JPH1144560A - Method for processing open boundary in non-linear wave propagation simulation - Google Patents

Method for processing open boundary in non-linear wave propagation simulation

Info

Publication number
JPH1144560A
JPH1144560A JP20353597A JP20353597A JPH1144560A JP H1144560 A JPH1144560 A JP H1144560A JP 20353597 A JP20353597 A JP 20353597A JP 20353597 A JP20353597 A JP 20353597A JP H1144560 A JPH1144560 A JP H1144560A
Authority
JP
Japan
Prior art keywords
equation
wave
open boundary
boundary
calculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20353597A
Other languages
Japanese (ja)
Inventor
Tetsushi Kiyokawa
清川哲志
Kazuo Nadaoka
灘岡和夫
Seldar Beji
セルダー ベジ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP20353597A priority Critical patent/JPH1144560A/en
Publication of JPH1144560A publication Critical patent/JPH1144560A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PROBLEM TO BE SOLVED: To express calculations at an open boundary with accuracy of an equal level to that at the interior by applying a unidirectional propagation equation at the open boundary equivalent to that of an internal point and separating the equation discretely with the use of a difference equation of higher accuracy than at the internal point. SOLUTION: In steps S1-S3 of an internal area process, a bilateral wave equation is selected, then a difference equation at an internal point is applied, and a calculation formula at an internal area is obtained. In steps S4-S6 of an open boundary process, a unidirectional propagation equation equivalent to the wave equation of the internal area is obtained, and a calculation formula at the open boundary is obtained by applying a highly accurate difference equation at an end point. Then in step S7, a calculation model for a seabed configuration, a wave-making boundary, an open boundary, etc., is set. A simulation condition, e.g. a waveform, a lattice interval, a time interval, etc., at the wave- making boundary is input in step S8. A nonlinear wave propagation simulation is executed in step S9.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、港湾設計、津波伝
播予測、沿岸波浪予測等の海岸工学上の諸問題における
非線形波動伝播シミュレーションの技術分野に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention belongs to the technical field of non-linear wave propagation simulation in various coastal engineering problems such as port design, tsunami propagation prediction, and coastal wave prediction.

【0002】[0002]

【従来の技術】海の波等に対する数値波動シミュレーシ
ョンを行う場合、通常、必ず計算領域の境界の一部に開
境界、すなわち、現実には何も境界がない所に有限領域
でしか行えない数値シミュレーションを適用することか
ら発生する仮想的境界が生じる。
2. Description of the Related Art When performing a numerical wave simulation for a sea wave or the like, usually, an open boundary is always provided at a part of a boundary of a calculation region, that is, a numerical value which can be performed only in a finite region where there is no boundary in reality. A virtual boundary arises from applying the simulation.

【0003】従来、線形波(正弦波)の開境界処理にお
いては、正弦波が一定の波速で伝播すると仮定して線形
理論により求められる波速を開境界で適用し、波は変形
しないでその波速で伝播するとして得られる関係式(放
射条件)を用いて開境界処理を行っていた。線形波の場
合、波速は波の振幅によらず、水深と波の周期で決まる
ため予め計算できるのでこのような方法が可能となる。
ところが、非線形波動では、波速が振幅に依存するし、
波形も正弦波ではないため、そのような方法が適用でき
ない。すなわち、開境界における波の振幅は計算結果と
して初めて得られるが、その計算のためには開境界にお
ける波速が正確に知れている必要があり、簡単には行か
ない。線形理論による波速を近似値として放射条件をそ
のまま適用した例(従来法1)もあるが、適用したとし
ても波が開境界に達するとすぐに解が発散し、長時間の
シミュレーションを行うことができないという問題があ
る。
Conventionally, in the open boundary processing of a linear wave (sine wave), a wave speed obtained by linear theory is applied at an open boundary, assuming that a sine wave propagates at a constant wave speed, and the wave speed is not changed and the wave speed is not changed. Open boundary processing was performed using the relational expression (radiation condition) obtained as the propagation at. In the case of a linear wave, the wave speed is determined by the depth of the water and the cycle of the wave without depending on the amplitude of the wave, and can be calculated in advance.
However, in nonlinear waves, the wave speed depends on the amplitude,
Since the waveform is not a sine wave, such a method cannot be applied. That is, although the amplitude of the wave at the open boundary is obtained as a calculation result for the first time, the wave velocity at the open boundary needs to be accurately known for the calculation, which is not easy. There is also an example in which the radiation condition is applied as it is using the wave velocity according to the linear theory as an approximate value (conventional method 1). There is a problem that can not be.

