving element 4 without receiving infrared light by the infrared light receiving element 4, a measurement error due to a temperature change of the fixed portion can be prevented.

【0486】なお、筐体9と固定部1、レンズ開口絞り
2は一体であっても構わない。
[0486] The housing 9, the fixed portion 1, and the lens aperture stop 2 may be integrated.

【0487】図23は本発明の第17の実施例における
赤外センサを示すものである。図23において、6は集
光ミラー、4は赤外線受光素子、9は筐体、A、A’は
受光したい領域と受光したくない領域の境界に位置する
点、Bは受光したくない領域の点、Fは集光ミラーの焦
点、FA は集光ミラー6によるAの像点、FA'は集光ミ
ラー6によるA’の像点、FB は集光ミラー6によるB
の像点、K1AはAから光軸に対して同じ側のレンズ開口
絞り2の開口部の縁を通過してFA へ進行する光(マー
ジナル光線)の光路、K2AはAから光軸と平行に進んで
焦点Fを通過してFA に到達する光の光路、K3AはAか
ら集光ミラー6の中心を通過してFA に到達する光の光
路、K4AはAから光軸を挟んで反対側のレンズ開口絞り
2の開口部の縁を通過してFA に到達する光(マージナ
ル光線)の光路、K1A' はA’から光軸に対して同じ側
のレンズ開口絞り2の開口部の縁を通過してFA'へ進行
する光(マージナル光線)の光路、K2A' はA’から光
軸と平行に進んで焦点Fを通過してFA'に到達する光の
光路、K3A' はA’から集光ミラー6の中心を通過して
FA'に到達する光の光路、K4A' はAから光軸を挟んで
反対側のレンズ開口絞り2の開口部の縁を通過してFA'
に到達する光(マージナル光線)の光路、K3BはBから
集光ミラー6の中心を通過してFB に到達する光の光
路、FX は光路K1Aと光路K1A' の交点である。
FIG. 23 shows an infrared sensor according to a seventeenth embodiment of the present invention. In FIG. 23, 6 is a condensing mirror, 4 is an infrared light receiving element, 9 is a housing, A and A 'are points located at a boundary between a region to receive light and a region not to receive light, and B is a region located not to receive light. F, F is the focal point of the condenser mirror, FA is the image point of A by the condenser mirror 6, FA 'is the image point of A' by the condenser mirror 6, and FB is B of the condenser mirror 6.
K1A is an optical path of light (marginal ray) traveling from A to the FA through the edge of the opening of the lens aperture stop 2 on the same side with respect to the optical axis, and K2A is parallel to the optical axis from A. K3A is an optical path of light that travels through the focal point F to reach FA, K3A is an optical path of light that passes from the center of the condenser mirror 6 to reach FA, and K4A is an optical path from A opposite to the optical axis. K1A ', the optical path of light (marginal ray) passing through the edge of the aperture of the lens aperture stop 2 and arriving at FA, passes through the edge of the aperture of the lens aperture stop 2 on the same side from A' with respect to the optical axis. K2A 'is an optical path of light (marginal ray) traveling parallel to the optical axis from A' and passing through the focal point F to reach FA ', and K3A' is a light path from A '. K4A 'is an optical path of light passing through the center of the optical mirror 6 and arriving at FA'; K4A 'is an opening of the lens aperture stop 2 on the opposite side of A from the optical axis. FA passes through the edge '
K3B is the optical path of the light reaching the FB from B through the center of the converging mirror 6, and FX is the intersection of the optical paths K1A and K1A '.

【0488】測定したい領域から放射される赤外線のみ
を赤外受光素子で受光するような光学系を設計する。
An optical system is designed such that only infrared rays emitted from the region to be measured are received by the infrared light receiving element.

【0489】赤外受光素子4を筐体9に取り付け、集光
ミラー6を通過しない赤外線を赤外受光素子4で受光し
ないようにする。集光ミラー6を通った赤外線のみ受光
する構成にした上で以下の設計を行う。
[0489] The infrared light receiving element 4 is attached to the housing 9 so that infrared light not passing through the condenser mirror 6 is not received by the infrared light receiving element 4. The following design is performed after the configuration is such that only infrared rays passing through the condenser mirror 6 are received.

【0490】Aから放射される光は光路K1A、K2A、K
3A、K4Aなどを通ってAの像点FAに到達する。幾何光
学で周知の通り、Aの像点FA は光軸を挟んでAと反対
側に形成される。図23中に示すように、光路K2Aを通
る光は、集光ミラー6を通過してFで光軸と交叉したの
ち光軸から離れながらFA に到達する。同じように、光
路K1Aを通る光は、集光ミラー6を通過して光軸と交叉
したのち光軸から離れながらFA に到達する。光路K3A
を通る光は、集光ミラー6で光軸と交叉したのち光軸か
ら離れながらFA に到達する。光路K4Aを通る光は、光
軸と交叉して集光ミラー6を通過し、集光ミラー6を通
過してからは光軸と交叉せずにFA に到達する。このよ
うに、光路K1Aと光軸が交叉する点FX よりも集光ミラ
ーから離れた位置かつFA よりも集光ミラー6に近い位
置で、Aから放射される光が通過しない領域が存在す
る。この領域は、FX とFA とFA'が形成する三角形の
内側となる。この三角形の内側に赤外受光素子4を設置
することで、A、A’から放射される光を受光しない赤
外センサが得られる。
The light radiated from A has optical paths K1A, K2A, K
It reaches the image point FA of A through 3A, K4A and the like. As is well known in geometrical optics, the image point FA of A is formed on the opposite side of A with respect to the optical axis. As shown in FIG. 23, the light passing through the optical path K2A passes through the condenser mirror 6, intersects the optical axis at F, and then reaches FA while leaving the optical axis. Similarly, light passing through the optical path K1A passes through the condenser mirror 6, crosses the optical axis, and then reaches FA while leaving the optical axis. Optical path K3A
Passes through the condenser mirror 6 and crosses the optical axis, and then reaches FA while leaving the optical axis. The light passing through the optical path K4A crosses the optical axis and passes through the collecting mirror 6, and after passing through the collecting mirror 6, reaches the FA without crossing the optical axis. As described above, there is a region where the light radiated from A does not pass at a position farther from the converging mirror than the point FX where the optical path K1A intersects with the optical axis and closer to the converging mirror 6 than FA. This region is inside the triangle formed by FX, FA and FA '. By installing the infrared light receiving element 4 inside this triangle, an infrared sensor that does not receive light emitted from A and A ′ can be obtained.

【0491】受光したい領域の外側にある、受光したく
ない領域中のB点は、Aよりも光軸から遠いため、集光
ミラー6によるBの像点FB がFA より光軸から遠くな
ることは周知の通りである。従って、FX とFA とFA'
が形成する三角形の内側に赤外受光素子を設置すること
によってA、A’から放射される赤外線を受光しないよ
うにすれば、自動的にBからの赤外線も受光しない構成
となる。
The point B outside the region where light is to be received and in the region where light reception is not desired is farther from the optical axis than A, so that the image point FB of B by the condenser mirror 6 is farther from the optical axis than FA. Is well known. Therefore, FX, FA and FA '
By disposing the infrared light receiving element inside the triangle formed by the light receiving element so as not to receive the infrared light radiated from A and A ′, the infrared light from B is not automatically received.

【0492】以上のように、FX とFA とFA'が形成す
る三角形の内側に赤外受光素子4を設置することによっ
て、光軸付近の受光したい領域から放射される赤外線の
みを受光するような赤外センサが得られる。
As described above, by arranging the infrared light receiving element 4 inside the triangle formed by FX, FA, and FA ', it is possible to receive only the infrared light radiated from the light receiving area near the optical axis. An infrared sensor is obtained.

【0493】図24は本発明の第18の実施例における
赤外センサを示すものである。図24において、6は集
光ミラー、4は赤外線受光素子、9は筐体、A、A’は
受光したい領域と受光したくない領域の境界に位置する
点、Bは受光したくない領域の点、Fは集光ミラーの焦
点、FA は集光ミラー6によるAの像点、FA'は集光ミ
ラー6によるA’の像点、FB は集光ミラー6によるB
の像点、K1AはAから光軸に対して同じ側のレンズ開口
絞り2の開口部の縁を通過してFA へ進行する光(マー
ジナル光線)の光路、K2AはAから光軸と平行に進んで
焦点Fを通過してFA に到達する光の光路、K3AはAか
ら集光ミラー6の中心を通過してFA に到達する光の光
路、K4AはAから光軸を挟んで反対側のレンズ開口絞り
2の開口部の縁を通過してFA に到達する光(マージナ
ル光線)の光路、K1A' はA’から光軸に対して同じ側
のレンズ開口絞り2の開口部の縁を通過してFA'へ進行
する光(マージナル光線)の光路、K2A' はA’から光
軸と平行に進んで焦点Fを通過してFA'に到達する光の
光路、K3A' はA’から集光ミラー6の中心を通過して
FA'に到達する光の光路、K4A' はAから光軸を挟んで
反対側のレンズ開口絞り2の開口部の縁を通過してFA'
に到達する光(マージナル光線)の光路、K3BはBから
集光ミラー6の中心を通過してFB に到達する光の光
路、FX は光路K1Aと光路K1A' の交点、FY は光路K
4Aと光路K4A' の交点である。
FIG. 24 shows an infrared sensor according to the eighteenth embodiment of the present invention. In FIG. 24, 6 is a condensing mirror, 4 is an infrared light receiving element, 9 is a housing, A and A 'are points located at a boundary between a region where light reception is desired and a region where light reception is not desired, and B is a region where light reception is not desired. F, F is the focal point of the condenser mirror, FA is the image point of A by the condenser mirror 6, FA 'is the image point of A' by the condenser mirror 6, and FB is B of the condenser mirror 6.
K1A is an optical path of light (marginal ray) traveling from A to the FA through the edge of the opening of the lens aperture stop 2 on the same side with respect to the optical axis, and K2A is parallel to the optical axis from A. K3A is an optical path of light that travels through the focal point F to reach FA, K3A is an optical path of light that passes from the center of the condenser mirror 6 to reach FA, and K4A is an optical path from A opposite to the optical axis. K1A ', the optical path of light (marginal ray) passing through the edge of the aperture of the lens aperture stop 2 and arriving at FA, passes through the edge of the aperture of the lens aperture stop 2 on the same side from A' with respect to the optical axis. K2A 'is an optical path of light (marginal ray) traveling parallel to the optical axis from A' and passing through the focal point F to reach FA ', and K3A' is a light path from A '. K4A 'is an optical path of light passing through the center of the optical mirror 6 and arriving at FA'; K4A 'is an opening of the lens aperture stop 2 on the opposite side of A from the optical axis. FA passes through the edge '
K3B is the optical path of light reaching the FB from B through the center of the focusing mirror 6, FX is the intersection of the optical paths K1A and K1A ', and FY is the optical path K
This is the intersection of 4A and the optical path K4A '.

【0494】測定したい領域から放射される赤外線のみ
を赤外受光素子で受光するような光学系を設計する。
[0494] An optical system is designed so that only infrared rays radiated from the area to be measured are received by the infrared light receiving element.

【0495】赤外受光素子4を筐体9に取り付け、集光
ミラー6を通過しない赤外線を赤外受光素子4で受光し
ないようにする。集光ミラー6を通った赤外線のみ受光
する構成にした上で以下の設計を行う。
[0495] The infrared light receiving element 4 is attached to the housing 9 so that infrared light not passing through the condenser mirror 6 is not received by the infrared light receiving element 4. The following design is performed after the configuration is such that only infrared rays passing through the condenser mirror 6 are received.

【0496】Aから放射される光は光路K1A、K2A、K
3A、K4Aなどを通ってAの像点FAに到達する。幾何光
学で周知の通り、Aの像点FA は光軸を挟んでAと反対
側に形成される。図24中に示すように、光路K2Aを通
る光は、集光ミラー6を通過してFで光軸と交叉してF
A に到達し光軸から離れていく。同じように、光路K1A
を通る光は、集光ミラー6を通過して光軸と交叉してF
A に到達し光軸から離れていく。光路K3Aを通る光は、
集光ミラー6で光軸と交叉してFA に到達し光軸から離
れていく。光路K4Aを通る光は、光軸と交叉して集光ミ
ラー6を通過し、集光ミラー6を通過してからは光軸と
交叉せずにFA に到達し、その後光軸に近づくかあるい
は遠ざかっていく。このように、Aの像点FA よりも集
光ミラーから離れた位置でAから放射される光が通過し
ない領域が存在する。この領域は、FA よりも集光ミラ
ー6から遠い部分の光路K4Aと、FA'よりも集光ミラー
6から遠い部分の光路K4A' で挟まれた領域である。こ
の領域に赤外センサを設置することで、A、A’から放
射される赤外線を受光しない光学系が実現できる。
The light radiated from A has optical paths K1A, K2A, K
It reaches the image point FA of A through 3A, K4A and the like. As is well known in geometrical optics, the image point FA of A is formed on the opposite side of A with respect to the optical axis. As shown in FIG. 24, the light passing through the optical path K2A passes through the condenser mirror 6 and intersects the optical axis at F at F.
It reaches A and moves away from the optical axis. Similarly, the optical path K1A
Passes through the condenser mirror 6, crosses the optical axis, and
It reaches A and moves away from the optical axis. The light passing through the optical path K3A is
The light converging mirror 6 crosses the optical axis to reach FA and moves away from the optical axis. The light passing through the optical path K4A crosses the optical axis and passes through the converging mirror 6, and after passing through the converging mirror 6, reaches the FA without crossing the optical axis, and then approaches the optical axis or Go away. As described above, there is an area where the light emitted from A does not pass at a position farther from the collecting mirror than the image point FA of A. This region is a region sandwiched between an optical path K4A farther from the light collecting mirror 6 than FA and a light path K4A 'farther from the light collecting mirror 6 than FA'. By installing an infrared sensor in this region, an optical system that does not receive infrared rays radiated from A and A ′ can be realized.

【0497】受光したい領域の外側にある、受光したく
ない領域中のBはAよりも光軸から遠いため、集光ミラ
ー6によるBの像点FB がFA より光軸から遠くなるこ
とは周知の通りである。従って、FA よりも集光ミラー
6から遠い部分の光路K4Aと、FA'よりも集光ミラー6
から遠い部分の光路K4A' で挟まれた領域内に赤外受光
素子を設置することによってA、A’から放射される赤
外線を受光しないようにすれば、自動的にBから放射さ
れる赤外線も受光しない構成となる。
It is well known that B in an area outside the area where light is desired to be received and not in the area where light is not desired is farther from the optical axis than A, so that the image point FB of B by the condenser mirror 6 is farther from the optical axis than FA. It is as follows. Therefore, the optical path K4A at a portion farther from the converging mirror 6 than FA and the converging mirror 6
If the infrared ray radiated from A and A 'is prevented from being received by installing the infrared ray detector in the area between the optical paths K4A' far from the The configuration does not receive light.

【0498】以上のように、FA よりも集光ミラー6か
ら遠い部分の光路K4Aと、FA'よりも集光ミラー6から
遠い部分の光路K4A' で挟まれた領域内に赤外受光素子
4を設置することによって、光軸付近の受光したい領域
から放射される赤外線のみを受光するような赤外センサ
が得られる。
As described above, the infrared light receiving element 4 is located within the region sandwiched between the optical path K4A farther from the converging mirror 6 than FA and the optical path K4A 'farther from the converging mirror 6 than FA'. Is provided, an infrared sensor that receives only infrared rays emitted from a region near the optical axis that is desired to be received can be obtained.

【0499】図25は本発明の第19の実施例における
赤外センサを示すものである。図25において、6は集
光ミラー、4は赤外線受光素子、9は筐体、1は穴の内
部など凹部にある受光したい領域に赤外センサを固定し
て向けるための固定部、A、A’は受光したい領域と受
光したくない領域の境界に位置する点、Bは受光したく
ない領域の点、Fは集光ミラーの焦点、FA は集光ミラ
ー6によるAの像点、FA'は集光ミラー6によるA’の
像点、FB は集光ミラー6によるBの像点、K1AはAか
ら光軸に対して同じ側のレンズ開口絞り2の開口部の縁
を通過してFAへ進行する光(マージナル光線)の光
路、K2AはAから光軸と平行に進んで焦点Fを通過して
FA に到達する光の光路、K3AはAから集光ミラー6の
中心を通過してFA に到達する光の光路、K4AはAから
光軸を挟んで反対側のレンズ開口絞り2の開口部の縁を
通過してFA に到達する光(マージナル光線)の光路、
K1A' はA’から光軸に対して同じ側のレンズ開口絞り
2の開口部の縁を通過してFA'へ進行する光(マージナ
ル光線)の光路、K2A' はA’から光軸と平行に進んで
焦点Fを通過してFA'に到達する光の光路、K3A' は
A’から集光ミラー6の中心を通過してFA'に到達する
光の光路、K4A' はAから光軸を挟んで反対側のレンズ
開口絞り2の開口部の縁を通過してFA'に到達する光
(マージナル光線)の光路、K3BはBから集光ミラー6
の中心を通過してFB に到達する光の光路、FX は光路
K1Aと光路K1A' の交点である。
FIG. 25 shows an infrared sensor according to a nineteenth embodiment of the present invention. In FIG. 25, reference numeral 6 denotes a condensing mirror, 4 denotes an infrared light receiving element, 9 denotes a housing, 1 denotes a fixing portion for fixing and directing the infrared sensor to an area to receive light in a concave portion such as the inside of a hole, and A and A. 'Is a point located at a boundary between a region to receive light and a region not to receive light, B is a point in a region not to receive light, F is a focal point of the condenser mirror, FA is an image point of A by the condenser mirror 6, FA' Is the image point of A 'by the condenser mirror 6, FB is the image point of B by the condenser mirror 6, K1A is FA from the A through the edge of the aperture of the lens aperture stop 2 on the same side with respect to the optical axis. K2A is an optical path of light (marginal ray) traveling in parallel to the optical axis from A and passing through the focal point F to reach FA, and K3A is an optical path from A passing through the center of the focusing mirror 6 from A. The optical path of light reaching FA, K4A, passes through the edge of the opening of the lens aperture stop 2 on the opposite side of the optical axis from A. The optical path of the light (marginal light) that reaches the FA,
K1A 'is the optical path of the light (marginal ray) traveling from A' to FA 'through the edge of the aperture of the lens aperture stop 2 on the same side with respect to the optical axis, and K2A' is parallel from A 'to the optical axis. K3A 'is the optical path of light that reaches the point FA' through the focal point F, K3A 'is the optical path of the light that reaches the point FA' through the center of the condenser mirror 6, and K4A 'is the optical axis from the point A. K3B is an optical path of light (marginal ray) passing through the edge of the opening of the lens aperture stop 2 on the opposite side of the lens and reaching FA '.
Is the optical path of the light that reaches the FB through the center of the optical path, and FX is the intersection of the optical paths K1A and K1A '.

【0500】光軸付近にある測定したい領域から放射さ
れる赤外線のみを赤外受光素子で受光するような光学系
を設計する。
An optical system is designed such that only infrared rays radiated from an area to be measured near the optical axis are received by the infrared light receiving element.

【0501】赤外受光素子4を筐体9に取り付け、集光
ミラー6を通過する赤外線のみを赤外受光素子4で受光
しするようにする。集光ミラー6を通った赤外線のみ受
光する構成にした上で以下の設計を行う。
[0501] The infrared light receiving element 4 is attached to the housing 9, and only the infrared light passing through the condenser mirror 6 is received by the infrared light receiving element 4. The following design is performed after the configuration is such that only infrared rays passing through the condenser mirror 6 are received.

【0502】Aから放射される光は光路K1A、K2A、K
3A、K4Aなどを通ってAの像点FAに到達する。幾何光
学で周知の通り、Aの像点FA は光軸を挟んでAと反対
側に形成される。図25中に示すように、光路K2Aを通
る光は、集光ミラー6を通過してFで光軸と交叉したの
ち光軸から離れながらFA に到達する。同じように、光
路K1Aを通る光は、集光ミラー6を通過して光軸と交叉
したのち光軸から離れながらFA に到達する。光路K3A
を通る光は、集光ミラー6で光軸と交叉したのち光軸か
ら離れながらFA に到達する。光路K4Aを通る光は、光
軸と交叉して集光ミラー6を通過し、集光ミラー6を通
過してからは光軸と交叉せずにFA に到達する。このよ
うに、光路K1Aと光軸が交叉する点FX よりも集光ミラ
ーから離れた位置かつFA よりも集光ミラー6に近い位
置で、Aから放射される光が通過しない領域が存在す
る。この領域は、FX とFA とFA'が形成する三角形の
内側となる。この三角形の内側に赤外受光素子4を設置
することで、A、A’から放射される光を受光しない赤
外センサが得られる。
The light radiated from A has optical paths K1A, K2A, K
It reaches the image point FA of A through 3A, K4A and the like. As is well known in geometrical optics, the image point FA of A is formed on the opposite side of A with respect to the optical axis. As shown in FIG. 25, the light passing through the optical path K2A passes through the condenser mirror 6, intersects the optical axis at F, and then reaches FA while leaving the optical axis. Similarly, light passing through the optical path K1A passes through the condenser mirror 6, crosses the optical axis, and then reaches FA while leaving the optical axis. Optical path K3A
Passes through the condenser mirror 6 and crosses the optical axis, and then reaches FA while leaving the optical axis. The light passing through the optical path K4A crosses the optical axis and passes through the collecting mirror 6, and after passing through the collecting mirror 6, reaches the FA without crossing the optical axis. As described above, there is a region where the light radiated from A does not pass at a position farther from the converging mirror than the point FX where the optical path K1A intersects with the optical axis and closer to the converging mirror 6 than FA. This region is inside the triangle formed by FX, FA and FA '. By installing the infrared light receiving element 4 inside this triangle, an infrared sensor that does not receive light emitted from A and A ′ can be obtained.

【0503】固定部1を、光路K1A、光路K1A' よりも
光軸から遠くなるように設置する。
The fixed part 1 is set so as to be farther from the optical axis than the optical paths K1A and K1A '.

【0504】固定部1から放射される赤外線は、受光し
たい領域と同じ面の受光したくない領域から放射される
光と置き換えられる。受光したい領域の外側にある受光
したくない領域中のB点はAよりも光軸から遠いため、
集光ミラー6によるBの像点FB がFA より光軸から遠
くなることは周知の通りである。従って、FX とFA と
FA'が形成する三角形の内側に赤外受光素子を設置する
ことによってA、A’から放射される赤外線を受光しな
いようにすれば、自動的にBからの赤外線も受光しない
構成となる。つまり、自動的に固定部1から放射される
赤外線を受光しない構成となる。
[0504] The infrared rays radiated from the fixed portion 1 are replaced with the light radiated from the area on the same surface as the area on which light reception is not desired. Since point B in the area not to receive light outside the area to receive light is farther from the optical axis than A,
It is well known that the image point FB of B by the condenser mirror 6 is farther from the optical axis than FA. Therefore, if an infrared light receiving element is installed inside the triangle formed by FX, FA and FA 'so as not to receive the infrared light radiated from A and A', the infrared light from B is automatically received. No configuration. That is, the configuration is such that infrared rays emitted from the fixing unit 1 are not automatically received.

【0505】以上のように、FX とFA とFA'が形成す
る三角形の内側に赤外受光素子4を設置し、光路K1A、
K1A'よりも光軸から遠くに固定部1を設けることによっ
て、穴の内部など凹部にある受光したい領域に赤外セン
サを固定して向けることができて、固定部から放射され
る赤外線を受光せずに光軸付近の受光したい領域から放
射される赤外線のみを受光するような赤外センサが得ら
れる。
As described above, the infrared light receiving element 4 is installed inside the triangle formed by FX, FA, and FA ', and the optical path K1A,
By providing the fixing portion 1 farther from the optical axis than K1A ', the infrared sensor can be fixed and directed to an area where light reception is desired in a concave portion such as the inside of a hole, and infrared rays emitted from the fixing portion are received. An infrared sensor that receives only infrared rays radiated from an area to be received near the optical axis without receiving the light is obtained.

【0506】なお、筐体9と固定部1は一体であっても
構わない。
[0506] The housing 9 and the fixed portion 1 may be integrated.

【0507】図26は本発明の第20の実施例における
赤外センサを示すものである。図26において、6は集
光ミラー、4は赤外線受光素子、9は筐体、1は穴の内
部など凹部にある受光したい領域に赤外センサを固定し
て向けるための固定部、A、A’は受光したい領域と受
光したくない領域の境界に位置する点、Bは受光したく
ない領域の点、Fは集光ミラーの焦点、FA は集光ミラ
ー6によるAの像点、FA'は集光ミラー6によるA’の
像点、FB は集光ミラー6によるBの像点、K1AはAか
ら光軸に対して同じ側のレンズ開口絞り2の開口部の縁
を通過してFAへ進行する光(マージナル光線)の光
路、K2AはAから光軸と平行に進んで焦点Fを通過して
FA に到達する光の光路、K3AはAから集光ミラー6の
中心を通過してFA に到達する光の光路、K4AはAから
光軸を挟んで反対側のレンズ開口絞り2の開口部の縁を
通過してFA に到達する光(マージナル光線)の光路、
K1A' はA’から光軸に対して同じ側のレンズ開口絞り
2の開口部の縁を通過してFA'へ進行する光(マージナ
ル光線)の光路、K2A' はA’から光軸と平行に進んで
焦点Fを通過してFA'に到達する光の光路、K3A' は
A’から集光ミラー6の中心を通過してFA'に到達する
光の光路、K4A' はAから光軸を挟んで反対側のレンズ
開口絞り2の開口部の縁を通過してFA'に到達する光
(マージナル光線)の光路、K3BはBから集光ミラー6
の中心を通過してFB に到達する光の光路、FX は光路
K1Aと光路K1A' の交点である。
FIG. 26 shows an infrared sensor according to the twentieth embodiment of the present invention. In FIG. 26, 6 is a condensing mirror, 4 is an infrared light receiving element, 9 is a housing, 1 is a fixing portion for fixing and directing the infrared sensor to a light receiving area in a concave portion such as the inside of a hole, and A and A. 'Is a point located at a boundary between a region to receive light and a region not to receive light, B is a point in a region not to receive light, F is a focal point of the condenser mirror, FA is an image point of A by the condenser mirror 6, FA' Is the image point of A 'by the condenser mirror 6, FB is the image point of B by the condenser mirror 6, K1A is FA from the A through the edge of the aperture of the lens aperture stop 2 on the same side with respect to the optical axis. K2A is an optical path of light (marginal ray) traveling in parallel to the optical axis from A and passing through the focal point F to reach FA, and K3A is an optical path from A passing through the center of the focusing mirror 6 from A. The optical path of light reaching FA, K4A, passes through the edge of the opening of the lens aperture stop 2 on the opposite side of the optical axis from A. The optical path of the light (marginal light) that reaches the FA,
K1A 'is the optical path of the light (marginal ray) traveling from A' to FA 'through the edge of the aperture of the lens aperture stop 2 on the same side with respect to the optical axis, and K2A' is parallel from A 'to the optical axis. K3A 'is the optical path of light that reaches the point FA' through the focal point F, K3A 'is the optical path of the light that reaches the point FA' through the center of the condenser mirror 6, and K4A 'is the optical axis from the point A. K3B is an optical path of light (marginal ray) passing through the edge of the opening of the lens aperture stop 2 on the opposite side of the lens and reaching FA '.
Is the optical path of the light that reaches the FB through the center of the optical path, and FX is the intersection of the optical paths K1A and K1A '.

【0508】光軸付近にある測定したい領域から放射さ
れる赤外線のみを赤外受光素子で受光するような光学系
を設計する。
An optical system is designed such that only infrared rays radiated from the region to be measured near the optical axis are received by the infrared light receiving element.

【0509】赤外受光素子4を、集光ミラー6を通過す
る赤外線のみを赤外受光素子4で受光するように筐体9
に取り付ける。集光ミラー6を通った赤外線のみ受光す
る構成にした上で以下の設計を行う。
[0509] The housing 9 is arranged so that the infrared receiving element 4 receives only infrared light passing through the condenser mirror 6.
Attach to The following design is performed after the configuration is such that only infrared rays passing through the condenser mirror 6 are received.

【0510】Aから放射される光は光路K1A、K2A、K
3A、K4Aなどを通ってAの像点FAに到達する。幾何光
学で周知の通り、Aの像点FA は光軸を挟んでAと反対
側に形成される。図26中に示すように、光路K2Aを通
る光は、集光ミラー6を通過してFで光軸と交叉してF
A に到達し光軸から離れていく。同じように、光路K1A
を通る光は、集光ミラー6を通過して光軸と交叉してF
A に到達し光軸から離れていく。光路K3Aを通る光は、
集光ミラー6で光軸と交叉してFA に到達し光軸から離
れていく。光路K4Aを通る光は、光軸と交叉して集光ミ
ラー6を通過し、集光ミラー6を通過してからは光軸と
交叉せずにFA に到達し、その後光軸に近づくかあるい
は遠ざかっていく。このように、Aの像点FA よりも集
光ミラーから離れた位置でAから放射される光が通過し
ない領域が存在する。この領域は、FA よりも集光ミラ
ー6から遠い部分の光路K4Aと、FA'よりも集光ミラー
6から遠い部分の光路K4A' で挟まれた領域である。こ
の領域に赤外センサを設置することで、A、A’から放
射される赤外線を受光しない光学系が実現できる。
The light radiated from A has optical paths K1A, K2A, K
It reaches the image point FA of A through 3A, K4A and the like. As is well known in geometrical optics, the image point FA of A is formed on the opposite side of A with respect to the optical axis. As shown in FIG. 26, the light passing through the optical path K2A passes through the condenser mirror 6 and intersects the optical axis at F at F.
It reaches A and moves away from the optical axis. Similarly, the optical path K1A
Passes through the condenser mirror 6, crosses the optical axis, and
It reaches A and moves away from the optical axis. The light passing through the optical path K3A is
The light converging mirror 6 crosses the optical axis to reach FA and moves away from the optical axis. The light passing through the optical path K4A crosses the optical axis and passes through the converging mirror 6, and after passing through the converging mirror 6, reaches the FA without crossing the optical axis, and then approaches the optical axis or Go away. As described above, there is an area where the light emitted from A does not pass at a position farther from the collecting mirror than the image point FA of A. This region is a region sandwiched between an optical path K4A farther from the light collecting mirror 6 than FA and a light path K4A 'farther from the light collecting mirror 6 than FA'. By installing an infrared sensor in this region, an optical system that does not receive infrared rays radiated from A and A ′ can be realized.

【0511】固定部1を、光路K1A、光路K1A' よりも
光軸から遠くなるように設置する。
[0511] The fixed part 1 is installed so as to be farther from the optical axis than the optical paths K1A and K1A '.

【0512】固定部1から放射される赤外線は、受光し
たくない領域から放射される光と置き換えられる。受光
したい領域の外側にある受光したくない領域中のB点は
Aよりも光軸から遠いため、集光ミラー6によるBの像
点FB がFA より光軸から遠くなることは幾何光学で周
知の通りである。従って、FA よりも集光ミラー6から
遠い部分の光路K4Aと、FA'よりも集光ミラー6から遠
い部分の光路K4A' で挟まれた領域内に赤外受光素子を
設置することによってA、A’から放射される赤外線を
受光しないようにすれば、自動的にBから放射される赤
外線も受光しない構成となる。つまり、自動的に固定部
1から放射される赤外線を受光しない構成となる。
[0512] The infrared light emitted from the fixed portion 1 is replaced with light emitted from an area where light reception is not desired. It is well known in geometrical optics that the point B in the area outside the area where light is not desired to be received is farther from the optical axis than A, so that the image point FB of B by the condenser mirror 6 is farther from the optical axis than FA. It is as follows. Therefore, by installing an infrared light receiving element in a region sandwiched between the optical path K4A at a portion farther from the converging mirror 6 than FA and the optical path K4A 'at a portion farther from the converging mirror 6 than FA', A If the infrared rays emitted from A 'are not received, the infrared rays emitted from B are not automatically received. That is, the configuration is such that infrared rays emitted from the fixing unit 1 are not automatically received.

【0513】以上のように、FA よりも集光ミラー6か
ら遠い部分の光路K4Aと、FA'よりも集光ミラー6から
遠い部分の光路K4A' で挟まれた領域内に赤外受光素子
4を設置し、固定部1をAと集光ミラー6の間で光路K
1A、K1A'よりも光軸から遠くに設けることによって、穴
の内部など凹部にある受光したい領域に赤外センサを安
定した状態で向けることができ、固定部から放射される
赤外線を受光せずに光軸付近の受光したい領域から放射
される赤外線のみを受光するような赤外センサが得られ
る。
[0513] As described above, the infrared light receiving element 4 is located in the region sandwiched between the optical path K4A farther from the converging mirror 6 than FA and the light path K4A 'farther from the converging mirror 6 than FA'. Is installed, and the fixed part 1 is connected to the optical path K between A and the condenser mirror 6.
By providing the infrared sensor farther from the optical axis than 1A and K1A ', the infrared sensor can be stably directed to the area where light is to be received, such as the inside of a hole, in a concave portion, without receiving infrared light radiated from the fixed part. Thus, an infrared sensor that receives only infrared rays radiated from a region desired to be received near the optical axis can be obtained.

【0514】なお、筐体9と固定部1は一体であっても
構わない。
[0514] The housing 9 and the fixed portion 1 may be integrated.

【0515】図27は本発明の第21の実施例における
赤外センサを示すものである。図27において、6は集
光ミラー、4は赤外線受光素子、9は筐体、1は穴の内
部など凹部にある受光したい領域に赤外センサを固定し
て向けるための固定部、α、α’は集光ミラー6の縁か
らこの縁と光軸に対して同じ側の固定部1内面へ接する
直線が固定部先端面と交わる点、Fは集光ミラー6の焦
点、Fα、Fα’はそれぞれ集光ミラー6によるα、
α’の像点、K1 αはαから光軸に対して同じ側の集光
ミラー6の縁を通過してFαへ進行する光(マージナル
光線)の光路、K2 αはαから光軸と平行に進んで焦点
Fを通過してFαに到達する光の光路、K3 αはαから
集光ミラー6の中心を通過してFαに到達する光の光
路、K4 αはαから光軸を挟んで反対側の集光ミラー6
の縁を通過してFαに到達する光(マージナル光線)の
光路、K1 α' はα’から光軸に対して同じ側の集光ミ
ラー6の縁を通過してFα' へ進行する光(マージナル
光線)の光路、K2 α' はα’から光軸と平行に進んで
焦点Fを通過してFα' に到達する光の光路、K3 α'
はα’から集光ミラー6の中心を通過してFα' に到達
する光の光路、K4 α'はα’から光軸を挟んで反対側
の集光ミラー6の縁を通過してFα' に到達する光(マ
ージナル光線)の光路、FX は光路K1 αと光軸との交
点である。
FIG. 27 shows an infrared sensor according to a twenty-first embodiment of the present invention. In FIG. 27, 6 is a condensing mirror, 4 is an infrared light receiving element, 9 is a housing, 1 is a fixing portion for fixing and directing the infrared sensor to a light receiving area such as the inside of a hole in a concave portion, α, α 'Is a point where a straight line from the edge of the converging mirror 6 to the inner surface of the fixed part 1 on the same side with respect to this edge and the optical axis intersects the front end face of the fixed part, F is the focal point of the condensing mirror 6, Fα, Fα' Α by the condenser mirror 6,
The image point of α ', K1 α is the optical path of light (marginal ray) traveling from F to Fα through the edge of the condenser mirror 6 on the same side with respect to the optical axis, and K2 α is parallel from α to the optical axis. , The optical path of light passing through the focal point F and arriving at Fα, K3α is the optical path of light arriving from α and passing through the center of the focusing mirror 6 to Fα, and K4α is interposing the optical axis from α. Condensing mirror 6 on the other side
K1α 'is an optical path of light (marginal ray) that passes through the edge of F and arrives at Fα. Light that travels from α ′ to Fα ′ through the edge of the converging mirror 6 on the same side with respect to the optical axis ( K2 α 'is an optical path of light which travels from α' in parallel with the optical axis, passes through the focal point F and reaches Fα ', K3 α'
Is the optical path of light from α ′ to the Fα ′ through the center of the condensing mirror 6 and K4 α ′ is Fα ′ from α ′ passing through the edge of the condensing mirror 6 on the opposite side of the optical axis with respect to the optical axis. Is the optical path of the light (marginal ray) reaching the optical path, and FX is the intersection of the optical path K1α with the optical axis.

【0516】穴の内壁など凹部から放射される赤外光の
みを受光するような光学系を設計する。
An optical system designed to receive only infrared light radiated from a concave portion such as an inner wall of a hole is designed.

【0517】赤外受光素子4を筐体9に取り付け、集光
ミラー6を通過する赤外線のみを赤外受光素子4で受光
するようにする。集光ミラー6を通った赤外線のみ受光
する構成にした上で以下の設計を行う。
[0517] The infrared light receiving element 4 is attached to the housing 9, and only the infrared light passing through the condenser mirror 6 is received by the infrared light receiving element 4. The following design is performed after the configuration is such that only infrared rays passing through the condenser mirror 6 are received.

【0518】被測定物からの赤外光のみを受光するため
には、固定部1から放射される赤外光を受光しないよう
にすればよい。そのため、受光したい領域と受光したく
ない領域の境界に位置する点を仮想し、この点から、光
軸に対してこの仮想した境界に位置する点と同じ側の集
光ミラー6の縁を通過する光(マージナル光線)の光路
よりも、光軸から遠くに位置するように固定部1を設置
すればよい。そこで、上記仮想の境界に位置する点を、
集光ミラー6の縁からこの縁と光軸に対して同じ側の固
定部1内面へ接する直線が固定部先端面と交わる点α、
α’として、FαとFα’とFX で形成される三角形の
内側に赤外受光素子4を設置する。これにより、固定部
1をαと集光ミラー6の間で光路K1 α、K1 α' より
も光軸から遠くに位置させることになるため、固定部か
らの光を受光しない光学系が得られる。
[0518] In order to receive only infrared light from the object to be measured, infrared light radiated from the fixed portion 1 may be prevented from being received. Therefore, a point located at the boundary between the region where light reception is desired and the region where light reception is not desired is imagined, and from this point, the light passes through the edge of the condenser mirror 6 on the same side as the point located at this virtual boundary with respect to the optical axis. The fixing unit 1 may be installed so as to be located farther from the optical axis than the optical path of the light (marginal ray). Therefore, the point located on the virtual boundary is
A point α at which a straight line that contacts the inner surface of the fixed portion 1 on the same side as the edge and the optical axis from the edge of the condensing mirror 6 intersects with the fixed portion tip surface,
As α ′, the infrared light receiving element 4 is installed inside a triangle formed by Fα, Fα ′ and FX. As a result, the fixed unit 1 is located farther from the optical axis than the optical paths K1α and K1α ′ between α and the condenser mirror 6, so that an optical system that does not receive light from the fixed unit can be obtained. .

【0519】上記について詳細を以下に述べる。αから
放射される光は光路K1 α、K2 α、K3 α、K4 αな
どを通ってαの像点Fαに到達する。幾何光学で周知の
通り、αの像点Fαは光軸を挟んでαと反対側に形成さ
れる。図27中に示すように、光路K2 αを通る光は、
集光ミラー6を通過してFで光軸と交叉したのち光軸か
ら離れながらFαに到達する。同じように、光路K1 α
を通る光は、集光ミラー6を通過して光軸と交叉したの
ち光軸から離れながらFαに到達する。光路K3 αを通
る光は、集光ミラー6で光軸と交叉したのち光軸から離
れながらFαに到達する。光路K4 αを通る光は、光軸
と交叉して集光ミラー6を通過し、集光ミラー6を通過
してからは光軸と交叉せずにFαに到達する。このよう
に、光路K1 αと光軸が交叉する点FX よりも集光ミラ
ーから離れた位置かつFαよりも集光ミラー6に近い位
置で、αから放射される光が通過しない領域が存在す
る。
The above will be described in detail below. The light emitted from α reaches the image point Fα of α through the optical paths K1α, K2α, K3α, K4α, and the like. As is well known in geometrical optics, the image point Fα of α is formed on the opposite side of α with respect to the optical axis. As shown in FIG. 27, the light passing through the optical path K2α is
After passing through the condenser mirror 6 and intersecting with the optical axis at F, the light reaches Fα while leaving the optical axis. Similarly, the optical path K1 α
Passes through the condenser mirror 6, crosses the optical axis, and then reaches Fα while leaving the optical axis. The light passing through the optical path K3α crosses the optical axis by the condenser mirror 6 and then reaches Fα while leaving the optical axis. The light passing through the optical path K4α crosses the optical axis and passes through the converging mirror 6, and after passing through the converging mirror 6, reaches Fα without crossing the optical axis. As described above, there is a region where the light emitted from α does not pass at a position farther from the collecting mirror than the point FX where the optical path K1α intersects the optical axis and closer to the collecting mirror 6 than Fα. .

【0520】同じように、α’についても、光路K1
α' と光軸が交叉する点よりも集光ミラーから離れた位
置かつFα' よりも集光ミラー6に近い位置で、α’か
ら放射される光が通過しない領域が存在する。この、F
α、Fα' 、FX で形成される三角形の内側よりに赤外
受光素子4を設置することで、α、α' から放射される
光を受光しない赤外センサが得られる。αと集光ミラー
6の間の光路K1 αより光軸から遠い部分からの光は、
αと同じ面内で光軸からの距離がαより大きい点からの
光と置き換えられる。この点の集光ミラー6による交点
はFαよりも光軸から遠くなることは幾何光学で周知の
通りである。そのため、αからの光を受光しないように
すれば、αよりも光軸から遠い点からの光を受光せず、
従って固定部1からの光を受光しない。同様に、α’と
集光ミラー6の間の光路K1 α' より光軸から遠い部分
からの光は、α' と同じ面内で光軸からの距離がα’よ
り大きい点からの光と置き換えられる。この点の集光ミ
ラー6による交点はFα’よりも光軸から遠くなること
は幾何光学で周知の通りである。そのため、α’からの
光を受光しないようにすれば、α’よりも光軸から遠い
点からの光を受光せず、従って固定部1からの光を受光
しない。このように、FαとFα' とFX で形成される
三角形の内側に赤外受光素子4を設置することでα、
α’から放射される赤外線を受光しないようにすれば、
自動的に固定部1から放射される赤外線も受光しない構
成となる。
Similarly, for α ′, the optical path K1
There is an area where light emitted from α ′ does not pass, at a position farther from the condenser mirror than at a point where α ′ intersects with the optical axis and closer to the condenser mirror 6 than at Fα ′. This, F
By installing the infrared light receiving element 4 inside the triangle formed by α, Fα ′ and FX, an infrared sensor that does not receive light emitted from α and α ′ can be obtained. Light from a portion farther from the optical axis than the optical path K1 α between α and the converging mirror 6 is
It is replaced with light from a point whose distance from the optical axis is larger than α in the same plane as α. It is well known in geometrical optics that the point of intersection of this point by the condenser mirror 6 is farther from the optical axis than Fα. Therefore, if light from α is not received, light from a point farther from the optical axis than α will not be received,
Therefore, it does not receive light from the fixed part 1. Similarly, light from a portion farther from the optical axis than the optical path K1α 'between α' and the condenser mirror 6 is light from a point larger than α 'in the same plane as α'. Be replaced. It is well known in geometrical optics that the point of intersection of this point by the condenser mirror 6 is farther from the optical axis than Fα ′. Therefore, if light from α ′ is not received, light from a point farther from the optical axis than α ′ will not be received, and therefore no light from the fixed portion 1 will be received. Thus, by placing the infrared light receiving element 4 inside the triangle formed by Fα, Fα ′ and FX, α,
If you do not receive infrared rays emitted from α ',
The infrared ray emitted from the fixing unit 1 is not automatically received.

【0521】以下、αからの光を受光しないような赤外
受光素子4の位置を求める。
Hereinafter, the position of the infrared light receiving element 4 which does not receive the light from α will be obtained.

【0522】赤外受光素子4はFA よりも集光ミラー6
に近い。この時、(1)式、(2)式が成り立つ。
[0522] The infrared light receiving element 4 is more converging mirror 6 than FA.
Close to. At this time, equations (1) and (2) hold.

【0523】図27に示すように、受光面は光路K1 α
と光軸が交わる点とFαとの間であるので、αからFα
までの各光路のうち受光面で赤外受光素子4に最も近づ
くものはK1 αである。したがって、αからの光を赤外
受光素子4で受光しないためには、(3)式を満たす必
要がある。
As shown in FIG. 27, the light receiving surface has an optical path K1 α
Is between the point where the optical axis intersects with the optical axis and Fα.
The light path closest to the infrared light receiving element 4 on the light receiving surface is K1α. Therefore, in order for the light from α to not be received by the infrared light receiving element 4, it is necessary to satisfy the expression (3).

【0524】ここで、幾何光学で周知の通りr3 、rα
F 、rαS1、L3 、fは幾何関係として(4)式、
(5)式を満たす。
Here, as is well known in geometrical optics, r3, rα
F, rαS1, L3, and f are expressed by the following equation (4) as a geometric relationship.
Equation (5) is satisfied.

【0525】(5)式を(3)式へ代入することで
(6)式が得られる。
The equation (6) can be obtained by substituting the equation (5) into the equation (3).

【0526】(2)(6)式から、αから放射される光
を赤外受光素子4で受光しないための条件は(7)式と
なる。
From the expressions (2) and (6), the condition for not receiving the light emitted from α by the infrared light receiving element 4 is the expression (7).

【0527】さらに、幾何光学で周知の通り、rα、L
α、L2 、rαF 、LαF は幾何関係として(8)式、
(9)式を満たす。
Furthermore, as is well known in geometrical optics, rα, L
α, L2, rαF, and LαF are expressed by the following equation (8) as a geometric relationship.
Equation (9) is satisfied.

【0528】(9)式を(7)式へ代入することによ
り、αから放射される光を赤外受光素子4で受しないた
めの条件は(10)式となる。
By substituting the expression (9) into the expression (7), the condition for preventing the light radiated from α from being received by the infrared receiving element 4 becomes the expression (10).

【0529】また、ガウスの公式から(11)式、(1
2)式が成り立つ。
Also, from Gauss's formula, equation (11), (1
2) Formula holds.

【0530】(12)式を(11)式に代入することに
より、αから放射される光を赤外受光素子4で受光しな
いための条件は(13)式となる。
By substituting equation (12) into equation (11), the condition for not receiving the light radiated from α by the infrared light receiving element 4 is given by equation (13).

【0531】以上のように、固定部1先端のαから放射
される光を赤外受光素子4で受光しないためには、
(7)式、或いは(10)式、或いは(13)式を満た
すよう光学系を設計する必要がある。(7)式、(1
0)式、(13)式で与えられるL3 だけ、受光素子4
を集光ミラー6の焦点からずらして設置することで、固
定部1から放射される赤外線を赤外受光素子4で受光せ
ずに被測定物体から放射光のみを赤外受光素子4で受光
させることができるため、固定部1の温度変化に起因す
る測定誤差を防ぐことができる。
As described above, in order for the infrared light receiving element 4 not to receive the light radiated from α at the tip of the fixed portion 1,
It is necessary to design the optical system to satisfy the expression (7), the expression (10), or the expression (13). Equation (7), (1
0) and L3 given by equation (13).
Is displaced from the focal point of the focusing mirror 6 so that the infrared light emitted from the fixed part 1 is not received by the infrared light receiving element 4 but only the radiated light from the measured object is received by the infrared light receiving element 4. Therefore, it is possible to prevent a measurement error caused by a temperature change of the fixed unit 1.

【0532】なお、筐体9と固定部1は一体であっても
構わない。
[0532] The housing 9 and the fixing portion 1 may be integrated.

【0533】図28は本発明の第22の実施例における
赤外センサを示すものである。図28において、6は集
光ミラー、4は赤外線受光素子、9は筐体、1は穴の内
部など凹部にある受光したい領域に赤外センサを固定し
て向けるための固定部、α、α’は集光ミラー6の縁か
らこの縁と光軸に対して同じ側の固定部1内面へ接する
直線が固定部先端面と交わる点、Fは集光ミラー6の焦
点、Fα、Fα’はそれぞれ集光ミラー6によるα、
α’の像点、K1 αはαから光軸に対して同じ側の集光
ミラー6の縁を通過してFαへ進行する光(マージナル
光線)の光路、K2 αはαから光軸と平行に進んで焦点
Fを通過してFαに到達する光の光路、K3 αはαから
集光ミラー6の中心を通過してFαに到達する光の光
路、K4 αはαから光軸を挟んで反対側の集光ミラー6
の縁を通過してFαに到達する光(マージナル光線)の
光路、K1 α' はα’から光軸に対して同じ側の集光ミ
ラー6の縁を通過してFα' へ進行する光(マージナル
光線)の光路、K2 α' はα’から光軸と平行に進んで
焦点Fを通過してFα' に到達する光の光路、K3 α’
はα’から集光ミラー6の中心を通過してFα’ に到
達する光の光路、K4 α'はα’から光軸を挟んで反対
側の集光ミラー6の縁を通過してFα' に到達する光
(マージナル光線)の光路、FX は光路K1 αと光軸と
の交点である。
FIG. 28 shows an infrared sensor according to the twenty-second embodiment of the present invention. In FIG. 28, 6 is a condensing mirror, 4 is an infrared light receiving element, 9 is a housing, 1 is a fixing portion for fixing and pointing the infrared sensor to a light receiving region such as the inside of a hole in a concave portion, α, α 'Is a point where a straight line from the edge of the converging mirror 6 to the inner surface of the fixed part 1 on the same side with respect to this edge and the optical axis intersects the front end face of the fixed part, F is the focal point of the condensing mirror 6, Fα, Fα' Α by the condenser mirror 6,
The image point of α ', K1 α is the optical path of light (marginal ray) traveling from F to Fα through the edge of the condenser mirror 6 on the same side with respect to the optical axis, and K2 α is parallel from α to the optical axis. , The optical path of light passing through the focal point F and arriving at Fα, K3α is the optical path of light arriving from α and passing through the center of the focusing mirror 6 to Fα, and K4α is interposing the optical axis from α. Condensing mirror 6 on the other side
K1α 'is an optical path of light (marginal ray) that passes through the edge of F and arrives at Fα. Light that travels from α ′ to Fα ′ through the edge of the converging mirror 6 on the same side with respect to the optical axis ( K2 α 'is an optical path of light which travels from α' in parallel with the optical axis, passes through the focal point F and reaches Fα ', K3 α'
Is the optical path of light from α ′ to the Fα ′ through the center of the condensing mirror 6 and K4 α ′ is Fα ′ from α ′ passing through the edge of the condensing mirror 6 on the opposite side of the optical axis with respect to the optical axis. Is the optical path of the light (marginal ray) reaching the optical path, and FX is the intersection of the optical path K1α with the optical axis.

【0534】穴の内壁など凹部から放射される赤外光の
みを受光するような光学系を設計する。
An optical system designed to receive only infrared light radiated from a concave portion such as an inner wall of a hole is designed.

【0535】赤外受光素子4を筐体9に取り付け、集光
ミラー6を通過する赤外線のみを赤外受光素子4で受光
するようにする。集光ミラー6を通った赤外線のみ受光
する構成にした上で以下の設計を行う。
[0535] The infrared light receiving element 4 is attached to the housing 9, and only infrared light passing through the condenser mirror 6 is received by the infrared light receiving element 4. The following design is performed after the configuration is such that only infrared rays passing through the condenser mirror 6 are received.

【0536】被測定物からの赤外光のみを受光するため
には、固定部1から放射される赤外光を受光しないよう
にすればよい。そのため、受光したい領域と受光したく
ない領域の境界に位置する点を仮想し、この点から、光
軸に対してこの仮想した境界に位置する点と同じ側の集
光ミラー6の縁を通過する光(マージナル光線)の光路
よりも、光軸から遠くに位置するように固定部1を設置
すればよい。そこで、上記仮想の境界に位置する点を、
集光ミラー6の縁からこの縁と光軸に対して同じ側の固
定部1内面へ接する直線が固定部先端面と交わる点α、
α’として、Fαよりも集光ミラー6から遠い部分の光
路K4 αと、Fα' よりも集光ミラー6から遠い部分の
光路K4 α' で挟まれた領域に赤外センサを設置する。
これにより、固定部1をαと集光ミラー6の間で光路K
1 α、K1 α' よりも光軸から遠くに位置させることに
なるため、固定部からの光を受光しない光学系が得られ
る。
In order to receive only infrared light from the object to be measured, infrared light emitted from the fixed section 1 may be prevented from being received. Therefore, a point located at the boundary between the region where light reception is desired and the region where light reception is not desired is imagined, and from this point, the light passes through the edge of the condenser mirror 6 on the same side as the point located at this virtual boundary with respect to the optical axis. The fixing unit 1 may be installed so as to be located farther from the optical axis than the optical path of the light (marginal ray). Therefore, the point located on the virtual boundary is
A point α at which a straight line that contacts the inner surface of the fixed portion 1 on the same side as the edge and the optical axis from the edge of the converging mirror 6 intersects with the front end surface of the fixed portion,
As α ′, an infrared sensor is installed in a region between the optical path K4 α farther from the converging mirror 6 than Fα and the optical path K4 α ′ farther from the converging mirror 6 than Fα ′.
As a result, the fixed portion 1 is moved between the α and the condenser mirror 6 in the optical path K.
Since it is located farther from the optical axis than 1α and K1α ', an optical system that does not receive light from the fixed portion can be obtained.

【0537】上記について詳細を以下に述べる。The above is described in detail below.

【0538】αから放射される光は光路K1 α、K2
α、K3 α、K4 αなどを通ってαの像点Fαに到達す
る。幾何光学で周知の通り、αの像点Fαは光軸を挟ん
でαと反対側に形成される。図28中に示すように、光
路K2 αを通る光は、集光ミラー6を通過してFで光軸
と交叉してFαに到達し光軸から離れていく。同じよう
に、光路K1 αを通る光は、集光ミラー6を通過して光
軸と交叉してFαに到達し光軸から離れていく。光路K
3 αを通る光は、集光ミラー6で光軸と交叉してFαに
到達し光軸から離れていく。光路K4 αを通る光は、光
軸と交叉して集光ミラー6を通過し、集光ミラー6を通
過してからは光軸と交叉せずにFαに到達し、その後光
軸に近づくかあるいは遠ざかっていく。このように、α
の像点Fαよりも集光ミラーから離れた位置でαから放
射される光が通過しない領域が存在する。同じように
α’についても、αの像点Fαよりも集光ミラーから離
れた位置でαから放射される光が通過しない領域が存在
する。この、Fαよりも集光ミラー6から遠い部分の光
路K4 αと、Fα' よりも集光ミラー6から遠い部分の
光路K4 α' で挟まれた領域内に赤外受光素子を設置す
ることによってα、α’から放射される赤外線を受光し
ない赤外センサが得られる。αと集光ミラー6の間の光
路K1 αより光軸から遠い部分からの光は、αと同じ面
内で光軸からの距離がαより大きい点からの光と置き換
えられる。この点の集光ミラー6による交点はFαより
も光軸から遠くなることは幾何光学で周知の通りであ
る。そのため、αからの光を受光しないようにすれば、
αよりも光軸から遠い点からの光を受光せず、従って固
定部1からの光を受光しない。同様に、α’と集光ミラ
ー6の間の光路K1 α' より光軸から遠い部分からの光
は、α' と同じ面内で光軸からの距離がα’より大きい
点からの光と置き換えられる。この点の集光ミラー6に
よる交点はFα’よりも光軸から遠くなることは幾何光
学で周知の通りである。
The light radiated from α has optical paths K1 α, K2
It reaches the image point Fα of α through α, K3α, K4α and the like. As is well known in geometrical optics, the image point Fα of α is formed on the opposite side of α with respect to the optical axis. As shown in FIG. 28, the light passing through the optical path K2α passes through the condenser mirror 6, crosses the optical axis at F, reaches Fα, and moves away from the optical axis. Similarly, the light passing through the optical path K1α passes through the condenser mirror 6, crosses the optical axis, reaches Fα, and moves away from the optical axis. Optical path K
The light passing through 3α crosses the optical axis at the condenser mirror 6, reaches Fα, and moves away from the optical axis. The light passing through the optical path K4α crosses the optical axis and passes through the converging mirror 6, and after passing through the converging mirror 6, arrives at Fα without crossing the optical axis and then approaches the optical axis. Or go away. Thus, α
There is an area where light emitted from α does not pass at a position further from the light collecting mirror than the image point Fα. Similarly, for α ′, there is a region where light emitted from α does not pass at a position further away from the light collecting mirror than the image point Fα of α. By installing an infrared light receiving element in a region sandwiched between the optical path K4α farther from the converging mirror 6 than Fα and the optical path K4α ′ farther from the converging mirror 6 than Fα ′. An infrared sensor that does not receive infrared rays emitted from α and α ′ is obtained. Light from a portion farther from the optical axis than the optical path K1 α between α and the condensing mirror 6 is replaced with light from a point whose distance from the optical axis is larger than α in the same plane as α. It is well known in geometrical optics that the point of intersection of this point by the condenser mirror 6 is farther from the optical axis than Fα. Therefore, if the light from α is not received,
It does not receive light from a point farther from the optical axis than α, and therefore does not receive light from the fixed part 1. Similarly, light from a portion farther from the optical axis than the optical path K1α 'between α' and the condenser mirror 6 is light from a point larger than α 'in the same plane as α'. Be replaced. It is well known in geometrical optics that the point of intersection of this point by the condenser mirror 6 is farther from the optical axis than Fα ′.

【0539】そのため、α’からの光を受光しないよう
にすれば、α’よりも光軸から遠い点からの光を受光せ
ず、従って固定部1からの光を受光しない。このよう
に、Fαよりも集光ミラー6から遠い部分の光路K4 α
と、Fα' よりも集光ミラー6から遠い部分の光路K4
α' で挟まれた領域に赤外受光素子4を設置することで
α、α’から放射される赤外線を受光しないようにすれ
ば、自動的に固定部1から放射される赤外線も受光しな
い構成となる。
Therefore, if light from α ′ is not received, light from a point farther from the optical axis than α ′ will not be received, and therefore no light from the fixed portion 1 will be received. As described above, the optical path K4α at a portion farther from the converging mirror 6 than Fα
And the optical path K4 at a portion farther from the focusing mirror 6 than Fα '.
If the infrared ray radiated from α and α ′ is not received by installing the infrared light receiving element 4 in the area sandwiched by α ′, the infrared ray radiated from the fixed part 1 is not automatically received. Becomes

【0540】以下、αからの光を受光しないような赤外
受光素子4の位置を求める。
In the following, the position of the infrared light receiving element 4 which does not receive the light from α will be obtained.

【0541】赤外受光素子4はFαよりも集光ミラー6
から遠い。この時、(14)式、(15)式が成り立
つ。
[0537] The infrared light receiving element 4 is more converging mirror 6 than Fα.
Far from. At this time, equations (14) and (15) hold.

【0542】図28に示すように、受光面はFαよりも
集光ミラー6から遠いので、αからFαまでの各光路の
うち受光面で赤外受光素子4に最も近づくものはK4 α
である。したがって、αからの光を赤外受光素子4で受
光しないためには、(16)式を満たす必要がある。
As shown in FIG. 28, since the light receiving surface is farther from the converging mirror 6 than Fα, of the optical paths from α to Fα, the light receiving surface closest to the infrared light receiving element 4 is K 4 α.
It is. Therefore, in order for the light from α to not be received by the infrared light receiving element 4, it is necessary to satisfy the expression (16).

【0543】ここで、幾何光学で周知の通りr3 、rα
F 、LαF 、rαS4、L3 、fは幾何関係として(1
7)式、(18)式を満たす。
Here, as is well known in geometrical optics, r3, rα
F, LαF, rαS4, L3, and f are expressed as (1
Equations (7) and (18) are satisfied.

【0544】(18)式を(16)式へ代入することで
(19)式が得られる。
The equation (19) is obtained by substituting the equation (18) into the equation (16).

【0545】(15)(19)式から、αから放射され
る光を赤外受光素子4で受光しないための条件は(2
0)式となる。
From the expressions (15) and (19), the condition for not receiving the light radiated from α by the infrared receiving element 4 is (2)
0).

【0546】さらに、幾何光学で周知の通り、rα、L
α、L2 、rαF 、LαF は幾何関係として(21)
式、(22)式を満たす。
Further, as is well known in geometrical optics, rα, L
α, L2, rαF, and LαF are expressed by a geometric relationship (21)
Equation (22) is satisfied.

【0547】(22)式を(20)式へ代入することに
より、αから放射される光を赤外受光素子4で受光しな
いための条件は(23)式となる。
By substituting the expression (22) into the expression (20), the condition for not receiving the light radiated from α by the infrared light receiving element 4 becomes the expression (23).

【0548】また、ガウスの公式から(24)式、(2
5)式が成り立つ。
Also, from Gauss's formula, equation (24), (2
5) Formula holds.

【0549】(25)式を(23)式に代入することに
より、αから放射される光を赤外受光素子4で受光しな
いための条件は(26)式となる。
By substituting equation (25) into equation (23), the condition for not receiving the light radiated from α by the infrared light receiving element 4 is given by equation (26).

【0550】以上のように、αから放射される光を赤外
受光素子4で受光しないためには、(20)式、或いは
(23)式、或いは(26)式の条件を満たすよう光学
系を設計する必要がある。(20)式、(23)式、
(26)式で与えられるL3 だけ、受光素子4を集光ミ
ラー6の焦点からずらして設置することで、固定部1か
ら放射される赤外線を赤外受光素子4で受光せずに被測
定物体から放射光のみを赤外受光素子4で受光させるこ
とができるため、固定部1の温度変化に起因する測定誤
差を防ぐことができる。
As described above, in order to prevent the light radiated from α from being received by the infrared receiving element 4, the optical system must satisfy the condition of the expression (20), the expression (23) or the expression (26). Need to be designed. Expression (20), Expression (23),
By disposing the light receiving element 4 from the focal point of the condenser mirror 6 by L3 given by the equation (26), the infrared light radiated from the fixed portion 1 is not received by the infrared light receiving element 4 and the object to be measured is not received. , Only infrared radiation can be received by the infrared light receiving element 4, so that a measurement error due to a temperature change of the fixed portion 1 can be prevented.

【0551】なお、筐体9と固定部1は一体であっても
構わない。
Note that the housing 9 and the fixed portion 1 may be integrated.

【0552】図29、30は本発明の第23の実施例に
おける赤外センサの光学系を示すものである。図29、
30において、6は集光ミラー、4は赤外線受光素子、
9は筐体、1は穴の内部など凹部にある受光したい領域
に赤外センサを固定して向けるための固定部、2は集光
ミラー6の有効領域を決めるためのレンズ開口絞り、
α、α’はレンズ開口絞り2の縁からこの縁と光軸に対
して同じ側の固定部1内面へ接する直線が固定部先端面
と交わる点、Aは固定部1先端の点、Bは固定部1先端
以外の点、Fは集光ミラー6の焦点、Fα、Fα’はそ
れぞれ集光ミラー6によるα、α’の像点、FA は集光
ミラー6によるAの像点、FB は集光ミラー6によるB
の像点、K1 αはαから光軸に対して同じ側のレンズ開
口絞り2の開口部の縁を通過してFαへ進行する光(マ
ージナル光線)の光路、K2 αはαから光軸と平行に進
んで焦点Fを通過してFαに到達する光の光路、K3 α
はαから集光ミラー6の中心を通過してFαに到達する
光の光路、K4 αはαから光軸を挟んで反対側のレンズ
開口絞り2の開口部の縁を通過してFαに到達する光
(マージナル光線)の光路、K1AはAから光軸に対して
同じ側のレンズ開口絞り2の開口部の縁を通過してFA
へ進行する光(マージナル光線)の光路、K2AはAから
光軸と平行に進んで焦点Fを通過してFA に到達する光
の光路、K3AはAから集光ミラー6の中心を通過してF
A に到達する光の光路、K4AはAから光軸を挟んで反対
側のレンズ開口絞り2の開口部の縁を通過してFA に到
達する光(マージナル光線)の光路、K1BはBから光軸
に対して同じ側のレンズ開口絞り2の開口部の縁を通過
してFB へ進行する光(マージナル光線)の光路、K2B
はBから光軸と平行に進んで焦点Fを通過してFB に到
達する光の光路、K3BはBから集光ミラー6の中心を通
過してFB に到達する光の光路、K4BはBから光軸を挟
んで反対側のレンズ開口絞り2の開口部の縁を通過して
FB に到達する光(マージナル光線)の光路、FαS1は
光路K1 αと受光面との交点、FAS1 は光路K1Aと受光
面との交点、FBS1 は光路K1Bとセンサ面との交点、r
αはα点での固定部1の開口半径、rA はA点での固定
部1の開口半径、rB はB点での固定部1の開口半径、
r2 はレンズ開口絞り2の開口半径、r3 α1 は光路K
1 αの集光ミラー6における光軸からの距離、r3A1 は
光路K1Aの集光ミラー6における光軸からの距離、r3B
1 は光路K1Bの集光ミラー6における光軸からの距離、
rsは赤外受光素子4の半径、rαS1はFαS1と光軸との
距離、rAS1 はFAS1 と光軸との距離、rBS1 はFBS1
と光軸との距離、rAFはFA と光軸との距離、rBFはF
B と光軸との距離、L αはαからレンズ開口絞り2まで
の距離、LAはAからレンズ開口絞り2までの距離、LB
はBからレンズ開口絞り2までの距離、L2はレンズ開
口絞り2から集光ミラー6までの距離、fは集光ミラー
6の焦点距離、L3 はFから赤外受光素子4までの距
離、LαF は集光ミラー6からFαまでの距離、LAFは
集光ミラー6からFA までの距離、LBFは集光ミラー6
からFBまでの距離である。
FIGS. 29 and 30 show an optical system of an infrared sensor according to the twenty-third embodiment of the present invention. FIG.
In 30, 6 is a condenser mirror, 4 is an infrared light receiving element,
9 is a housing, 1 is a fixing portion for fixing and pointing the infrared sensor to a region where light is to be received in a concave portion such as the inside of a hole, 2 is a lens aperture stop for determining an effective region of the condenser mirror 6,
α and α ′ are points where a straight line contacting the edge of the lens aperture stop 2 and the inner surface of the fixed part 1 on the same side with respect to the optical axis with the edge intersects the tip of the fixed part, A is a point at the tip of the fixed part 1, and B is Points other than the tip of the fixed portion 1, F is the focal point of the condenser mirror 6, Fα and Fα ′ are α and α ′ image points by the condenser mirror 6, FA is an image point of A by the condenser mirror 6, and FB is B by focusing mirror 6
K1α is an optical path of light (marginal ray) which travels from F to α through the edge of the opening of the lens aperture stop 2 on the same side with respect to the optical axis and travels to Fα. The optical path of light traveling parallel and passing through the focal point F and reaching Fα, K3α
Is the optical path of the light that reaches Fα from α through the center of the condenser mirror 6, and K4 α reaches Fα from α through the edge of the opening of the lens aperture stop 2 on the opposite side with respect to the optical axis. The optical path of the light (marginal ray), K1A, passes through the edge of the aperture of the lens aperture stop 2 on the same side with respect to the optical axis from A and passes through FA.
K2A is an optical path of light (marginal ray) traveling in parallel to the optical axis from A and passing through the focal point F to reach FA, and K3A is an optical path from A passing through the center of the focusing mirror 6 from A. F
K4A is an optical path of light reaching A, K1A is an optical path of light (marginal ray) passing through the edge of the opening of the lens aperture stop 2 on the opposite side of the optical axis from A to reach FA, and K1B is an optical path from B. An optical path of light (marginal ray) passing through the edge of the aperture of the lens aperture stop 2 on the same side with respect to the axis and traveling to FB, K2B
Is the optical path of light traveling parallel to the optical axis from B and passing through the focal point F to reach FB, K3B is the optical path of light passing from B through the center of the focusing mirror 6 to reach FB, and K4B is from B The optical path of light (marginal ray) passing through the edge of the opening of the lens aperture stop 2 on the opposite side of the optical axis and reaching FB, FαS1 is the intersection of the optical path K1α with the light receiving surface, and FAS1 is the optical path K1A. The intersection point with the light receiving surface, FBS1 is the intersection point between the optical path K1B and the sensor surface, r
α is the opening radius of the fixed part 1 at the point α, rA is the opening radius of the fixed part 1 at the point A, rB is the opening radius of the fixed part 1 at the point B,
r2 is the aperture radius of the lens aperture stop 2, and r3 α1 is the optical path K
1α is the distance from the optical axis of the condenser mirror 6, r3A1 is the distance of the optical path K1A from the optical axis of the condenser mirror 6, r3B
1 is the distance of the optical path K1B from the optical axis of the condenser mirror 6,
rs is the radius of the infrared light receiving element 4, rαS1 is the distance between FαS1 and the optical axis, rAS1 is the distance between FAS1 and the optical axis, and rBS1 is FBS1.
RAF is the distance between FA and the optical axis, and rBF is F
The distance between B and the optical axis, L α is the distance from α to the lens aperture stop 2, LA is the distance from A to the lens aperture stop 2, LB
Is the distance from B to the lens aperture stop 2, L2 is the distance from the lens aperture stop 2 to the condenser mirror 6, f is the focal length of the condenser mirror 6, L3 is the distance from F to the infrared light receiving element 4, LαF Is the distance from the condenser mirror 6 to Fα, LAF is the distance from the condenser mirror 6 to FA, and LBF is the condenser mirror 6
Is the distance from to FB.

【0553】固定部のあらゆる点から放射される光を赤
外受光素子4で受光しないような光学設計条件を求め
る。そのために、αから放射される光を仮想し、この光
を赤外受光素子4で受光しないための設計条件を求めた
のち、固定部1のα以外の点から放射される光を赤外受
光素子4で受光しない条件を追加する。
An optical design condition is determined so that light emitted from any point of the fixed portion is not received by the infrared light receiving element 4. For this purpose, the light radiated from α is imagined, and a design condition for preventing the light from being received by the infrared light receiving element 4 is determined. A condition that light is not received by the element 4 is added.

【0554】まず、固定部1のαから放射される赤外光
を受光しないよう、以下のように赤外受光素子4の位置
を決める。
First, the position of the infrared light receiving element 4 is determined as follows so as not to receive the infrared light radiated from α of the fixed portion 1.

【0555】αから放射される光は光路K1 α、K2
α、K3 α、K4 αなどを通ってαの像点Fαに到達す
る。幾何光学で周知の通り、αの像点Fαは光軸を挟ん
でαと反対側に形成される。図29中に示すように、光
路K2 αを通る光は、集光ミラー6を通過してFで光軸
と交叉したのち光軸から離れながらFαに到達する。同
じように、光路K1 αを通る光は、集光ミラー6を通過
して光軸と交叉したのち光軸から離れながらFαに到達
する。光路K3 αを通る光は、集光ミラー6で光軸と交
叉したのち光軸から離れながらFαに到達する。光路K
4 αを通る光は、光軸と交叉して集光ミラー6を通過
し、集光ミラー6を通過してからは光軸と交叉せずにF
αに到達する。このように、光路K1 αと光軸が交叉す
る点よりも集光ミラーから離れた位置かつFαよりも集
光ミラー6に近い位置で、αから放射される光が通過し
ない領域が存在する。この、光路K1 αと光軸が交叉す
る点よりも集光ミラー6から離れ且つFαよりも集光ミ
ラー6に近い位置に赤外受光素子4を設置することで、
αから放射される光を受光しない赤外センサが得られ
る。以下、L3 を求める。
The light radiated from α has optical paths K 1 α and K 2
It reaches the image point Fα of α through α, K3α, K4α and the like. As is well known in geometrical optics, the image point Fα of α is formed on the opposite side of α with respect to the optical axis. As shown in FIG. 29, the light passing through the optical path K2α passes through the condenser mirror 6, crosses the optical axis at F, and reaches Fα while leaving the optical axis. Similarly, light passing through the optical path K1α passes through the condenser mirror 6, crosses the optical axis, and then reaches Fα while leaving the optical axis. The light passing through the optical path K3α crosses the optical axis by the condenser mirror 6 and then reaches Fα while leaving the optical axis. Optical path K
4 The light passing through α crosses the optical axis and passes through the converging mirror 6, and after passing through the converging mirror 6, the F
reaches α. As described above, there is a region where light emitted from α does not pass at a position farther from the condenser mirror than the point where the optical path K1α intersects with the optical axis and closer to the condenser mirror 6 than Fα. By locating the infrared light receiving element 4 at a position farther from the converging mirror 6 than at the point where the optical path K1α intersects with the optical axis and closer to the converging mirror 6 than Fα,
An infrared sensor that does not receive light emitted from α is obtained. Hereinafter, L3 is obtained.

【0556】赤外受光素子4はFαよりも集光ミラー6
に近い。この時、(27)式、(28)式が成り立つ。
[0556] The infrared light receiving element 4 is more converging mirror 6 than Fα.
Close to. At this time, equations (27) and (28) hold.

【0557】図29に示すように、受光面は光路K1 α
と光軸が交わる点とFαとの間であるので、αからFα
までの各光路のうち受光面で赤外受光素子4に最も近づ
くものはK1 αである。したがって、αからの光を赤外
受光素子4で受光しないためには、(29)式を満たす
必要がある。
As shown in FIG. 29, the light receiving surface has an optical path K1 α
Is between the point where the optical axis intersects with the optical axis and Fα.
The light path closest to the infrared light receiving element 4 on the light receiving surface is K1α. Therefore, in order for the light from α to not be received by the infrared light receiving element 4, it is necessary to satisfy the expression (29).

【0558】ここで、幾何光学で周知の通りr3 α1 、
rαF 、LαF 、rαS1、L3 、fは幾何関係として
(30)式、(31)式を満たす。
Here, as is well known in geometrical optics, r3 α1,
rαF, LαF, rαS1, L3, and f satisfy Equations (30) and (31) as geometric relationships.

【0559】(31)式を(29)式へ代入することで
(32)式が得られる。
The equation (32) is obtained by substituting the equation (31) into the equation (29).

【0560】(28)(32)式から、αから放射され
る光を赤外受光素子4で受光しないための条件は(3
3)式となる。
From the equations (28) and (32), the condition for not receiving the light radiated from α by the infrared receiving element 4 is (3)
3) Equation is obtained.

【0561】さらに、幾何光学で周知の通り、rα、L
α、L2 、rαF 、LαF は幾何関係として(34)
式、(35)式を満たす。
Further, as is well known in geometrical optics, rα, L
α, L2, rαF, and LαF are expressed as a geometric relationship (34)
Equation (35) is satisfied.

【0562】(35)式を(33)式へ代入することに
より、αから放射される光を赤外受光素子4で受しない
ための条件は(36)式となる。
By substituting the equation (35) into the equation (33), the condition for preventing the infrared light receiving element 4 from receiving the light radiated from α becomes the following equation (36).

【0563】また、ガウスの公式から(37)式、(3
8)式が成り立つ。
Also, from Gauss's formula, equation (37), (3
8) Equation holds.

【0564】(38)式を(36)式に代入することに
より、αから放射される光を赤外受光素子4で受光しな
いための条件は(39)式となる。
By substituting equation (38) into equation (36), the condition for not receiving the light radiated from α by the infrared light receiving element 4 is given by equation (39).

【0565】また、幾何光学で周知の通り、r2 、r
α、Lα、r3 α1 、L2 は幾何関係として(40)
式、(41)式を満たす。
As is well known in geometrical optics, r 2, r
α, Lα, r3α1 and L2 are expressed as geometric relationships (40)
Equation (41) is satisfied.

【0566】(41)式を(39)式へ代入することに
より、αから放射される光を赤外受光素子4で受光しな
いための条件は(42)式となる。
By substituting equation (41) into equation (39), the condition for not receiving the light radiated from α by the infrared light receiving element 4 is given by equation (42).

【0567】以上のように、固定部1先端のαから放射
される光を赤外受光素子4で受光しないためには、(3
3)式、或いは(36)式、或いは(39)式、或いは
(42)式の条件を満たすよう光学系を設計する必要が
ある。
As described above, in order for the light radiated from α at the tip of the fixed portion 1 not to be received by the infrared light receiving element 4, (3
It is necessary to design the optical system so as to satisfy the condition of the expression (3), the expression (36), the expression (39), or the expression (42).

【0568】(33)式、或いは(36)式、或いは
(39)式、或いは(42)式の条件を満たすよう光学
系を設計した赤外センサが、固定部のα以外の点からの
放射光も受光しない、すなわち固定部のあらゆる点から
放射される光も受光しない条件を示す。そのために、図
30を用いてA、Bからの光を受光しない条件を以下に
求める。
The infrared sensor whose optical system is designed so as to satisfy the condition of the expression (33), the expression (36), the expression (39), or the expression (42) emits light from a point other than α of the fixed portion. A condition is shown in which no light is received, that is, no light emitted from any point of the fixed portion is received. For this purpose, a condition for not receiving light from A and B is determined below with reference to FIG.

【0569】まず、Aから放射される光を受光しない条
件を求める。図30に示すように、AからFA までの各
光路のうち受光面で赤外受光素子4に最も近づくものは
K1Aである。Aとαが一致しない固定部形状の場合には
K1AはAとレンズ開口絞り2との間で固定部1によって
遮光され、各光路は受光面で赤外受光素子4にK1Aより
は近づかない。そこで、Aから放射される光を赤外受光
素子4で受光しない条件を、K1Aと受光面との交点であ
るFAS1 と光軸との距離rAS1 がrs よりも大きいこと
とする。つまり(43)式が成りたてばAから放射され
る光を赤外受光素子4で受光しない。
First, a condition for not receiving the light radiated from A is determined. As shown in FIG. 30, the light path closest to the infrared light receiving element 4 on the light receiving surface is K1A among the light paths from A to FA. In the case of a fixed portion shape in which A and α do not match, K1A is shielded from light by the fixed portion 1 between A and the lens aperture stop 2, and each optical path does not approach the infrared light receiving element 4 closer to the infrared light receiving element 4 than K1A. Therefore, the condition that the light radiated from A is not received by the infrared light receiving element 4 is that the distance rAS1 between the optical axis and FAS1, which is the intersection of K1A and the light receiving surface, is larger than rs. That is, if the expression (43) is satisfied, the light radiated from A is not received by the infrared light receiving element 4.

【0570】また、幾何光学で周知の通り、r3A1 、r
AF、LA 、rAs1 、f、L3 は幾何関係として(44)
式、(45)式を満たす。
As is well known in geometrical optics, r3A1, r3
AF, LA, rAs1, f, and L3 are represented as geometric relationships (44)
Equation (45) is satisfied.

【0571】また、幾何光学で周知の通りrA 、LA 、
L2 、rAF、LAFは幾何関係として(46)式、(4
7)式を満たす。
As is well known in geometrical optics, rA, LA,
L2, rAF, and LAF are expressed by the following equation (46) as a geometric relationship.
7) Formula is satisfied.

【0572】(47)式を(45)式に代入することに
より(48)式が得られる。
By substituting equation (47) into equation (45), equation (48) is obtained.

【0573】また、ガウスの公式から(49)式、(5
0)式が成り立つ。
Also, from Gauss's formula, equation (49), (5
Equation (0) holds.

【0574】(50)式を(48)式に代入することに
より(51)式が得られる。
By substituting equation (50) into equation (48), equation (51) is obtained.

【0575】また、幾何光学で周知の通り、r2 、rA
、LA 、r3A1 、L2 は幾何関係として(52)式、
(53)式を満たす。
As is well known in geometrical optics, r2, rA
, LA, r3A1 and L2 are expressed by the following equation (52) as a geometric relationship.
Formula (53) is satisfied.

【0576】(53)式を(51)式に代入することに
よって(54)式が得られる。
By substituting equation (53) into equation (51), equation (54) is obtained.

【0577】rAS1 と同じくrαS1は(55)式のよう
になる。
Similarly to rAS1, rαS1 is as shown in equation (55).

【0578】Aは固定部先端の点で、αはレンズ開口絞
り2の縁からこの縁と光軸に対して同じ側の固定部1内
面へ接する直線が固定部先端面と交わる点であるので、
レンズ開口絞り2からA、αまでの距離は相等しく(5
6)式が成り立ち、光軸からAまでの距離は光軸からα
までの距離以上であり(57)式が成り立つ。
A is the point at the tip of the fixed part, and α is the point at which the straight line contacting the edge of the lens aperture stop 2 and the inner surface of the fixed part 1 on the same side with respect to this edge and the optical axis intersects the tip of the fixed part. ,
The distances from the lens aperture stop 2 to A and α are equal (5
Equation 6) holds, and the distance from the optical axis to A is α from the optical axis.
(57) holds.

【0579】(56)式を(55)式に代入することで
(58)式が得られる。
By substituting equation (56) into equation (55), equation (58) is obtained.

【0580】rαS1は(29)式の関係を満たすので、
rAS1 がrαS1よりも大きい、すなわち(59)式を満
たせば、自動的にrAS1 が(43)式の関係を満たす。
Since rαS1 satisfies the relationship of equation (29),
If rAS1 is larger than rαS1, that is, if equation (59) is satisfied, rAS1 automatically satisfies the relation of equation (43).

【0581】(55)(58)式を(59)式に代入す
ることにより(60)式が得られる。
(55) By substituting equation (58) into equation (59), equation (60) is obtained.

【0582】(57)式より、(60)式は(61)式
のようになる。
From equation (57), equation (60) becomes equation (61).

【0583】以上のように、固定部1の仮想点αおよび
先端点Aから放射される光を赤外受光素子4で受光しな
いためには(33)式、或いは(36)式、或いは(3
9)式、或いは(42)式の条件を満たし、且つ(6
1)式を満たす必要がある。
As described above, in order to prevent the light radiated from the virtual point α and the tip point A of the fixed portion 1 from being received by the infrared light receiving element 4, the expression (33), the expression (36), or the expression (3)
The condition of the expression 9) or the expression (42) is satisfied, and (6)
It is necessary to satisfy the expression 1).

【0584】次に、Bから放射される光を受光しない条
件を求める。Bから放射される光はK1B、K2B、K3B、
K4Bなどを通ってBの像点FB に到達する。Bは固定部
の先端以外の点であるので、固定部先端面の点αよりも
Bの方が集光ミラー6に近い。したがって、幾何光学で
周知の通り、集光ミラー6の像点Fαよりも像点FBの
方が集光ミラー6から遠くなる。すなわち(62)式が
成り立つ。
Next, a condition for not receiving light emitted from B will be determined. The light emitted from B is K1B, K2B, K3B,
It reaches the image point FB of B through K4B and the like. Since B is a point other than the tip of the fixed portion, B is closer to the condenser mirror 6 than the point α on the tip surface of the fixed portion. Therefore, as is well known in geometrical optics, the image point FB is farther from the light collecting mirror 6 than the image point Fα of the light collecting mirror 6. That is, equation (62) holds.

【0585】集光ミラー6から受光面までの距離は集光
ミラー6からFαまでの距離よりも小さい。したがって
(62)式より、集光ミラー6から受光面までの距離は
集光ミラー6からFB までの距離よりも小さいことにな
る。このとき、図30に示すようにBからFB までの各
光路のうち受光面で赤外受光素子4に最も近づくものは
K1Bである。Bから放射される光を赤外受光素子4で受
光しないためには、K1Bと受光面との交点であるFBS1
と光軸との距離rBS1 がrs よりも大きい必要がある。
つまり(63)式が成り立つ必要がある。
The distance from the light collecting mirror 6 to the light receiving surface is smaller than the distance from the light collecting mirror 6 to Fα. Therefore, from the equation (62), the distance from the light collecting mirror 6 to the light receiving surface is smaller than the distance from the light collecting mirror 6 to FB. At this time, as shown in FIG. 30, the light path closest to the infrared light receiving element 4 on the light receiving surface is K1B among the optical paths from B to FB. In order to prevent the light radiated from B from being received by the infrared light receiving element 4, FBS1 which is the intersection of K1B and the light receiving surface is used.
The distance rBS1 between the optical axis and the optical axis needs to be larger than rs.
That is, equation (63) needs to be satisfied.

【0586】また、幾何光学で周知の通り、r3B1 、r
BF、LB 、rBs1 、f、L3 は幾何関係として(64)
式、(65)式を満たす。
As is well known in geometrical optics, r3B1, r3
BF, LB, rBs1, f and L3 are expressed as a geometric relation (64)
Equation (65) is satisfied.