【0004】このため、非線形波動の開境界処理方法と
してスポンジ境界が用いられている(従来法2)。これ
は模型水槽のイメージを数値計算に取り入れたもので、
開境界にエネルギーを吸収、逸散させる層を付加するも
のである。
For this reason, a sponge boundary is used as an open boundary processing method for nonlinear waves (conventional method 2). This incorporates the image of the model aquarium into numerical calculations,
A layer that absorbs and dissipates energy is added to the open boundary.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来法2においては、スポンジ境界を汎用差分コードに組
み込むのは煩雑であるし、本来、必要のないスポンジ境
界内の解を求める必要があり、大規模対象に対する計算
時間の著しい増大も大きな問題である。また、スポンジ
層ではエネルギーが吸収されるため、計算時間が長くな
ると一種の回折効果で内部の波動が影響を受けてしまう
という問題がある。
However, in the above-mentioned conventional method 2, it is complicated to incorporate a sponge boundary into a general-purpose differential code, and it is necessary to find a solution within a sponge boundary that is not originally required. A significant increase in computation time for large objects is also a major problem. Further, since energy is absorbed in the sponge layer, there is a problem that if the calculation time is long, internal waves are affected by a kind of diffraction effect.

【0006】特に、これらに共通する実用上の大きな問
題として、海の波のような不規則波を対象とする場合、
不規則性を考慮して統計的に意味のある結果を得るため
には、相当長時間の計算を行う必要があるが、現在の処
理法では十分な量の計算を連続して行うことができない
という問題を有している。
[0006] In particular, as a major practical problem common to these, when an irregular wave such as a sea wave is targeted,
In order to obtain statistically meaningful results in consideration of irregularities, it is necessary to perform calculations for a considerably long time, but the current processing method cannot perform a sufficient amount of calculations continuously. There is a problem that.

【0007】本発明は、上記従来の問題を解決するもの
であって、非線形波動伝播シミュレーションにおける開
境界で、波を計算領域外にスムーズに逃がすための効率
的な開境界処理方法に関する原理と数値計算アルゴリズ
ムを提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems. The principle and numerical values related to an efficient open boundary processing method for smoothly letting a wave out of a calculation region at an open boundary in a nonlinear wave propagation simulation are disclosed. It aims to provide a calculation algorithm.

【0008】[0008]

【課題を解決するための手段】開境界とは、本来何も境
界がない所に解析の都合上設けられるもので、波は実際
には自由に伝播しているのに、従来の開境界処理はそこ
で無理やり減衰させたり、予め与えた波速で強制的に解
析領域の外に出したりしており、自然ではない。すなわ
ち、壁などとは異なり、開境界は実際には物理的境界で
はないにもかかわらず、従来の開境界処理ではそこに物
理的境界条件を適用していたと言える。では、開境界に
課せられる条件とは?と原点に戻って考えてみると、そ
こでは内部点と全く同様に基礎方程式系のみを満足して
いれば必要十分である。すなわち、「開境界では、水粒
子の運動は内部点と全く同様の物理法則に従っている」
ということであり、波にとって開境界の存在などももち
ろん認識しえない訳であるから、開境界で課せられる条
件は内部点の物理法則を記述する基礎方程式系と等価で
なければならない。
An open boundary is provided for convenience of analysis in a place where there is essentially no boundary. Although waves actually propagate freely, conventional open boundary processing is used. Is forcibly attenuated there or forced out of the analysis area at a predetermined wave speed, which is not natural. That is, unlike a wall or the like, the open boundary is not actually a physical boundary, but it can be said that the physical boundary condition is applied to the open boundary in the conventional open boundary processing. So what are the conditions imposed on the open boundary? Returning to the origin, it is necessary and sufficient to satisfy only the basic equation system, just like the interior points. That is, "at the open boundary, the motion of the water particles follows exactly the same physical laws as the interior points."
This means that the existence of an open boundary cannot be recognized by a wave, so the conditions imposed on the open boundary must be equivalent to the basic equation system describing the physical laws of the interior points.

【0009】本発明が提案する方法の特徴は、開境界
においても物理量は内部点と全く同様の物理法則に従っ
ており、したがって、内部点と等価な式、さらに具体的
に言えば、開境界では内部から外部に進む波のみが許さ
れ、外部からの情報を必要としないので、双方向の波動
を示す波動方程式に対応して片方向へ伝播する波の方程
式を用いることと、その差分式を内部点と同程度の精
度で表すことである。
The feature of the method proposed by the present invention is that the physical quantity at the open boundary also follows exactly the same physical law as that of the interior point, and therefore, an equation equivalent to the interior point, more specifically, at the open boundary, Since only waves traveling from the outside to the outside are allowed and no information from outside is required, use the equation of a wave propagating in one direction corresponding to the wave equation showing a two-way wave, It is to express with the same degree of accuracy as a point.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照しつつ説明する。図1は、本発明に係わる非線形
波動伝播シミュレーションの処理手順を説明するための
図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram for explaining a processing procedure of a nonlinear wave propagation simulation according to the present invention.