【0587】また、幾何光学で周知の通りrB 、LB 、
L2 、rBF、LBFは幾何関係として(66)式、(6
7)式を満たす。
Further, as is well known in geometrical optics, rB, LB,
L2, rBF, and LBF are expressed by the following equation (66) as a geometric relationship.
7) Formula is satisfied.

【0588】(67)式を(65)式に代入することに
より(68)式が得られる。
By substituting equation (67) into equation (65), equation (68) is obtained.

【0589】また、ガウスの公式から(69)式、(7
0)式が成り立つ。
From Gauss's formula, equation (69), (7
Equation (0) holds.

【0590】(70)式を(68)式に代入することに
より(71)式が得られる。
By substituting equation (70) into equation (68), equation (71) is obtained.

【0591】また、幾何光学で周知の通り、r2 、rB
、LB 、r3B1 、L2 は幾何関係として(72)式、
(73)式を満たす。
As is well known in geometrical optics, r2, rB
, LB, r3B1 and L2 are expressed by the following equation (72) as a geometric relationship.
Formula (73) is satisfied.

【0592】(73)式を(71)式に代入することに
よって(74)式が得られる。
By substituting equation (73) into equation (71), equation (74) is obtained.

【0593】rBS1 と同じくrαS1は(75)式のよう
になる。
Similarly to rBS1, rαS1 is as shown in equation (75).

【0594】rαS1は(29)式の関係を満たすので、
rBS1 がrαS1よりも大きい、すなわち(76)式を満
たせば自動的にrBS1 が(63)式の関係を満たすこと
になる。
Since rαS1 satisfies the relationship of equation (29),
If rBS1 is larger than rαS1, that is, if equation (76) is satisfied, rBS1 automatically satisfies the relation of equation (63).

【0595】(74)(75)式を(76)式に代入す
ることにより(77)式が得られる。
(74) By substituting equation (75) into equation (76), equation (77) is obtained.

【0596】ここで、αは固定部1先端面の点であるの
で、Lα、LB に(78)式、(79)式の関係が成り
立つ。
Here, since α is a point on the tip end surface of the fixed portion 1, the relations of equations (78) and (79) are established for Lα and LB.

【0597】(33)式、或いは(36)式、或いは
(39)式、或いは(42)式の条件を満たし、且つ
(61)式を満たすよう光学系を設計した赤外センサ
が、あらゆる先端面以外の点からの放射光も受光しない
ためには、B各点について(77)式の関係が成り立つ
必要がある。
An infrared sensor that satisfies the condition of the expression (33), the expression (36), the expression (39), or the expression (42), and the optical system designed to satisfy the expression (61), In order not to receive the radiated light from points other than the surface, the relationship of the equation (77) needs to be established for each point B.

【0598】したがって、(61)式、(79)式の関
係を考慮することにより、(80)式が成り立つ必要が
ある。
Therefore, it is necessary to satisfy Expression (80) by considering the relationship between Expressions (61) and (79).

【0599】以上のように、固定部1から放射される光
を赤外受光素子4で受光しないためには(33)式、或
いは(36)式、或いは(39)式、或いは(42)式
の条件を満たし、且つ(61)式を満たし、さらに(8
1)式を満たす必要がある。
As described above, in order to prevent the light radiated from the fixed portion 1 from being received by the infrared receiving element 4, the expression (33), the expression (36), the expression (39), or the expression (42) And the condition (61) is satisfied, and (8)
It is necessary to satisfy the expression 1).

【0600】赤外受光素子4を、(33)式あるいは
(36)式あるいは(39)式あるいは(42)式で与
えられる量だけ集光ミラー6の焦点面から離して設け、
かつ(61)式と(81)式を満たす光学設計にするこ
とによって、固定部から放射される赤外線を赤外受光素
子4で受光せずに被測定物体から放射光のみを赤外受光
素子4で受光させることができるため、固定部の温度変
化に起因する測定誤差を防ぐことができる。
The infrared light receiving element 4 is provided away from the focal plane of the condenser mirror 6 by an amount given by the expression (33), (36), (39), or (42).
In addition, by adopting an optical design that satisfies the formulas (61) and (81), the infrared light radiated from the object to be measured is received only by the infrared light , It is possible to prevent a measurement error caused by a temperature change of the fixed portion.

【0601】なお、筐体9と固定部1、レンズ開口絞り
2は一体であっても構わない。
[0601] The housing 9, the fixed portion 1, and the lens aperture stop 2 may be integrated.

【0602】図31、32、33は本発明の第24の実
施例における赤外センサの光学系を示すものである。図
31、32、33において、6は集光ミラー、4は赤外
線受光素子、9は筐体、1は穴の内部など凹部にある受
光したい領域に赤外センサを固定して向けるための固定
部、2は集光ミラー6の有効領域を決めるためのレンズ
開口絞り、α、α’はレンズ開口絞り2の縁からこの縁
と光軸に対して同じ側の固定部1内面へ接する直線が固
定部先端面と交わる点、Aは固定部1先端の点、Bは固
定部1の先端以外の点、Fは集光ミラー6の焦点、F
α、Fα’はそれぞれ集光ミラー6によるα、α’の像
点、FA は集光ミラー6によるAの像点、FB は集光ミ
ラー6によるBの像点、K1 αはαから光軸に対して同
じ側のレンズ開口絞り2の開口部の縁を通過してFαへ
進行する光(マージナル光線)の光路、K2 αはαから
光軸と平行に進んで焦点Fを通過してFαに到達する光
の光路、K3 αはαから集光ミラー6の中心を通過して
Fαに到達する光の光路、K4 αはαから光軸を挟んで
反対側のレンズ開口絞り2の開口部の縁を通過してFα
に到達する光(マージナル光線)の光路、K1AはAから
光軸に対して同じ側のレンズ開口絞り2の開口部の縁を
通過してFA へ進行する光(マージナル光線)の光路、
K2AはAから光軸と平行に進んで焦点Fを通過してFA
に到達する光の光路、K3AはAから集光ミラー6の中心
を通過してFA に到達する光の光路、K4AはAから光軸
を挟んで反対側のレンズ開口絞り2の開口部の縁を通過
してFAに到達する光(マージナル光線)の光路、K1B
はBから光軸に対して同じ側のレンズ開口絞り2の開口
部の縁を通過してFB へ進行する光(マージナル光線)
の光路、K2BはBから光軸と平行に進んで焦点Fを通過
してFB に到達する光の光路、K3BはBから集光ミラー
6の中心を通過してFB に到達する光の光路、K4BはB
から光軸を挟んで反対側のレンズ開口絞り2の開口部の
縁を通過してFB に到達する光(マージナル光線)の光
路、FαS4は光路K4 αと受光面との交点、FAS4 は光
路K4Aと受光面との交点、FBS4 は光路K4Bとセンサ面
との交点、FαS1は光路K1Aと受光面との交点、FBS1
は光路K1Bとセンサ面との交点、rαはα点での固定部
1の開口半径、rA はA点での固定部1の開口半径、r
B はB点での固定部1の開口半径、r2 はレンズ開口絞
り2の開口半径、r3 α4 は光路K4 αの集光ミラー6
における光軸からの距離、r3A4 は光路K4Aの集光ミラ
ー6における光軸からの距離、r3B4 は光路K4Bの集光
ミラー6における光軸からの距離、r3 α1 は光路K1
αの集光ミラー6における光軸からの距離、r3B1 は光
路K1Bの集光ミラー6における光軸からの距離、rsは赤
外受光素子4の半径、rαS4はFαS4と光軸との距離、
rAS4 はFAS4 と光軸との距離、rBS4 はFBS4 と光軸
との距離、rαS1はFαS1と光軸との距離、rBS1 はF
BS1 と光軸との距離、rαF はFαと光軸との距離、r
AFはFA と光軸との距離、rBFはFB と光軸との距離、
L αはαからレンズ開口絞り2までの距離、LAはAから
レンズ開口絞り2までの距離、LB はBからレンズ開口
絞り2までの距離、L2 はレンズ開口絞り2から集光ミ
ラー6までの距離、fは集光ミラー6の焦点距離、L3
はFから赤外受光素子4までの距離、LαF は集光ミラ
ー6からFαまでの距離、LAFは集光ミラー6からFA
までの距離、LBFは集光ミラー6からFB までの距離で
ある。
FIGS. 31, 32, and 33 show an optical system of an infrared sensor according to a twenty-fourth embodiment of the present invention. In FIGS. 31, 32 and 33, 6 is a condensing mirror, 4 is an infrared light receiving element, 9 is a housing, 1 is a fixing portion for fixing and directing the infrared sensor to a light receiving region such as the inside of a hole in a concave portion. Reference numeral 2 denotes a lens aperture stop for determining the effective area of the condenser mirror 6, and α and α 'are fixed lines that are in contact with the edge of the lens aperture stop 2 and the inner surface of the fixed portion 1 on the same side with respect to this edge and the optical axis. A is a point at the tip of the fixed part 1, A is a point other than the tip of the fixed part 1, F is a focal point of the condenser mirror 6,
α and Fα ′ are the image points of α and α ′ by the condenser mirror 6, FA is the image point of A by the condenser mirror 6, FB is the image point of B by the condenser mirror 6, and K1 α is the optical axis from α. The optical path of the light (marginal ray) that passes through the edge of the opening of the lens aperture stop 2 on the same side and travels to Fα, K2α travels from α in parallel with the optical axis, passes through the focal point F, and passes through Fα. K3α is the optical path of the light from α that passes through the center of the condenser mirror 6 and reaches Fα, and K4α is the opening of the lens aperture stop 2 on the opposite side of α from the optical axis. Through the edge of
K1A is the optical path of the light (marginal ray) that reaches from the point A to the optical axis, passing through the edge of the opening of the lens aperture stop 2 on the same side with respect to the optical axis and traveling to FA.
K2A travels from A in parallel with the optical axis, passes through the focal point F, and
K3A is the optical path of light from A passing through the center of the condenser mirror 6 to reach FA, and K4A is the edge of the aperture of the lens aperture stop 2 on the opposite side of A from the optical axis. Path of light (marginal ray) that passes through and reaches FA, K1B
Is a light (marginal ray) traveling from B to FB through the edge of the opening of the lens aperture stop 2 on the same side with respect to the optical axis.
K2B is an optical path of light traveling parallel to the optical axis from B and passing through the focal point F to reach FB; K3B is an optical path of light passing from B through the center of the focusing mirror 6 and reaching FB; K4B is B
, The optical path of light (marginal ray) passing through the edge of the aperture of the lens aperture stop 2 on the opposite side with respect to the optical axis and reaching FB, FαS4 is the intersection of the optical path K4α with the light receiving surface, and FAS4 is the optical path K4A. FBS4 is the intersection of the optical path K4B and the sensor surface, FαS1 is the intersection of the optical path K1A and the light receiving surface, FBS1
Is the intersection of the optical path K1B and the sensor surface, rα is the opening radius of the fixed part 1 at the point α, rA is the opening radius of the fixed part 1 at the point A, r
B is the aperture radius of the fixed portion 1 at the point B, r2 is the aperture radius of the lens aperture stop 2, and r3 α4 is the condenser mirror 6 of the optical path K4 α.
, R3A4 is the distance of the optical path K4A from the optical axis in the collecting mirror 6, r3B4 is the distance of the optical path K4B from the optical axis in the collecting mirror 6, and r3 α1 is the optical path K1.
α is the distance from the optical axis of the condenser mirror 6, r3B1 is the distance of the optical path K1B from the optical axis of the condenser mirror 6, rs is the radius of the infrared light receiving element 4, rαS4 is the distance between FαS4 and the optical axis,
rAS4 is the distance between FAS4 and the optical axis, rBS4 is the distance between FBS4 and the optical axis, rαS1 is the distance between FαS1 and the optical axis, and rBS1 is FBS.
The distance between BS1 and the optical axis, rαF is the distance between Fα and the optical axis, r
AF is the distance between FA and the optical axis, rBF is the distance between FB and the optical axis,
L α is the distance from α to the lens aperture stop 2, LA is the distance from A to the lens aperture stop 2, LB is the distance from B to the lens aperture stop 2, and L2 is the distance from the lens aperture stop 2 to the condenser mirror 6. Distance, f is the focal length of the condenser mirror 6, L3
Is the distance from F to the infrared light receiving element 4, LαF is the distance from the condenser mirror 6 to Fα, and LAF is the distance from the condenser mirror 6 to FA.
LBF is the distance from the condenser mirror 6 to FB.

【0603】固定部1上のαから放射される赤外光を仮
想し、この光を受光しないよう以下に示すように赤外受
光素子4の位置を決める。
The infrared light emitted from α on the fixed part 1 is assumed, and the position of the infrared light receiving element 4 is determined as described below so as not to receive this light.

【0604】αから放射される光は光路K1 α、K2
α、K3 α、K4 αなどを通ってαの像点Fαに到達す
る。幾何光学で周知の通り、αの像点Fαは光軸を挟ん
でαと反対側に形成される。図31中に示すように、光
路K2 αを通る光は、集光ミラー6を通過してFで光軸
と交叉してFαに到達し光軸から離れていく。同じよう
に、光路K1 αを通る光は、集光ミラー6を通過して光
軸と交叉してFαに到達し光軸から離れていく。光路K
3 αを通る光は、集光ミラー6で光軸と交叉してFαに
到達し光軸から離れていく。光路K4 αを通る光は、光
軸と交叉して集光ミラー6を通過し、集光ミラー6を通
過してからは光軸と交叉せずにFαに到達し、その後光
軸に近づくかあるいは遠ざかっていく。このように、α
の像点Fαよりも集光ミラーから離れた位置でαから放
射される光が通過しない領域が存在する。この、αの像
点Fαよりも集光ミラー6から離れた位置に赤外受光素
子4を設置することで、αから放射される光を受光しな
い赤外センサが得られる。以下、集光ミラー6の焦点か
ら受光面までの距離L3 を求める。
The light radiated from α has optical paths K 1 α and K 2
It reaches the image point Fα of α through α, K3α, K4α and the like. As is well known in geometrical optics, the image point Fα of α is formed on the opposite side of α with respect to the optical axis. As shown in FIG. 31, the light passing through the optical path K2α passes through the condenser mirror 6, crosses the optical axis at F, reaches Fα, and moves away from the optical axis. Similarly, the light passing through the optical path K1α passes through the condenser mirror 6, crosses the optical axis, reaches Fα, and moves away from the optical axis. Optical path K
The light passing through 3α crosses the optical axis at the condenser mirror 6, reaches Fα, and moves away from the optical axis. The light passing through the optical path K4α crosses the optical axis and passes through the converging mirror 6, and after passing through the converging mirror 6, arrives at Fα without crossing the optical axis and then approaches the optical axis. Or go away. Thus, α
There is an area where light emitted from α does not pass at a position further from the light collecting mirror than the image point Fα. By installing the infrared light receiving element 4 at a position more distant from the light collecting mirror 6 than the image point Fα of α, an infrared sensor that does not receive light emitted from α can be obtained. Hereinafter, the distance L3 from the focal point of the condenser mirror 6 to the light receiving surface will be determined.

【0605】赤外受光素子4はFαよりも集光ミラー6
から遠い。この時、(82)式、(83)式が成り立
つ。
[0605] The infrared light receiving element 4 is more converging mirror 6 than Fα.
Far from. At this time, equations (82) and (83) hold.

【0606】図31に示すように、受光面はFαよりも
集光ミラー6から遠いので、αからFαまでの各光路の
うち受光面で赤外受光素子4に最も近づくものはK4 α
である。したがって、αからの光を赤外受光素子4で受
光しないためには、(84)式を満たす必要がある。
As shown in FIG. 31, since the light receiving surface is farther from the converging mirror 6 than Fα, of the light paths from α to Fα, the light receiving surface closest to the infrared light receiving element 4 is K4α.
It is. Therefore, in order for the infrared light receiving element 4 not to receive the light from α, it is necessary to satisfy the expression (84).

【0607】ここで、幾何光学で周知の通りr3 α4 、
rαF 、LαF 、rαS4、L3 、fは幾何関係として
(85)式、(86)式を満たす。
Here, as is well known in geometrical optics, r3α4,
rαF, LαF, rαS4, L3, and f satisfy the equations (85) and (86) as geometric relationships.

【0608】(86)式を(84)式へ代入することで
(87)式が得られる。
The equation (87) is obtained by substituting the equation (86) into the equation (84).

【0609】(83)(87)式から、αから放射され
る光を赤外受光素子4で受光しないための条件は(8
8)式となる。
From the equations (83) and (87), the condition for not receiving the light radiated from α by the infrared light receiving element 4 is (8
8)

【0610】さらに、幾何光学で周知の通り、rα、L
α、L2 、rαF 、LαF は幾何関係として(89)
式、(90)式を満たす。
Further, as is well known in geometrical optics, rα, L
α, L2, rαF, and LαF are expressed as a geometric relationship (89)
Equation (90) is satisfied.

【0611】(90)式を(88)式へ代入することに
より、αから放射される光を赤外受光素子4で受光しな
いための条件は(91)式となる。
By substituting the expression (90) into the expression (88), the condition for not receiving the light radiated from α by the infrared receiving element 4 becomes the expression (91).

【0612】また、ガウスの公式から(92)式、(9
3)式が成り立つ。
Also, from Gauss's formula, equation (92), (9
3) Equation holds.

【0613】(93)式を(91)式に代入することに
より、αから放射される光を赤外受光素子4で受光しな
いための条件は(94)式となる。
By substituting equation (93) into equation (91), the condition for not receiving the light radiated from α by the infrared light receiving element 4 is given by equation (94).

【0614】また、幾何光学で周知の通り、r2 、r
α、Lα、r3 α4 、L2 は幾何関係として(95)
式、(96)式を満たす。
As is well known in geometrical optics, r2, r
α, Lα, r3α4, L2 are expressed as a geometric relationship (95)
Equation (96) is satisfied.

【0615】(96)式を(94)式へ代入することに
より、αから放射される光を赤外受光素子4で受光しな
いための条件は(97)式となる。
By substituting the expression (96) into the expression (94), the condition for not receiving the light radiated from α by the infrared light receiving element 4 becomes the expression (97).

【0616】以上のように、αから放射される光を赤外
受光素子4で受光しないためには、(88)式、或いは
(91)式、或いは(94)式、或いは(97)式の条
件を満たすよう光学系を設計する必要がある。
As described above, in order to prevent the light radiated from α from being received by the infrared light receiving element 4, the expression (88), the expression (91), the expression (94), or the expression (97) is used. It is necessary to design an optical system to satisfy the conditions.

【0617】(88)式、或いは(91)式、或いは
(94)式、或いは(97)式の条件を満たすよう光学
系を設計した赤外センサが、固定部のα以外の点からの
放射光も受光しない、すなわち固定部のあらゆる点から
放射される光も受光しない条件を示す。そのために、図
32、33を用いてA、Bからの光を受光しない条件を
以下に求める。
The infrared sensor whose optical system is designed to satisfy the condition of the expression (88), the expression (91), the expression (94), or the expression (97) emits light from a point other than α on the fixed portion. A condition is shown in which no light is received, that is, no light emitted from any point of the fixed portion is received. For this purpose, conditions for not receiving light from A and B are determined below with reference to FIGS.

【0618】まず、図32により、Aから放射される光
を受光しない条件を求める。Aから集光ミラー6までの
距離とαから集光ミラー6間での距離は等しいので、幾
何光学で周知の通り集光ミラー6によるA、αの像点F
A 、Fαは同一面内に形成される。従って、受光面がF
αよりも集光ミラー6から遠いので、受光面はFA より
も遠くになる。そのため、図32に示すようにAからF
A までの各光路のうち受光面で赤外受光素子4に最も近
づくものはK4A である。Aから放射される光を赤外受
光素子4で受光しないためには、K4Aと受光面との交点
であるFAS4 と光軸との距離rAS4 がrs よりも大きい
必要がある。つまり(98)式が成り立つ必要がある。
First, referring to FIG. 32, a condition for not receiving light emitted from A is determined. Since the distance from A to the condenser mirror 6 and the distance from α to the condenser mirror 6 are equal, the image points F of A and α by the condenser mirror 6 are well known in geometrical optics.
A and Fα are formed in the same plane. Therefore, the light receiving surface is F
Since it is farther from the converging mirror 6 than α, the light receiving surface is farther than FA. Therefore, as shown in FIG.
K4A is the light path closest to the infrared light receiving element 4 on the light receiving surface among the optical paths up to A. In order to prevent the light emitted from A from being received by the infrared light receiving element 4, the distance rAS4 between the optical axis and FAS4, which is the intersection of K4A and the light receiving surface, needs to be larger than rs. That is, equation (98) needs to be satisfied.

【0619】また、幾何光学で周知の通り、r3A4 、r
AF、LAF、rAs4 、f、L3 は幾何関係として(99)
式、(100)式を満たす。
As is well known in geometrical optics, r3A4, r3
AF, LAF, rAs4, f, and L3 are expressed as a geometric relationship (99)
Equation (100) is satisfied.

【0620】また、幾何光学で周知の通りrA 、LA 、
L2 、rAF、LAFは幾何関係として(101)式、(1
02)式を満たす。
As is well known in geometrical optics, rA, LA,
L2, rAF, and LAF are expressed by the following equation (101) as a geometric relationship.
02) is satisfied.

【0621】(102)式を(100)式に代入するこ
とにより(103)式が得られる。
By substituting equation (102) into equation (100), equation (103) is obtained.

【0622】また、ガウスの公式から(104)式、
(105)式が成り立つ。
Also, from Gauss's formula, equation (104)
Equation (105) holds.

【0623】(105)式を(103)式に代入するこ
とにより(106)式が得られる。
By substituting equation (105) into equation (103), equation (106) is obtained.

【0624】また、幾何光学で周知の通り、r2 、rA
、LA 、r3A4 、L2 は幾何関係として(107)
式、(108)式を満たす。
As is well known in geometrical optics, r2, rA
, LA, r3A4, and L2 are expressed as geometric relationships (107)
Equation (108) is satisfied.

【0625】(108)式を(106)式に代入するこ
とによって(109)式が得られる。
By substituting equation (108) into equation (106), equation (109) is obtained.

【0626】rAS4 と同じくrαS4は(110)式のよ
うになる。
Similarly to rAS4, rαS4 is as shown in equation (110).

【0627】rαS4は(84)式の関係を満たすので、
(111)式を満たせば、自動的にrAS4 が(98)式
の関係を満たすことになる。
Since rαS4 satisfies the relationship of equation (84),
If equation (111) is satisfied, rAS4 automatically satisfies the relation of equation (98).

【0628】(109)(110)式を(111)式に
代入することにより(112)式が得られる。
(109) By substituting equation (110) into equation (111), equation (112) is obtained.

【0629】Aは固定部先端の点で、αはレンズ開口絞
り2の縁からこの縁と光軸に対して同じ側の固定部1内
面へ接する直線が固定部先端面と交わる点であるので、
レンズ開口絞り2からA、αまでの距離は相等しく(1
13)式が成り立ち、光軸からAまでの距離は光軸から
αまでの距離以上であり(114)式が成り立つ。
A is the point at the tip of the fixed part, and α is the point at which the straight line that contacts the edge of the lens aperture stop 2 and the inner surface of the fixed part 1 on the same side with respect to this edge and the optical axis intersects the tip of the fixed part. ,
The distances from the lens aperture stop 2 to A and α are equal (1
Expression 13) holds, and the distance from the optical axis to A is equal to or greater than the distance from the optical axis to α, and Expression (114) holds.

【0630】(113)式より、(112)式の条件は
(115)式のようになる。
From the expression (113), the condition of the expression (112) is as shown in the expression (115).

【0631】(114)式より、(115)式の条件は
(116)式、(117)式のようになる。
From the expression (114), the condition of the expression (115) is as shown in the expressions (116) and (117).

【0632】(88)式、或いは(91)式、或いは
(94)式、或いは(97)式の条件を満たすよう光学
定数や各位置関係を設計した赤外センサが、固定部先端
Aからの放射光も受光しないためには、(117)式の
条件を満たす光学設計である必要がある。
The infrared sensor designed with the optical constants and each positional relationship so as to satisfy the condition of the expression (88), the expression (91), the expression (94), or the expression (97) is used. In order not to receive the radiated light, the optical design needs to satisfy the condition of the expression (117).

【0633】次に、Bから放射される光を受光しない条
件を求める。Bから放射される光はK1B、K2B、K3B、
K4Bなどを通ってBの像点FB に到達する。BからFB
までの各光路のうち受光面で赤外受光素子4に最も近づ
くものは、図32に示すように像点FB が受光面よりも
集光ミラー6に近い場合にはK4Bであり、図33に示す
ように像点FB が受光面よりも集光ミラー6に近い場合
はK1Bである。
Next, a condition for not receiving the light radiated from B is determined. The light emitted from B is K1B, K2B, K3B,
It reaches the image point FB of B through K4B and the like. B to FB
The light path closest to the infrared light receiving element 4 on the light receiving surface among the respective optical paths up to is K4B when the image point FB is closer to the condenser mirror 6 than the light receiving surface as shown in FIG. As shown, when the image point FB is closer to the condenser mirror 6 than the light receiving surface, it is K1B.

【0634】まず図32に示すように、FB が受光面よ
りも集光ミラー6に近く、したがってBからFB までの
各光路のうち受光面で赤外受光素子4に最も近づくもの
がK4Bである場合について、Bから放射される光を赤外
受光素子4で受光しない条件を示す。
First, as shown in FIG. 32, FB is closer to the converging mirror 6 than the light receiving surface, and therefore K4B is the light receiving surface of each optical path from B to FB that comes closest to the infrared light receiving element 4. A case is shown in which the light emitted from B is not received by the infrared light receiving element 4.

【0635】Bから放射される光を赤外受光素子4で受
光しないためには、K4Bと受光面との交点であるFBS4
と光軸との距離rBS4 がrs よりも大きい必要がある。
つまり(118)式が成り立つ必要がある。
In order to prevent the light radiated from B from being received by the infrared light receiving element 4, it is necessary to use FBS4, which is the intersection of K4B and the light receiving surface.
The distance rBS4 between the optical axis and the optical axis needs to be larger than rs.
That is, equation (118) needs to be satisfied.

【0636】また、幾何光学で周知の通り、r3B4 、r
BF、LBF、rBs4 、f、L3 は幾何関係として(11
9)式、(120)式を満たす。
As is well known in geometrical optics, r3B4, r3
BF, LBF, rBs4, f, and L3 are represented as (11
Equations 9) and (120) are satisfied.

【0637】また、幾何光学で周知の通りrB 、LB 、
L2 、rBF、LBFは幾何関係として(121)式、(1
22)式を満たす。
As is well known in geometrical optics, rB, LB,
L2, rBF, and LBF are expressed by the following equation (121) as a geometric relationship.
22) Formula is satisfied.

【0638】(122)式を(120)式に代入するこ
とにより(123)式が得られる。
By substituting equation (122) into equation (120), equation (123) is obtained.

【0639】また、ガウスの公式から(124)式、
(125)式が成り立つ。
From Gauss's formula, equation (124)
Equation (125) holds.

【0640】(125)式を(123)式に代入するこ
とにより(126)式が得られる。
By substituting equation (125) into equation (123), equation (126) is obtained.

【0641】また、幾何光学で周知の通り、r2 、rB
、LB 、r3B4 、L2 は幾何関係として(127)
式、(128)式を満たす。
As is well known in geometrical optics, r2, rB
, LB, r3B4, and L2 are expressed as geometric relationships (127)
Equation (128) is satisfied.

【0642】(128)式を(126)式に代入するこ
とによって(129)式が得られる。
The equation (129) is obtained by substituting the equation (128) into the equation (126).

【0643】rBS4 と同じくrαS4は(130)式のよ
うになる。
[0643] Similarly to rBS4, rαS4 is given by equation (130).

【0644】rαS4は(84)式の関係を満たすので、
(131)式を満たせば、自動的にrBS4 が(118)
式の関係を満たすことになる。
Since rαS4 satisfies the relationship of equation (84),
If equation (131) is satisfied, rBS4 automatically becomes (118)
This satisfies the relationship of the expression.

【0645】(129)(130)式を(131)式に
代入することにより(132)式が得られる。
(129) By substituting equation (130) into equation (131), equation (132) is obtained.

【0646】ここで、αは固定部1先端面の点であるの
で、Lα、LB に(133)式、(134)式関係が成
り立つ。
Here, since α is a point on the tip end surface of the fixed part 1, the relations of the equations (133) and (134) hold for Lα and LB.

【0647】(88)式、或いは(91)式、或いは
(94)式、或いは(97)式の条件を満たし、(11
7)式の条件をよう光学定数や各位置関係を設計した赤
外センサが、固定部の先端以外の点からの放射光も受光
しない、すなわち固定部のあらゆる点から放射される光
も受光しないためには、あらゆるBについて(132)
式の関係が成り立つ必要がある。したがって、(13
4)式(117)式を考慮して、(135)式が成り立
つ必要がある。
The condition of the expression (88), the expression (91), the expression (94), or the expression (97) is satisfied, and (11)
The infrared sensor designed with the optical constants and each positional relationship according to the condition of the expression 7) does not receive the light emitted from any point other than the tip of the fixed part, that is, does not receive the light emitted from any point of the fixed part. To do this, for any B (132)
It is necessary that the relationship of the expressions hold. Therefore, (13
4) In consideration of equation (117), equation (135) needs to be satisfied.

【0648】以上のように、固定部1から放射される光
を赤外受光素子4で受光しないためには(88)式、或
いは(91)式、或いは(94)式、或いは(97)式
の条件を満たし、且つ(117)式の条件を満たし、さ
らに(136)式を満たす必要がある。
As described above, in order to prevent the light radiated from the fixed portion 1 from being received by the infrared light receiving element 4, the expression (88), the expression (91), the expression (94), or the expression (97) is used. Must be satisfied, the condition of expression (117) must be satisfied, and the expression (136) must be satisfied.

【0649】次に、図33に示すように、FB が受光面
よりも集光ミラー6から遠く、したがってBからFB ま
での各光路のうち受光面で赤外受光素子4に最も近づく
ものがK1Bである場合について、Bから放射される光を
赤外受光素子4で受光しない条件を示す。
Next, as shown in FIG. 33, FB is farther from the converging mirror 6 than the light receiving surface, and therefore, of the respective optical paths from B to FB, the one closest to the infrared light receiving element 4 on the light receiving surface is K1B. In the case of, the condition that the light emitted from B is not received by the infrared light receiving element 4 is shown.

【0650】Bから放射される光を赤外受光素子4で受
光しないためには、K1Bと受光面との交点であるFBS1
と光軸との距離rBS1 がrs よりも大きい必要がある。
つまり(137)式が成り立つ必要がある。
In order to prevent the light radiated from B from being received by the infrared light receiving element 4, FBS1 which is the intersection of K1B and the light receiving surface is used.
The distance rBS1 between the optical axis and the optical axis needs to be larger than rs.
That is, equation (137) needs to be satisfied.

【0651】また、幾何光学で周知の通り、r3B1 、r
B 、LB 、rBs1 、f、L3 は幾何関係として(13
8)式、(139)式を満たす。
As is well known in geometrical optics, r3B1, r3
B, LB, rBs1, f, and L3 are expressed as geometric relationships (13
8) and (139) are satisfied.

【0652】また、幾何光学で周知の通りrB 、LB 、
L2 、rBF、LBFは幾何関係として(140)式、(1
41)式を満たす。
As is well known in geometrical optics, rB, LB,
L2, rBF, and LBF are expressed by the following equation (140) as a geometric relationship.
41) Formula is satisfied.

【0653】(141)式を(139)式に代入するこ
とにより(142)式が得られる。
The equation (142) is obtained by substituting the equation (141) into the equation (139).

【0654】また、ガウスの公式から(143)式、
(144)式が成り立つ。
Also, from Gauss's formula, equation (143)
Equation (144) holds.

【0655】(144)式を(142)式に代入するこ
とにより(145)式が得られる。
[0655] By substituting equation (144) into equation (142), equation (145) is obtained.

【0656】また、幾何光学で周知の通り、r2 、rB
、LB 、r3B1 、L2 は幾何関係として(146)
式、(147)式を満たす。
As is well known in geometrical optics, r2, rB
, LB, r3B1 and L2 are represented as geometric relationships (146)
Equation (147) is satisfied.

【0657】(147)式を(145)式に代入するこ
とによって(148)式が得られる。
[0657] By substituting equation (147) into equation (145), equation (148) is obtained.

【0658】rBS1 と同じくrαS1は(149)式のよ
うになる。
As with rBS1, rαS1 is given by equation (149).

【0659】ここで、αからFαまでの各光路のうち受
光面で赤外受光素子4に最も近づくものはK4 αであ
り、(150)式が成り立つ。
Here, of the respective optical paths from α to Fα, the one closest to the infrared light receiving element 4 on the light receiving surface is K4α, and the equation (150) is established.

【0660】rαS4は(84)式の関係を満たすので、
(151)式を満たせば、自動的にrBS1 が(137)
式の関係を満たすことになる。
Since rαS4 satisfies the relationship of equation (84),
If equation (151) is satisfied, rBS1 automatically becomes (137)
This satisfies the relationship of the expression.

【0661】(148)(149)式を(151)式に
代入することにより(152)式が得られる。
(148) By substituting equation (149) into equation (151), equation (152) is obtained.

【0662】ここで、αは固定部1先端面の点であるの
で、Lα、LB に(153)式、(154)式の関係が
成り立つ。
Here, since α is a point on the tip end surface of the fixed portion 1, the relations of equations (153) and (154) are established for Lα and LB.

【0663】(88)式、或いは(91)式、或いは
(94)式、或いは(97)式の条件を満たし、且つ
(117)式と(136)式を満たす光学設計である赤
外センサが、固定部の先端面以外の点からの放射光も受
光しない、すなわち固定部のあらゆる点から放射される
光も受光しないためには、あらゆるBについて(15
2)式の関係が成り立つ必要がある。したがって、(1
54)式、(117)式を考慮して、(155)式が成
り立つ必要がある。
An infrared sensor having an optical design that satisfies the condition of the expression (88), the expression (91), the expression (94), or the expression (97) and the expressions (117) and (136) is used. In order to not receive the light emitted from any point other than the tip end surface of the fixed portion, that is, to not receive the light emitted from any point of the fixed portion, it is necessary to set (15
2) The relationship of the expression needs to be satisfied. Therefore, (1
The expression (155) needs to be satisfied in consideration of the expressions (54) and (117).

【0664】(156)式と、(136)式は等しい。
したがって、以上のように、固定部1から放射される光
を赤外受光素子4で受光しないためには(88)式、或
いは(91)式、或いは(94)式、或いは(97)式
の条件を満たし、且つ(117)式を満たし、さらに
(136)式を満たす必要がある。
The equations (156) and (136) are equal.
Therefore, as described above, in order to prevent the light radiated from the fixed portion 1 from being received by the infrared light receiving element 4, the expression (88), the expression (91), the expression (94), or the expression (97) is used. It is necessary to satisfy the condition, satisfy the expression (117), and further satisfy the expression (136).

【0665】以上のように本実施例によれば、赤外受光
素子4を、(88)式あるいは(91)式あるいは(9
4)式あるいは(97)式で与えられる量だけ集光ミラ
ー6の焦点から離して設け、かつ(117)式と(13
6)式を満たす光学設計にすることによって、固定部1
から放射される赤外線を赤外受光素子4で受光せずに被
測定物体から放射光のみを赤外受光素子4で受光させる
ことができるため、固定部の温度変化に起因する測定誤
差を防ぐことができる。
As described above, according to the present embodiment, the infrared light receiving element 4 is replaced by the expression (88), the expression (91), or the expression (9).
It is provided away from the focal point of the condenser mirror 6 by an amount given by the expression (4) or (97), and the expressions (117) and (13)
6) By using an optical design that satisfies the expression,
The infrared light from the object to be measured can be received by the infrared light receiving element 4 without receiving the infrared light emitted by the infrared light receiving element 4 from the object to be measured, thereby preventing a measurement error due to a temperature change of the fixed portion. Can be.

【0666】なお、筐体9と固定部1、レンズ開口絞り
2は一体であっても構わない。
[0666] The housing 9, the fixed portion 1, and the lens aperture stop 2 may be integrated.

【0667】図34は本発明の第25の実施例における
赤外センサを示すものである。図34において、7は反
射型回折レンズ、4は赤外線受光素子、9は筐体、A、
A’は受光したい領域と受光したくない領域の境界に位
置する点、Bは受光したくない領域の点、Fは反射型回
折レンズ6の焦点、FA は反射型回折レンズ6によるA
の像点、FA'は反射型回折レンズ6によるA’の像点、
FB は反射型回折レンズ6によるBの像点、K1AはAか
ら光軸に対して同じ側のレンズ開口絞り2の開口部の縁
を通過してFA へ進行する光(マージナル光線)の光
路、K2AはAから光軸と平行に進んで焦点Fを通過して
FA に到達する光の光路、K3AはAから反射型回折レン
ズ6の中心を通過してFA に到達する光の光路、K4Aは
Aから光軸を挟んで反対側のレンズ開口絞り2の開口部
の縁を通過してFA に到達する光(マージナル光線)の
光路、K1A' はA’から光軸に対して同じ側のレンズ開
口絞り2の開口部の縁を通過してFA'へ進行する光(マ
ージナル光線)の光路、K2A' はA’から光軸と平行に
進んで焦点Fを通過してFA'に到達する光の光路、K3
A' はA’から反射型回折レンズ6の中心を通過してF
A'に到達する光の光路、K4A' はAから光軸を挟んで反
対側のレンズ開口絞り2の開口部の縁を通過してFA'に
到達する光(マージナル光線)の光路、K3BはBから反
射型回折レンズ6の中心を通過してFB に到達する光の
光路、FX は光路K1Aと光路K1A' の交点である。
FIG. 34 shows an infrared sensor according to a twenty-fifth embodiment of the present invention. In FIG. 34, 7 is a reflective diffraction lens, 4 is an infrared light receiving element, 9 is a housing, A,
A 'is a point located at a boundary between a region where light reception is desired and a region where light reception is not desired; B is a point of a region where light reception is not desired; F is a focal point of the reflection type diffraction lens 6;
FA ′ is the image point of A ′ by the reflective diffraction lens 6,
FB is an image point of B by the reflection type diffraction lens 6, K1A is an optical path of a light (marginal ray) which travels to A through the edge of the aperture of the lens aperture stop 2 on the same side with respect to the optical axis from A, K2A is the optical path of light that travels from A in parallel with the optical axis and passes through the focal point F to reach FA, K3A is the optical path of light that passes from A through the center of the reflective diffractive lens 6 and reaches FA, and K4A is the optical path of light. K1A 'is an optical path of light (marginal ray) passing through the edge of the aperture of the lens aperture stop 2 opposite to the optical axis from A and reaching the FA, and K1A' is a lens on the same side as A 'with respect to the optical axis. K2A 'is an optical path of light (marginal ray) which passes through the edge of the aperture of the aperture stop 2 and travels to FA'. Light that travels from A 'in parallel with the optical axis, passes through the focal point F, and reaches FA'. Light path, K3
A ′ passes through the center of the reflective diffraction lens 6 from A ′ and
K4A 'is an optical path of light reaching A', K3B is an optical path of light (marginal ray) passing through the edge of the opening of lens aperture stop 2 on the opposite side of A from the optical axis and reaching FA '. FX is the optical path of light that reaches FB from B through the center of the reflective diffraction lens 6, and FX is the intersection of the optical paths K1A and K1A '.

【0668】測定したい領域から放射される赤外線のみ
を赤外受光素子で受光するような光学系を設計する。
An optical system is designed so that only infrared rays radiated from the area to be measured are received by the infrared light receiving element.

【0669】赤外受光素子4を筐体9に取り付け、反射
型回折レンズ6を通過しない赤外線を赤外受光素子4で
受光しないようにする。反射型回折レンズ6を通った赤
外線のみ受光する構成にした上で以下の設計を行う。
[0669] The infrared light receiving element 4 is attached to the housing 9 so that infrared light that does not pass through the reflective diffraction lens 6 is not received by the infrared light receiving element 4. The following design is performed after a configuration is adopted in which only infrared light that has passed through the reflective diffraction lens 6 is received.

【0670】Aから放射される光は光路K1A、K2A、K
3A、K4Aなどを通ってAの像点FAに到達する。幾何光
学で周知の通り、Aの像点FA は光軸を挟んでAと反対
側に形成される。図34中に示すように、光路K2Aを通
る光は、反射型回折レンズ6を通過してFで光軸と交叉
したのち光軸から離れながらFA に到達する。同じよう
に、光路K1Aを通る光は、反射型回折レンズ6を通過し
て光軸と交叉したのち光軸から離れながらFA に到達す
る。光路K3Aを通る光は、反射型回折レンズ6で光軸と
交叉したのち光軸から離れながらFA に到達する。光路
K4Aを通る光は、光軸と交叉して反射型回折レンズ6を
通過し、反射型回折レンズ6を通過してからは光軸と交
叉せずにFA に到達する。このように、光路K1Aと光軸
が交叉する点FX よりも反射型回折レンズから離れた位
置かつFA よりも反射型回折レンズ6に近い位置で、A
から放射される光が通過しない領域が存在する。この領
域は、FX とFA とFA'が形成する三角形の内側とな
る。この三角形の内側に赤外受光素子4を設置すること
で、A、A’から放射される光を受光しない赤外センサ
が得られる。
The light radiated from A is divided into optical paths K1A, K2A, K
It reaches the image point FA of A through 3A, K4A and the like. As is well known in geometrical optics, the image point FA of A is formed on the opposite side of A with respect to the optical axis. As shown in FIG. 34, the light passing through the optical path K2A passes through the reflective diffraction lens 6, crosses the optical axis at F, and then reaches FA while leaving the optical axis. Similarly, the light passing through the optical path K1A passes through the reflection type diffraction lens 6, crosses the optical axis, and then reaches FA while leaving the optical axis. The light passing through the optical path K3A crosses the optical axis by the reflection type diffraction lens 6, and then reaches FA while leaving the optical axis. The light passing through the optical path K4A crosses the optical axis and passes through the reflective diffraction lens 6, and after passing through the reflective diffraction lens 6, reaches the FA without crossing the optical axis. As described above, at a position farther from the reflection type diffraction lens than the point FX where the optical path K1A and the optical axis intersect, and a position closer to the reflection type diffraction lens 6 than FA,
There is an area through which the light emitted from does not pass. This region is inside the triangle formed by FX, FA and FA '. By installing the infrared light receiving element 4 inside this triangle, an infrared sensor that does not receive light emitted from A and A ′ can be obtained.

【0671】受光したい領域の外側にある、受光したく
ない領域中のB点は、Aよりも光軸から遠いため、反射
型回折レンズ6によるBの像点FB がFA より光軸から
遠くなることは周知の通りである。従って、FX とFA
とFA'が形成する三角形の内側に赤外受光素子を設置す
ることによってA、A’から放射される赤外線を受光し
ないようにすれば、自動的にBからの赤外線も受光しな
い構成となる。
The point B outside the area to receive light and in the area not to receive light is farther from the optical axis than A, so that the image point FB of B by the reflective diffraction lens 6 is farther from the optical axis than FA. This is well known. Therefore, FX and FA
By disposing an infrared light receiving element inside the triangle formed by F and FA 'so as not to receive infrared light radiated from A and A', it is possible to automatically receive no infrared light from B.

【0672】以上のように、FX とFA とFA'が形成す
る三角形の内側に赤外受光素子4を設置することによっ
て、光軸付近の受光したい領域から放射される赤外線の
みを受光するような赤外センサが得られる。
As described above, by installing the infrared light receiving element 4 inside the triangle formed by FX, FA and FA ', it is possible to receive only infrared light radiated from a region near the optical axis where light is desired to be received. An infrared sensor is obtained.

【0673】図35は本発明の第26の実施例における
赤外センサを示すものである。図35において、6は反
射型回折レンズ、4は赤外線受光素子、9は筐体、A、
A’は受光したい領域と受光したくない領域の境界に位
置する点、Bは受光したくない領域の点、Fは反射型回
折レンズの焦点、FA は反射型回折レンズ6によるAの
像点、FA'は反射型回折レンズ6によるA’の像点、F
B は反射型回折レンズ6によるBの像点、K1AはAから
光軸に対して同じ側のレンズ開口絞り2の開口部の縁を
通過してFA へ進行する光(マージナル光線)の光路、
K2AはAから光軸と平行に進んで焦点Fを通過してFA
に到達する光の光路、K3AはAから反射型回折レンズ6
の中心を通過してFA に到達する光の光路、K4AはAか
ら光軸を挟んで反対側のレンズ開口絞り2の開口部の縁
を通過してFA に到達する光(マージナル光線)の光
路、K1A' はA’から光軸に対して同じ側のレンズ開口
絞り2の開口部の縁を通過してFA'へ進行する光(マー
ジナル光線)の光路、K2A'はA’から光軸と平行に進
んで焦点Fを通過してFA'に到達する光の光路、K3A'
はA’から反射型回折レンズ6の中心を通過してFA'に
到達する光の光路、K4A' はAから光軸を挟んで反対側
のレンズ開口絞り2の開口部の縁を通過してFA'に到達
する光(マージナル光線)の光路、K3BはBから反射型
回折レンズ6の中心を通過してFB に到達する光の光
路、FX は光路K1Aと光路K1A' の交点、FY は光路K
4Aと光路K4A' の交点である。
FIG. 35 shows an infrared sensor according to a twenty-sixth embodiment of the present invention. In FIG. 35, 6 is a reflective diffraction lens, 4 is an infrared light receiving element, 9 is a housing,
A 'is a point located at a boundary between a region to receive light and a region not to receive light, B is a point in a region not to receive light, F is a focal point of a reflective diffractive lens, and FA is an image point of A by a reflective diffractive lens 6. , FA ′ are the image points of A ′ by the reflection type diffraction lens 6,
B is an image point of B by the reflection type diffractive lens 6, K1A is an optical path of light (marginal ray) which travels to A through the edge of the opening of the lens aperture stop 2 on the same side with respect to the optical axis from A,
K2A travels from A in parallel with the optical axis, passes through the focal point F, and
K3A is a reflection type diffraction lens 6 from A
K4A is an optical path of light (marginal ray) passing through the center of the lens and arriving at FA through K4A, passing through the edge of the opening of the lens aperture stop 2 on the opposite side with respect to the optical axis with respect to the optical axis. , K1A 'is the optical path of the light (marginal ray) that travels from A' to FA 'through the edge of the opening of the lens aperture stop 2 on the same side as the optical axis, and K2A' is the optical path from A 'to the optical axis. The optical path of light traveling parallel and passing through the focal point F to reach FA ', K3A'
Is the optical path of light from A 'that reaches FA' through the center of the reflective diffractive lens 6, and K4A 'is the light path from A passing through the edge of the opening of the lens aperture stop 2 on the opposite side of the optical axis with respect to the optical axis. K3B is the optical path of the light (marginal ray) reaching FA ', K3B is the optical path of the light passing from the center of the reflective diffractive lens 6 to B and reaches FX, FX is the intersection of the optical paths K1A and K1A', and FY is the optical path K
This is the intersection of 4A and the optical path K4A '.

【0674】測定したい領域から放射される赤外線のみ
を赤外受光素子で受光するような光学系を設計する。
An optical system is designed such that only infrared rays radiated from the area to be measured are received by the infrared light receiving element.

【0675】赤外受光素子4を筐体9に取り付け、反射
型回折レンズ6を通過しない赤外線を赤外受光素子4で
受光しないようにする。反射型回折レンズ6を通った赤
外線のみ受光する構成にした上で以下の設計を行う。
[0675] The infrared light receiving element 4 is attached to the housing 9 so that infrared light that does not pass through the reflective diffraction lens 6 is not received by the infrared light receiving element 4. The following design is performed after a configuration is adopted in which only infrared light that has passed through the reflective diffraction lens 6 is received.

【0676】Aから放射される光は光路K1A、K2A、K
3A、K4Aなどを通ってAの像点FAに到達する。幾何光
学で周知の通り、Aの像点FA は光軸を挟んでAと反対
側に形成される。図35中に示すように、光路K2Aを通
る光は、反射型回折レンズ6を通過してFで光軸と交叉
してFA に到達し光軸から離れていく。同じように、光
路K1Aを通る光は、反射型回折レンズ6を通過して光軸
と交叉してFA に到達し光軸から離れていく。光路K3A
を通る光は、反射型回折レンズ6で光軸と交叉してFA
に到達し光軸から離れていく。光路K4Aを通る光は、光
軸と交叉して反射型回折レンズ6を通過し、反射型回折
レンズ6を通過してからは光軸と交叉せずにFA に到達
し、その後光軸に近づくかあるいは遠ざかっていく。こ
のように、Aの像点FA よりも反射型回折レンズから離
れた位置でAから放射される光が通過しない領域が存在
する。この領域は、FA よりも反射型回折レンズ6から
遠い部分の光路K4Aと、FA'よりも反射型回折レンズ6
から遠い部分の光路K4A'で挟まれた領域である。この
領域に赤外センサを設置することで、A、A’から放射
される赤外線を受光しない光学系が実現できる。
The light radiated from A is divided into optical paths K1A, K2A, K
It reaches the image point FA of A through 3A, K4A and the like. As is well known in geometrical optics, the image point FA of A is formed on the opposite side of A with respect to the optical axis. As shown in FIG. 35, the light passing through the optical path K2A passes through the reflective diffraction lens 6, crosses the optical axis at F, reaches FA, and leaves the optical axis. Similarly, the light passing through the optical path K1A passes through the reflective diffraction lens 6, crosses the optical axis, reaches FA, and moves away from the optical axis. Optical path K3A
Passes through the reflection type diffractive lens 6 and intersects with the optical axis.
And moves away from the optical axis. The light passing through the optical path K4A crosses the optical axis and passes through the reflective diffraction lens 6, and after passing through the reflective diffractive lens 6, reaches the FA without crossing the optical axis and thereafter approaches the optical axis. Or go away. As described above, there is a region where the light emitted from A does not pass at a position farther from the reflective diffraction lens than the image point FA of A. This region includes the optical path K4A at a portion farther from the reflection type diffraction lens 6 than FA, and the reflection type diffraction lens 6
This is an area sandwiched between the optical paths K4A 'far from the optical path K4A'. By installing an infrared sensor in this region, an optical system that does not receive infrared rays radiated from A and A ′ can be realized.

【0677】受光したい領域の外側にある、受光したく
ない領域中のBはAよりも光軸から遠いため、反射型回
折レンズ6によるBの像点FB がFA より光軸から遠く
なることは周知の通りである。従って、FA よりも反射
型回折レンズ6から遠い部分の光路K4Aと、FA'よりも
反射型回折レンズ6から遠い部分の光路K4A' で挟まれ
た領域内に赤外受光素子を設置することによってA、
A’から放射される赤外線を受光しないようにすれば、
自動的にBから放射される赤外線も受光しない構成とな
る。
[0679] Since B in the area outside the area where light is to be received and in the area where light is not desired to be received is farther from the optical axis than A, it is unlikely that the image point FB of B by the reflective diffraction lens 6 is farther from the optical axis than FA. As is well known. Therefore, by installing the infrared light receiving element in a region between the optical path K4A farther from the reflective diffraction lens 6 than FA and the optical path K4A 'farther from the reflective diffraction lens 6 than FA'. A,
If you do not receive the infrared radiation emitted from A ',
The configuration is such that infrared rays emitted from B are not automatically received.

【0678】以上のように、FA よりも反射型回折レン
ズ6から遠い部分の光路K4Aと、FA'よりも反射型回折
レンズ6から遠い部分の光路K4A' で挟まれた領域内に
赤外受光素子4を設置することによって、光軸付近の受
光したい領域から放射される赤外線のみを受光するよう
な赤外センサが得られる。
As described above, the infrared light is received in the area between the optical path K4A farther from the reflective diffraction lens 6 than FA and the optical path K4A 'farther from the reflective diffraction lens 6 than FA'. By installing the element 4, an infrared sensor that receives only infrared light emitted from a light receiving area near the optical axis can be obtained.

【0679】図36は本発明の第27の実施例における
赤外センサを示すものである。図36において、6は反
射型回折レンズ、4は赤外線受光素子、9は筐体、1は
穴の内部など凹部にある受光したい領域に赤外センサを
固定して向けるための固定部、A、A’は受光したい領
域と受光したくない領域の境界に位置する点、Bは受光
したくない領域の点、Fは反射型回折レンズの焦点、F
A は反射型回折レンズ6によるAの像点、FA'は反射型
回折レンズ6によるA’の像点、FB は反射型回折レン
ズ6によるBの像点、K1AはAから光軸に対して同じ側
のレンズ開口絞り2の開口部の縁を通過してFA へ進行
する光(マージナル光線)の光路、K2AはAから光軸と
平行に進んで焦点Fを通過してFA に到達する光の光
路、K3AはAから反射型回折レンズ6の中心を通過して
FA に到達する光の光路、K4AはAから光軸を挟んで反
対側のレンズ開口絞り2の開口部の縁を通過してFA に
到達する光(マージナル光線)の光路、K1A' はA’か
ら光軸に対して同じ側のレンズ開口絞り2の開口部の縁
を通過してFA'へ進行する光(マージナル光線)の光
路、K2A' はA’から光軸と平行に進んで焦点Fを通過
してFA'に到達する光の光路、K3A' はA’から反射型
回折レンズ6の中心を通過してFA'に到達する光の光
路、K4A' はAから光軸を挟んで反対側のレンズ開口絞
り2の開口部の縁を通過してFA'に到達する光(マージ
ナル光線)の光路、K3BはBから反射型回折レンズ6の
中心を通過してFB に到達する光の光路、FX は光路K
1Aと光路K1A' の交点である。
FIG. 36 shows an infrared sensor according to a twenty-seventh embodiment of the present invention. In FIG. 36, reference numeral 6 denotes a reflection type diffraction lens, 4 denotes an infrared light receiving element, 9 denotes a housing, 1 denotes a fixing portion for fixing and directing the infrared sensor to a region to receive light in a concave portion such as the inside of a hole, and A, A 'is a point located at a boundary between a region to receive light and a region not to receive light, B is a point in a region not to receive light, F is a focal point of the reflection type diffraction lens, F
A is an image point of A by the reflection type diffraction lens 6, FA 'is an image point of A' by the reflection type diffraction lens 6, FB is an image point of B by the reflection type diffraction lens 6, and K1A is from A to the optical axis. An optical path of light (marginal ray) passing through the edge of the opening of the lens aperture stop 2 on the same side to the FA (marginal ray), K2A travels in parallel with the optical axis from A, passes through the focal point F and reaches the FA. K3A passes through the center of the reflective diffraction lens 6 from A to reach FA, and K4A passes from A through the edge of the aperture of the lens aperture stop 2 on the opposite side with respect to the optical axis. K1A 'is the optical path of the light (marginal ray) reaching FA through the light (marginal ray) which travels from A' to FA 'through the edge of the opening of the lens aperture stop 2 on the same side with respect to the optical axis. K2A 'is an optical path of light traveling from A' in parallel with the optical axis and passing through the focal point F to reach FA ', and K3A' is K4A 'passes through the center of the reflection type diffractive lens 6 and reaches FA', and K4A 'passes through the edge of the aperture of the lens aperture stop 2 on the opposite side of A from the optical axis and FA'. K3B is the optical path of the light (marginal ray) that reaches FB, passes through the center of the reflective diffraction lens 6 from B and reaches FB, and FX is the optical path K
It is the intersection of 1A and the optical path K1A '.

【0680】光軸付近にある測定したい領域から放射さ
れる赤外線のみを赤外受光素子で受光するような光学系
を設計する。
An optical system is designed such that only infrared rays radiated from a region to be measured near the optical axis are received by the infrared light receiving element.

【0681】赤外受光素子4を筐体9に取り付け、反射
型回折レンズ6を通過する赤外線のみを赤外受光素子4
で受光しするようにする。反射型回折レンズ6を通った
赤外線のみ受光する構成にした上で以下の設計を行う。
The infrared light receiving element 4 is attached to the housing 9 and only infrared light passing through the reflection type diffraction lens 6 is
To receive light. The following design is performed after a configuration is adopted in which only infrared light that has passed through the reflective diffraction lens 6 is received.

【0682】Aから放射される光は光路K1A、K2A、K
3A、K4Aなどを通ってAの像点FAに到達する。幾何光
学で周知の通り、Aの像点FA は光軸を挟んでAと反対
側に形成される。図36中に示すように、光路K2Aを通
る光は、反射型回折レンズ6を通過してFで光軸と交叉
したのち光軸から離れながらFA に到達する。同じよう
に、光路K1Aを通る光は、反射型回折レンズ6を通過し
て光軸と交叉したのち光軸から離れながらFA に到達す
る。光路K3Aを通る光は、反射型回折レンズ6で光軸と
交叉したのち光軸から離れながらFA に到達する。光路
K4Aを通る光は、光軸と交叉して反射型回折レンズ6を
通過し、反射型回折レンズ6を通過してからは光軸と交
叉せずにFA に到達する。このように、光路K1Aと光軸
が交叉する点FX よりも反射型回折レンズから離れた位
置かつFA よりも反射型回折レンズ6に近い位置で、A
から放射される光が通過しない領域が存在する。この領
域は、FX とFA とFA'が形成する三角形の内側とな
る。この三角形の内側に赤外受光素子4を設置すること
で、A、A’から放射される光を受光しない赤外センサ
が得られる。
The light emitted from A has optical paths K1A, K2A, K
It reaches the image point FA of A through 3A, K4A and the like. As is well known in geometrical optics, the image point FA of A is formed on the opposite side of A with respect to the optical axis. As shown in FIG. 36, the light passing through the optical path K2A passes through the reflection type diffractive lens 6, crosses the optical axis at F, and then reaches FA while leaving the optical axis. Similarly, the light passing through the optical path K1A passes through the reflection type diffraction lens 6, crosses the optical axis, and then reaches FA while leaving the optical axis. The light passing through the optical path K3A crosses the optical axis by the reflection type diffraction lens 6, and then reaches FA while leaving the optical axis. The light passing through the optical path K4A crosses the optical axis and passes through the reflective diffraction lens 6, and after passing through the reflective diffraction lens 6, reaches the FA without crossing the optical axis. As described above, at a position farther from the reflection type diffraction lens than the point FX where the optical path K1A and the optical axis intersect, and a position closer to the reflection type diffraction lens 6 than FA,
There is an area through which the light emitted from does not pass. This region is inside the triangle formed by FX, FA and FA '. By installing the infrared light receiving element 4 inside this triangle, an infrared sensor that does not receive light emitted from A and A ′ can be obtained.

【0683】固定部1を、光路K1A、光路K1A' よりも
光軸から遠くなるように設置する。
The fixed part 1 is installed so as to be farther from the optical axis than the optical paths K1A and K1A '.

【0684】固定部1から放射される赤外線は、受光し
たい領域と同じ面の受光したくない領域から放射される
光と置き換えられる。受光したい領域の外側にある受光
したくない領域中のB点はAよりも光軸から遠いため、
反射型回折レンズ6によるBの像点FB がFA より光軸
から遠くなることは周知の通りである。従って、FX と
FA とFA'が形成する三角形の内側に赤外受光素子を設
置することによってA、A’から放射される赤外線を受
光しないようにすれば、自動的にBからの赤外線も受光
しない構成となる。つまり、自動的に固定部1から放射
される赤外線を受光しない構成となる。
The infrared rays radiated from the fixed portion 1 are replaced with light radiated from the area on the same surface as the area on which light reception is not desired. Since point B in the area not to receive light outside the area to receive light is farther from the optical axis than A,
It is well known that the image point FB of B by the reflection type diffraction lens 6 is farther from the optical axis than FA. Therefore, if an infrared light receiving element is installed inside the triangle formed by FX, FA and FA 'so as not to receive the infrared light radiated from A and A', the infrared light from B is automatically received. No configuration. That is, the configuration is such that infrared rays emitted from the fixing unit 1 are not automatically received.

【0685】以上のように、FX とFA とFA'が形成す
る三角形の内側に赤外受光素子4を設置し、光路K1A、
K1A'よりも光軸から遠くに固定部1を設けることによっ
て、穴の内部など凹部にある受光したい領域に赤外セン
サを固定して向けることができて、固定部から放射され
る赤外線を受光せずに光軸付近の受光したい領域から放
射される赤外線のみを受光するような赤外センサが得ら
れる。
As described above, the infrared light receiving element 4 is installed inside the triangle formed by FX, FA, and FA ', and the optical path K1A,
By providing the fixing portion 1 farther from the optical axis than K1A ', the infrared sensor can be fixed and directed to an area where light reception is desired in a concave portion such as the inside of a hole, and infrared rays emitted from the fixing portion are received. An infrared sensor that receives only infrared rays radiated from an area to be received near the optical axis without receiving the light is obtained.

【0686】なお、筐体9と固定部1は一体であっても
構わない。
[0686] The housing 9 and the fixed portion 1 may be integrated.

【0687】図37は本発明の第28の実施例における
赤外センサを示すものである。図37において、6は反
射型回折レンズ、4は赤外線受光素子、9は筐体、1は
穴の内部など凹部にある受光したい領域に赤外センサを
固定して向けるための固定部、A、A’は受光したい領
域と受光したくない領域の境界に位置する点、Bは受光
したくない領域の点、Fは反射型回折レンズの焦点、F
A は反射型回折レンズ6によるAの像点、FA'は反射型
回折レンズ6によるA’の像点、FB は反射型回折レン
ズ6によるBの像点、K1AはAから光軸に対して同じ側
のレンズ開口絞り2の開口部の縁を通過してFA へ進行
する光(マージナル光線)の光路、K2AはAから光軸と
平行に進んで焦点Fを通過してFA に到達する光の光
路、K3AはAから反射型回折レンズ6の中心を通過して
FA に到達する光の光路、K4AはAから光軸を挟んで反
対側のレンズ開口絞り2の開口部の縁を通過してFA に
到達する光(マージナル光線)の光路、K1A' はA’か
ら光軸に対して同じ側のレンズ開口絞り2の開口部の縁
を通過してFA'へ進行する光(マージナル光線)の光
路、K2A' はA’から光軸と平行に進んで焦点Fを通過
してFA'に到達する光の光路、K3A' はA’から反射型
回折レンズ6の中心を通過してFA'に到達する光の光
路、K4A' はAから光軸を挟んで反対側のレンズ開口絞
り2の開口部の縁を通過してFA'に到達する光(マージ
ナル光線)の光路、K3BはBから反射型回折レンズ6の
中心を通過してFB に到達する光の光路、FX は光路K
1Aと光路K1A' の交点である。
FIG. 37 shows an infrared sensor according to a twenty-eighth embodiment of the present invention. In FIG. 37, reference numeral 6 denotes a reflection type diffraction lens, 4 denotes an infrared light receiving element, 9 denotes a housing, 1 denotes a fixing portion for fixing and pointing the infrared sensor to a light receiving region, such as the inside of a hole, in a concave portion. A 'is a point located at a boundary between a region to receive light and a region not to receive light, B is a point in a region not to receive light, F is a focal point of the reflection type diffraction lens, F
A is an image point of A by the reflection type diffraction lens 6, FA 'is an image point of A' by the reflection type diffraction lens 6, FB is an image point of B by the reflection type diffraction lens 6, and K1A is from A to the optical axis. An optical path of light (marginal ray) passing through the edge of the opening of the lens aperture stop 2 on the same side to the FA (marginal ray), K2A travels in parallel with the optical axis from A, passes through the focal point F and reaches the FA. K3A passes through the center of the reflective diffraction lens 6 from A to reach FA, and K4A passes from A through the edge of the aperture of the lens aperture stop 2 on the opposite side with respect to the optical axis. K1A 'is the optical path of the light (marginal ray) reaching FA through the light (marginal ray) which travels from A' to FA 'through the edge of the opening of the lens aperture stop 2 on the same side with respect to the optical axis. K2A 'is an optical path of light traveling from A' in parallel with the optical axis and passing through the focal point F to reach FA ', and K3A' is K4A 'passes through the center of the reflection type diffractive lens 6 and reaches FA', and K4A 'passes through the edge of the aperture of the lens aperture stop 2 on the opposite side of A from the optical axis and FA'. K3B is the optical path of the light (marginal ray) that reaches FB, passes through the center of the reflective diffraction lens 6 from B and reaches FB, and FX is the optical path K
It is the intersection of 1A and the optical path K1A '.

【0688】光軸付近にある測定したい領域から放射さ
れる赤外線のみを赤外受光素子で受光するような光学系
を設計する。
An optical system is designed such that only infrared rays radiated from an area to be measured near the optical axis are received by the infrared light receiving element.

【0689】赤外受光素子4を、反射型回折レンズ6を
通過する赤外線のみを赤外受光素子4で受光するように
筐体9に取り付ける。反射型回折レンズ6を通った赤外
線のみ受光する構成にした上で以下の設計を行う。
[0689] The infrared light receiving element 4 is attached to the housing 9 so that the infrared light receiving element 4 receives only infrared light passing through the reflective diffraction lens 6. The following design is performed after a configuration is adopted in which only infrared light that has passed through the reflective diffraction lens 6 is received.

【0690】Aから放射される光は光路K1A、K2A、K
3A、K4Aなどを通ってAの像点FAに到達する。幾何光
学で周知の通り、Aの像点FA は光軸を挟んでAと反対
側に形成される。図37中に示すように、光路K2Aを通
る光は、反射型回折レンズ6を通過してFで光軸と交叉
してFA に到達し光軸から離れていく。同じように、光
路K1Aを通る光は、反射型回折レンズ6を通過して光軸
と交叉してFA に到達し光軸から離れていく。光路K3A
を通る光は、反射型回折レンズ6で光軸と交叉してFA
に到達し光軸から離れていく。光路K4Aを通る光は、光
軸と交叉して反射型回折レンズ6を通過し、反射型回折
レンズ6を通過してからは光軸と交叉せずにFA に到達
し、その後光軸に近づくかあるいは遠ざかっていく。こ
のように、Aの像点FA よりも反射型回折レンズから離
れた位置でAから放射される光が通過しない領域が存在
する。この領域は、FA よりも反射型回折レンズ6から
遠い部分の光路K4Aと、FA'よりも反射型回折レンズ6
から遠い部分の光路K4A'で挟まれた領域である。この
領域に赤外センサを設置することで、A、A’から放射
される赤外線を受光しない光学系が実現できる。
The light radiated from A has optical paths K1A, K2A, K
It reaches the image point FA of A through 3A, K4A and the like. As is well known in geometrical optics, the image point FA of A is formed on the opposite side of A with respect to the optical axis. As shown in FIG. 37, the light passing through the optical path K2A passes through the reflection type diffractive lens 6, crosses the optical axis at F, reaches FA, and moves away from the optical axis. Similarly, the light passing through the optical path K1A passes through the reflective diffraction lens 6, crosses the optical axis, reaches FA, and moves away from the optical axis. Optical path K3A
Passes through the reflection type diffractive lens 6 and intersects with the optical axis.
And moves away from the optical axis. The light passing through the optical path K4A crosses the optical axis and passes through the reflective diffraction lens 6, and after passing through the reflective diffractive lens 6, reaches the FA without crossing the optical axis and thereafter approaches the optical axis. Or go away. As described above, there is a region where the light emitted from A does not pass at a position farther from the reflective diffraction lens than the image point FA of A. This region includes the optical path K4A at a portion farther from the reflection type diffraction lens 6 than FA, and the reflection type diffraction lens 6
This is an area sandwiched between the optical paths K4A 'far from the optical path K4A'. By installing an infrared sensor in this region, an optical system that does not receive infrared rays radiated from A and A ′ can be realized.

【0691】固定部1を、光路K1A、光路K1A' よりも
光軸から遠くなるように設置する。
The fixed part 1 is set so as to be farther from the optical axis than the optical paths K1A and K1A '.

【0692】固定部1から放射される赤外線は、受光し
たくない領域から放射される光と置き換えられる。受光
したい領域の外側にある受光したくない領域中のB点は
Aよりも光軸から遠いため、反射型回折レンズ6による
Bの像点FB がFA より光軸から遠くなることは幾何光
学で周知の通りである。従って、FA よりも反射型回折
レンズ6から遠い部分の光路K4Aと、FA'よりも反射型
回折レンズ6から遠い部分の光路K4A' で挟まれた領域
内に赤外受光素子を設置することによってA、A’から
放射される赤外線を受光しないようにすれば、自動的に
Bから放射される赤外線も受光しない構成となる。つま
り、自動的に固定部1から放射される赤外線を受光しな
い構成となる。
The infrared rays radiated from the fixed part 1 are replaced with light radiated from a region that is not desired to be received. Since the point B in the area outside the area where light is not desired to be received is farther from the optical axis than A, the fact that the image point FB of B by the reflective diffractive lens 6 is farther from the optical axis than FA is due to geometrical optics. As is well known. Therefore, by installing the infrared light receiving element in a region between the optical path K4A farther from the reflective diffraction lens 6 than FA and the optical path K4A 'farther from the reflective diffraction lens 6 than FA'. If the infrared rays radiated from A and A ′ are not received, the configuration is such that the infrared rays radiated from B are not automatically received. That is, the configuration is such that infrared rays emitted from the fixing unit 1 are not automatically received.

【0693】以上のように、FA よりも反射型回折レン
ズ6から遠い部分の光路K4Aと、FA'よりも反射型回折
レンズ6から遠い部分の光路K4A' で挟まれた領域内に
赤外受光素子4を設置し、固定部1をAと反射型回折レ
ンズ6の間で光路K1A、K1A'よりも光軸から遠くに設け
ることによって、穴の内部など凹部にある受光したい領
域に赤外センサを安定した状態で向けることができ、固
定部から放射される赤外線を受光せずに光軸付近の受光
したい領域から放射される赤外線のみを受光するような
赤外センサが得られる。
As described above, the infrared light is received in the area between the optical path K4A farther from the reflective diffraction lens 6 than FA and the optical path K4A 'farther from the reflective diffraction lens 6 than FA'. By installing the element 4 and providing the fixed part 1 between the A and the reflective diffraction lens 6 farther from the optical axis than the optical paths K1A and K1A ', an infrared sensor is provided in an area where light is to be received in a concave part such as inside a hole. Can be directed in a stable state, and an infrared sensor that receives only infrared rays emitted from an area near the optical axis and desired to be received without receiving infrared rays emitted from the fixed portion can be obtained.

【0694】なお、筐体9と固定部1は一体であっても
構わない。
[0694] The housing 9 and the fixed portion 1 may be integrated.

【0695】図38は本発明の第29の実施例における
赤外センサを示すものである。図38において、6は反
射型回折レンズ、4は赤外線受光素子、9は筐体、1は
穴の内部など凹部にある受光したい領域に赤外センサを
固定して向けるための固定部、α、α’は反射型回折レ
ンズ6の縁からこの縁と光軸に対して同じ側の固定部1
内面へ接する直線が固定部先端面と交わる点、Fは反射
型回折レンズ6の焦点、Fα、Fα’はそれぞれ反射型
回折レンズ6によるα、α’の像点、K1 αはαから光
軸に対して同じ側の反射型回折レンズ6の縁を通過して
Fαへ進行する光(マージナル光線)の光路、K2 αは
αから光軸と平行に進んで焦点Fを通過してFαに到達
する光の光路、K3 αはαから反射型回折レンズ6の中
心を通過してFαに到達する光の光路、K4 αはαから
光軸を挟んで反対側の反射型回折レンズ6の縁を通過し
てFαに到達する光(マージナル光線)の光路、K1
α'はα’から光軸に対して同じ側の反射型回折レンズ
6の縁を通過してFα' へ進行する光(マージナル光
線)の光路、K2 α' はα’から光軸と平行に進んで焦
点Fを通過してFα' に到達する光の光路、K3 α' は
α’から反射型回折レンズ6の中心を通過してFα' に
到達する光の光路、K4 α' はα’から光軸を挟んで反
対側の反射型回折レンズ6の縁を通過してFα' に到達
する光(マージナル光線)の光路、FX は光路K1 αと
光軸との交点である。
FIG. 38 shows an infrared sensor according to the twenty-ninth embodiment of the present invention. In FIG. 38, reference numeral 6 denotes a reflection type diffraction lens, 4 denotes an infrared light receiving element, 9 denotes a housing, 1 denotes a fixing portion for fixing and pointing the infrared sensor to a light receiving region in a concave portion such as the inside of a hole, α, α ′ is the fixed portion 1 on the same side of the edge of the reflection type diffraction lens 6 with respect to this edge and the optical axis.
The point at which the straight line contacting the inner surface intersects the tip surface of the fixed portion, F is the focal point of the reflective diffraction lens 6, Fα and Fα ′ are the image points of α and α ′ by the reflective diffraction lens 6, respectively, and K1 α is the optical axis from α. , The optical path of light (marginal ray) passing through the edge of the reflective diffraction lens 6 on the same side and traveling to Fα, K2α travels from α in parallel with the optical axis, passes through the focal point F, and reaches Fα. K3α is the optical path of light from α and passing through the center of the reflective diffractive lens 6 to Fα, and K4α is the optical path of the reflective diffractive lens 6 on the opposite side of α from the optical axis. The optical path of light (marginal ray) passing through and reaching Fα, K1
α ′ is the optical path of light (marginal ray) that travels from F ′ to the Fα ′ through the edge of the reflective diffraction lens 6 on the same side with respect to the optical axis, and K 2 α ′ is parallel to the optical axis from α ′. K3α 'is an optical path of light that travels through the focal point F and reaches Fα', K3α 'is an optical path of light from α' and passes through the center of the reflective diffractive lens 6 to Fα ', and K4α' is α ' Is the optical path of light (marginal ray) passing through the edge of the reflective diffraction lens 6 on the opposite side with respect to the optical axis and reaching Fα ', and FX is the intersection of the optical path K1α with the optical axis.

【0696】穴の内壁など凹部から放射される赤外光の
みを受光するような光学系を設計する。
An optical system designed to receive only infrared light radiated from a concave portion such as the inner wall of a hole is designed.

【0697】赤外受光素子4を筐体9に取り付け、反射
型回折レンズ6を通過する赤外線のみを赤外受光素子4
で受光するようにする。反射型回折レンズ6を通った赤
外線のみ受光する構成にした上で以下の設計を行う。
[0697] The infrared light receiving element 4 is attached to the housing 9, and only infrared light passing through the reflection type diffraction lens 6 is received by the infrared light receiving element 4.
To receive light. The following design is performed after a configuration is adopted in which only infrared light that has passed through the reflective diffraction lens 6 is received.

【0698】被測定物からの赤外光のみを受光するため
には、固定部1から放射される赤外光を受光しないよう
にすればよい。そのため、受光したい領域と受光したく
ない領域の境界に位置する点を仮想し、この点から、光
軸に対してこの仮想した境界に位置する点と同じ側の反
射型回折レンズ6の縁を通過する光(マージナル光線)
の光路よりも、光軸から遠くに位置するように固定部1
を設置すればよい。そこで、上記仮想の境界に位置する
点を、反射型回折レンズ6の縁からこの縁と光軸に対し
て同じ側の固定部1内面へ接する直線が固定部先端面と
交わる点α、α’として、FαとFα’とFX で形成さ
れる三角形の内側に赤外受光素子4を設置する。これに
より、固定部1をαと反射型回折レンズ6の間で光路K
1 α、K1 α' よりも光軸から遠くに位置させることに
なるため、固定部からの光を受光しない光学系が得られ
る。
In order to receive only infrared light from the object to be measured, infrared light emitted from the fixed part 1 may be prevented from being received. Therefore, a point located at the boundary between the region where light reception is desired and the region where light reception is not desired is imagined, and from this point, the edge of the reflective diffraction lens 6 on the same side as the point located at this imaginary boundary with respect to the optical axis. Light passing through (marginal rays)
The fixed part 1 is located farther from the optical axis than the optical path of
Should be installed. Therefore, the points located at the virtual boundaries are defined as points α and α ′ where a straight line that contacts the inner surface of the fixed part 1 on the same side with respect to the optical axis from the edge of the reflective diffraction lens 6 intersects the fixed part tip surface. The infrared light receiving element 4 is set inside a triangle formed by Fα, Fα ′ and FX. As a result, the fixed portion 1 moves the optical path K between α and the reflective diffraction lens 6.
Since it is located farther from the optical axis than 1α and K1α ', an optical system that does not receive light from the fixed portion can be obtained.

【0699】上記について詳細を以下に述べる。αから
放射される光は光路K1 α、K2 α、K3 α、K4 αな
どを通ってαの像点Fαに到達する。幾何光学で周知の
通り、αの像点Fαは光軸を挟んでαと反対側に形成さ
れる。図38中に示すように、光路K2 αを通る光は、
反射型回折レンズ6を通過してFで光軸と交叉したのち
光軸から離れながらFαに到達する。同じように、光路
K1 αを通る光は、反射型回折レンズ6を通過して光軸
と交叉したのち光軸から離れながらFαに到達する。光
路K3 αを通る光は、反射型回折レンズ6で光軸と交叉
したのち光軸から離れながらFαに到達する。光路K4
αを通る光は、光軸と交叉して反射型回折レンズ6を通
過し、反射型回折レンズ6を通過してからは光軸と交叉
せずにFαに到達する。このように、光路K1 αと光軸
が交叉する点FX よりも反射型回折レンズから離れた位
置かつFαよりも反射型回折レンズ6に近い位置で、α
から放射される光が通過しない領域が存在する。同じよ
うに、α’についても、光路K1 α' と光軸が交叉する
点よりも反射型回折レンズから離れた位置かつFα' よ
りも反射型回折レンズ6に近い位置で、α’から放射さ
れる光が通過しない領域が存在する。この、Fα、F
α' 、FX で形成される三角形の内側よりに赤外受光素
子4を設置することで、α、α' から放射される光を受
光しない赤外センサが得られる。αと反射型回折レンズ
6の間の光路K1 αより光軸から遠い部分からの光は、
αと同じ面内で光軸からの距離がαより大きい点からの
光と置き換えられる。この点の反射型回折レンズ6によ
る交点はFαよりも光軸から遠くなることは幾何光学で
周知の通りである。そのため、αからの光を受光しない
ようにすれば、αよりも光軸から遠い点からの光を受光
せず、従って固定部1からの光を受光しない。同様に、
α’と反射型回折レンズ6の間の光路K1 α' より光軸
から遠い部分からの光は、α' と同じ面内で光軸からの
距離がα’より大きい点からの光と置き換えられる。こ
の点の反射型回折レンズ6による交点はFα’よりも光
軸から遠くなることは幾何光学で周知の通りである。そ
のため、α’からの光を受光しないようにすれば、α’
よりも光軸から遠い点からの光を受光せず、従って固定
部1からの光を受光しない。このように、FαとFα'
とFXで形成される三角形の内側に赤外受光素子4を設
置することでα、α’から放射される赤外線を受光しな
いようにすれば、自動的に固定部1から放射される赤外
線も受光しない構成となる。
The above is described in detail below. The light emitted from α reaches the image point Fα of α through the optical paths K1α, K2α, K3α, K4α, and the like. As is well known in geometrical optics, the image point Fα of α is formed on the opposite side of α with respect to the optical axis. As shown in FIG. 38, the light passing through the optical path K2α is
After passing through the reflective diffraction lens 6 and intersecting with the optical axis at F, it reaches Fα while moving away from the optical axis. Similarly, the light passing through the optical path K1α passes through the reflective diffraction lens 6, crosses the optical axis, and then reaches Fα while leaving the optical axis. The light passing through the optical path K3α crosses the optical axis by the reflective diffraction lens 6, and then reaches Fα while leaving the optical axis. Optical path K4
The light passing through α crosses the optical axis, passes through the reflective diffraction lens 6, and after passing through the reflective diffraction lens 6, reaches Fα without crossing the optical axis. As described above, at a position farther from the reflective diffraction lens than the point FX where the optical path K1α and the optical axis intersect and closer to the reflective diffraction lens 6 than Fα, α
There is an area through which the light emitted from does not pass. Similarly, α ′ is radiated from α ′ at a position farther from the reflective diffraction lens than at the point where the optical path K1 α ′ intersects with the optical axis and closer to the reflective diffraction lens 6 than Fα ′. There is an area through which light does not pass. This Fα, F
By installing the infrared light receiving element 4 inside the triangle formed by α 'and FX, an infrared sensor that does not receive light emitted from α and α' can be obtained. Light from a portion farther from the optical axis than the optical path K1 α between α and the reflection type diffraction lens 6 is
It is replaced with light from a point whose distance from the optical axis is larger than α in the same plane as α. It is well known in geometrical optics that the intersection of this point with the reflection type diffraction lens 6 is farther from the optical axis than Fα. Therefore, if light from α is not received, light from a point farther from the optical axis than α will not be received, and therefore no light from the fixed portion 1 will be received. Similarly,
Light from a portion farther from the optical axis than the optical path K1 α 'between α' and the reflective diffraction lens 6 is replaced with light from a point whose distance from the optical axis is larger than α 'in the same plane as α'. . It is well known in geometrical optics that the point of intersection of this point by the reflective diffraction lens 6 is farther from the optical axis than Fα ′. Therefore, if light from α ′ is not received, α ′
No light from a point farther from the optical axis is received, and therefore no light from the fixed part 1 is received. Thus, Fα and Fα ′
By installing the infrared light receiving element 4 inside the triangle formed by F and FX so as not to receive the infrared light radiated from α and α ', the infrared light radiated from the fixed part 1 is automatically received. No configuration.

【0700】以下、αからの光を受光しないような赤外
受光素子4の位置を求める。
Hereinafter, the position of the infrared light receiving element 4 which does not receive the light from α will be obtained.

【0701】赤外受光素子4はFA よりも反射型回折レ
ンズ6に近い。この時、(1)式、(2)式が成り立
つ。
The infrared light receiving element 4 is closer to the reflection type diffraction lens 6 than FA. At this time, equations (1) and (2) hold.

【0702】図38に示すように、受光面は光路K1 α
と光軸が交わる点とFαとの間であるので、αからFα
までの各光路のうち受光面で赤外受光素子4に最も近づ
くものはK1 αである。したがって、αからの光を赤外
受光素子4で受光しないためには、(3)式を満たす必
要がある。
As shown in FIG. 38, the light receiving surface has an optical path K1 α
Is between the point where the optical axis intersects with the optical axis and Fα.
The light path closest to the infrared light receiving element 4 on the light receiving surface is K1α. Therefore, in order for the light from α to not be received by the infrared light receiving element 4, it is necessary to satisfy the expression (3).

【0703】ここで、幾何光学で周知の通りr3 、rα
F 、rαS1、L3 、fは幾何関係として(4)式、
(5)式を満たす。
Here, as is well known in geometrical optics, r3, rα
F, rαS1, L3, and f are expressed by the following equation (4) as a geometric relationship.
Equation (5) is satisfied.

【0704】(5)式を(3)式へ代入することで
(6)式が得られる。
By substituting equation (5) into equation (3), equation (6) is obtained.

【0705】(2)(6)式から、αから放射される光
を赤外受光素子4で受光しないための条件は(7)式と
なる。
From the expressions (2) and (6), the condition for not receiving the light emitted from α by the infrared light receiving element 4 is the expression (7).

【0706】さらに、幾何光学で周知の通り、rα、L
α、L2 、rαF 、LαF は幾何関係として(8)式、
(9)式を満たす。
Further, as is well known in geometrical optics, rα, L
α, L2, rαF, and LαF are expressed by the following equation (8) as a geometric relationship.
Equation (9) is satisfied.

【0707】(9)式を(7)式へ代入することによ
り、αから放射される光を赤外受光素子4で受しないた
めの条件は(10)式となる。
By substituting the expression (9) into the expression (7), the condition for preventing the light radiated from α from being received by the infrared light receiving element 4 becomes the expression (10).

【0708】また、ガウスの公式から(11)式、(1
2)式が成り立つ。
From Gauss's formula, the equation (11) and (1
2) Formula holds.

【0709】(12)式を(11)式に代入することに
より、αから放射される光を赤外受光素子4で受光しな
いための条件は(13)式となる。
By substituting the expression (12) into the expression (11), the condition for not receiving the light radiated from α by the infrared light receiving element 4 is the expression (13).