【0011】先ず、ステップS1〜S3で、内部領域処
理として、双方向の波動方程式を選択した後、内部点で
の差分式を適用し、内部領域での計算式を取得する。次
に、ステップS4〜S6で、開境界処理として、内部領
域の波動方程式と等価の一方向伝播方程式を取得し、端
点での高精度差分式を適用して開境界での計算式を取得
した後、ステップS7で海底地形、造波境界、開境界等
の計算モデルを設定し、ステップS8で造波境界におけ
る波形、格子間隔、時間刻み等のシミュレーション条件
を入力した後、ステップS9で非線形波動伝播シミュレ
ーションを実行する。
First, in steps S1 to S3, a bidirectional wave equation is selected as internal area processing, and then a difference equation at an internal point is applied to obtain a calculation equation in the internal area. Next, in steps S4 to S6, as an open boundary process, a one-way propagation equation equivalent to the wave equation in the internal region was obtained, and a high-precision difference equation at an end point was applied to obtain a calculation expression at the open boundary. Thereafter, in step S7, a calculation model for the seafloor topography, wave-making boundary, open boundary, and the like is set, and in step S8, simulation conditions such as the waveform at the wave-making boundary, lattice spacing, and time interval are input. Perform a propagation simulation.

【0012】本発明の具体例について説明する。弱い分
散性と非線形性を有する波の理論として有名なBoussine
sq方程式を例に上述した開境界における評価式を導く手
順を説明する。Boussinesq方程式は次の(数1)式のよ
うに表される。
A specific example of the present invention will be described. Boussine, famous for weakly dispersive and nonlinear wave theory
A procedure for deriving the above-described evaluation formula at the open boundary using the sq equation as an example will be described. The Boussinesq equation is represented by the following (Equation 1).

【0013】[0013]

【数1】 (Equation 1)

【0014】ここに、uは鉛直平均流速ベクトル、ηは
平均水面からの水面変動量、gは重力加速度、z=−h
(x,y)は海底面、tは時間である。ただし、x−y
平面を平均水面上にz軸を鉛直上向きにとって座標系を
定義している。
Here, u is the vertical average velocity vector, η is the amount of water surface fluctuation from the average water surface, g is the gravitational acceleration, z = −h
(X, y) is the sea floor, and t is time. Where xy
A coordinate system is defined with the plane on the average water surface and the z-axis pointing vertically upward.

【0015】従来は、内部点では(数1)式を離散化し
た差分式を用い、開境界では前述した従来法1または従
来法2によって別途u、ηの値を(数1)式と連立させ
て解いていた。これに対して本発明では、内部点につい
ては従来と全く同様であるが、開境界で(数1)式と等
価であるが、一方向のみに伝播する波の方程式であるK
dV方程式、すなわち、
Conventionally, a difference equation obtained by discretizing equation (1) is used at an internal point, and the values of u and η are separately combined with equation (1) at the open boundary by the above-described conventional method 1 or conventional method 2. Let it be solved. On the other hand, in the present invention, the internal point is exactly the same as the conventional one, but is equivalent to the equation (1) at the open boundary, but K is the equation of a wave propagating in only one direction.
dV equation, that is,

【0016】[0016]

【数2】 (Equation 2)

【0017】が成り立つものと考える。なお、下付添字
はその変数(時間、空間)に関する偏微分を表す。
It is assumed that the following holds. Note that the subscripts indicate partial derivatives with respect to the variables (time and space).

【0018】開境界において(数1)式と等価(同じ非
線形性、分散性を有する)だが、開境界の外側に向けて
伝播する波の方程式を適用し、そして、その差分化にあ
たっては内部点より高精度となる差分式を用いるという
のが本発明の特徴である。
At the open boundary, equation (1) is equivalent (has the same nonlinearity and dispersibility), but the equation of a wave propagating outside the open boundary is applied. It is a feature of the present invention to use a difference formula that provides higher accuracy.

【0019】差分について具体的に説明すると以下のよ
うである。まず、内部点における関数fの一階、二階微
分を次のように通常の中央差分、すなわち隣接する2点
を用いて評価するものとする。
The difference will be specifically described as follows. First, it is assumed that the first and second derivatives of the function f at the internal points are evaluated using a normal central difference, that is, two adjacent points as follows.

【0020】[0020]

【数3】 (Equation 3)

【0021】