【0710】以上のように、固定部1先端のαから放射
される光を赤外受光素子4で受光しないためには、
(7)式、或いは(10)式、或いは(13)式を満た
すよう光学系を設計する必要がある。(7)式、(1
0)式、(13)式で与えられるL3 だけ、受光素子4
を反射型回折レンズ6の焦点からずらして設置すること
で、固定部1から放射される赤外線を赤外受光素子4で
受光せずに被測定物体から放射光のみを赤外受光素子4
で受光させることができるため、固定部1の温度変化に
起因する測定誤差を防ぐことができる。
As described above, in order for the infrared light receiving element 4 not to receive the light radiated from α at the tip of the fixed portion 1,
It is necessary to design the optical system to satisfy the expression (7), the expression (10), or the expression (13). Equation (7), (1
0) and L3 given by equation (13).
Is displaced from the focal point of the reflection type diffraction lens 6 so that the infrared light emitted from the fixed part 1 is not received by the infrared light receiving element 4 and only the radiated light from the measured object is received by the infrared light receiving element 4.
, It is possible to prevent a measurement error due to a temperature change of the fixed unit 1.

【0711】なお、筐体9と固定部1は一体であっても
構わない。
[0711] The housing 9 and the fixed portion 1 may be integrated.

【0712】図39は本発明の第30の実施例における
赤外センサを示すものである。図39において、6は反
射型回折レンズ、4は赤外線受光素子、9は筐体、1は
穴の内部など凹部にある受光したい領域に赤外センサを
固定して向けるための固定部、α、α’は反射型回折レ
ンズ6の縁からこの縁と光軸に対して同じ側の固定部1
内面へ接する直線が固定部先端面と交わる点、Fは反射
型回折レンズ6の焦点、Fα、Fα’はそれぞれ反射型
回折レンズ6によるα、α’の像点、K1 αはαから光
軸に対して同じ側の反射型回折レンズ6の縁を通過して
Fαへ進行する光(マージナル光線)の光路、K2 αは
αから光軸と平行に進んで焦点Fを通過してFαに到達
する光の光路、K3 αはαから反射型回折レンズ6の中
心を通過してFαに到達する光の光路、K4 αはαから
光軸を挟んで反対側の反射型回折レンズ6の縁を通過し
てFαに到達する光(マージナル光線)の光路、K1
α'はα’から光軸に対して同じ側の反射型回折レンズ
6の縁を通過してFα' へ進行する光(マージナル光
線)の光路、K2 α' はα’から光軸と平行に進んで焦
点Fを通過してFα' に到達する光の光路、K3 α' は
α’から反射型回折レンズ6の中心を通過してFα' に
到達する光の光路、K4 α' はα’から光軸を挟んで反
対側の反射型回折レンズ6の縁を通過してFα' に到達
する光(マージナル光線)の光路、FX は光路K1 αと
光軸との交点である。
FIG. 39 shows an infrared sensor according to the thirtieth embodiment of the present invention. In FIG. 39, reference numeral 6 denotes a reflection type diffraction lens, 4 denotes an infrared light receiving element, 9 denotes a housing, 1 denotes a fixing portion for fixing and directing the infrared sensor to a light receiving region in a concave portion such as the inside of a hole, α, α ′ is the fixed portion 1 on the same side of the edge of the reflection type diffraction lens 6 with respect to this edge and the optical axis.
The point at which the straight line contacting the inner surface intersects the tip surface of the fixed portion, F is the focal point of the reflective diffraction lens 6, Fα and Fα ′ are the image points of α and α ′ by the reflective diffraction lens 6, respectively, and K1 α is the optical axis from α. , The optical path of light (marginal ray) passing through the edge of the reflective diffraction lens 6 on the same side and traveling to Fα, K2α travels from α in parallel with the optical axis, passes through the focal point F, and reaches Fα. K3α is the optical path of light from α and passing through the center of the reflective diffractive lens 6 to Fα, and K4α is the optical path of the reflective diffractive lens 6 on the opposite side of α from the optical axis. The optical path of light (marginal ray) passing through and reaching Fα, K1
α ′ is the optical path of light (marginal ray) that travels from F ′ to the Fα ′ through the edge of the reflective diffraction lens 6 on the same side with respect to the optical axis, and K 2 α ′ is parallel to the optical axis from α ′. K3α 'is an optical path of light that travels through the focal point F and reaches Fα', K3α 'is an optical path of light from α' and passes through the center of the reflective diffractive lens 6 to Fα ', and K4α' is α ' Is the optical path of light (marginal ray) passing through the edge of the reflective diffraction lens 6 on the opposite side with respect to the optical axis and reaching Fα ', and FX is the intersection of the optical path K1α with the optical axis.

【0713】穴の内壁など凹部から放射される赤外光の
みを受光するような光学系を設計する。
An optical system designed to receive only infrared light radiated from a concave portion such as an inner wall of a hole is designed.

【0714】赤外受光素子4を筐体9に取り付け、反射
型回折レンズ6を通過する赤外線のみを赤外受光素子4
で受光するようにする。反射型回折レンズ6を通った赤
外線のみ受光する構成にした上で以下の設計を行う。
[0714] The infrared light receiving element 4 is attached to the housing 9, and only infrared light passing through the reflection type diffraction lens 6 is received by the infrared light receiving element 4.
To receive light. The following design is performed after a configuration is adopted in which only infrared light that has passed through the reflective diffraction lens 6 is received.

【0715】被測定物からの赤外光のみを受光するため
には、固定部1から放射される赤外光を受光しないよう
にすればよい。そのため、受光したい領域と受光したく
ない領域の境界に位置する点を仮想し、この点から、光
軸に対してこの仮想した境界に位置する点と同じ側の反
射型回折レンズ6の縁を通過する光(マージナル光線)
の光路よりも、光軸から遠くに位置するように固定部1
を設置すればよい。そこで、上記仮想の境界に位置する
点を、反射型回折レンズ6の縁からこの縁と光軸に対し
て同じ側の固定部1内面へ接する直線が固定部先端面と
交わる点α、α’として、Fαよりも反射型回折レンズ
6から遠い部分の光路K4 αと、Fα'よりも反射型回
折レンズ6から遠い部分の光路K4 α' で挟まれた領域
に赤外センサを設置する。これにより、固定部1をαと
反射型回折レンズ6の間で光路K1 α、K1 α' よりも
光軸から遠くに位置させることになるため、固定部から
の光を受光しない光学系が得られる。
[0715] In order to receive only infrared light from the object to be measured, infrared light radiated from the fixed part 1 may be prevented from being received. Therefore, a point located at the boundary between the region where light reception is desired and the region where light reception is not desired is imagined, and from this point, the edge of the reflective diffraction lens 6 on the same side as the point located at this imaginary boundary with respect to the optical axis. Light passing through (marginal rays)
The fixed part 1 is located farther from the optical axis than the optical path of
Should be installed. Therefore, the points located at the virtual boundaries are defined as points α and α ′ where a straight line that contacts the inner surface of the fixed part 1 on the same side with respect to the optical axis from the edge of the reflective diffraction lens 6 intersects the fixed part tip surface. An infrared sensor is installed in a region between the optical path K4α farther from the reflective diffraction lens 6 than Fα and the optical path K4α ′ farther from the reflective diffraction lens 6 than Fα ′. As a result, the fixed portion 1 is located farther from the optical axis than the optical paths K1α and K1α ′ between α and the reflective diffraction lens 6, so that an optical system that does not receive light from the fixed portion is obtained. Can be

【0716】上記について詳細を以下に述べる。The above is described in detail below.

【0717】αから放射される光は光路K1 α、K2
α、K3 α、K4 αなどを通ってαの像点Fαに到達す
る。幾何光学で周知の通り、αの像点Fαは光軸を挟ん
でαと反対側に形成される。図39中に示すように、光
路K2 αを通る光は、反射型回折レンズ6を通過してF
で光軸と交叉してFαに到達し光軸から離れていく。同
じように、光路K1 αを通る光は、反射型回折レンズ6
を通過して光軸と交叉してFαに到達し光軸から離れて
いく。光路K3 αを通る光は、反射型回折レンズ6で光
軸と交叉してFαに到達し光軸から離れていく。光路K
4 αを通る光は、光軸と交叉して反射型回折レンズ6を
通過し、反射型回折レンズ6を通過してからは光軸と交
叉せずにFαに到達し、その後光軸に近づくかあるいは
遠ざかっていく。このように、αの像点Fαよりも反射
型回折レンズから離れた位置でαから放射される光が通
過しない領域が存在する。同じようにα’についても、
αの像点Fαよりも反射型回折レンズから離れた位置で
αから放射される光が通過しない領域が存在する。こ
の、Fαよりも反射型回折レンズ6から遠い部分の光路
K4 αと、Fα' よりも反射型回折レンズ6から遠い部
分の光路K4 α' で挟まれた領域内に赤外受光素子を設
置することによってα、α’から放射される赤外線を受
光しない赤外センサが得られる。αと反射型回折レンズ
6の間の光路K1αより光軸から遠い部分からの光は、
αと同じ面内で光軸からの距離がαより大きい点からの
光と置き換えられる。この点の反射型回折レンズ6によ
る交点はFαよりも光軸から遠くなることは幾何光学で
周知の通りである。そのため、αからの光を受光しない
ようにすれば、αよりも光軸から遠い点からの光を受光
せず、従って固定部1からの光を受光しない。同様に、
α’と反射型回折レンズ6の間の光路K1 α' より光軸
から遠い部分からの光は、α' と同じ面内で光軸からの
距離がα’より大きい点からの光と置き換えられる。こ
の点の反射型回折レンズ6による交点はFα’よりも光
軸から遠くなることは幾何光学で周知の通りである。そ
のため、α’からの光を受光しないようにすれば、α’
よりも光軸から遠い点からの光を受光せず、従って固定
部1からの光を受光しない。このように、Fαよりも反
射型回折レンズ6から遠い部分の光路K4 αと、Fα'
よりも反射型回折レンズ6から遠い部分の光路K4 α'
で挟まれた領域に赤外受光素子4を設置することでα、
α’から放射される赤外線を受光しないようにすれば、
自動的に固定部1から放射される赤外線も受光しない構
成となる。
The light emitted from α has the optical paths K1 α, K2
It reaches the image point Fα of α through α, K3α, K4α and the like. As is well known in geometrical optics, the image point Fα of α is formed on the opposite side of α with respect to the optical axis. As shown in FIG. 39, the light passing through the optical path K2α passes through the reflection type
Crosses the optical axis to reach Fα and moves away from the optical axis. Similarly, the light passing through the optical path K1α is reflected by the reflection type diffraction lens 6.
And crosses the optical axis to reach Fα and moves away from the optical axis. The light passing through the optical path K3α crosses the optical axis by the reflective diffraction lens 6, reaches Fα, and moves away from the optical axis. Optical path K
The light passing through 4α crosses the optical axis and passes through the reflective diffractive lens 6, and after passing through the reflective diffractive lens 6, reaches Fα without crossing the optical axis and thereafter approaches the optical axis. Or go away. As described above, there is an area where the light emitted from α does not pass at a position farther from the reflective diffraction lens than the image point Fα of α. Similarly, for α ',
There is an area where light emitted from α does not pass at a position farther from the reflective diffraction lens than the image point Fα of α. An infrared light receiving element is provided in an area between the optical path K4α farther from the reflective diffraction lens 6 than Fα and the optical path K4α ′ farther from the reflective diffraction lens 6 than Fα '. Thus, an infrared sensor that does not receive infrared rays emitted from α and α ′ can be obtained. Light from a portion farther from the optical axis than the optical path K1α between α and the reflective diffraction lens 6 is
It is replaced with light from a point whose distance from the optical axis is larger than α in the same plane as α. It is well known in geometrical optics that the intersection of this point with the reflection type diffraction lens 6 is farther from the optical axis than Fα. Therefore, if light from α is not received, light from a point farther from the optical axis than α will not be received, and therefore no light from the fixed portion 1 will be received. Similarly,
Light from a portion farther from the optical axis than the optical path K1 α 'between α' and the reflective diffraction lens 6 is replaced with light from a point whose distance from the optical axis is larger than α 'in the same plane as α'. . It is well known in geometrical optics that the point of intersection of this point by the reflective diffraction lens 6 is farther from the optical axis than Fα ′. Therefore, if light from α ′ is not received, α ′
No light from a point farther from the optical axis is received, and therefore no light from the fixed part 1 is received. As described above, the optical path K4α at a portion farther from the reflection type diffraction lens 6 than Fα and Fα ′
Optical path K4 α 'farther from the reflective diffraction lens 6 than
By placing the infrared light receiving element 4 in the area between
If you do not receive infrared rays emitted from α ',
The infrared ray emitted from the fixing unit 1 is not automatically received.

【0718】以下、αからの光を受光しないような赤外
受光素子4の位置を求める。
Hereinafter, the position of the infrared light receiving element 4 which does not receive the light from α will be obtained.

【0719】赤外受光素子4はFαよりも反射型回折レ
ンズ6から遠い。この時、(14)式、(15)式が成
り立つ。図39に示すように、受光面はFαよりも反射
型回折レンズ6から遠いので、αからFαまでの各光路
のうち受光面で赤外受光素子4に最も近づくものはK4
αである。したがって、αからの光を赤外受光素子4で
受光しないためには、(16)式を満たす必要がある。
The infrared light receiving element 4 is farther from the reflective diffraction lens 6 than Fα. At this time, equations (14) and (15) hold. As shown in FIG. 39, the light receiving surface is farther from the reflection type diffractive lens 6 than Fα, and the light receiving surface closest to the infrared light receiving element 4 among the light paths from α to Fα is K4.
α. Therefore, in order for the light from α to not be received by the infrared light receiving element 4, it is necessary to satisfy the expression (16).

【0720】ここで、幾何光学で周知の通りr3 、rα
F 、LαF 、rαS4、L3 、fは幾何関係として(1
7)式、(18)式を満たす。
Here, as is well known in geometrical optics, r3, rα
F, LαF, rαS4, L3, and f are expressed as (1
Equations (7) and (18) are satisfied.

【0721】(18)式を(16)式へ代入することで
(19)式が得られる。
By substituting equation (18) into equation (16), equation (19) is obtained.

【0722】(15)(19)式から、αから放射され
る光を赤外受光素子4で受光しないための条件は(2
0)式となる。
From the expressions (15) and (19), the condition for not receiving the light radiated from α by the infrared light receiving element 4 is (2)
0).

【0723】さらに、幾何光学で周知の通り、rα、L
α、L2 、rαF 、LαF は幾何関係として(21)
式、(22)式を満たす。
Further, as is well known in geometrical optics, rα, L
α, L2, rαF, and LαF are expressed by a geometric relationship (21)
Equation (22) is satisfied.

【0724】(22)式を(20)式へ代入することに
より、αから放射される光を赤外受光素子4で受光しな
いための条件は(23)式となる。
By substituting the expression (22) into the expression (20), the condition for preventing the light radiated from α from being received by the infrared light receiving element 4 becomes the expression (23).

【0725】また、ガウスの公式から(24)式、(2
5)式が成り立つ。
From the Gauss's formula, equation (24), (2
5) Formula holds.

【0726】(25)式を(23)式に代入することに
より、αから放射される光を赤外受光素子4で受光しな
いための条件は(26)式となる。
By substituting equation (25) into equation (23), the condition for not receiving the light radiated from α by the infrared light receiving element 4 is given by equation (26).

【0727】以上のように、αから放射される光を赤外
受光素子4で受光しないためには、(20)式、或いは
(23)式、或いは(26)式の条件を満たすよう光学
系を設計する必要がある。(20)式、(23)式、
(26)式で与えられるL3 だけ、受光素子4を反射型
回折レンズ6の焦点からずらして設置することで、固定
部1から放射される赤外線を赤外受光素子4で受光せず
に被測定物体から放射光のみを赤外受光素子4で受光さ
せることができるため、固定部1の温度変化に起因する
測定誤差を防ぐことができる。
As described above, in order to prevent the light radiated from α from being received by the infrared light receiving element 4, the optical system must satisfy the condition of the expression (20), the expression (23) or the expression (26). Need to be designed. Expression (20), Expression (23),
By disposing the light receiving element 4 from the focal point of the reflection type diffraction lens 6 by L3 given by the equation (26), the infrared light emitted from the fixed portion 1 is measured without being received by the infrared light receiving element 4. Since only the radiated light from the object can be received by the infrared light receiving element 4, a measurement error due to a temperature change of the fixed portion 1 can be prevented.

【0728】なお、筐体9と固定部1は一体であっても
構わない。
Note that the housing 9 and the fixed portion 1 may be integrated.

【0729】図40、41は本発明の第31の実施例に
おける赤外センサの光学系を示すものである。図40、
41において、6は反射型回折レンズ、4は赤外線受光
素子、9は筐体、1は穴の内部など凹部にある受光した
い領域に赤外センサを固定して向けるための固定部、2
は反射型回折レンズ6の有効領域を決めるためのレンズ
開口絞り、α、α’はレンズ開口絞り2の縁からこの縁
と光軸に対して同じ側の固定部1内面へ接する直線が固
定部先端面と交わる点、Aは固定部1先端の点、Bは固
定部1先端以外の点、Fは反射型回折レンズ6の焦点、
Fα、Fα’はそれぞれ反射型回折レンズ6によるα、
α’の像点、FA は反射型回折レンズ6によるAの像
点、FB は反射型回折レンズ6によるBの像点、K1 α
はαから光軸に対して同じ側のレンズ開口絞り2の開口
部の縁を通過してFαへ進行する光(マージナル光線)
の光路、K2 αはαから光軸と平行に進んで焦点Fを通
過してFαに到達する光の光路、K3 αはαから反射型
回折レンズ6の中心を通過してFαに到達する光の光
路、K4 αはαから光軸を挟んで反対側のレンズ開口絞
り2の開口部の縁を通過してFαに到達する光(マージ
ナル光線)の光路、K1AはAから光軸に対して同じ側の
レンズ開口絞り2の開口部の縁を通過してFA へ進行す
る光(マージナル光線)の光路、K2AはAから光軸と平
行に進んで焦点Fを通過してFA に到達する光の光路、
K3AはAから反射型回折レンズ6の中心を通過してFA
に到達する光の光路、K4AはAから光軸を挟んで反対側
のレンズ開口絞り2の開口部の縁を通過してFA に到達
する光(マージナル光線)の光路、K1BはBから光軸に
対して同じ側のレンズ開口絞り2の開口部の縁を通過し
てFB へ進行する光(マージナル光線)の光路、K2Bは
Bから光軸と平行に進んで焦点Fを通過してFB に到達
する光の光路、K3BはBから反射型回折レンズ6の中心
を通過してFB に到達する光の光路、K4BはBから光軸
を挟んで反対側のレンズ開口絞り2の開口部の縁を通過
してFB に到達する光(マージナル光線)の光路、Fα
S1は光路K1 αと受光面との交点、FAS1 は光路K1Aと
受光面との交点、FBS1 は光路K1Bとセンサ面との交
点、rαはα点での固定部1の開口半径、rA はA点で
の固定部1の開口半径、rB はB点での固定部1の開口
半径、r2はレンズ開口絞り2の開口半径、r3 α1 は
光路K1 αの反射型回折レンズ6における光軸からの距
離、r3A1 は光路K1Aの反射型回折レンズ6における光
軸からの距離、r3B1 は光路K1Bの反射型回折レンズ6
における光軸からの距離、rsは赤外受光素子4の半径、
rαS1はFαS1と光軸との距離、rAS1 はFAS1 と光軸
との距離、rBS1 はFBS1 と光軸との距離、rAFはFA
と光軸との距離、rBFはFB と光軸との距離、L αはα
からレンズ開口絞り2までの距離、LAはAからレンズ開
口絞り2までの距離、LB はBからレンズ開口絞り2ま
での距離、L2はレンズ開口絞り2から反射型回折レン
ズ6までの距離、fは反射型回折レンズ6の焦点距離、
L3 はFから赤外受光素子4までの距離、LαF は反射
型回折レンズ6からFαまでの距離、LAFは反射型回折
レンズ6からFA までの距離、LBFは反射型回折レンズ
6からFB までの距離である。
FIGS. 40 and 41 show an optical system of an infrared sensor according to a thirty-first embodiment of the present invention. FIG.
In 41, 6 is a reflection type diffractive lens, 4 is an infrared light receiving element, 9 is a housing, 1 is a fixing portion for fixing and pointing the infrared sensor to an area to receive light in a concave portion such as the inside of a hole, 2
Is a lens aperture stop for determining an effective area of the reflection type diffraction lens 6, and α and α 'are fixed portions which are straight lines that contact the inner surface of the fixed portion 1 on the same side as the edge and the optical axis from the edge of the lens aperture stop 2. A point intersecting with the tip surface, A is a point at the tip of the fixed part 1, B is a point other than the tip of the fixed part 1, F is a focal point of the reflective diffraction lens 6,
Fα and Fα ′ are α, respectively due to the reflective diffraction lens 6,
The image point of α ', FA is the image point of A by the reflection type diffraction lens 6, FB is the image point of B by the reflection type diffraction lens 6, K1 α
Is a light (marginal ray) traveling from α to Fα through the edge of the opening of the lens aperture stop 2 on the same side with respect to the optical axis.
K2α is an optical path of light that travels from α to be parallel to the optical axis and passes through the focal point F to reach Fα, and K3α is light that travels from α through the center of the reflective diffraction lens 6 and reaches Fα. K4α is an optical path of light (marginal ray) passing through the edge of the opening of the lens aperture stop 2 on the opposite side from α with respect to the optical axis and reaching Fα, and K1A is a light path from A to the optical axis. An optical path of light (marginal ray) passing through the edge of the opening of the lens aperture stop 2 on the same side to the FA (marginal ray), K2A travels in parallel with the optical axis from A, passes through the focal point F and reaches the FA. Light path,
K3A passes through the center of the reflection type diffractive lens 6 from A and FA
K4A is the optical path of light (marginal ray) from A to the FA that passes through the edge of the opening of the lens aperture stop 2 on the opposite side of the optical axis and reaches FA, and K1B is the optical axis from B The light path of light (marginal ray) passing through the edge of the aperture of the lens aperture stop 2 on the same side and traveling to FB, K2B travels from B in parallel with the optical axis, passes through the focal point F, and enters FB. K3B is the optical path of the light that arrives, K3B is the optical path of the light that passes through the center of the reflective diffraction lens 6 from B and reaches FB, and K4B is the edge of the aperture of the lens aperture stop 2 on the opposite side of the optical axis from B. The optical path of the light (marginal ray) that passes through and reaches FB, Fα
S1 is the intersection between the optical path K1α and the light receiving surface, FAS1 is the intersection between the optical path K1A and the light receiving surface, FBS1 is the intersection between the optical path K1B and the sensor surface, rα is the opening radius of the fixed part 1 at the α point, and rA is A The radius of the opening of the fixed portion 1 at the point, rB is the opening radius of the fixed portion 1 at the point B, r2 is the opening radius of the lens aperture stop 2, and r3 α1 is the optical path K1 α from the optical axis of the reflection type diffraction lens 6. Distance, r3A1 is the distance of the optical path K1A from the optical axis in the reflective diffractive lens 6, and r3B1 is the reflective diffractive lens 6 in the optical path K1B.
, The distance from the optical axis at, rs is the radius of the infrared light receiving element 4,
rαS1 is the distance between FαS1 and the optical axis, rAS1 is the distance between FAS1 and the optical axis, rBS1 is the distance between FBS1 and the optical axis, and rAF is FA
, The distance between FB and the optical axis, and L α is α
, L is the distance from A to the lens aperture stop 2, LB is the distance from B to the lens aperture stop 2, L2 is the distance from the lens aperture stop 2 to the reflective diffraction lens 6, f Is the focal length of the reflective diffraction lens 6,
L3 is the distance from F to the infrared light receiving element 4, LαF is the distance from the reflection type diffraction lens 6 to Fα, LAF is the distance from the reflection type diffraction lens 6 to FA, LBF is the distance from the reflection type diffraction lens 6 to FB. Distance.

【0730】固定部のあらゆる点から放射される光を赤
外受光素子4で受光しないような光学設計条件を求め
る。そのために、αから放射される光を仮想し、この光
を赤外受光素子4で受光しないための設計条件を求めた
のち、固定部1のα以外の点から放射される光を赤外受
光素子4で受光しない条件を追加する。
An optical design condition is determined such that light emitted from any point of the fixed portion is not received by the infrared light receiving element 4. For this purpose, the light radiated from α is imagined, and a design condition for preventing the light from being received by the infrared light receiving element 4 is determined. A condition that light is not received by the element 4 is added.

【0731】まず、固定部1のαから放射される赤外光
を受光しないよう、以下のように赤外受光素子4の位置
を決める。
First, the position of the infrared light receiving element 4 is determined as follows so as not to receive the infrared light radiated from α of the fixed portion 1.

【0732】αから放射される光は光路K1 α、K2
α、K3 α、K4 αなどを通ってαの像点Fαに到達す
る。幾何光学で周知の通り、αの像点Fαは光軸を挟ん
でαと反対側に形成される。図40中に示すように、光
路K2 αを通る光は、反射型回折レンズ6を通過してF
で光軸と交叉したのち光軸から離れながらFαに到達す
る。同じように、光路K1 αを通る光は、反射型回折レ
ンズ6を通過して光軸と交叉したのち光軸から離れなが
らFαに到達する。光路K3 αを通る光は、反射型回折
レンズ6で光軸と交叉したのち光軸から離れながらFα
に到達する。光路K4 αを通る光は、光軸と交叉して反
射型回折レンズ6を通過し、反射型回折レンズ6を通過
してからは光軸と交叉せずにFαに到達する。このよう
に、光路K1 αと光軸が交叉する点よりも反射型回折レ
ンズから離れた位置かつFαよりも反射型回折レンズ6
に近い位置で、αから放射される光が通過しない領域が
存在する。この、光路K1 αと光軸が交叉する点よりも
反射型回折レンズ6から離れ且つFαよりも反射型回折
レンズ6に近い位置に赤外受光素子4を設置すること
で、αから放射される光を受光しない赤外センサが得ら
れる。以下、L3 を求める。
The light emitted from α has optical paths K1 α, K2
It reaches the image point Fα of α through α, K3α, K4α and the like. As is well known in geometrical optics, the image point Fα of α is formed on the opposite side of α with respect to the optical axis. As shown in FIG. 40, the light passing through the optical path K2α passes through the reflection type
And crosses the optical axis, and then reaches Fα while moving away from the optical axis. Similarly, the light passing through the optical path K1α passes through the reflective diffraction lens 6, crosses the optical axis, and then reaches Fα while leaving the optical axis. The light passing through the optical path K3α crosses the optical axis by the reflection type diffraction lens 6 and then separates from the optical axis to Fα.
To reach. The light passing through the optical path K4α crosses the optical axis and passes through the reflective diffraction lens 6, and after passing through the reflective diffraction lens 6, reaches Fα without crossing the optical axis. As described above, the position which is farther from the reflection type diffraction lens than the point where the optical path K1.alpha.
At a position close to, there is a region through which light emitted from α does not pass. By arranging the infrared light receiving element 4 at a position farther from the reflection type diffraction lens 6 than the point where the optical path K1α intersects with the optical axis and closer to the reflection type diffraction lens 6 than Fα, the light is radiated from α. An infrared sensor that does not receive light is obtained. Hereinafter, L3 is obtained.

【0733】赤外受光素子4はFαよりも反射型回折レ
ンズ6に近い。この時、(27)式、(28)式が成り
立つ。
The infrared light receiving element 4 is closer to the reflection type diffraction lens 6 than Fα. At this time, equations (27) and (28) hold.

【0734】図40に示すように、受光面は光路K1 α
と光軸が交わる点とFαとの間であるので、αからFα
までの各光路のうち受光面で赤外受光素子4に最も近づ
くものはK1 αである。したがって、αからの光を赤外
受光素子4で受光しないためには、(29)式を満たす
必要がある。
[0734] As shown in FIG. 40, the light-receiving surface has an optical path K1α.
Is between the point where the optical axis intersects with the optical axis and Fα.
The light path closest to the infrared light receiving element 4 on the light receiving surface is K1α. Therefore, in order for the light from α to not be received by the infrared light receiving element 4, it is necessary to satisfy the expression (29).

【0735】ここで、幾何光学で周知の通りr3 α1 、
rαF 、LαF 、rαS1、L3 、fは幾何関係として
(30)式、(31)式を満たす。
Here, as is well known in geometrical optics, r3 α1,
rαF, LαF, rαS1, L3, and f satisfy Equations (30) and (31) as geometric relationships.

【0736】(31)式を(29)式へ代入することで
(32)式が得られる。
By substituting equation (31) into equation (29), equation (32) is obtained.

【0737】(28)(32)式から、αから放射され
る光を赤外受光素子4で受光しないための条件は(3
3)式となる。
From the equations (28) and (32), the condition for not receiving the light radiated from α by the infrared light receiving element 4 is (3)
3) Equation is obtained.

【0738】さらに、幾何光学で周知の通り、rα、L
α、L2 、rαF 、LαF は幾何関係として(34)
式、(35)式を満たす。
As is well known in geometrical optics, rα, L
α, L2, rαF, and LαF are expressed as a geometric relationship (34)
Equation (35) is satisfied.

【0739】(35)式を(33)式へ代入することに
より、αから放射される光を赤外受光素子4で受しない
ための条件は(36)式となる。
By substituting equation (35) into equation (33), the condition for preventing the light radiated from α from being received by the infrared light receiving element 4 becomes equation (36).

【0740】また、ガウスの公式から(37)式、(3
8)式が成り立つ。
Also, from Gauss's formula, equation (37), (3
8) Equation holds.

【0741】(38)式を(36)式に代入することに
より、αから放射される光を赤外受光素子4で受光しな
いための条件は(39)式となる。
By substituting equation (38) into equation (36), the condition for not receiving the light radiated from α by the infrared light receiving element 4 is given by equation (39).

【0742】また、幾何光学で周知の通り、r2 、r
α、Lα、r3 α1 、L2 は幾何関係として(40)
式、(41)式を満たす。
As is well known in geometrical optics, r2, r
α, Lα, r3α1 and L2 are expressed as geometric relationships (40)
Equation (41) is satisfied.

【0743】(41)式を(39)式へ代入することに
より、αから放射される光を赤外受光素子4で受光しな
いための条件は(42)式となる。
By substituting equation (41) into equation (39), the condition for not receiving the light radiated from α by the infrared light receiving element 4 is given by equation (42).

【0744】以上のように、固定部1先端のαから放射
される光を赤外受光素子4で受光しないためには、(3
3)式、或いは(36)式、或いは(39)式、或いは
(42)式の条件を満たすよう光学系を設計する必要が
ある。
As described above, in order to prevent the light radiated from α at the tip of the fixed portion 1 from being received by the infrared light receiving element 4, (3
It is necessary to design the optical system so as to satisfy the condition of the expression (3), the expression (36), the expression (39), or the expression (42).

【0745】(33)式、或いは(36)式、或いは
(39)式、或いは(42)式の条件を満たすよう光学
系を設計した赤外センサが、固定部のα以外の点からの
放射光も受光しない、すなわち固定部のあらゆる点から
放射される光も受光しない条件を示す。そのために、図
41を用いてA、Bからの光を受光しない条件を以下に
求める。
The infrared sensor whose optical system is designed to satisfy the condition of the expression (33), the expression (36), the expression (39) or the expression (42) emits light from a point other than α of the fixed portion. A condition is shown in which no light is received, that is, no light emitted from any point of the fixed portion is received. For this purpose, a condition for not receiving light from A and B is determined below with reference to FIG.

【0746】まず、Aから放射される光を受光しない条
件を求める。図41に示すように、AからFA までの各
光路のうち受光面で赤外受光素子4に最も近づくものは
K1Aである。Aとαが一致しない固定部形状の場合には
K1AはAとレンズ開口絞り2との間で固定部1によって
遮光され、各光路は受光面で赤外受光素子4にK1Aより
は近づかない。そこで、Aから放射される光を赤外受光
素子4で受光しない条件を、K1Aと受光面との交点であ
るFAS1 と光軸との距離rAS1 がrs よりも大きいこと
とする。つまり(43)式が成りたてばAから放射され
る光を赤外受光素子4で受光しない。
First, the condition for not receiving the light radiated from A is determined. As shown in FIG. 41, of the light paths from A to FA, the light path closest to the infrared light receiving element 4 on the light receiving surface is K1A. In the case of a fixed portion shape in which A and α do not match, K1A is shielded from light by the fixed portion 1 between A and the lens aperture stop 2, and each optical path does not approach the infrared light receiving element 4 closer to the infrared light receiving element 4 than K1A. Therefore, the condition that the light radiated from A is not received by the infrared light receiving element 4 is that the distance rAS1 between the optical axis and FAS1, which is the intersection of K1A and the light receiving surface, is larger than rs. That is, if the expression (43) is satisfied, the light radiated from A is not received by the infrared light receiving element 4.

【0747】また、幾何光学で周知の通り、r3A1 、r
AF、LA 、rAs1 、f、L3 は幾何関係として(44)
式、(45)式を満たす。
Also, as is well known in geometrical optics, r3A1,
AF, LA, rAs1, f, and L3 are represented as geometric relationships (44)
Equation (45) is satisfied.

【0748】また、幾何光学で周知の通りrA 、LA 、
L2 、rAF、LAFは幾何関係として(46)式、(4
7)式を満たす。
As is well known in geometrical optics, rA, LA,
L2, rAF, and LAF are expressed by the following equation (46) as a geometric relationship.
7) Formula is satisfied.

【0749】(47)式を(45)式に代入することに
より(48)式が得られる。
By substituting equation (47) into equation (45), equation (48) is obtained.

【0750】また、ガウスの公式から(49)式、(5
0)式が成り立つ。
From the Gauss's formula, equation (49) and (5
Equation (0) holds.

【0751】(50)式を(48)式に代入することに
より(51)式が得られる。
By substituting equation (50) into equation (48), equation (51) is obtained.

【0752】また、幾何光学で周知の通り、r2 、rA
、LA 、r3A1 、L2 は幾何関係として(52)式、
(53)式を満たす。
As is well known in geometrical optics, r2, rA
, LA, r3A1 and L2 are expressed by the following equation (52) as a geometric relationship.
Formula (53) is satisfied.

【0753】(53)式を(51)式に代入することに
よって(54)式が得られる。
By substituting equation (53) into equation (51), equation (54) is obtained.

【0754】rAS1 と同じくrαS1は(55)式のよう
になる。
[0753] Like rAS1, rαS1 is as shown in equation (55).

【0755】Aは固定部先端の点で、αはレンズ開口絞
り2の縁からこの縁と光軸に対して同じ側の固定部1内
面へ接する直線が固定部先端面と交わる点であるので、
レンズ開口絞り2からA、αまでの距離は相等しく(5
6)式が成り立ち、光軸からAまでの距離は光軸からα
までの距離以上であり(57)式が成り立つ。
A is the point at the tip of the fixed part, and α is the point at which the straight line contacting the edge of the lens aperture stop 2 and the inner surface of the fixed part 1 on the same side with respect to this edge and the optical axis intersects the tip of the fixed part. ,
The distances from the lens aperture stop 2 to A and α are equal (5
Equation 6) holds, and the distance from the optical axis to A is α from the optical axis.
(57) holds.

【0756】(56)式を(55)式に代入することで
(58)式が得られる。
By substituting equation (56) into equation (55), equation (58) is obtained.

【0757】rαS1は(29)式の関係を満たすので、
rAS1 がrαS1よりも大きい、すなわち(59)式を満
たせば、自動的にrAS1 が(43)式の関係を満たす。
Since rαS1 satisfies the relationship of equation (29),
If rAS1 is larger than rαS1, that is, if equation (59) is satisfied, rAS1 automatically satisfies the relation of equation (43).

【0758】(55)(58)式を(59)式に代入す
ることにより(60)式が得られる。
(55) By substituting equations (58) into equation (59), equation (60) is obtained.

【0759】(57)式より、(60)式は(61)式
のようになる。
From the expression (57), the expression (60) becomes the expression (61).

【0760】以上のように、固定部1の仮想点αおよび
先端点Aから放射される光を赤外受光素子4で受光しな
いためには(33)式、或いは(36)式、或いは(3
9)式、或いは(42)式の条件を満たし、且つ(6
1)式を満たす必要がある。
As described above, in order to prevent the light radiated from the virtual point α and the tip point A of the fixed part 1 from being received by the infrared light receiving element 4, the expression (33), the expression (36), or the expression (3)
The condition of the expression 9) or the expression (42) is satisfied, and (6)
It is necessary to satisfy the expression 1).

【0761】次に、Bから放射される光を受光しない条
件を求める。Bから放射される光はK1B、K2B、K3B、
K4Bなどを通ってBの像点FB に到達する。Bは固定部
の先端以外の点であるので、固定部先端面の点αよりも
Bの方が反射型回折レンズ6に近い。したがって、幾何
光学で周知の通り、反射型回折レンズ6の像点Fαより
も像点FB の方が反射型回折レンズ6から遠くなる。す
なわち(62)式が成り立つ。
Next, a condition for not receiving light emitted from B will be determined. The light emitted from B is K1B, K2B, K3B,
It reaches the image point FB of B through K4B and the like. Since B is a point other than the tip of the fixed part, B is closer to the reflective diffraction lens 6 than the point α on the tip face of the fixed part. Therefore, as is well known in geometrical optics, the image point FB is farther from the reflection type diffraction lens 6 than the image point Fα of the reflection type diffraction lens 6. That is, equation (62) holds.

【0762】反射型回折レンズ6から受光面までの距離
は反射型回折レンズ6からFαまでの距離よりも小さ
い。したがって(62)式より、反射型回折レンズ6か
ら受光面までの距離は反射型回折レンズ6からFB まで
の距離よりも小さいことになる。このとき、図41に示
すようにBからFB までの各光路のうち受光面で赤外受
光素子4に最も近づくものはK1Bである。Bから放射さ
れる光を赤外受光素子4で受光しないためには、K1Bと
受光面との交点であるFBS1 と光軸との距離rBS1 がr
s よりも大きい必要がある。つまり(63)式が成り立
つ必要がある。
[0762] The distance from the reflective diffraction lens 6 to the light receiving surface is smaller than the distance from the reflective diffraction lens 6 to Fα. Therefore, according to the equation (62), the distance from the reflection type diffraction lens 6 to the light receiving surface is smaller than the distance from the reflection type diffraction lens 6 to FB. At this time, as shown in FIG. 41, the light path closest to the infrared light receiving element 4 on the light receiving surface is K1B among the optical paths from B to FB. In order to prevent the light radiated from B from being received by the infrared light receiving element 4, the distance rBS1 between the optical axis and FBS1, which is the intersection of K1B and the light receiving surface, is r
Must be greater than s. That is, equation (63) needs to be satisfied.

【0763】また、幾何光学で周知の通り、r3B1 、r
BF、LB 、rBs1 、f、L3 は幾何関係として(64)
式、(65)式を満たす。
As is well known in geometrical optics, r3B1,
BF, LB, rBs1, f and L3 are expressed as a geometric relation (64)
Equation (65) is satisfied.

【0764】また、幾何光学で周知の通りrB 、LB 、
L2 、rBF、LBFは幾何関係として(66)式、(6
7)式を満たす。
Also, as is well known in geometrical optics, rB, LB,
L2, rBF, and LBF are expressed by the following equation (66) as a geometric relationship.
7) Formula is satisfied.

【0765】(67)式を(65)式に代入することに
より(68)式が得られる。
By substituting equation (67) into equation (65), equation (68) is obtained.

【0766】また、ガウスの公式から(69)式、(7
0)式が成り立つ。
Also, from Gauss's formula, equation (69), (7
Equation (0) holds.

【0767】(70)式を(68)式に代入することに
より(71)式が得られる。
The equation (71) is obtained by substituting the equation (70) into the equation (68).

【0768】また、幾何光学で周知の通り、r2 、rB
、LB 、r3B1 、L2 は幾何関係として(72)式、
(73)式を満たす。
As is well known in geometrical optics, r2, rB
, LB, r3B1 and L2 are expressed by the following equation (72) as a geometric relationship.
Formula (73) is satisfied.

【0769】(73)式を(71)式に代入することに
よって(74)式が得られる。
By substituting equation (73) into equation (71), equation (74) is obtained.

【0770】rBS1 と同じくrαS1は(75)式のよう
になる。
[0770] Similarly to rBS1, rαS1 is as shown in equation (75).

【0771】rαS1は(29)式の関係を満たすので、
rBS1 がrαS1よりも大きい、すなわち(76)式を満
たせば自動的にrBS1 が(63)式の関係を満たすこと
になる。
Since rαS1 satisfies the relationship of equation (29),
If rBS1 is larger than rαS1, that is, if equation (76) is satisfied, rBS1 automatically satisfies the relation of equation (63).

【0772】(74)(75)式を(76)式に代入す
ることにより(77)式が得られる。
(74) By substituting equation (75) into equation (76), equation (77) is obtained.

【0773】ここで、αは固定部1先端面の点であるの
で、Lα、LB に(78)式、(79)式の関係が成り
立つ。
Here, since α is a point on the tip end surface of the fixed portion 1, the relations of equations (78) and (79) hold for Lα and LB.

【0774】(33)式、或いは(36)式、或いは
(39)式、或いは(42)式の条件を満たし、且つ
(61)式を満たすよう光学系を設計した赤外センサ
が、あらゆる先端面以外の点からの放射光も受光しない
ためには、B各点について(77)式の関係が成り立つ
必要がある。
The infrared sensor which satisfies the condition of the expression (33), the expression (36), the expression (39), or the expression (42) and the optical system designed so as to satisfy the expression (61) can be used at any leading edge. In order not to receive the radiated light from points other than the surface, the relationship of the equation (77) needs to be established for each point B.

【0775】したがって、(61)式、(79)式の関
係を考慮することにより、(80)式が成り立つ必要が
ある。
Therefore, it is necessary to satisfy Expression (80) by considering the relationship between Expressions (61) and (79).

【0776】以上のように、固定部1から放射される光
を赤外受光素子4で受光しないためには(33)式、或
いは(36)式、或いは(39)式、或いは(42)式
の条件を満たし、且つ(61)式を満たし、さらに(8
1)式を満たす必要がある。
As described above, in order to prevent the light radiated from the fixed portion 1 from being received by the infrared light receiving element 4, the expression (33), the expression (36), the expression (39), or the expression (42) And the condition (61) is satisfied, and (8)
It is necessary to satisfy the expression 1).

【0777】赤外受光素子4を、(33)式あるいは
(36)式あるいは(39)式あるいは(42)式で与
えられる量だけ反射型回折レンズ6の焦点面から離して
設け、かつ(61)式と(81)式を満たす光学設計に
することによって、固定部から放射される赤外線を赤外
受光素子4で受光せずに被測定物体から放射光のみを赤
外受光素子4で受光させることができるため、固定部の
温度変化に起因する測定誤差を防ぐことができる。
The infrared light receiving element 4 is provided away from the focal plane of the reflection type diffraction lens 6 by an amount given by the expression (33), (36), (39), or (42), and (61) ) And (81), the infrared light emitted from the fixed object is not received by the infrared light receiving element 4 but only the radiated light from the measured object is received by the infrared light receiving element 4. Therefore, it is possible to prevent a measurement error caused by a temperature change of the fixed portion.

【0778】なお、筐体9と固定部1、レンズ開口絞り
2は一体であっても構わない。
[0778] The housing 9, the fixed portion 1, and the lens aperture stop 2 may be integrated.

【0779】図42、43、44は本発明の第32の実
施例における赤外センサの光学系を示すものである。図
42、43、44において、6は反射型回折レンズ、4
は赤外線受光素子、9は筐体、1は穴の内部など凹部に
ある受光したい領域に赤外センサを固定して向けるため
の固定部、2は反射型回折レンズ6の有効領域を決める
ためのレンズ開口絞り、α、α’はレンズ開口絞り2の
縁からこの縁と光軸に対して同じ側の固定部1内面へ接
する直線が固定部先端面と交わる点、Aは固定部1先端
の点、Bは固定部1の先端以外の点、Fは反射型回折レ
ンズ6の焦点、Fα、Fα’はそれぞれ反射型回折レン
ズ6によるα、α’の像点、FA は反射型回折レンズ6
によるAの像点、FB は反射型回折レンズ6によるBの
像点、K1 αはαから光軸に対して同じ側のレンズ開口
絞り2の開口部の縁を通過してFαへ進行する光(マー
ジナル光線)の光路、K2 αはαから光軸と平行に進ん
で焦点Fを通過してFαに到達する光の光路、K3 αは
αから反射型回折レンズ6の中心を通過してFαに到達
する光の光路、K4 αはαから光軸を挟んで反対側のレ
ンズ開口絞り2の開口部の縁を通過してFαに到達する
光(マージナル光線)の光路、K1AはAから光軸に対し
て同じ側のレンズ開口絞り2の開口部の縁を通過してF
A へ進行する光(マージナル光線)の光路、K2AはAか
ら光軸と平行に進んで焦点Fを通過してFA に到達する
光の光路、K3AはAから反射型回折レンズ6の中心を通
過してFA に到達する光の光路、K4AはAから光軸を挟
んで反対側のレンズ開口絞り2の開口部の縁を通過して
FA に到達する光(マージナル光線)の光路、K1BはB
から光軸に対して同じ側のレンズ開口絞り2の開口部の
縁を通過してFB へ進行する光(マージナル光線)の光
路、K2BはBから光軸と平行に進んで焦点Fを通過して
FB に到達する光の光路、K3BはBから反射型回折レン
ズ6の中心を通過してFB に到達する光の光路、K4Bは
Bから光軸を挟んで反対側のレンズ開口絞り2の開口部
の縁を通過してFB に到達する光(マージナル光線)の
光路、FαS4は光路K4 αと受光面との交点、FAS4 は
光路K4Aと受光面との交点、FBS4 は光路K4Bとセンサ
面との交点、FαS1は光路K1Aと受光面との交点、FBS
1 は光路K1Bとセンサ面との交点、rαはα点での固定
部1の開口半径、rA はA点での固定部1の開口半径、
rB はB点での固定部1の開口半径、r2 はレンズ開口
絞り2の開口半径、r3 α4 は光路K4 αの反射型回折
レンズ6における光軸からの距離、r3A4 は光路K4Aの
反射型回折レンズ6における光軸からの距離、r3B4 は
光路K4Bの反射型回折レンズ6における光軸からの距
離、r3 α1 は光路K1 αの反射型回折レンズ6におけ
る光軸からの距離、r3B1 は光路K1Bの反射型回折レン
ズ6における光軸からの距離、rsは赤外受光素子4の半
径、rαS4はFαS4と光軸との距離、rAS4 はFAS4 と
光軸との距離、rBS4 はFBS4 と光軸との距離、rαS1
はFαS1と光軸との距離、rBS1 はFBS1 と光軸との距
離、rαF はFαと光軸との距離、rAFはFA と光軸と
の距離、rBFはFB と光軸との距離、L αはαからレン
ズ開口絞り2までの距離、LAはAからレンズ開口絞り2
までの距離、LB はBからレンズ開口絞り2までの距
離、L2 はレンズ開口絞り2から反射型回折レンズ6ま
での距離、fは反射型回折レンズ6の焦点距離、L3 は
Fから赤外受光素子4までの距離、LαF は反射型回折
レンズ6からFαまでの距離、LAFは反射型回折レンズ
6からFA までの距離、LBFは反射型回折レンズ6から
FB までの距離である。
FIGS. 42, 43 and 44 show an optical system of an infrared sensor according to the 32nd embodiment of the present invention. 42, 43 and 44, 6 is a reflection type diffraction lens, 4
Is an infrared light receiving element, 9 is a housing, 1 is a fixing portion for fixing and directing the infrared sensor to a light receiving region in a concave portion such as the inside of a hole, and 2 is a device for determining an effective region of the reflection type diffraction lens 6. Α, α ′ are points where a straight line contacting the edge of the lens aperture stop 2 from the edge of the lens aperture stop 2 to the inner surface of the fixed portion 1 on the same side with respect to the optical axis intersects with the front surface of the fixed portion, and A is the tip of the fixed portion 1 Point, B is a point other than the tip of the fixed part 1, F is the focal point of the reflection type diffraction lens 6, Fα and Fα ′ are the image points of α and α ′ by the reflection type diffraction lens 6, respectively, and FA is the reflection type diffraction lens 6.
Is the image point of A, FB is the image point of B by the reflective diffraction lens 6, and K1α is the light traveling from α to Fα through the edge of the aperture of the lens aperture stop 2 on the same side with respect to the optical axis. The optical path of (marginal ray), K2α is the optical path of light traveling parallel to the optical axis from α and passing through the focal point F and reaching Fα, and K3α is Fα passing from α and passing through the center of the reflective diffractive lens 6. K4α is an optical path of light (marginal ray) passing through the edge of the opening of the lens aperture stop 2 on the opposite side from α with respect to the optical axis and reaching Fα, and K1A is an optical path from A. Passing through the edge of the aperture of the lens aperture stop 2 on the same side with respect to the axis,
The optical path of the light (marginal ray) traveling to A, K2A is the optical path of the light traveling parallel to the optical axis from A and passing through the focal point F to reach FA, and K3A is passing the center of the reflective diffractive lens 6 from A. K4A is the optical path of the light that reaches FA, K4A is the optical path of the light (marginal ray) that passes through the edge of the opening of the lens aperture stop 2 on the opposite side of the optical axis from A and reaches FA, and K1B is B
K2B passes through the edge of the aperture of the lens aperture stop 2 on the same side with respect to the optical axis and travels to FB (marginal ray). K2B travels from B in parallel with the optical axis and passes through the focal point F. K3B is the optical path of light that reaches FB from B through the center of the reflective diffractive lens 6, and K4B is the aperture of the lens aperture stop 2 on the opposite side of the optical axis from B. The optical path of the light (marginal ray) passing through the edge of the part and reaching FB, FαS4 is the intersection of the optical path K4α with the light receiving surface, FAS4 is the intersection of the optical path K4A and the light receiving surface, and FBS4 is the optical path K4B and the sensor surface. , The intersection of the optical path K1A and the light receiving surface, FBS
1 is the intersection of the optical path K1B and the sensor surface, rα is the opening radius of the fixed part 1 at the point α, rA is the opening radius of the fixed part 1 at the point A,
rB is the aperture radius of the fixed portion 1 at the point B, r2 is the aperture radius of the lens aperture stop 2, r3 .alpha.4 is the distance of the optical path K4 .alpha. from the optical axis of the reflective diffraction lens 6, and r3A4 is the reflective diffraction of the optical path K4A. R3B4 is the distance of the optical path K4B from the optical axis of the reflective diffraction lens 6, r3 α1 is the distance of the optical path K1 α from the optical axis of the reflective diffractive lens 6, and r3B1 is the distance of the optical path K1B. The distance from the optical axis in the reflective diffraction lens 6, rs is the radius of the infrared light receiving element 4, rαS4 is the distance between FαS4 and the optical axis, rAS4 is the distance between FAS4 and the optical axis, and rBS4 is the distance between FBS4 and the optical axis. Distance, rαS1
Is the distance between FαS1 and the optical axis, rBS1 is the distance between FBS1 and the optical axis, rαF is the distance between Fα and the optical axis, rAF is the distance between FA and the optical axis, rBF is the distance between FB and the optical axis, L α is the distance from α to the lens aperture stop 2, and LA is the distance from A to the lens aperture stop 2.
, LB is the distance from B to the lens aperture stop 2, L2 is the distance from the lens aperture stop 2 to the reflective diffractive lens 6, f is the focal length of the reflective diffractive lens 6, and L3 is the infrared light from F. LαF is the distance from the reflective diffractive lens 6 to Fα, LAF is the distance from the reflective diffractive lens 6 to FA, and LBF is the distance from the reflective diffractive lens 6 to FB.

【0780】固定部1上のαから放射される赤外光を仮
想し、この光を受光しないよう以下に示すように赤外受
光素子4の位置を決める。
[0780] The infrared light emitted from α on the fixed portion 1 is assumed, and the position of the infrared light receiving element 4 is determined as described below so as not to receive this light.

【0781】αから放射される光は光路K1 α、K2
α、K3 α、K4 αなどを通ってαの像点Fαに到達す
る。幾何光学で周知の通り、αの像点Fαは光軸を挟ん
でαと反対側に形成される。図42中に示すように、光
路K2 αを通る光は、反射型回折レンズ6を通過してF
で光軸と交叉してFαに到達し光軸から離れていく。同
じように、光路K1 αを通る光は、反射型回折レンズ6
を通過して光軸と交叉してFαに到達し光軸から離れて
いく。光路K3 αを通る光は、反射型回折レンズ6で光
軸と交叉してFαに到達し光軸から離れていく。光路K
4 αを通る光は、光軸と交叉して反射型回折レンズ6を
通過し、反射型回折レンズ6を通過してからは光軸と交
叉せずにFαに到達し、その後光軸に近づくかあるいは
遠ざかっていく。このように、αの像点Fαよりも反射
型回折レンズから離れた位置でαから放射される光が通
過しない領域が存在する。この、αの像点Fαよりも反
射型回折レンズ6から離れた位置に赤外受光素子4を設
置することで、αから放射される光を受光しない赤外セ
ンサが得られる。以下、反射型回折レンズ6の焦点から
受光面までの距離L3 を求める。
The light radiated from α has optical paths K1 α, K2
It reaches the image point Fα of α through α, K3α, K4α and the like. As is well known in geometrical optics, the image point Fα of α is formed on the opposite side of α with respect to the optical axis. As shown in FIG. 42, the light passing through the optical path K2α passes through the reflection type
Crosses the optical axis to reach Fα and moves away from the optical axis. Similarly, the light passing through the optical path K1α is reflected by the reflection type diffraction lens 6.
And crosses the optical axis to reach Fα and moves away from the optical axis. The light passing through the optical path K3α crosses the optical axis by the reflective diffraction lens 6, reaches Fα, and moves away from the optical axis. Optical path K
The light passing through 4α crosses the optical axis and passes through the reflective diffractive lens 6, and after passing through the reflective diffractive lens 6, reaches Fα without crossing the optical axis and thereafter approaches the optical axis. Or go away. As described above, there is an area where the light emitted from α does not pass at a position farther from the reflective diffraction lens than the image point Fα of α. By installing the infrared light receiving element 4 at a position farther from the reflection type diffraction lens 6 than the image point Fα of α, an infrared sensor that does not receive light emitted from α can be obtained. Hereinafter, the distance L3 from the focal point of the reflection type diffraction lens 6 to the light receiving surface is obtained.

【0782】赤外受光素子4はFαよりも反射型回折レ
ンズ6から遠い。この時、(82)式、(83)式が成
り立つ。図42に示すように、受光面はFαよりも反射
型回折レンズ6から遠いので、αからFαまでの各光路
のうち受光面で赤外受光素子4に最も近づくものはK4
αである。したがって、αからの光を赤外受光素子4で
受光しないためには、(84)式を満たす必要がある。
[0782] The infrared light receiving element 4 is farther from the reflective diffraction lens 6 than Fα. At this time, equations (82) and (83) hold. As shown in FIG. 42, since the light receiving surface is farther from the reflective diffraction lens 6 than Fα, the light receiving surface closest to the infrared light receiving element 4 among the optical paths from α to Fα is K4
α. Therefore, in order for the infrared light receiving element 4 not to receive the light from α, it is necessary to satisfy the expression (84).

【0783】ここで、幾何光学で周知の通りr3 α4 、
rαF 、LαF 、rαS4、L3 、fは幾何関係として
(85)式、(86)式を満たす。
Here, as is well known in geometrical optics, r3 α4,
rαF, LαF, rαS4, L3, and f satisfy the equations (85) and (86) as geometric relationships.

【0784】(86)式を(84)式へ代入することで
(87)式が得られる。
By substituting equation (86) into equation (84), equation (87) is obtained.

【0785】(83)(87)式から、αから放射され
る光を赤外受光素子4で受光しないための条件は(8
8)式となる。
From the equations (83) and (87), the condition for not receiving the light radiated from α by the infrared light receiving element 4 is (8
8)

【0786】さらに、幾何光学で周知の通り、rα、L
α、L2 、rαF 、LαF は幾何関係として(89)
式、(90)式を満たす。
Further, as is well known in geometrical optics, rα, L
α, L2, rαF, and LαF are expressed as a geometric relationship (89)
Equation (90) is satisfied.

【0787】(90)式を(88)式へ代入することに
より、αから放射される光を赤外受光素子4で受光しな
いための条件は(91)式となる。
[0787] By substituting the equation (90) into the equation (88), the condition for not receiving the light radiated from α by the infrared receiving element 4 becomes the equation (91).

【0788】また、ガウスの公式から(92)式、(9
3)式が成り立つ。
Also, from Gauss's formula, equation (92), (9
3) Equation holds.

【0789】(93)式を(91)式に代入することに
より、αから放射される光を赤外受光素子4で受光しな
いための条件は(94)式となる。
By substituting the expression (93) into the expression (91), the condition for not receiving the light radiated from α by the infrared light receiving element 4 becomes the expression (94).

【0790】また、幾何光学で周知の通り、r2 、r
α、Lα、r3 α4 、L2 は幾何関係として(95)
式、(96)式を満たす。
As is well known in geometrical optics, r 2, r
α, Lα, r3α4, L2 are expressed as a geometric relationship (95)
Equation (96) is satisfied.

【0791】(96)式を(94)式へ代入することに
より、αから放射される光を赤外受光素子4で受光しな
いための条件は(97)式となる。
By substituting the expression (96) into the expression (94), the condition for not receiving the light radiated from α by the infrared light receiving element 4 becomes the expression (97).

【0792】以上のように、αから放射される光を赤外
受光素子4で受光しないためには、(88)式、或いは
(91)式、或いは(94)式、或いは(97)式の条
件を満たすよう光学系を設計する必要がある。
As described above, in order to prevent the light radiated from α from being received by the infrared light receiving element 4, the expression (88), the expression (91), the expression (94), or the expression (97) is used. It is necessary to design an optical system to satisfy the conditions.

【0793】(88)式、或いは(91)式、或いは
(94)式、或いは(97)式の条件を満たすよう光学
系を設計した赤外センサが、固定部のα以外の点からの
放射光も受光しない、すなわち固定部のあらゆる点から
放射される光も受光しない条件を示す。そのために、図
43、44を用いてA、Bからの光を受光しない条件を
以下に求める。
The infrared sensor whose optical system is designed to satisfy the conditions of the expression (88), the expression (91), the expression (94), or the expression (97) emits light from a point other than α on the fixed portion. A condition is shown in which no light is received, that is, no light emitted from any point of the fixed portion is received. For this purpose, conditions for not receiving light from A and B will be determined below with reference to FIGS.

【0794】まず、図43により、Aから放射される光
を受光しない条件を求める。Aから反射型回折レンズ6
までの距離とαから反射型回折レンズ6間での距離は等
しいので、幾何光学で周知の通り反射型回折レンズ6に
よるA、αの像点FA 、Fαは同一面内に形成される。
従って、受光面がFαよりも反射型回折レンズ6から遠
いので、受光面はFA よりも遠くになる。そのため、図
43に示すようにAからFA までの各光路のうち受光面
で赤外受光素子4に最も近づくものはK4A である。A
から放射される光を赤外受光素子4で受光しないために
は、K4Aと受光面との交点であるFAS4 と光軸との距離
rAS4 がrs よりも大きい必要がある。
First, referring to FIG. 43, a condition for not receiving light emitted from A is determined. A to reflective diffractive lens 6
And the distance between α and the reflection-type diffractive lens 6 are equal, so that the image points FA and Fα of A and α by the reflection-type diffractive lens 6 are formed in the same plane as is well known in geometrical optics.
Accordingly, since the light receiving surface is farther from the reflection type diffraction lens 6 than Fα, the light receiving surface is farther than FA. Therefore, as shown in FIG. 43, the light path closest to the infrared light receiving element 4 on the light receiving surface among the light paths from A to FA is K4A. A
In order not to receive the light radiated from the infrared light receiving element 4, the distance rAS4 between the optical axis and FAS4, which is the intersection point between K4A and the light receiving surface, needs to be larger than rs.

【0795】つまり(98)式が成り立つ必要がある。That is, the expression (98) needs to be satisfied.

【0796】また、幾何光学で周知の通り、r3A4 、r
AF、LAF、rAs4 、f、L3 は幾何関係として(99)
式、(100)式を満たす。
As is well known in geometrical optics, r3A4, r3
AF, LAF, rAs4, f, and L3 are expressed as a geometric relationship (99)
Equation (100) is satisfied.

【0797】また、幾何光学で周知の通りrA 、LA 、
L2 、rAF、LAFは幾何関係として(101)式、(1
02)式を満たす。
Also, as is well known in geometrical optics, rA, LA,
L2, rAF, and LAF are expressed by the following equation (101) as a geometric relationship.
02) is satisfied.

【0798】(102)式を(100)式に代入するこ
とにより(103)式が得られる。
By substituting equation (102) into equation (100), equation (103) is obtained.

【0799】また、ガウスの公式から(104)式、、
(105)式が成り立つ。
From Gauss's formula, equation (104),
Equation (105) holds.

【0800】(105)式を(103)式に代入するこ
とにより(106)式が得られる。
The equation (106) is obtained by substituting the equation (105) into the equation (103).

【0801】また、幾何光学で周知の通り、r2 、rA
、LA 、r3A4 、L2 は幾何関係として(107)
式、(108)式を満たす。
As is well known in geometrical optics, r2, rA
, LA, r3A4, and L2 are expressed as geometric relationships (107)
Equation (108) is satisfied.

【0802】(108)式を(106)式に代入するこ
とによって(109)式が得られる。
By substituting equation (108) into equation (106), equation (109) is obtained.

【0803】rAS4 と同じくrαS4は(110)式のよ
うになる。
[0813] Like rAS4, rαS4 is given by equation (110).

【0804】rαS4は(84)式の関係を満たすので、
(111)式を満たせば、自動的にrAS4 が(98)式
の関係を満たすことになる。
Since rαS4 satisfies the relationship of equation (84),
If equation (111) is satisfied, rAS4 automatically satisfies the relation of equation (98).

【0805】(109)(110)式を(111)式に
代入することにより(112)式が得られる。
(109) By substituting equation (110) into equation (111), equation (112) is obtained.

【0806】Aは固定部先端の点で、αはレンズ開口絞
り2の縁からこの縁と光軸に対して同じ側の固定部1内
面へ接する直線が固定部先端面と交わる点であるので、
レンズ開口絞り2からA、αまでの距離は相等しく(1
13)式が成り立ち、光軸からAまでの距離は光軸から
αまでの距離以上であり(114)式が成り立つ。
A is the point at the tip of the fixed part, and α is the point at which the straight line contacting the edge of the lens aperture stop 2 and the inner surface of the fixed part 1 on the same side with respect to the optical axis intersects the tip of the fixed part. ,
The distances from the lens aperture stop 2 to A and α are equal (1
Expression 13) holds, and the distance from the optical axis to A is equal to or greater than the distance from the optical axis to α, and Expression (114) holds.

【0807】(113)式より、(112)式の条件は
(115)式のようになる。
From the expression (113), the condition of the expression (112) is as shown in the expression (115).

【0808】(114)式より、(115)式の条件は
(116)式、(117)式のようになる。
From the expression (114), the conditions of the expression (115) are as shown in the expressions (116) and (117).

【0809】(88)式、或いは(91)式、或いは
(94)式、或いは(97)式の条件を満たすよう光学
定数や各位置関係を設計した赤外センサが、固定部先端
Aからの放射光も受光しないためには、(117)式の
条件を満たす光学設計である必要がある。
An infrared sensor designed with optical constants and respective positional relationships so as to satisfy the conditions of the expression (88), the expression (91), the expression (94), or the expression (97) is used. In order not to receive the radiated light, the optical design needs to satisfy the condition of the expression (117).

【0810】次に、Bから放射される光を受光しない条
件を求める。Bから放射される光はK1B、K2B、K3B、
K4Bなどを通ってBの像点FB に到達する。BからFB
までの各光路のうち受光面で赤外受光素子4に最も近づ
くものは、図43に示すように像点FB が受光面よりも
反射型回折レンズ6に近い場合にはK4Bであり、図44
に示すように像点FB が受光面よりも反射型回折レンズ
6に近い場合はK1Bである。
Next, a condition for not receiving the light emitted from B is determined. The light emitted from B is K1B, K2B, K3B,
It reaches the image point FB of B through K4B and the like. B to FB
The light path closest to the infrared light receiving element 4 on the light receiving surface is K4B when the image point FB is closer to the reflective diffraction lens 6 than the light receiving surface as shown in FIG.
When the image point FB is closer to the reflection type diffraction lens 6 than the light receiving surface as shown in FIG.

【0811】まず図43に示すように、FB が受光面よ
りも反射型回折レンズ6に近く、したがってBからFB
までの各光路のうち受光面で赤外受光素子4に最も近づ
くものがK4Bである場合について、Bから放射される光
を赤外受光素子4で受光しない条件を示す。
First, as shown in FIG. 43, FB is closer to the reflection type diffractive lens 6 than the light receiving surface.
In the case where K4B is the light receiving surface closest to the infrared light receiving element 4 among the light paths up to K4B, the conditions under which the light emitted from B is not received by the infrared light receiving element 4 are shown.

【0812】Bから放射される光を赤外受光素子4で受
光しないためには、K4Bと受光面との交点であるFBS4
と光軸との距離rBS4 がrs よりも大きい必要がある。
つまり(118)式が成り立つ必要がある。
In order for the infrared light receiving element 4 not to receive the light radiated from B, it is necessary to use the FBS4 at the intersection of K4B and the light receiving surface.
The distance rBS4 between the optical axis and the optical axis needs to be larger than rs.
That is, equation (118) needs to be satisfied.

【0813】また、幾何光学で周知の通り、r3B4 、r
BF、LBF、rBs4 、f、L3 は幾何関係として(11
9)式、(120)式を満たす。
Also, as is well known in geometrical optics, r3B4, r3
BF, LBF, rBs4, f, and L3 are represented as (11
Equations 9) and (120) are satisfied.

【0814】また、幾何光学で周知の通りrB 、LB 、
L2 、rBF、LBFは幾何関係として(121)式、(1
22)式を満たす。
Also, as is well known in geometrical optics, rB, LB,
L2, rBF, and LBF are expressed by the following equation (121) as a geometric relationship.
22) Formula is satisfied.

【0815】(122)式を(120)式に代入するこ
とにより(123)式が得られる。
By substituting equation (122) into equation (120), equation (123) is obtained.

【0816】また、ガウスの公式から(124)式、
(125)式が成り立つ。
Also, from Gauss's formula, equation (124)
Equation (125) holds.

【0817】(125)式を(123)式に代入するこ
とにより(126)式が得られる。
By substituting equation (125) for equation (123), equation (126) is obtained.

【0818】また、幾何光学で周知の通り、r2 、rB
、LB 、r3B4 、L2 は幾何関係として(127)
式、(128)式を満たす。
As is well known in geometrical optics, r2, rB
, LB, r3B4, and L2 are expressed as geometric relationships (127)
Equation (128) is satisfied.

【0819】(128)式を(126)式に代入するこ
とによって(129)式が得られる。
By substituting equation (128) into equation (126), equation (129) is obtained.

【0820】rBS4 と同じくrαS4は(130)式のよ
うになる。
[0820] Similarly to rBS4, rαS4 is given by equation (130).

【0821】rαS4は(84)式の関係を満たすので、
(131)式を満たせば、自動的にrBS4 が(118)
式の関係を満たすことになる。
Since rαS4 satisfies the relationship of equation (84),
If equation (131) is satisfied, rBS4 automatically becomes (118)
This satisfies the relationship of the expression.

【0822】(129)(130)式を(131)式に
代入することにより(132)式が得られる。
(129) By substituting equation (130) into equation (131), equation (132) is obtained.

【0823】ここで、αは固定部1先端面の点であるの
で、Lα、LB に(133)式、(134)式の関係が
成り立つ。
Here, since α is a point on the tip end surface of the fixed part 1, the relations of the equations (133) and (134) are established for Lα and LB.

【0824】(88)式、或いは(91)式、或いは
(94)式、或いは(97)式の条件を満たし、(11
7)式の条件をよう光学定数や各位置関係を設計した赤
外センサが、固定部の先端以外の点からの放射光も受光
しない、すなわち固定部のあらゆる点から放射される光
も受光しないためには、あらゆるBについて(132)
式の関係が成り立つ必要がある。したがって、(13
4)式(117)式を考慮して、(135)式が成り立
つ必要がある。
The conditions of Expression (88), Expression (91), Expression (94), or Expression (97) are satisfied, and (11)
The infrared sensor designed with the optical constants and each positional relationship according to the condition of the expression 7) does not receive the light emitted from any point other than the tip of the fixed part, that is, does not receive the light emitted from any point of the fixed part. To do this, for any B (132)
It is necessary that the relationship of the expressions hold. Therefore, (13
4) In consideration of equation (117), equation (135) needs to be satisfied.

【0825】以上のように、固定部1から放射される光
を赤外受光素子4で受光しないためには(88)式、或
いは(91)式、或いは(94)式、或いは(97)式
の条件を満たし、且つ(117)式の条件を満たし、さ
らに(136)式を満たす必要がある。
As described above, in order to prevent the light radiated from the fixed portion 1 from being received by the infrared receiving element 4, the expression (88), the expression (91), the expression (94), or the expression (97) is used. Must be satisfied, the condition of expression (117) must be satisfied, and the expression (136) must be satisfied.

【0826】次に、図44に示すように、FB が受光面
よりも反射型回折レンズ6から遠く、したがってBから
FB までの各光路のうち受光面で赤外受光素子4に最も
近づくものがK1Bである場合について、Bから放射され
る光を赤外受光素子4で受光しない条件を示す。
Next, as shown in FIG. 44, FB is farther from the reflection type diffractive lens 6 than the light receiving surface, and therefore, among the optical paths from B to FB, the one closest to the infrared light receiving element 4 in the light receiving surface. In the case of K1B, a condition that light emitted from B is not received by the infrared light receiving element 4 is shown.

【0827】Bから放射される光を赤外受光素子4で受
光しないためには、K1Bと受光面との交点であるFBS1
と光軸との距離rBS1 がrs よりも大きい必要がある。
つまり(137)式が成り立つ必要がある。
In order to prevent the light radiated from B from being received by the infrared light receiving element 4, it is necessary to set FBS1 at the intersection of K1B and the light receiving surface.
The distance rBS1 between the optical axis and the optical axis needs to be larger than rs.
That is, equation (137) needs to be satisfied.

【0828】また、幾何光学で周知の通り、r3B1 、r
B 、LB 、rBs1 、f、L3 は幾何関係として(13
8)式、(139)式を満たす。
As is well known in geometrical optics, r3B1,
B, LB, rBs1, f, and L3 are expressed as geometric relationships (13
8) and (139) are satisfied.

【0829】また、幾何光学で周知の通りrB 、LB 、
L2 、rBF、LBFは幾何関係として(140)式、(1
41)式を満たす。
Also, as is well known in geometrical optics, rB, LB,
L2, rBF, and LBF are expressed by the following equation (140) as a geometric relationship.
41) Formula is satisfied.

【0830】(141)式を(139)式に代入するこ
とにより(142)式が得られる。
By substituting equation (141) into equation (139), equation (142) is obtained.

【0831】また、ガウスの公式から(143)式、
(144)式が成り立つ。
Also, from Gauss's formula, equation (143)
Equation (144) holds.

【0832】(144)式を(142)式に代入するこ
とにより(145)式が得られる。
By substituting equation (144) into equation (142), equation (145) is obtained.

【0833】また、幾何光学で周知の通り、r2 、rB
、LB 、r3B1 、L2 は幾何関係として(146)
式、(147)式を満たす。
Also, as is well known in geometrical optics, r2, rB
, LB, r3B1 and L2 are represented as geometric relationships (146)
Equation (147) is satisfied.

【0834】(147)式を(145)式に代入するこ
とによって(148)式が得られる。
By substituting equation (147) into equation (145), equation (148) is obtained.

【0835】rBS1 と同じくrαS1は(149)式のよ
うになる。
[0832] Like rBS1, rαS1 is given by equation (149).

【0836】ここで、αからFαまでの各光路のうち受
光面で赤外受光素子4に最も近づくものはK4 αであ
り、(150)式が成り立つ。
Here, of the respective optical paths from α to Fα, the one closest to the infrared light receiving element 4 on the light receiving surface is K4α, and the equation (150) is established.

【0837】rαS4は(84)式の関係を満たすので、
(151)式を満たせば、自動的にrBS1 が(137)
式の関係を満たすことになる。
Since rαS4 satisfies the relationship of equation (84),
If equation (151) is satisfied, rBS1 automatically becomes (137)
This satisfies the relationship of the expression.

【0838】(148)(149)式を(151)式に
代入することにより(152)式が得られる。
(148) By substituting equation (149) into equation (151), equation (152) is obtained.

【0839】ここで、αは固定部1先端面の点であるの
で、Lα、LB に(153)式、(154)式の関係が
成り立つ。
Here, since α is a point on the tip end surface of the fixed portion 1, Lα and LB satisfy the relations of equations (153) and (154).

【0840】(88)式、或いは(91)式、或いは
(94)式、或いは(97)式の条件を満たし、且つ
(117)式と(136)式を満たす光学設計である赤
外センサが、固定部の先端面以外の点からの放射光も受
光しない、すなわち固定部のあらゆる点から放射される
光も受光しないためには、あらゆるBについて(15
2)式の関係が成り立つ必要がある。したがって、(1
54)式、(117)式を考慮して、(155)式が成
り立つ必要がある。
An infrared sensor having an optical design that satisfies the condition of the expression (88), the expression (91), the expression (94), or the expression (97) and the expressions (117) and (136) is used. In order to not receive the light emitted from any point other than the tip end surface of the fixed portion, that is, to not receive the light emitted from any point of the fixed portion, it is necessary to set (15
2) The relationship of the expression needs to be satisfied. Therefore, (1
The expression (155) needs to be satisfied in consideration of the expressions (54) and (117).

【0841】(156)式と、(136)式は等しい。
したがって、以上のように、固定部1から放射される光
を赤外受光素子4で受光しないためには(88)式、或
いは(91)式、或いは(94)式、或いは(97)式
の条件を満たし、且つ(117)式を満たし、さらに
(136)式を満たす必要がある。
The equations (156) and (136) are equal.
Therefore, as described above, in order to prevent the light radiated from the fixed portion 1 from being received by the infrared light receiving element 4, the expression (88), the expression (91), the expression (94), or the expression (97) is used. It is necessary to satisfy the condition, satisfy the expression (117), and further satisfy the expression (136).

【0842】以上のように本実施例によれば、赤外受光
素子4を、(88)式あるいは(91)式あるいは(9
4)式あるいは(97)式で与えられる量だけ反射型回
折レンズ6の焦点から離して設け、かつ(117)式と
(136)式を満たす光学設計にすることによって、固
定部1から放射される赤外線を赤外受光素子4で受光せ
ずに被測定物体から放射光のみを赤外受光素子4で受光
させることができるため、固定部の温度変化に起因する
測定誤差を防ぐことができる。
As described above, according to the present embodiment, the infrared light receiving element 4 is replaced by the expression (88), the expression (91) or the expression (9).
By providing an optical design that is provided away from the focal point of the reflective diffraction lens 6 by an amount given by the expression 4) or (97) and that satisfies the expressions (117) and (136), the radiation from the fixed unit 1 is obtained. Since only infrared radiation from the object to be measured can be received by the infrared light receiving element 4 without receiving infrared light by the infrared light receiving element 4, a measurement error due to a temperature change of the fixed portion can be prevented.

【0843】なお、筐体9と固定部1、レンズ開口絞り
2は一体であっても構わない。
[0843] The housing 9, the fixed portion 1, and the lens aperture stop 2 may be integrated.

【0844】図47は本発明の第33の実施例における
光センサを示すものである。光センサ中にはすでに説明
した赤外光、遠赤外光を受光し、検出する赤外センサも
含まれるが、これ以外に可視光、紫外光を受光し、検出
するセンサが含まれる。図1において、3は屈折レン
ズ、8は受光素子、9は筐体、A、A’は受光したい領
域と受光したくない領域の境界に位置する点、Bは受光
したくない領域の点、Fは屈折レンズの焦点、FA は屈
折レンズ3によるAの像点、FA'は屈折レンズ3による
A’の像点、FB は屈折レンズ3によるBの像点、K1A
はAから光軸に対して同じ側のレンズ開口絞り2の開口
部の縁を通過してFA へ進行する光(マージナル光線)
の光路、K2AはAから光軸と平行に進んで焦点Fを通過
してFA に到達する光の光路、K3AはAから屈折レンズ
3の中心を通過してFA に到達する光の光路、K4AはA
から光軸を挟んで反対側のレンズ開口絞り2の開口部の
縁を通過してFA に到達する光(マージナル光線)の光
路、K1A' はA’から光軸に対して同じ側のレンズ開口
絞り2の開口部の縁を通過してFA'へ進行する光(マー
ジナル光線)の光路、K2A' はA’から光軸と平行に進
んで焦点Fを通過してFA'に到達する光の光路、K3A'
はA’から屈折レンズ3の中心を通過してFA'に到達す
る光の光路、K4A' はAから光軸を挟んで反対側のレン
ズ開口絞り2の開口部の縁を通過してFA'に到達する光
(マージナル光線)の光路、K3BはBから屈折レンズ3
の中心を通過してFB に到達する光の光路、FX は光路
K1Aと光路K1A' の交点である。
FIG. 47 shows an optical sensor according to the thirty-third embodiment of the present invention. The optical sensor includes an infrared sensor that receives and detects the infrared light and the far-infrared light described above, but also includes a sensor that receives and detects visible light and ultraviolet light. In FIG. 1, 3 is a refraction lens, 8 is a light receiving element, 9 is a housing, A and A 'are points located at the boundary between a region where light reception is desired and a region where light reception is not desired, B is a point of a region where light reception is not desired, F is the focal point of the refractive lens, FA is the image point of A by the refractive lens 3, FA 'is the image point of A' by the refractive lens 3, FB is the image point of B by the refractive lens 3, K1A
Is a light (marginal ray) traveling from A to FA through the edge of the aperture of the lens aperture stop 2 on the same side with respect to the optical axis.
K2A is an optical path of light traveling from A to the optical axis and traveling through the focal point F to reach FA, K3A is an optical path of light from A passing through the center of the refractive lens 3 to reach FA, and K4A is Is A
K1A 'is an optical path of light (marginal ray) passing through the edge of the opening of the lens aperture stop 2 on the opposite side with respect to the optical axis and arriving at FA; K2A 'is an optical path of light (marginal ray) which passes through the edge of the opening of the aperture 2 and travels to FA'. Light path, K3A '
Is the optical path of light from A 'to reach FA' through the center of the refracting lens 3, and K4A 'is FA' passing through the edge of the opening of the lens aperture stop 2 on the opposite side of A from the optical axis. K3B is the refracting lens 3 from B
Is the optical path of the light that reaches the FB through the center of the optical path, and FX is the intersection of the optical paths K1A and K1A '.

【0845】測定したい領域から放射あるいは反射され
る光のみを受光素子で受光するような光学系を設計す
る。
[0845] An optical system is designed such that only light emitted or reflected from the region to be measured is received by the light receiving element.

【0846】受光素子8を筐体9に取り付け、屈折レン
ズ3を通過しない光を受光素子8で受光しないようにす
る。屈折レンズ3を通った光のみ受光する構成にした上
で以下の設計を行う。 Aから放射される光は光路K1
A、K2A、K3A、K4Aなどを通ってAの像点FA に到達
する。幾何光学で周知の通り、Aの像点FA は光軸を挟
んでAと反対側に形成される。図1中に示すように、光
路K2Aを通る光は、屈折レンズ3を通過してFで光軸と
交叉したのち光軸から離れながらFA に到達する。同じ
ように、光路K1Aを通る光は、屈折レンズ3を通過して
光軸と交叉したのち光軸から離れながらFA に到達す
る。光路K3Aを通る光は、屈折レンズ3で光軸と交叉し
たのち光軸から離れながらFA に到達する。光路K4Aを
通る光は、光軸と交叉して屈折レンズ3を通過し、屈折
レンズ3を通過してからは光軸と交叉せずにFA に到達
する。このように、光路K1Aと光軸が交叉する点FX よ
りも屈折レンズから離れた位置かつFA よりも屈折レン
ズ3に近い位置で、Aから放射される光が通過しない領
域が存在する。この領域は、FX とFA とFA'が形成す
る三角形の内側となる。この三角形の内側に受光素子8
を設置することで、A、A’から放射される光を受光し
ない光センサが得られる。
[0846] The light receiving element 8 is mounted on the housing 9 so that light that does not pass through the refractive lens 3 is not received by the light receiving element 8. The following design is performed after the configuration is such that only light passing through the refraction lens 3 is received. The light emitted from A is the optical path K1
A reaches the image point FA of A through A, K2A, K3A, K4A, and the like. As is well known in geometrical optics, the image point FA of A is formed on the opposite side of A with respect to the optical axis. As shown in FIG. 1, the light passing through the optical path K2A passes through the refraction lens 3, crosses the optical axis at F, and then reaches FA while leaving the optical axis. Similarly, light passing through the optical path K1A passes through the refraction lens 3, crosses the optical axis, and then reaches FA while leaving the optical axis. The light passing through the optical path K3A crosses the optical axis by the refraction lens 3, and then reaches FA while leaving the optical axis. The light passing through the optical path K4A crosses the optical axis and passes through the refraction lens 3, and after passing through the refraction lens 3, reaches the FA without crossing the optical axis. As described above, there is a region where the light emitted from A does not pass at a position farther from the refraction lens than the point FX where the optical path K1A intersects the optical axis and closer to the refraction lens 3 than FA. This region is inside the triangle formed by FX, FA and FA '. The light receiving element 8 is located inside the triangle.
Is provided, an optical sensor that does not receive light emitted from A and A ′ can be obtained.

【0847】受光したい領域の外側にある、受光したく
ない領域中のB点は、Aよりも光軸から遠いため、屈折
レンズ3によるBの像点FB がFA より光軸から遠くな
ることは周知の通りである。従って、FX とFA とFA'
が形成する三角形の内側に受光素子を設置することによ
ってA、A’から放射あるいは反射される光を受光しな
いようにすれば、自動的にBからの光も受光しない構成
となる。
[0847] The point B outside the area to receive light and in the area not to receive light is farther from the optical axis than A, so that the image point FB of B by the refracting lens 3 is farther from the optical axis than FA. As is well known. Therefore, FX, FA and FA '
If a light-receiving element is arranged inside the triangle formed by the light-receiving element so that light emitted or reflected from A and A 'is not received, light from B is not automatically received.

【0848】以上のように、FX とFA とFA'が形成す
る三角形の内側に受光素子8を設置することによって、
光軸付近の受光したい領域から放射あるいは反射される
光のみを受光するような光センサが得られる。
As described above, by installing the light receiving element 8 inside the triangle formed by FX, FA and FA ',
An optical sensor that receives only light emitted or reflected from a region near the optical axis that is desired to be received can be obtained.

【0849】図48は本発明の第34の実施例における
光センサを示すものである。光センサ中にはすでに説明
した赤外光、遠赤外光を受光し、検出する赤外センサも
含まれるが、これ以外に可視光、紫外光を受光し、検出
するセンサが含まれる。図2において、3は屈折レン
ズ、4は受光素子、9は筐体、A、A’は受光したい領
域と受光したくない領域の境界に位置する点、Bは受光
したくない領域の点、Fは屈折レンズの焦点、FA は屈
折レンズ3によるAの像点、FA'は屈折レンズ3による
A’の像点、FB は屈折レンズ3によるBの像点、K1A
はAから光軸に対して同じ側のレンズ開口絞り2の開口
部の縁を通過してFA へ進行する光(マージナル光線)
の光路、K2AはAから光軸と平行に進んで焦点Fを通過
してFA に到達する光の光路、K3AはAから屈折レンズ
3の中心を通過してFA に到達する光の光路、K4AはA
から光軸を挟んで反対側のレンズ開口絞り2の開口部の
縁を通過してFA に到達する光(マージナル光線)の光
路、K1A' はA’から光軸に対して同じ側のレンズ開口
絞り2の開口部の縁を通過してFA'へ進行する光(マー
ジナル光線)の光路、K2A' はA’から光軸と平行に進
んで焦点Fを通過してFA'に到達する光の光路、K3A'
はA’から屈折レンズ3の中心を通過してFA'に到達す
る光の光路、K4A' はAから光軸を挟んで反対側のレン
ズ開口絞り2の開口部の縁を通過してFA'に到達する光
(マージナル光線)の光路、K3BはBから屈折レンズ3
の中心を通過してFB に到達する光の光路、FX は光路
K1Aと光路K1A' の交点、FY は光路K4Aと光路K4A'
の交点である。
FIG. 48 shows an optical sensor according to a thirty-fourth embodiment of the present invention. The optical sensor includes an infrared sensor that receives and detects the infrared light and the far-infrared light described above, but also includes a sensor that receives and detects visible light and ultraviolet light. In FIG. 2, 3 is a refraction lens, 4 is a light receiving element, 9 is a housing, A and A 'are points located at a boundary between a region to receive light and a region not to receive light, B is a point in a region not to receive light, F is the focal point of the refractive lens, FA is the image point of A by the refractive lens 3, FA 'is the image point of A' by the refractive lens 3, FB is the image point of B by the refractive lens 3, K1A
Is a light (marginal ray) traveling from A to FA through the edge of the aperture of the lens aperture stop 2 on the same side with respect to the optical axis.
K2A is an optical path of light traveling from A to the optical axis and traveling through the focal point F to reach FA, K3A is an optical path of light from A passing through the center of the refractive lens 3 to reach FA, and K4A is Is A
K1A 'is an optical path of light (marginal ray) passing through the edge of the opening of the lens aperture stop 2 on the opposite side with respect to the optical axis and arriving at FA; K2A 'is an optical path of light (marginal ray) which passes through the edge of the opening of the aperture 2 and travels to FA'. Light path, K3A '
Is the optical path of light from A 'to reach FA' through the center of the refracting lens 3, and K4A 'is FA' passing through the edge of the opening of the lens aperture stop 2 on the opposite side of A from the optical axis. K3B is the refracting lens 3 from B
The optical path of light reaching the FB after passing through the center of the optical path, FX is the intersection of the optical paths K1A and K1A ', and FY is the optical path K4A and the optical path K4A'.
Is the intersection of

【0850】測定したい領域から放射あるいは反射され
る光のみを受光素子で受光するような光学系を設計す
る。
[0850] An optical system is designed such that only light emitted or reflected from the region to be measured is received by the light receiving element.

【0851】受光素子8を筐体9に取り付け、屈折レン
ズ3を通過しない光を受光素子8で受光しないようにす
る。屈折レンズ3を通った光のみ受光する構成にした上
で以下の設計を行う。 Aから放射される光は光路K1
A、K2A、K3A、K4Aなどを通ってAの像点FA に到達
する。幾何光学で周知の通り、Aの像点FA は光軸を挟
んでAと反対側に形成される。図2中に示すように、光
路K2Aを通る光は、屈折レンズ3を通過してFで光軸と
交叉してFA に到達し光軸から離れていく。同じよう
に、光路K1Aを通る光は、屈折レンズ3を通過して光軸
と交叉してFA に到達し光軸から離れていく。光路K3A
を通る光は、屈折レンズ3で光軸と交叉してFA に到達
し光軸から離れていく。光路K4Aを通る光は、光軸と交
叉して屈折レンズ3を通過し、屈折レンズ3を通過して
からは光軸と交叉せずにFA に到達し、その後光軸に近
づくかあるいは遠ざかっていく。このように、Aの像点
FA よりも屈折レンズから離れた位置でAから放射され
る光が通過しない領域が存在する。この領域は、FA よ
りも屈折レンズ3から遠い部分の光路K4Aと、FA'より
も屈折レンズ3から遠い部分の光路K4A' で挟まれた領
域である。この領域に光センサを設置することで、A、
A’から放射される光線を受光しない光学系が実現でき
る。
[0851] The light receiving element 8 is mounted on the housing 9 so that light not passing through the refractive lens 3 is not received by the light receiving element 8. The following design is performed after the configuration is such that only light passing through the refraction lens 3 is received. The light emitted from A is the optical path K1
A reaches the image point FA of A through A, K2A, K3A, K4A, and the like. As is well known in geometrical optics, the image point FA of A is formed on the opposite side of A with respect to the optical axis. As shown in FIG. 2, light passing through the optical path K2A passes through the refracting lens 3, crosses the optical axis at F, reaches FA, and leaves the optical axis. Similarly, light passing through the optical path K1A passes through the refraction lens 3, crosses the optical axis, reaches FA, and moves away from the optical axis. Optical path K3A
Passes through the refracting lens 3 and intersects the optical axis, reaches FA, and moves away from the optical axis. The light passing through the optical path K4A crosses the optical axis and passes through the refracting lens 3, and after passing through the refracting lens 3, reaches the FA without crossing the optical axis, and thereafter approaches or moves away from the optical axis. Go. As described above, there is a region where the light emitted from A does not pass at a position farther from the refraction lens than the image point FA of A. This region is a region sandwiched between an optical path K4A at a portion farther from the refraction lens 3 than FA and an optical path K4A 'at a portion farther from the refraction lens 3 than FA'. By installing an optical sensor in this area, A,
An optical system that does not receive light rays emitted from A ′ can be realized.

【0852】受光したい領域の外側にある、受光したく
ない領域中のBはAよりも光軸から遠いため、屈折レン
ズ3によるBの像点FB がFA より光軸から遠くなるこ
とは周知の通りである。従って、FA よりも屈折レンズ
3から遠い部分の光路K4Aと、FA'よりも屈折レンズ3
から遠い部分の光路K4A' で挟まれた領域内に受光素子
を設置することによってA、A’から放射される光線を
受光しないようにすれば、自動的にBから放射される光
線も受光しない構成となる。
It is well known that B in the region outside the region where light is to be received and not desired to be received is farther from the optical axis than A, so that the image point FB of B by the refracting lens 3 is farther from the optical axis than FA. It is on the street. Therefore, the optical path K4A at a portion farther from the refracting lens 3 than FA and the refracting lens 3 than FA '.
If a light-receiving element is installed in a region between the optical paths K4A 'far from the light-receiving element so as not to receive the light emitted from A and A', the light emitted from B is not automatically received. Configuration.

【0853】以上のように、FA よりも屈折レンズ3か
ら遠い部分の光路K4Aと、FA'よりも屈折レンズ3から
遠い部分の光路K4A' で挟まれた領域内に赤外受光素子
8を設置することによって、光軸付近の受光したい領域
から放射される光線のみを受光するような光センサが得
られる。
[0853] As described above, the infrared light receiving element 8 is installed in a region between the optical path K4A farther from the refraction lens 3 than FA and the light path K4A 'farther from the refraction lens 3 than FA'. By doing so, it is possible to obtain an optical sensor that receives only light rays emitted from a region near the optical axis that is desired to be received.

【0854】なお、実施例1から32まで赤外線を例に
挙げて説明したが、同じく光である可視光、紫外光など
に対しても同様の構成で小さい受光領域と大きい受光量
の両立を実現できる。
Although the first to thirty-second embodiments have been described using infrared light as an example, the same configuration can be used to realize both a small light receiving area and a large light receiving amount for visible light, ultraviolet light, and the like. it can.

【0855】[0855]

【発明の効果】以上のように、本発明の第一の赤外セン
サによれば、少なくとも、被測定物から放射される赤外
線を集光する集光素子と、前記集光素子で集光された赤
外線を受光する赤外受光素子と、前記集光素子と前記赤
外受光素子を保持する筐体とから構成され、前記赤外受
光素子を前記集光素子の焦点位置から離して設置するこ
とにより、受光領域を制限する。受光素子によって被測
定物から放射される赤外光を効率よく集光することがで
きるので、受光量を大きくできる。また、受光素子を、
集光素子の焦点位置から離して設置することで、不要な
領域から集光素子に入射する光を受光素子以外の位置へ
進行させることができ、受光領域を制限することができ
る。
As described above, according to the first infrared sensor of the present invention, at least the light condensing element for condensing the infrared light radiated from the object to be measured, and the light condensing by the light condensing element. An infrared light receiving element for receiving the infrared light, and a housing for holding the light collecting element and the infrared light receiving element, wherein the infrared light receiving element is set apart from a focal position of the light collecting element. With this, the light receiving area is limited. Since the infrared light emitted from the object to be measured can be efficiently collected by the light receiving element, the amount of received light can be increased. Also, the light receiving element is
By installing the light collecting element away from the focal position of the light collecting element, light incident on the light collecting element from an unnecessary area can be advanced to a position other than the light receiving element, and the light receiving area can be limited.

【0856】上記の赤外センサにおいて、前記赤外受光
素子を、被測定物面における受光領域の境界に位置する
点から光軸に対して前記境界に位置する点と同じ側の前
記集光素子の縁を通過して前記集光素子による前記境界
に位置する点の像点へ到達する光路と光軸との交点より
も前記集光素子から遠く且つ前記集光素子による前記境
界に位置する点の像点よりも前記集光素子に近い領域に
設置する。不要な領域からの赤外線を受光素子以外の点
へ集光することができ、受光領域を制限することができ
る。
[0856] In the above infrared sensor, the infrared light receiving element is located on the same side as the point located on the boundary with respect to the optical axis from the point located on the boundary of the light receiving region on the surface of the object to be measured. A point farther from the light-collecting element than the intersection of the optical path and the optical axis reaching the image point of the point located at the boundary by the light-collecting element through the edge of the light-collecting element and located at the boundary by the light-collecting element Is located in a region closer to the light-collecting element than the image point of. Infrared rays from unnecessary areas can be focused on points other than the light receiving element, and the light receiving area can be limited.

【0857】また、上記の赤外センサにおいて、前記赤
外受光素子を、前記境界に位置する点から光軸に対して
前記境界に位置する点と同じ側の前記集光素子の縁を通
過して前記集光素子による前記境界に位置する点の像点
へ到達する光路と光軸との交点と、前記集光素子による
前記境界に位置する点の2つの像点とで形成される三角
形内に設置する。この構成により、受光領域を光軸付近
に制限することができる。
[0857] In the infrared sensor described above, the infrared light receiving element passes through the edge of the light-collecting element on the same side as the point located at the boundary with respect to the optical axis from the point located at the boundary. The triangle formed by the intersection of the optical axis and the optical path reaching the image point of the point located at the boundary by the light-collecting element and the two image points of the point located at the boundary by the light-collecting element Installed in With this configuration, the light receiving area can be limited to the vicinity of the optical axis.

【0858】また、上記赤外センサにおいて、前記赤外
受光素子を、被測定物面における受光領域の境界に位置
する点の前記集光素子による像点よりも前記集光素子か
ら遠い領域に設置する。不要な領域からの赤外線を受光
素子以外の点へ集光することができ、受光領域を制限す
ることができる。
[0858] In the infrared sensor, the infrared light receiving element is located in a region farther from the light condensing element than an image point of the light condensing element at a point located on a boundary of the light receiving area on the object surface. I do. Infrared rays from unnecessary areas can be focused on points other than the light receiving element, and the light receiving area can be limited.

【0859】また、上記赤外センサにおいて、前記赤外
受光素子を、前記境界に位置する点から光軸を挟んで前
記境界に位置する点と反対側の前記集光素子の縁を通過
して前記集光素子による前記境界に位置する点の像点へ
到達する2つの光路で挟まれた領域に設置する。この構
成により、受光領域を光軸付近に制限することができ
る。
[0859] In the infrared sensor, the infrared light receiving element may be moved from a point located at the boundary through an edge of the light collecting element opposite to a point located at the boundary with the optical axis interposed therebetween. It is installed in a region sandwiched between two optical paths reaching an image point of a point located at the boundary by the light-collecting element. With this configuration, the light receiving area can be limited to the vicinity of the optical axis.

【0860】また、本発明の第二の赤外センサによれ
ば、少なくとも、被測定物から放射される赤外線を集光
する集光素子と、前記集光素子で集光された赤外線を受
光する赤外受光素子と、前記集光素子と前記赤外受光素
子を保持する筐体と、被測定物に向きを固定するための
固定部とから構成され、前記赤外受光素子を前記集光素
子の位置から離して設置することにより、受光領域を制
限する。受光素子によって被測定物から放射される赤外
光を効率よく集光することができるので、受光量を大き
くできる。また、受光素子を、集光素子の焦点位置から
離して設置することで、不要な領域から集光素子に入射
する光を受光素子以外の位置へ進行させることができ、
受光領域を制限することができる。
According to the second infrared sensor of the present invention, at least a light condensing element for condensing infrared light radiated from an object to be measured and an infrared light condensed by the light condensing element are received. An infrared light receiving element, a housing for holding the light collecting element and the infrared light receiving element, and a fixing portion for fixing a direction to an object to be measured; The light receiving area is limited by installing the device away from the position. Since the infrared light emitted from the object to be measured can be efficiently collected by the light receiving element, the amount of received light can be increased. Further, by installing the light receiving element away from the focal position of the light collecting element, light incident on the light collecting element from an unnecessary area can be advanced to a position other than the light receiving element,
The light receiving area can be limited.

【0861】また、上記赤外センサにおいて、前記赤外
受光素子を、被測定物面における受光領域の境界に位置
する点から光軸に対して前記境界に位置する点と同じ側
の前集光素子の縁を通過して前記集光素子による前記境
界に位置する点の像点へ到達する光路と光軸との交点よ
りも前記集光素子から遠く且つ前記集光素子による前記
境界に位置する点の像点よりも前記集光素子に近い領域
に設置する。不要な領域からの赤外線を受光素子以外の
点へ集光することができ、受光領域を制限することがで
きる。
[0861] In the infrared sensor, the infrared light receiving element may be arranged so that the front light-collecting element is located on the same side as the point located on the boundary with respect to the optical axis from the point located on the boundary of the light receiving area on the surface of the object to be measured. It is farther from the light-collecting element than the intersection of the optical path and the optical axis that passes through the edge of the element and reaches the image point of the point located at the boundary by the light-collecting element and is located at the boundary by the light-collecting element. It is installed in a region closer to the light-collecting element than a point image point. Infrared rays from unnecessary areas can be focused on points other than the light receiving element, and the light receiving area can be limited.

【0862】また、上記赤外センサにおいて、前記赤外
受光素子を、前記境界に位置する点から光軸に対して前
記境界に位置する点と同じ側の前記集光素子の縁を通過
して前記集光素子による前記境界に位置する点の像点へ
到達する光路と光軸との交点と、前記集光素子による前
記境界に位置する点の2つの像点とで形成される三角形
内に設置する。この構成により、受光領域を光軸付近に
制限することができる。
[0861] In the infrared sensor, the infrared light receiving element is moved from a point located at the boundary to an edge of the light-collecting element on the same side of the optical axis as a point located at the boundary. Within the triangle formed by the intersection of the optical path and the optical axis reaching the image point of the point located at the boundary by the light-collecting element, and two image points of the point located at the boundary by the light-collecting element Install. With this configuration, the light receiving area can be limited to the vicinity of the optical axis.

【0863】また、上記赤外センサにおいて、前記赤外
受光素子を、被測定物面における受光領域の境界に位置
する点の前記集光素子による像点よりも前記集光素子か
ら遠い領域に設置することを設置する。不要な領域から
の赤外線を受光素子以外の点へ集光することができ、受
光領域を制限することができる。
[0863] In the infrared sensor, the infrared light receiving element is located in a region farther from the light condensing element than an image point of the light condensing element at a point located on the boundary of the light receiving area on the object surface. Set up to do. Infrared rays from unnecessary areas can be focused on points other than the light receiving element, and the light receiving area can be limited.

【0864】また、上記赤外センサにおいて、前記赤外
受光素子を、前記境界に位置する点から光軸を挟んで前
記境界に位置する点と反対側の前記集光素子の縁を通過
して前記集光素子による前記境界に位置する点の像点へ
到達する2つの光路で挟まれた領域に設置する。この構
成により、受光領域を光軸付近に制限することができ
る。
[0864] In the infrared sensor, the infrared light-receiving element is moved from the point located at the boundary through the edge of the light-collecting element on the opposite side of the point located at the boundary across the optical axis. It is installed in a region sandwiched between two optical paths reaching an image point of a point located at the boundary by the light-collecting element. With this configuration, the light receiving area can be limited to the vicinity of the optical axis.

【0865】また、上記赤外センサにおいて、前記赤外
受光素子を、前記集光素子の縁から光軸に対して前記集
光素子の縁と同じ側の前記固定部の内壁に接するように
ひいた直線が前記固定部の先端の面と交叉する点から、
前記集光素子の縁を通過して前記固定部の先端の面と交
叉する点の前記集光素子による像点へ到達する光路と光
軸との交点よりも前記集光素子から遠く、且つ前記固定
部の先端の面と交叉する点の前記集光素子による像点よ
りも前記集光素子に近い領域に設置する。固定部以外の
領域を受光領域とすることができるため固定部の温度変
化の影響を受けない高精度な赤外センサが実現できる。
また、受光領域を固定部からの光を受光しない条件で最
大限に受光量を大きくできるので、S/Nが向上し検出
精度を高められる。
[0865] In the infrared sensor, the infrared light receiving element is connected to the inner wall of the fixed portion on the same side as the optical axis from the edge of the light collecting element with respect to the optical axis. From the point where the straight line intersects the surface of the tip of the fixed part,
The point passing through the edge of the light-collecting element and intersecting with the surface of the tip of the fixed portion is farther from the light-collecting element than the intersection of the optical path and the optical axis reaching the image point by the light-collecting element, and It is installed in a region closer to the light-collecting element than an image point of the light-collecting element at a point intersecting with the surface of the front end of the fixed portion. Since a region other than the fixed portion can be used as a light receiving region, a highly accurate infrared sensor which is not affected by a temperature change of the fixed portion can be realized.
Further, since the light receiving amount can be maximized in the light receiving area under the condition that the light from the fixed portion is not received, the S / N is improved and the detection accuracy can be improved.

【0866】また、上記赤外センサにおいて、前記赤外
受光素子を、前記集光素子の縁から光軸に対して前記集
光素子の縁と同じ側の前記固定部の内壁に接するように
ひいた直線が前記固定部の先端の面と交叉する点から前
記集光素子の縁を通過して前記固定部の先端の面と交叉
する点の前記集光素子による2つの像点へ到達する光路
が光軸と交叉する点と、前記固定部先端の面と交叉する
点の前記集光素子による2つの像点とで形成される三角
形の内側に設置する。固定部からの赤外線を受光素子以
外の点へ集光することができ、受光領域を光軸付近に制
限することができる。
[0866] In the infrared sensor, the infrared light receiving element is so arranged as to be in contact with the inner wall of the fixed portion on the same side as the edge of the light collecting element with respect to the optical axis from the edge of the light collecting element. An optical path that passes through the edge of the light-collecting element from a point where the straight line intersects the front end surface of the fixed portion to reach two image points of the light converging element at a point where the straight line intersects the front end surface of the fixed portion; Are located inside a triangle formed by a point intersecting with the optical axis and two image points of the condensing element at a point intersecting with the surface of the fixed portion tip. Infrared rays from the fixed part can be focused on points other than the light receiving element, and the light receiving area can be limited to the vicinity of the optical axis.

【0867】また、上記赤外センサにおいて、前記赤外
受光素子を、前記集光素子の焦点距離fと、前記赤外受
光素子の半径rs と、前記集光素子の縁から光軸に対し
て前記集光素子の縁と同じ側の前記固定部の内壁に接す
るようにひいた直線が前記固定部先端の面と交叉する点
と光軸との距離rαと、前記集光素子の縁から光軸に対
して前記集光素子の縁と同じ側の前記固定部の内壁に接
するようにひいた直線が前記固定部の先端の面と交叉す
る点と前記集光素子との距離Lαと、前記集光素子の半
径r3 を用いて、
[0867] In the infrared sensor, the infrared light receiving element may be arranged such that a focal length f of the light collecting element, a radius rs of the infrared light receiving element, and an optical axis from an edge of the light collecting element. The distance rα between the optical axis and a point where a straight line drawn so as to contact the inner wall of the fixed part on the same side as the edge of the light-collecting element, and the light from the edge of the light-collecting element A distance Lα between a point where a straight line drawn so as to be in contact with the inner wall of the fixed part on the same side as the edge of the light-collecting element with respect to an axis and a surface of the tip of the fixed part intersects the light-collecting element; Using the radius r3 of the light collecting element,

【0868】[0868]

【数89】 [Equation 89]

【0869】で与えられるL3 だけ前記集光素子の焦点
よりも集光素子から遠くに設置する。
[0869] The light-emitting device is set farther from the light-collecting element by the distance L3 given by

【0870】これにより、光軸付近に受光領域を制限
し、固定部からの赤外線を受光しない高安定な赤外セン
サが実現できる。
[0870] This realizes a highly stable infrared sensor that limits the light receiving area near the optical axis and does not receive infrared light from the fixed portion.

【0871】また、上記赤外センサにおいて、前記赤外
受光素子を、前記集光素子の縁から光軸に対して前記集
光素子の縁と同じ側の前記固定部の内壁に接するように
ひいた直線が前記固定部の先端の面と交叉する点の前記
集光素子による像点よりも前記集光素子から遠い位置に
設置する。固定部以外の領域を受光領域とすることがで
きるため固定部の温度変化の影響を受けない高精度な赤
外センサが実現できる。また、受光領域を固定部からの
光を受光しない条件で最大限に受光量を大きくできるの
で、S/Nが向上し検出精度を高められる。 また、上
記赤外センサにおいて、前記赤外受光素子を、前記固定
部の先端の面と交叉する2点から光軸を挟んで前記固定
部の先端の面と交叉するそれぞれの点と反対側の前記集
光素子の縁を通過して前記固定部の先端の面と交叉する
2点の前記集光素子による像点へ到達する2つの光路で
挟まれた領域に設置する。固定部からの赤外線を受光素
子以外の点へ集光することができ、受光領域を光軸付近
に制限することができる。
[0871] In the infrared sensor, the infrared light receiving element is so arranged as to be in contact with the inner wall of the fixed portion on the same side as the edge of the light collecting element with respect to the optical axis from the edge of the light collecting element. The point where the straight line intersects the surface of the tip of the fixed portion is located farther from the light-collecting element than the image point of the light-collecting element. Since a region other than the fixed portion can be used as a light receiving region, a highly accurate infrared sensor which is not affected by a temperature change of the fixed portion can be realized. Further, since the light receiving amount can be maximized in the light receiving area under the condition that the light from the fixed portion is not received, the S / N is improved and the detection accuracy can be improved. Further, in the infrared sensor, the infrared light receiving element may be located on two sides intersecting the front end surface of the fixed portion and opposite points intersecting the front end surface of the fixed portion across the optical axis. It is installed in a region sandwiched between two optical paths that reach an image point by the light-collecting element at two points passing through the edge of the light-collecting element and intersecting the surface of the tip of the fixed part. Infrared rays from the fixed part can be focused on points other than the light receiving element, and the light receiving area can be limited to the vicinity of the optical axis.

【0872】また、上記赤外センサにおいて、前記赤外
受光素子を、前記集光素子の焦点距離fと、前記赤外受
光素子の半径rs と、前記集光素子の縁から光軸に対し
て前記集光素子の縁と同じ側の前記固定部の内壁に接す
るようにひいた直線が前記固定部の先端の面と交叉する
点と光軸との距離rαと、前記集光素子の縁から光軸に
対して前記集光素子の縁と同じ側の前記固定部の内壁に
接するようにひいた直線が前記固定部先端の面と交叉す
る点と前記集光素子との距離Lαと、前記集光素子の半
径r3 を用いて、
[0832] In the infrared sensor, the infrared light receiving element may be arranged such that a focal length f of the light collecting element, a radius rs of the infrared light receiving element, and an optical axis from an edge of the light collecting element. The distance rα between the optical axis and a point where a straight line drawn so as to be in contact with the inner wall of the fixed part on the same side as the edge of the light-collecting element, and from the edge of the light-collecting element A distance Lα between a point where a straight line drawn so as to be in contact with the inner wall of the fixed part on the same side as the edge of the light-collecting element with respect to the optical axis intersects the surface of the tip of the fixed part and the light-collecting element; Using the radius r3 of the light collecting element,

【0873】[0873]

【数90】 [Equation 90]

【0874】で表されるL3 だけ前記集光素子の焦点よ
りも集光素子から遠くに設置する。これにより、光軸付
近に受光領域を制限し、固定部からの赤外線を受光しな
い高安定な赤外センサが実現できる。
[0874] The light source is set farther from the light condensing element than the focal point of the light condensing element by L3 represented by the following formula. Accordingly, a highly stable infrared sensor that limits the light receiving area near the optical axis and does not receive infrared light from the fixed portion can be realized.

【0875】また、本発明の第三の赤外センサによれ
ば、少なくとも、被測定物から放射される赤外線を集光
する集光素子と、前記集光素子で集光された赤外線を受
光する赤外受光素子と、前記集光素子と前記赤外受光素
子を保持する筐体と、被測定物に向きを固定するための
固定部と、前記集光素子の有効領域を制限するレンズ開
口絞りとから構成され、前記赤外受光素子を前記集光素
子の焦点から離して設置することにより、受光領域を制
限する。受光素子によって被測定物から放射される赤外
光を効率よく集光することができるので、受光量を大き
くできる。また、受光素子を、集光素子の焦点位置から
離して設置することで、不要な領域から集光素子に入射
する光を受光素子以外の位置へ進行させることができ、
受光領域を制限することができる。
According to the third infrared sensor of the present invention, at least a light-collecting element that collects infrared light radiated from an object to be measured, and receives the infrared light collected by the light-collecting element. An infrared light receiving element, a housing for holding the light collecting element and the infrared light receiving element, a fixing portion for fixing a direction to an object to be measured, and a lens aperture stop for limiting an effective area of the light collecting element The light receiving area is limited by installing the infrared light receiving element away from the focal point of the light collecting element. Since the infrared light emitted from the object to be measured can be efficiently collected by the light receiving element, the amount of received light can be increased. Further, by installing the light receiving element away from the focal position of the light collecting element, light incident on the light collecting element from an unnecessary area can be advanced to a position other than the light receiving element,
The light receiving area can be limited.

【0876】また、上記赤外センサにおいて、前記赤外
受光素子を、前記レンズ開口絞りの縁から光軸に対して
前記レンズ開口絞りの縁と同じ側の前記固定部の内壁に
接するようにひいた直線が前記固定部の先端の面と交叉
する点から、前記レンズ開口絞りの縁を通過して、前記
固定部の先端の面と交叉する点の前記集光素子による像
点へ到達する光路と光軸との交点よりも前記集光素子か
ら遠く、且つ前記固定部の先端の面と交叉する点の前記
集光素子による像点よりも前記集光素子に近い領域に設
置する。不要な領域から集光素子に入射する光を受光素
子以外の位置へ進行させることができ、受光領域を制限
することができる。
[0887] In the infrared sensor, the infrared light receiving element is so arranged as to contact the inner wall of the fixed portion on the same side as the edge of the lens aperture stop with respect to the optical axis from the edge of the lens aperture stop. An optical path from a point where the straight line intersects the surface of the front end of the fixed portion, passes through the edge of the lens aperture stop, and reaches an image point of the light condensing element at a point where the straight line intersects the surface of the front end of the fixed portion. It is located in a region that is farther from the light-collecting element than the intersection of the light-collecting element and that is closer to the light-collecting element than the image point of the light-collecting element at a point that intersects the front end surface of the fixed part. Light incident on the light-collecting element from an unnecessary area can be advanced to a position other than the light-receiving element, and the light-receiving area can be limited.

【0877】また、上記の赤外センサにおいて、前記赤
外受光素子を、前記レンズ開口絞りの縁から光軸に対し
て前記レンズ開口絞りの縁と同じ側の前記固定部の内壁
に接するようにひいた直線が前記固定部の先端の面と交
叉する点から、前記レンズ開口絞りの縁を通過して、前
記固定部の先端の面と交叉する点の前記集光素子による
像点へ到達する光路と光軸との交点と、前記固定部の先
端の面と交叉する点の前記集光素子による2つの像点と
で形成される三角形の内側に設置する。前記固定部の先
端から光軸に対して前記固定部の先端と同じ側の前記レ
ンズ開口絞りの縁を通過して前記集光素子による前記固
定部の先端の像点へ到達する光路と光軸との交点よりも
前記集光素子から遠く且つ前記集光素子による前記固定
部の先端の像点よりも前記集光素子に近い領域に設置し
ても、光軸から離れた位置に前記受光素子を設置すると
固定部からの赤外線を受光してしまう。この赤外線を受
光しないようにすることができる。
[0877] In the infrared sensor, the infrared light receiving element may be in contact with the inner wall of the fixed portion on the same side as the edge of the lens aperture stop with respect to the optical axis from the edge of the lens aperture stop. From the point where the drawn straight line intersects the front end surface of the fixed portion, passes through the edge of the lens aperture stop, and reaches the image point of the light condensing element at the cross point with the front end surface of the fixed portion. It is installed inside a triangle formed by the intersection of the optical path and the optical axis and the two image points of the light condensing element at the point of intersection with the front end surface of the fixed part. An optical path and an optical axis that pass through the edge of the lens aperture stop on the same side as the tip of the fixed portion with respect to the optical axis from the tip of the fixed portion and reach the image point at the tip of the fixed portion by the light-collecting element; The light receiving element at a position far from the optical axis even if the light receiving element is located farther from the light condensing element than the intersection with the light condensing element and closer to the light condensing element than the image point of the tip of the fixed part by the light condensing element If it is installed, it will receive infrared rays from the fixed part. This infrared ray can be prevented from being received.

【0878】また、上記赤外センサにおいて、前記赤外
受光素子を、前記集光素子の焦点距離fと、前記赤外受
光素子の半径rs と、前記レンズ開口絞りの縁から光軸
に対して前記レンズ開口絞りの縁と同じ側の前記固定部
の内壁に接するようにひいた直線が前記固定部先端の面
と交叉する点と光軸との距離rαと、前記レンズ開口絞
りの縁から光軸に対して前記レンズ開口絞りの縁と同じ
側の前記固定部の内壁に接するようにひいた直線が前記
固定部の先端の面と交叉する点と前記レンズ開口絞りと
の距離Lαと、前記レンズ開口絞りと前記集光素子との
距離L2 と、前記レンズ開口絞りの開口半径r2 を用い
て、
[0878] In the infrared sensor, the infrared light receiving element may be arranged such that the focal length f of the light condensing element, the radius rs of the infrared light receiving element, and the optical axis from the edge of the lens aperture stop. The distance rα between the optical axis and a point where a straight line drawn so as to be in contact with the inner wall of the fixed part on the same side as the edge of the lens aperture stop, and the light from the edge of the lens aperture stop A distance Lα between a point where a straight line drawn so as to be in contact with an inner wall of the fixed portion on the same side as an edge of the lens aperture stop with respect to an axis and a surface of a front end of the fixed portion and the lens aperture stop; Using the distance L2 between the lens aperture stop and the condenser element and the aperture radius r2 of the lens aperture stop,

【0879】[0877]

【数91】 [Equation 91]

【0880】で表されるL3 だけ前記集光素子の焦点よ
りも集光素子から遠くに設置し、且つ前記レンズ開口絞
りの縁から光軸に対して前記レンズ開口絞りの縁と同じ
側の前記固定部の内壁に接するようにひいた直線が前記
固定部の先端の面と交叉する点と光軸との距離rα、前
記固定部の先端以外の点と光軸との距離rB 、前記集光
素子の焦点距離f、前記集光素子と前記レンズ開口絞り
との距離L2 、前記集光素子の焦点と前記赤外受光素子
の距離L3 に、 rB ≧rα f( f+L3)>L3・L2 の関係を成り立たせる。これにより、光軸付近に受光領
域を制限し、固定部からの赤外線を受光しない高安定な
赤外センサが実現できる。
[0880] The lens is located farther from the light-collecting element than the focal point of the light-collecting element by L3 represented by the following formula, and is located on the same side as the edge of the lens aperture stop with respect to the optical axis from the edge of the lens aperture stop. The distance rα between the optical axis and a point where a straight line drawn so as to be in contact with the inner wall of the fixed part intersects the surface of the tip of the fixed part, the distance rB between a point other than the tip of the fixed part and the optical axis, the light condensing The relationship of rB ≧ rαf (f + L3)> L3 · L2 to the focal length f of the element, the distance L2 between the condenser element and the lens aperture stop, and the distance L3 between the focal point of the condenser element and the infrared receiving element. Holds. Accordingly, a highly stable infrared sensor that limits the light receiving area near the optical axis and does not receive infrared light from the fixed portion can be realized.

【0881】また、上記赤外センサにおいて、前記赤外
受光素子を、前記レンズ開口絞りの縁から光軸に対し前
記レンズ開口絞りの縁と同じ側の前記固定部の内壁に接
するようにひいた直線が前記固定部の先端の面と交叉す
る点の前記集光素子による像点よりも前記集光素子から
遠い領域に設置する。不要な領域から集光素子に入射す
る光を受光素子以外の位置へ進行させることができ、受
光領域を制限することができる。
[0881] In the infrared sensor, the infrared light receiving element is connected to the inner wall of the fixed portion on the same side as the edge of the lens aperture stop with respect to the optical axis from the edge of the lens aperture stop. It is installed in a region farther from the light-collecting element than an image point of the light-collecting element at a point where a straight line intersects the surface of the front end of the fixed part. Light incident on the light-collecting element from an unnecessary area can be advanced to a position other than the light-receiving element, and the light-receiving area can be limited.

【0882】また、上記赤外センサにおいて、前記赤外
受光素子を、前記固定部の先端の面と交叉する2点から
それぞれ光軸を挟んで前記固定部の先端の面と交叉する
点と反対側の前記レンズ開口絞りの縁を通過して前記固
定部の先端の面と交叉する2点の前記集光素子による像
点へ到達する2つの光路で挟まれた領域に設置する。
[0882] In the infrared sensor, the infrared light receiving element may be arranged so that the infrared light receiving element is opposite to a point crossing the front end surface of the fixed portion across the optical axis from two points crossing the front end surface of the fixed portion. It is installed in a region sandwiched between two optical paths that reach an image point by two light condensing elements passing through the edge of the lens aperture stop on the side and intersecting the front end surface of the fixed portion.

【0883】固定部からの赤外線を受光素子以外の点へ
集光することができ、受光領域を光軸付近に制限するこ
とができる。
[0883] Infrared rays from the fixed portion can be focused on points other than the light receiving element, and the light receiving area can be limited to the vicinity of the optical axis.

【0884】また、上記赤外センサにおいて、前記赤外
受光素子を、前記集光素子の焦点距離fと、前記赤外受
光素子の半径rs と、前記レンズ開口絞りの縁から光軸
に対して前記レンズ開口絞りの縁と同じ側の前記固定部
の内壁に接するようにひいた直線が前記固定部の先端の
面と交叉する点と光軸との距離rαと、前記レンズ開口
絞りの縁から光軸に対して前記レンズ開口絞りの縁と同
じ側の前記固定部の内壁に接するようにひいた直線が前
記固定部先端の面と交叉する点と前記レンズ開口絞りと
の距離Lαと、前記レンズ開口絞りと前記集光素子との
距離L2 と、前記レンズ開口絞りの開口半径r2 を用い
て、
[0884] In the infrared sensor, the infrared light receiving element may be arranged such that the focal length f of the light condensing element, the radius rs of the infrared light receiving element, and the optical axis from the edge of the lens aperture stop. The distance rα between the optical axis and a point where a straight line drawn so as to be in contact with the inner wall of the fixed part on the same side as the edge of the lens aperture stop, and the distance from the edge of the lens aperture stop A distance Lα between a point where a straight line drawn so as to be in contact with the inner wall of the fixed portion on the same side as the edge of the lens aperture stop with respect to the optical axis intersects the surface of the fixed portion tip and the lens aperture stop; Using the distance L2 between the lens aperture stop and the condenser element and the aperture radius r2 of the lens aperture stop,

【0885】[0885]

【数92】 (Equation 92)

【0886】で表されるL3 だけ前記集光素子の焦点よ
りも集光素子から遠くに設置し、且つ前記レンズ開口絞
りの縁から光軸に対して前記レンズ開口絞りの縁と同じ
側の前記固定部の内壁に接するようにひいた直線が前記
固定部の先端の面と交叉する点と光軸との距離rα、前
記固定部の先端以外の点と光軸との距離rB 、前記集光
素子の焦点距離f、前記集光素子と前記レンズ開口絞り
との距離L2 、前記集光素子の焦点と前記赤外受光素子
の距離L3 に、 rB ≧rα f( f+L3)>L3・L2 の関係を成り立たせる。これにより、光軸付近に受光領
域を制限し、固定部からの赤外線を受光しない高安定な
赤外センサが実現できる。
[0886] The lens is located farther from the light-collecting element than the focal point of the light-collecting element by L3 represented by the following formula, and is located on the same side as the edge of the lens aperture stop with respect to the optical axis from the edge of the lens aperture stop. The distance rα between the optical axis and a point where a straight line drawn so as to be in contact with the inner wall of the fixed part intersects the surface of the tip of the fixed part, the distance rB between a point other than the tip of the fixed part and the optical axis, the light condensing The relationship of rB ≧ rαf (f + L3)> L3 · L2 to the focal length f of the element, the distance L2 between the condenser element and the lens aperture stop, and the distance L3 between the focal point of the condenser element and the infrared receiving element. Holds. Accordingly, a highly stable infrared sensor that limits the light receiving area near the optical axis and does not receive infrared light from the fixed portion can be realized.

【0887】また、本発明の第一の光センサによれば、
少なくとも、被測定物から放射あるいは反射される光線
を集光する集光素子と、前記集光素子で集光された光線
を受光する受光素子と、前記集光素子と前記受光素子を
保持する筐体とから構成され、前記受光素子を前記集光
素子の焦点位置から離して設置することにより受光領域
を制限する。受光素子によって被測定物から放射される
光を効率よく集光することができるので、受光量を大き
くできる。また、受光素子を、集光素子の焦点位置から
離して設置することで、不要な領域から集光素子に入射
する光を受光素子以外の位置へ進行させることができ、
受光領域を制限することができる。例えば発光物体の発
光強度分布の測定をするなどの場合、受光領域を狭める
ことで空間分解能を高められ、また受光量を大きくする
ことで測定精度が高められる。
[0887] According to the first optical sensor of the present invention,
At least, a light-collecting element that collects light rays emitted or reflected from the device under test, a light-receiving element that receives light rays collected by the light-collecting element, and a housing that holds the light-collecting element and the light-receiving element A light receiving area is limited by installing the light receiving element away from a focal position of the light collecting element. Since the light emitted from the object can be efficiently collected by the light receiving element, the amount of received light can be increased. Further, by installing the light receiving element away from the focal position of the light collecting element, light incident on the light collecting element from an unnecessary area can be advanced to a position other than the light receiving element,
The light receiving area can be limited. For example, when measuring the luminous intensity distribution of a luminous object, the spatial resolution can be increased by narrowing the light receiving area, and the measuring accuracy can be increased by increasing the amount of received light.

【0888】上記の光センサにおいて、前記光受光素子
を、被測定物面における受光領域の境界に位置する点か
ら光軸に対して前記境界に位置する点と同じ側の前集光
素子の縁を通過して前記集光素子による前記境界に位置
する点の像点へ到達する光路と光軸との交点よりも前記
集光素子から遠く且つ前記集光素子による前記境界に位
置する点の像点よりも前記集光素子に近い領域に設置す
る。不要な領域からの光線を受光素子以外の点へ集光す
ることができ、受光領域を制限することができる。
[0888] In the above-mentioned optical sensor, the light receiving element may be an edge of the front light-collecting element on the same side as a point located on the boundary with respect to the optical axis from a point located on the boundary of the light receiving area on the surface of the object to be measured. An image of a point farther from the light-collecting element than the intersection of the optical path and the optical axis reaching the image point of the point located at the boundary by the light-collecting element and passing through the light-collecting element. It is installed in a region closer to the light collecting element than a point. Light rays from unnecessary regions can be focused on points other than the light receiving element, and the light receiving region can be limited.

【0889】また、上記の光センサにおいて、前記受光
素子を、前記境界に位置する点から光軸に対して前記境
界に位置する点と同じ側の前記集光素子の縁を通過して
前記集光素子による前記境界に位置する点の像点へ到達
する光路と光軸との交点と、前記集光素子による前記境
界に位置する点の2つの像点とで形成される三角形内に
設置する。この構成により、受光領域を光軸付近に制限
することができる。
[0889] In the above optical sensor, the light-receiving element is moved from the point located at the boundary to the light-collecting element through the edge of the light-collecting element on the same side as the point located at the boundary with respect to the optical axis. It is installed in a triangle formed by an intersection of an optical path reaching an image point of a point located at the boundary by an optical element and an optical axis, and two image points of a point located at the boundary by the light-collecting element. . With this configuration, the light receiving area can be limited to the vicinity of the optical axis.

【0890】また、上記光センサにおいて、前記受光素
子を、被測定物面における受光領域の境界に位置する点
の前記集光素子による像点よりも前記集光素子から遠い
領域に設置する。不要な領域からの光線を受光素子以外
の点へ集光することができ、受光領域を制限することが
できる。
[0890] In the above optical sensor, the light receiving element is provided in a region farther from the light converging element than an image point of the light converging element at a point located on the boundary of the light receiving area on the surface of the measured object. Light rays from unnecessary regions can be focused on points other than the light receiving element, and the light receiving region can be limited.

【0891】また、上記光センサにおいて、前記受光素
子を、前記境界に位置する点から光軸を挟んで前記境界
に位置する点と反対側の前記集光素子の縁を通過して前
記集光素子による前記境界に位置する点の像点へ到達す
る2つの光路で挟まれた領域に設置する。この構成によ
り、受光領域を光軸付近に制限することができる。
[0891] In the above-mentioned optical sensor, the light-receiving element passes through the edge of the light-collecting element opposite to the point located on the boundary with respect to the optical axis from the point located on the boundary. It is installed in an area between two optical paths reaching an image point of a point located at the boundary by the element. With this configuration, the light receiving area can be limited to the vicinity of the optical axis.

【0892】上記の第一、第二、第三の赤外センサおよ
び光センサは集光素子として屈折レンズ、あるいは透過
型回折レンズ、あるいは集光ミラー、あるいは反射型回
折レンズを用いることで容易に実現できる。
[0891] The first, second, and third infrared sensors and optical sensors can be easily formed by using a refractive lens, a transmission type diffraction lens, a light collection mirror, or a reflection type diffraction lens as a light collecting element. realizable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例における赤外センサの構
成図および光路図である。
FIG. 1 is a configuration diagram and an optical path diagram of an infrared sensor according to a first embodiment of the present invention.

【図2】本発明の第2の実施例における赤外センサの構
成図および光路図である。
FIG. 2 is a configuration diagram and an optical path diagram of an infrared sensor according to a second embodiment of the present invention.

【図3】本発明の第3の実施例における赤外センサの構
成図および光路図である。
FIG. 3 is a configuration diagram and an optical path diagram of an infrared sensor according to a third embodiment of the present invention.

【図4】本発明の第4の実施例における赤外センサの構
成図および光路図である。
FIG. 4 is a configuration diagram and an optical path diagram of an infrared sensor according to a fourth embodiment of the present invention.

【図5】本発明の第5の実施例における赤外センサの構
成図および光路図である。
FIG. 5 is a configuration diagram and an optical path diagram of an infrared sensor according to a fifth embodiment of the present invention.

【図6】本発明の第6の実施例における赤外センサの構
成図および光路図である。
FIG. 6 is a configuration diagram and an optical path diagram of an infrared sensor according to a sixth embodiment of the present invention.

【図7】本発明の第7の実施例における赤外センサの構
成図および光路図である。
FIG. 7 is a configuration diagram and an optical path diagram of an infrared sensor according to a seventh embodiment of the present invention.

【図8】本発明の第7の実施例における赤外センサの構
成図および光路図である。
FIG. 8 is a configuration diagram and an optical path diagram of an infrared sensor according to a seventh embodiment of the present invention.

【図9】本発明の第8の実施例における赤外センサの構
成図および光路図である。
FIG. 9 is a configuration diagram and an optical path diagram of an infrared sensor according to an eighth embodiment of the present invention.

【図10】本発明の第8の実施例における赤外センサの
構成図および光路図である。
FIG. 10 is a configuration diagram and an optical path diagram of an infrared sensor according to an eighth embodiment of the present invention.

【図11】本発明の第8の実施例における赤外センサの
構成図および光路図である。
FIG. 11 is a configuration diagram and an optical path diagram of an infrared sensor according to an eighth embodiment of the present invention.

【図12】本発明の第9の実施例における赤外センサの
構成図および光路図である。
FIG. 12 is a configuration diagram and an optical path diagram of an infrared sensor according to a ninth embodiment of the present invention.

【図13】本発明の第10の実施例における赤外センサ
の構成図および光路図である。
FIG. 13 is a configuration diagram and an optical path diagram of an infrared sensor according to a tenth embodiment of the present invention.

【図14】本発明の第11の実施例における赤外センサ
の構成図および光路図である。
FIG. 14 is a configuration diagram and an optical path diagram of an infrared sensor according to an eleventh embodiment of the present invention.

【図15】本発明の第12の実施例における赤外センサ
の構成図および光路図である。
FIG. 15 is a configuration diagram and an optical path diagram of an infrared sensor according to a twelfth embodiment of the present invention.

【図16】本発明の第13の実施例における赤外センサ
の構成図および光路図である。
FIG. 16 is a configuration diagram and an optical path diagram of an infrared sensor according to a thirteenth embodiment of the present invention.

【図17】本発明の第14の実施例における赤外センサ
の構成図および光路図である。
FIG. 17 is a configuration diagram and an optical path diagram of an infrared sensor according to a fourteenth embodiment of the present invention.

【図18】本発明の第15の実施例における赤外センサ
の構成図および光路図である。
FIG. 18 is a configuration diagram and an optical path diagram of an infrared sensor according to a fifteenth embodiment of the present invention.

【図19】本発明の第15の実施例における赤外センサ
の構成図および光路図である。
FIG. 19 is a configuration diagram and an optical path diagram of an infrared sensor according to a fifteenth embodiment of the present invention.

【図20】本発明の第16の実施例における赤外センサ
の構成図および光路図である。
FIG. 20 is a configuration diagram and an optical path diagram of an infrared sensor according to a sixteenth embodiment of the present invention.

【図21】本発明の第16の実施例における赤外センサ
の構成図および光路図である。
FIG. 21 is a configuration diagram and an optical path diagram of an infrared sensor according to a sixteenth embodiment of the present invention.

【図22】本発明の第16の実施例における赤外センサ
の構成図および光路図である。
FIG. 22 is a configuration diagram and an optical path diagram of an infrared sensor according to a sixteenth embodiment of the present invention.

【図23】本発明の第17の実施例における赤外センサ
の構成図および光路図である。
FIG. 23 is a configuration diagram and an optical path diagram of an infrared sensor according to a seventeenth embodiment of the present invention.

【図24】本発明の第18の実施例における赤外センサ
の構成図および光路図である。
FIG. 24 is a configuration diagram and an optical path diagram of an infrared sensor according to an eighteenth embodiment of the present invention.

【図25】本発明の第19の実施例における赤外センサ
の構成図および光路図である。
FIG. 25 is a configuration diagram and an optical path diagram of an infrared sensor according to a nineteenth embodiment of the present invention.

【図26】本発明の第20の実施例における赤外センサ
の構成図および光路図である。
FIG. 26 is a configuration diagram and an optical path diagram of an infrared sensor according to a twentieth embodiment of the present invention.

【図27】本発明の第21の実施例における赤外センサ
の構成図および光路図である。
FIG. 27 is a configuration diagram and an optical path diagram of an infrared sensor according to a twenty-first embodiment of the present invention.

【図28】本発明の第22の実施例における赤外センサ
の構成図および光路図である。
FIG. 28 is a configuration diagram and an optical path diagram of an infrared sensor according to a twenty-second embodiment of the present invention.

【図29】本発明の第23の実施例における赤外センサ
の構成図および光路図である。
FIG. 29 is a configuration diagram and an optical path diagram of an infrared sensor according to a twenty-third embodiment of the present invention.

【図30】本発明の第23の実施例における赤外センサ
の構成図および光路図である。
FIG. 30 is a configuration diagram and an optical path diagram of an infrared sensor according to a twenty-third embodiment of the present invention.

【図31】本発明の第24の実施例における赤外センサ
の構成図および光路図である。
FIG. 31 is a configuration diagram and an optical path diagram of an infrared sensor according to a twenty-fourth embodiment of the present invention.

【図32】本発明の第24の実施例における赤外センサ
の構成図および光路図である。
FIG. 32 is a configuration diagram and an optical path diagram of an infrared sensor according to a twenty-fourth embodiment of the present invention.

【図33】本発明の第24の実施例における赤外センサ
の構成図および光路図である。
FIG. 33 is a configuration diagram and an optical path diagram of an infrared sensor according to a twenty-fourth embodiment of the present invention.

【図34】本発明の第25の実施例における赤外センサ
の構成図および光路図である。
FIG. 34 is a configuration diagram and an optical path diagram of an infrared sensor according to a twenty-fifth embodiment of the present invention.

【図35】本発明の第26の実施例における赤外センサ
の構成図および光路図である。
FIG. 35 is a configuration diagram and an optical path diagram of an infrared sensor according to a twenty-sixth embodiment of the present invention.

【図36】本発明の第27の実施例における赤外センサ
の構成図および光路図である。
FIG. 36 is a configuration diagram and an optical path diagram of an infrared sensor according to a twenty-seventh embodiment of the present invention.

【図37】本発明の第28の実施例における赤外センサ
の構成図および光路図である。
FIG. 37 is a configuration diagram and an optical path diagram of an infrared sensor according to a twenty-eighth embodiment of the present invention.

【図38】本発明の第29の実施例における赤外センサ
の構成図および光路図である。
FIG. 38 is a configuration diagram and an optical path diagram of an infrared sensor according to a twenty-ninth embodiment of the present invention.

【図39】本発明の第30の実施例における赤外センサ
の構成図および光路図である。
FIG. 39 is a configuration diagram and an optical path diagram of an infrared sensor according to a thirtieth embodiment of the present invention.

【図40】本発明の第31の実施例における赤外センサ
の構成図および光路図である。
FIG. 40 is a configuration diagram and an optical path diagram of an infrared sensor according to a thirty-first embodiment of the present invention.

【図41】本発明の第31の実施例における赤外センサ
の構成図および光路図である。
FIG. 41 is a configuration diagram and an optical path diagram of an infrared sensor according to a thirty-first embodiment of the present invention.

【図42】本発明の第32の実施例における赤外センサ
の構成図および光路図である。
FIG. 42 is a configuration diagram and an optical path diagram of an infrared sensor according to a thirty-second embodiment of the present invention.

【図43】本発明の第32の実施例における赤外センサ
の構成図および光路図である。
FIG. 43 is a configuration diagram and an optical path diagram of an infrared sensor according to a thirty-second embodiment of the present invention.

【図44】本発明の第32の実施例における赤外センサ
の構成図および光路図である。
FIG. 44 is a configuration diagram and an optical path diagram of an infrared sensor according to a thirty-second embodiment of the present invention.

【図45】第1の従来例における赤外検知体温計の概略
図である。
FIG. 45 is a schematic view of an infrared detecting thermometer in the first conventional example.

【図46】第2の従来例における赤外検知体温計の概略
図である。
FIG. 46 is a schematic diagram of an infrared detecting thermometer according to a second conventional example.

【図47】本発明の第33の実施例における光センサの
構成図および光路図である。
FIG. 47 is a configuration diagram and an optical path diagram of an optical sensor according to a thirty-third embodiment of the present invention.

【図48】本発明の第34の実施例における光センサの
構成図および光路図である。
FIG. 48 is a configuration diagram and an optical path diagram of an optical sensor according to a thirty-fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 固定部 2 レンズ開口絞り 3 屈折レンズ 4 赤外受光素子 5 透過型回折レンズ 6 集光ミラー 7 反射型回折レンズ 8 受光素子 9 筐体 A 固定部先端の点 A' 固定部先端の点 F レンズの焦点 FA レンズによるAの像点 FA'レンズによるA' の像点 DESCRIPTION OF SYMBOLS 1 Fixed part 2 Lens aperture stop 3 Refractive lens 4 Infrared light receiving element 5 Transmission type diffractive lens 6 Condensing mirror 7 Reflective type diffractive lens 8 Light receiving element 9 Housing A Point of fixed part tip A 'Point of fixed part tip F Lens Focus of A Image point of A by FA lens Image point of A 'by FA' lens

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金澤 靖之 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 渋谷 誠 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 西井 一成 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yasuyuki Kanazawa 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. 72) Inventor Kazunari Nishi, 1006 Kadoma, Kazuma, Osaka Prefecture, Matsushita Electric Industrial

Claims (32)

【特許請求の範囲】[Claims] 【請求項1】少なくとも、被測定物から放射される赤外
線を集光する集光素子と、前記集光素子で集光された赤
外線を受光する赤外受光素子と、前記集光素子と前記赤
外受光素子を保持する筐体とから構成され、前記赤外受
光素子を前記集光素子の焦点位置から離して設置するこ
とにより、受光領域を制限したことを特徴とする赤外セ
ンサ。
At least a light-collecting element for collecting infrared light radiated from an object to be measured, an infrared light-receiving element for receiving infrared light collected by the light-collecting element, the light-collecting element and the red light An infrared sensor, comprising: a housing that holds an external light receiving element; and wherein the infrared light receiving element is located away from a focal position of the light collecting element to limit a light receiving area.
【請求項2】前記赤外受光素子を、被測定物面における
受光したい領域と受光したくない領域の境界に位置する
点から光軸に対して前記境界に位置する点と同じ側の前
記集光素子の縁を通過して前記集光素子による前記境界
に位置する点の像点へ到達する光路と光軸との交点より
も前記集光素子から遠く且つ前記集光素子による前記境
界に位置する点の像点よりも前記集光素子に近い領域に
設置することを特徴とする請求項1記載の赤外センサ。
2. The method according to claim 1, wherein the infrared light receiving element is located on the same side of the optical axis as a point on the same side as a point located on the boundary between an area on the surface of the object to be received and an area on which light reception is not desired. It is farther from the light-collecting element than the intersection of the optical path and the optical axis that reaches the image point of the point located at the boundary by the light-collecting element through the edge of the light-collecting element, and is located at the boundary by the light-collecting element. The infrared sensor according to claim 1, wherein the infrared sensor is provided in a region closer to the light-collecting element than an image point of the target point.
【請求項3】前記赤外受光素子を、前記境界に位置する
点から光軸に対して前記境界に位置する点と同じ側の前
記集光素子の縁を通過して前記集光素子による前記境界
に位置する点の像点へ到達する光路と光軸との交点と、
前記集光素子による前記境界に位置する点の2つの像点
とで形成される、前記集光素子の子午面内の三角形内に
設置することを特徴とする請求項2記載の赤外センサ。
3. The infrared light receiving element passes through the edge of the light-collecting element on the same side as the point located on the boundary with respect to the optical axis from the point located on the boundary, and The intersection of the optical path and the optical axis reaching the image point of the point located at the boundary,
The infrared sensor according to claim 2, wherein the infrared sensor is provided within a triangle formed in a meridional plane of the light-collecting element and formed by two image points of a point located at the boundary by the light-collecting element.
【請求項4】前記赤外受光素子を、被測定物面における
受光したい領域と受光したくない領域の境界に位置する
点の前記集光素子による像点よりも前記集光素子から遠
い領域に設置することを特徴とする請求項1記載の赤外
センサ。
4. The method according to claim 1, wherein the infrared light receiving element is located in a region farther from the light collecting element than an image point by the light collecting element at a point located on a boundary between a region on the object to be measured and a region not to receive light. The infrared sensor according to claim 1, wherein the infrared sensor is installed.
【請求項5】前記赤外受光素子を、前記境界に位置する
点から光軸を挟んで前記境界に位置する点と反対側の前
記集光素子の縁を通過して前記集光素子による前記境界
に位置する点の像点へ到達する、前記集光素子の子午面
内の2つの光路で挟まれた領域に設置することを特徴と
する請求項4記載の赤外センサ。
5. The infrared light receiving element passes through an edge of the light-collecting element on a side opposite to a point located on the boundary with respect to an optical axis from a point located on the boundary. The infrared sensor according to claim 4, wherein the infrared sensor is provided in a region between two optical paths in a meridional plane of the light-collecting element that reaches an image point at a point located at a boundary.
【請求項6】少なくとも、被測定物から放射される赤外
線を集光する集光素子と、前記集光素子で集光された赤
外線を受光する赤外受光素子と、前記集光素子と前記赤
外受光素子を保持する筐体と、被測定物に向きを固定す
るための、被測定物から前記集光素子に向かう光が通過
する穴を有する筒状の固定部とから構成され、前記赤外
受光素子を前記集光素子の焦点位置から離して設置する
ことにより、受光領域を制限したことを特徴とする赤外
センサ。
6. A light-collecting element for collecting at least infrared light radiated from an object to be measured, an infrared light-receiving element for receiving infrared light collected by the light-collecting element, the light-collecting element and the red light. A housing for holding the external light receiving element, and a cylindrical fixing portion having a hole through which light from the object to be measured to the light-collecting element passes for fixing the direction to the object to be measured, and An infrared sensor, wherein a light receiving area is limited by installing an external light receiving element away from a focal position of the light collecting element.
【請求項7】前記赤外受光素子を、被測定物面における
受光したい領域と受光したくない領域の境界に位置する
点から光軸に対して前記境界に位置する点と同じ側の前
記集光素子の縁を通過して前記集光素子による前記境界
に位置する点の像点へ到達する光路と光軸との交点より
も前記集光素子から遠く且つ前記集光素子による前記境
界に位置する点の像点よりも前記集光素子に近い領域に
設置することを特徴とする請求項6記載の赤外センサ。
7. The infrared light receiving element is disposed on the same side as a point on the same side as a point located on the boundary with respect to an optical axis from a point located on a boundary between a region on the object to be received and a region on which light reception is not desired. It is farther from the light-collecting element than the intersection of the optical path and the optical axis that reaches the image point of the point located at the boundary by the light-collecting element through the edge of the light-collecting element, and is located at the boundary by the light-collecting element. The infrared sensor according to claim 6, wherein the infrared sensor is provided in a region closer to the light-collecting element than an image point of the point to be measured.
【請求項8】前記赤外受光素子を、前記境界に位置する
点から光軸に対して前記境界に位置する点と同じ側の前
記集光素子の縁を通過して前記集光素子による前記境界
に位置する点の像点へ到達する光路と光軸との交点と、
前記集光素子による前記境界に位置する点の2つの像点
とで形成される、前記集光素子の子午面内の三角形内に
設置することを特徴とする請求項7記載の赤外センサ。
8. The infrared light receiving element passes the edge of the light-collecting element on the same side as the point located on the boundary with respect to the optical axis from the point located on the boundary, and The intersection of the optical path and the optical axis reaching the image point of the point located at the boundary,
The infrared sensor according to claim 7, wherein the infrared sensor is provided in a triangle formed in a meridional plane of the light-collecting element and formed by two image points of a point located at the boundary by the light-collecting element.
【請求項9】前記赤外受光素子を、被測定物面における
受光したい領域と受光したくない領域の境界に位置する
点の前記集光素子による像点よりも前記集光素子から遠
い領域に設置することを特徴とする請求項6記載の赤外
センサ。
9. The method according to claim 1, wherein the infrared light receiving element is located in a region farther from the light collecting element than an image point by the light collecting element at a point located on a boundary between a region on the object to be received and a region not to receive light. The infrared sensor according to claim 6, wherein the infrared sensor is installed.
【請求項10】前記赤外受光素子を、前記境界に位置す
る点から光軸を挟んで前記境界に位置する点と反対側の
前記集光素子の縁を通過して前記集光素子による前記境
界に位置する点の像点へ到達する、前記集光素子の子午
面内の2つの光路で挟まれた領域に設置することを特徴
とする請求項9記載の赤外センサ。
10. The infrared light receiving element passes through an edge of the light-collecting element opposite to a point located on the boundary with respect to an optical axis from a point located on the boundary, and The infrared sensor according to claim 9, wherein the infrared sensor is provided in a region between two optical paths in a meridional plane of the light condensing element that reaches an image point at a point located at a boundary.
【請求項11】前記赤外受光素子を、前記集光素子の縁
から光軸に対して前記集光素子の縁と同じ側の前記固定
部の内壁に接するようにひいた直線が前記固定部の先端
の面と交叉する点から、前記集光素子の縁を通過して前
記固定部の先端の面と交叉する点の前記集光素子による
像点へ到達する光路と光軸との交点よりも前記集光素子
から遠く、且つ前記固定部の先端の面と交叉する点の前
記集光素子による像点よりも前記集光素子に近い領域に
設置することを特徴とする請求項6記載の赤外センサ。
11. A straight line drawn from the edge of the light-collecting element so as to contact the inner wall of the fixed part on the same side as the edge of the light-collecting element from the edge of the light-collecting element. From the intersection of the optical axis and the optical path reaching the image point of the light-collecting element at the point crossing the edge of the light-collecting element from the point intersecting with the surface of the light-collecting element. 7. The light-emitting device according to claim 6, wherein the light-receiving element is disposed in a region far from the light-collecting element and closer to the light-collecting element than an image point formed by the light-collecting element at a point crossing the front end surface of the fixed portion. Infrared sensor.
【請求項12】前記赤外受光素子を、前記集光素子の縁
から光軸に対して前記集光素子の縁と同じ側の前記固定
部の内壁に接するようにひいた直線が前記固定部の先端
の面と交叉する点から前記集光素子の縁を通過して前記
固定部の先端の面と交叉する点の前記集光素子による2
つの像点へ到達する光路が光軸と交叉する点と、前記固
定部先端の面と交叉する点の前記集光素子による2つの
像点とで形成される、前記集光素子の子午面内の三角形
の内側に設置することを特徴とする請求項11記載の赤
外センサ。
12. A straight line drawn from the edge of the light-collecting element so as to contact the inner wall of the fixed part on the same side as the edge of the light-collecting element from the edge of the light-collecting element. The point at which the light passes through the edge of the light-collecting element from the point intersecting with the surface of the light-collecting element and intersects with the surface of the front end of the fixed portion is determined by the light-collecting element.
A meridional plane of the light-collecting element formed by a point at which an optical path reaching two image points intersects the optical axis and two image points by the light-collecting element at a point intersecting with the surface of the fixed end. The infrared sensor according to claim 11, wherein the infrared sensor is installed inside a triangle.
【請求項13】前記赤外受光素子を、前記集光素子の焦
点距離fと、前記赤外受光素子の半径rs と、前記集光
素子の縁から光軸に対して前記集光素子の縁と同じ側の
前記固定部の内壁に接するようにひいた直線が前記固定
部先端の面と交叉する点と光軸との距離rαと、前記集
光素子の縁から光軸に対して前記集光素子の縁と同じ側
の前記固定部の内壁に接するようにひいた直線が前記固
定部の先端の面と交叉する点と前記集光素子との距離L
αと、前記集光素子の半径r3 を用いて、 【数1】 で与えられるL3 だけ前記集光素子の焦点よりも集光素
子から遠くに設置したことを特徴とする請求項12記載
の赤外センサ。
13. An infrared light receiving element, comprising: a focal length f of the light collecting element, a radius rs of the infrared light receiving element, and an edge of the light collecting element with respect to an optical axis from an edge of the light collecting element. The distance rα between the optical axis and a point where a straight line drawn so as to be in contact with the inner wall of the fixed part on the same side as the fixed part, and the distance rα from the edge of the light-collecting element to the optical axis. The distance L between the point where a straight line drawn so as to be in contact with the inner wall of the fixed part on the same side as the edge of the optical element intersects the surface of the tip of the fixed part and the light-collecting element
Using α and the radius r3 of the light-collecting element, 13. The infrared sensor according to claim 12, wherein the light sensor is disposed farther from the light-collecting element than the focal point of the light-collecting element by L3 given by:
【請求項14】前記赤外受光素子を、前記集光素子の縁
から光軸に対して前記集光素子の縁と同じ側の前記固定
部の内壁に接するようにひいた直線が前記固定部の先端
の面と交叉する点の前記集光素子による像点よりも前記
集光素子から遠い位置に設置することを特徴とする請求
項6記載の赤外センサ。
14. A straight line drawn from the edge of the light-collecting element so that the infrared light-receiving element is in contact with the inner wall of the fixed part on the same side as the edge of the light-collecting element with respect to the optical axis. 7. The infrared sensor according to claim 6, wherein the infrared sensor is provided at a position farther from the light-collecting element than an image point formed by the light-collecting element at a point intersecting with the front end surface of the light-receiving element.
【請求項15】前記赤外受光素子を、前記固定部の先端
の面と交叉する2点から光軸を挟んで前記固定部の先端
の面と交叉するそれぞれの点と反対側の前記集光素子の
縁を通過して前記固定部の先端の面と交叉する2点の前
記集光素子による像点へ到達する、前記集光素子の子午
面内の2つの光路で挟まれた領域に設置することを特徴
とする請求項14記載の赤外センサ。
15. The light-collecting device according to claim 1, wherein the infrared light receiving element is arranged such that the light-collecting element is located on the opposite side of each of the points intersecting the front end surface of the fixed portion with respect to the optical axis from two points intersecting the front end surface of the fixed portion. It is installed in a region sandwiched between two optical paths in the meridional plane of the light-collecting element, which reaches an image point by the light-collecting element at two points passing through the edge of the element and intersecting the surface of the tip of the fixed portion. The infrared sensor according to claim 14, wherein:
【請求項16】前記赤外受光素子を、前記集光素子の焦
点距離fと、前記赤外受光素子の半径rs と、前記集光
素子の縁から光軸に対して前記集光素子の縁と同じ側の
前記固定部の内壁に接するようにひいた直線が前記固定
部の先端の面と交叉する点と光軸との距離rαと、前記
集光素子の縁から光軸に対して前記集光素子の縁と同じ
側の前記固定部の内壁に接するようにひいた直線が前記
固定部先端の面と交叉する点と前記集光素子との距離L
αと、前記集光素子の半径r3 を用いて、 【数2】 で表されるL3 だけ前記集光素子の焦点よりも集光素子
から遠くに設置したことを特徴とする請求項15記載の
赤外センサ。
16. An infrared light receiving element comprising: a focal length f of the light-collecting element; a radius rs of the infrared light-receiving element; and an edge of the light-collecting element with respect to the optical axis from the edge of the light-receiving element. The distance rα between the optical axis and a point where a straight line drawn so as to be in contact with the inner wall of the fixed portion on the same side as the surface of the tip of the fixed portion, and the distance from the edge of the light-collecting element to the optical axis. Distance L between the point where a straight line drawn so as to be in contact with the inner wall of the fixed part on the same side as the edge of the light condensing element intersects the surface of the tip of the fixed part and the light condensing element
Using α and the radius r3 of the light-collecting element, 16. The infrared sensor according to claim 15, wherein the light sensor is disposed farther from the light-collecting element than the focal point of the light-collecting element by L3 represented by the following expression.
【請求項17】少なくとも、被測定物から放射される赤
外線を集光する集光素子と、前記集光素子で集光された
赤外線を受光する赤外受光素子と、前記集光素子と前記
赤外受光素子を保持する筐体と、被測定物に向きを固定
するための、被測定物から前記集光素子に向かう光が通
過する穴を有する筒状の固定部と、前記集光素子の有効
領域を制限するレンズ開口絞りとから構成され、前記赤
外受光素子を前記集光素子の焦点から離して設置するこ
とにより、受光領域を制限したことを特徴とする赤外セ
ンサ。
17. A light-collecting element for collecting at least infrared light radiated from an object to be measured, an infrared light-receiving element for receiving infrared light collected by the light-collecting element, the light-collecting element and the red light. A housing for holding the external light receiving element, a cylindrical fixing portion having a hole through which light from the object to be measured to the light-collecting element passes for fixing the direction of the light-collecting element, An infrared sensor comprising a lens aperture stop for limiting an effective area, wherein the light receiving area is limited by disposing the infrared light receiving element away from a focal point of the light collecting element.
【請求項18】前記赤外受光素子を、前記レンズ開口絞
りの縁から光軸に対して前記レンズ開口絞りの縁と同じ
側の前記固定部の内壁に接するようにひいた直線が前記
固定部の先端の面と交叉する点から、前記レンズ開口絞
りの縁を通過して、前記固定部の先端の面と交叉する点
の前記集光素子による像点へ到達する光路と光軸との交
点よりも前記集光素子から遠く、且つ前記固定部の先端
の面と交叉する点の前記集光素子による像点よりも前記
集光素子に近い領域に設置することを特徴とする請求項
17記載の赤外センサ。
18. A fixed line formed by drawing the infrared light receiving element from the edge of the lens aperture stop so as to be in contact with the inner wall of the fixed portion on the same side as the edge of the lens aperture stop with respect to the optical axis. The intersection of the optical path and the optical axis that passes through the edge of the lens aperture stop from the point that intersects the surface of the front end of the lens and reaches the image point of the condensing element at the point that intersects the surface of the front end of the fixed portion. 18. The light-emitting device according to claim 17, wherein the light-receiving element is located farther from the light-collecting element and is located closer to the light-collecting element than an image point formed by the light-collecting element at a point intersecting with the front end surface of the fixed portion. Infrared sensor.
【請求項19】前記赤外受光素子を、前記レンズ開口絞
りの縁から光軸に対して前記レンズ開口絞りの縁と同じ
側の前記固定部の内壁に接するようにひいた直線が前記
固定部の先端の面と交叉する点から、前記レンズ開口絞
りの縁を通過して、前記固定部の先端の面と交叉する点
の前記集光素子による像点へ到達する光路と光軸との交
点と、前記固定部の先端の面と交叉する点の前記集光素
子による2つの像点とで形成される、前記集光素子の子
午面内の三角形の内側に設置することを特徴とする請求
項18記載の赤外センサ。
19. A straight line drawn from the edge of the lens aperture stop so as to contact the inner wall of the fixed portion on the same side as the edge of the lens aperture stop from the edge of the lens aperture stop. The intersection of the optical path and the optical axis that passes through the edge of the lens aperture stop from the point that intersects the surface of the front end of the lens and reaches the image point of the condensing element at the point that intersects the surface of the front end of the fixed portion. And two image points formed by the light-collecting element at a point intersecting with the surface of the front end of the fixed part. The light-receiving element is disposed inside a triangle in the meridional plane of the light-collecting element. Item 18. An infrared sensor according to Item 18.
【請求項20】前記赤外受光素子を、前記集光素子の焦
点距離fと、前記赤外受光素子の半径rs と、前記レン
ズ開口絞りの縁から光軸に対して前記レンズ開口絞りの
縁と同じ側の前記固定部の内壁に接するようにひいた直
線が前記固定部先端の面と交叉する点と光軸との距離r
αと、前記レンズ開口絞りの縁から光軸に対して前記レ
ンズ開口絞りの縁と同じ側の前記固定部の内壁に接する
ようにひいた直線が前記固定部の先端の面と交叉する点
と前記レンズ開口絞りとの距離Lαと、前記レンズ開口
絞りと前記集光素子との距離L2 と、前記レンズ開口絞
りの開口半径r2 を用いて、 【数3】 で表されるL3 だけ前記集光素子の焦点よりも集光素子
から遠くに設置し、且つ前記レンズ開口絞りの縁から光
軸に対して前記レンズ開口絞りの縁と同じ側の前記固定
部の内壁に接するようにひいた直線が前記固定部の先端
の面と交叉する点と光軸との距離rα、前記固定部の先
端以外の点と光軸との距離rB 、前記集光素子の焦点距
離f、前記集光素子と前記レンズ開口絞りとの距離L2
、前記集光素子の焦点と前記赤外受光素子の距離L3
に、 rB ≧rα f( f+L3)>L3・L2 の関係が成り立つことを特徴とする請求項19記載の赤
外センサ。
20. The infrared light receiving element, wherein a focal length f of the light-collecting element, a radius rs of the infrared light receiving element, and an edge of the lens aperture stop with respect to an optical axis from an edge of the lens aperture stop. The distance r between the optical axis and a point where a straight line drawn so as to be in contact with the inner wall of the fixed part on the same side as intersects the surface of the tip of the fixed part
α and a point where a straight line drawn from the edge of the lens aperture stop to the optical axis on the same side as the edge of the lens aperture stop so as to be in contact with the inner wall of the fixed portion intersects the front end surface of the fixed portion. Using the distance Lα from the lens aperture stop, the distance L2 between the lens aperture stop and the light-collecting element, and the aperture radius r2 of the lens aperture stop, L3, which is located farther from the light-collecting element than the focal point of the light-collecting element, and which is on the same side as the edge of the lens aperture stop with respect to the optical axis from the edge of the lens aperture stop. The distance rα between the optical axis and a point where a straight line drawn so as to be in contact with the inner wall intersects the surface of the tip of the fixed part, the distance rB between the point other than the tip of the fixed part and the optical axis, the focal point of the light-collecting element A distance f, a distance L2 between the condenser element and the lens aperture stop;
A distance L3 between the focal point of the light-collecting element and the infrared light receiving element.
20. The infrared sensor according to claim 19, wherein the following relationship is satisfied: rB≥rαf (f + L3)> L3 · L2.
【請求項21】前記赤外受光素子を、前記レンズ開口絞
りの縁から光軸に対し前記レンズ開口絞りの縁と同じ側
の前記固定部の内壁に接するようにひいた直線が前記固
定部の先端の面と交叉する点の前記集光素子による像点
よりも前記集光素子から遠い領域に設置することを特徴
とする請求項17記載の赤外センサ。
21. A straight line drawn from the edge of the lens aperture stop so as to contact the inner wall of the fixed portion on the same side as the edge of the lens aperture stop from the edge of the lens aperture stop. The infrared sensor according to claim 17, wherein the infrared sensor is provided in a region farther from the light-collecting element than an image point formed by the light-collecting element at a point intersecting with a front end surface.
【請求項22】前記赤外受光素子を、前記固定部の先端
の面と交叉する2点からそれぞれ光軸を挟んで前記固定
部の先端の面と交叉する点と反対側の前記レンズ開口絞
りの縁を通過して前記固定部の先端の面と交叉する2点
の前記集光素子による像点へ到達する、前記集光素子の
子午面内の2つの光路で挟まれた領域に設置することを
特徴とする請求項21記載の赤外センサ。
22. The lens aperture stop, wherein the infrared light receiving element is located at two points intersecting the front end surface of the fixed portion and the lens aperture stop opposite to a point intersecting the front end surface of the fixed portion across the optical axis. At a point between two optical paths in the meridional plane of the light-collecting element reaching two image points formed by the light-collecting element passing through the edge of the fixed part and intersecting the surface of the tip of the fixed part. The infrared sensor according to claim 21, wherein:
【請求項23】前記赤外受光素子を、前記集光素子の焦
点距離fと、前記赤外受光素子の半径rs と、前記レン
ズ開口絞りの縁から光軸に対して前記レンズ開口絞りの
縁と同じ側の前記固定部の内壁に接するようにひいた直
線が前記固定部の先端の面と交叉する点と光軸との距離
rαと、前記レンズ開口絞りの縁から光軸に対して前記
レンズ開口絞りの縁と同じ側の前記固定部の内壁に接す
るようにひいた直線が前記固定部先端の面と交叉する点
と前記レンズ開口絞りとの距離Lαと、前記レンズ開口
絞りと前記集光素子との距離L2 と、前記レンズ開口絞
りの開口半径r2 を用いて、 【数4】 で表されるL3 だけ前記集光素子の焦点よりも集光素子
から遠くに設置し、且つ前記レンズ開口絞りの縁から光
軸に対して前記レンズ開口絞りの縁と同じ側の前記固定
部の内壁に接するようにひいた直線が前記固定部の先端
の面と交叉する点と光軸との距離rα、前記固定部の先
端以外の点と光軸との距離rB 、前記集光素子の焦点距
離f、前記集光素子と前記レンズ開口絞りとの距離L2
、前記集光素子の焦点と前記赤外受光素子の距離L3
に、 rB ≧rα f( f+L3)>L3・L2 の関係が成り立つことを特徴とする請求項22記載の赤
外センサ。
23. The infrared light receiving element, wherein the focal length f of the light-collecting element, the radius rs of the infrared light receiving element, and the edge of the lens aperture stop with respect to the optical axis from the edge of the lens aperture stop. The distance rα between the optical axis and a point where a straight line drawn so as to be in contact with the inner wall of the fixed part on the same side as the fixed part crosses the surface of the tip of the fixed part, and the distance from the edge of the lens aperture stop to the optical axis. A distance Lα between a point at which a straight line drawn so as to be in contact with the inner wall of the fixed part on the same side as the edge of the lens aperture stop and a surface of the fixed part tip and the lens aperture stop; Using the distance L2 to the optical element and the aperture radius r2 of the lens aperture stop, L3, which is located farther from the light-collecting element than the focal point of the light-collecting element, and which is on the same side as the edge of the lens aperture stop with respect to the optical axis from the edge of the lens aperture stop. The distance rα between the optical axis and a point where a straight line drawn so as to be in contact with the inner wall intersects the surface of the tip of the fixed part, the distance rB between the point other than the tip of the fixed part and the optical axis, the focal point of the light-collecting element A distance f, a distance L2 between the condenser element and the lens aperture stop;
A distance L3 between the focal point of the light-collecting element and the infrared light receiving element.
23. The infrared sensor according to claim 22, wherein a relationship of rB ≧ rαf (f + L3)> L3 · L2 is satisfied.
【請求項24】少なくとも、被測定物から放射あるいは
反射される光を集光する集光素子と、前記集光素子で集
光された光を受光する受光素子と、前記集光素子と前記
受光素子を保持する筐体とから構成され、前記受光素子
を前記集光素子の焦点位置から離して設置することによ
り、受光領域を制限したことを特徴とする光センサ。
24. A light-collecting element for condensing at least light emitted or reflected from an object to be measured, a light-receiving element for receiving light condensed by the light-condensing element, the light-collecting element and the light-receiving element. An optical sensor, comprising: a housing for holding an element; and a light receiving area is limited by installing the light receiving element away from a focal position of the light collecting element.
【請求項25】前記受光素子を、被測定物面における受
光したい領域と受光したくない領域の境界に位置する点
から光軸に対して前記境界に位置する点と同じ側の前記
集光素子の縁を通過して前記集光素子による前記境界に
位置する点の像点へ到達する光路と光軸との交点よりも
前記集光素子から遠く且つ前記集光素子による前記境界
に位置する点の像点よりも前記集光素子に近い領域に設
置することを特徴とする請求項24記載の光センサ。
25. The light-collecting element, wherein the light-receiving element is on the same side as a point located on the boundary with respect to the optical axis from a point located on a boundary between a region on the object to be received and a region on which light reception is not desired. A point farther from the light-collecting element than the intersection of the optical path and the optical axis reaching the image point of the point located at the boundary by the light-collecting element through the edge of the light-collecting element and located at the boundary by the light-collecting element 25. The optical sensor according to claim 24, wherein the optical sensor is provided in a region closer to the light-collecting element than the image point.
【請求項26】前記受光素子を、前記境界に位置する点
から光軸に対して前記境界に位置する点と同じ側の前記
集光素子の縁を通過して前記集光素子による前記境界に
位置する点の像点へ到達する光路と光軸との交点と、前
記集光素子による前記境界に位置する点の2つの像点と
で形成される、前記集光素子の子午面内の三角形内に設
置することを特徴とする請求項25記載の光センサ。
26. The light-receiving element is moved from a point located at the boundary to an edge of the light-collecting element on the same side as a point located at the boundary with respect to the optical axis and to the boundary formed by the light-collecting element. A triangle in the meridional plane of the light-collecting element formed by an intersection of an optical path reaching the image point of the located point and the optical axis, and two image points of a point located at the boundary by the light-collecting element. 26. The optical sensor according to claim 25, wherein the optical sensor is installed inside the optical sensor.
【請求項27】前記受光素子を、被測定物面における受
光したい領域と受光したくない領域の境界に位置する点
の前記集光素子による像点よりも前記集光素子から遠い
領域に設置することを特徴とする請求項24記載の光セ
ンサ。
27. The light-receiving element is provided in a region farther from the light-collecting element than an image point of the light-collecting element at a point located on a boundary between a region on the object to be received and a region not to receive light. The optical sensor according to claim 24, wherein:
【請求項28】前記受光素子を、前記境界に位置する点
から光軸を挟んで前記境界に位置する点と反対側の前記
集光素子の縁を通過して前記集光素子による前記境界に
位置する点の像点へ到達する、前記集光素子の子午面内
の2つの光路で挟まれた領域に設置することを特徴とす
る請求項27記載の光センサ。
28. The light-receiving element passes through an edge of the light-collecting element opposite to a point located on the boundary with respect to an optical axis from a point located on the boundary, and is connected to the boundary by the light-collecting element. 28. The optical sensor according to claim 27, wherein the optical sensor is provided in a region between two optical paths in a meridional plane of the light condensing element that reaches an image point of a located point.
【請求項29】前記集光素子が屈折レンズであることを
特徴とする請求項1〜請求項23のいずれかに記載の赤
外センサ。
29. The infrared sensor according to claim 1, wherein the light-collecting element is a refractive lens.
【請求項30】前記集光素子が透過型回折レンズである
ことを特徴とする請求項1〜請求項23のいずれかに記
載の赤外センサ。
30. An infrared sensor according to claim 1, wherein said light-collecting element is a transmission type diffraction lens.
【請求項31】前記集光素子が集光ミラーであることを
特徴とする請求項1〜請求項23のいずれかに記載の赤
外センサ。
31. The infrared sensor according to claim 1, wherein the light-collecting element is a light-collecting mirror.
【請求項32】前記集光素子が反射型回折レンズである
ことを特徴とする請求項1〜請求項23のいずれかに記
載の赤外センサ。
32. The infrared sensor according to claim 1, wherein the light-collecting element is a reflection type diffraction lens.
JP20109597A 1997-07-28 1997-07-28 Infrared sensor Expired - Fee Related JP3838748B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP20109597A JP3838748B2 (en) 1997-07-28 1997-07-28 Infrared sensor
KR1019997002668A KR100353380B1 (en) 1997-07-28 1998-07-27 Radiation clinical thermometer
CA002267573A CA2267573A1 (en) 1997-07-28 1998-07-27 Radiation thermometer
CNB988010690A CN100385215C (en) 1997-07-28 1998-07-27 Radiation clinical thermometer
EP98933941A EP0937971A4 (en) 1997-07-28 1998-07-27 Radiation clinical thermometer
US09/269,530 US6371925B1 (en) 1997-07-28 1998-07-27 Radiation clinical thermometer
PCT/JP1998/003333 WO1999005489A1 (en) 1997-07-28 1998-07-27 Radiation clinical thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20109597A JP3838748B2 (en) 1997-07-28 1997-07-28 Infrared sensor

Publications (2)

Publication Number Publication Date
JPH1144577A true JPH1144577A (en) 1999-02-16
JP3838748B2 JP3838748B2 (en) 2006-10-25

Family

ID=16435321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20109597A Expired - Fee Related JP3838748B2 (en) 1997-07-28 1997-07-28 Infrared sensor

Country Status (1)

Country Link
JP (1) JP3838748B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10795241B2 (en) 2017-08-16 2020-10-06 Sercomm Corporation IP camera with heat-conducting element for preventing dew condensation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10795241B2 (en) 2017-08-16 2020-10-06 Sercomm Corporation IP camera with heat-conducting element for preventing dew condensation

Also Published As

Publication number Publication date
JP3838748B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
TW201030376A (en) A transmissive body
JP2000242406A (en) Optical scanning type touch panel
EP2325597B1 (en) Non-contact optical probe and measuring machine
GB2167206A (en) Apertured concave reflector optical system
JP3150404B2 (en) Method and apparatus for measuring refractive power in optical system
US8102540B2 (en) Coriolis flow sensor with optically reflective motion sensor
JP2010048575A (en) Optical distance measuring sensor and apparatus with sensor mounted
JPH1144577A (en) Infrared sensor and optical sensor
RU2517979C1 (en) Optical solar sensor
US4855588A (en) Cylindrical wide field receiver element
US3198946A (en) Apparatus for sensing position of a radiation reflector
JP3590565B2 (en) Surveying instrument with lightwave distance meter
RU2302624C2 (en) Portable device for control and measuring alternate-reflecting ability of light-returning articles
JP3775034B2 (en) Infrared detector and radiation thermometer using the same
JP4143759B2 (en) Optical coordinate input device
JP4710510B2 (en) Orientation meter
JP2002333370A (en) Infrared detector and radiant thermometer using the same
WO2016098502A1 (en) Coordinate detecting apparatus
JP2668948B2 (en) Light sensor
JP4183327B2 (en) Optical scanning touch panel
JP2002122479A (en) Infrared radiation detector and radiation fever thermometer using the same
JP2002333369A (en) Infrared detector and radiant thermometer using the same
JP4175715B2 (en) Optical scanning touch panel
JP2002340680A (en) Infrared detector and radiation thermometer using it
JPH11197117A (en) Radiation thermometer

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees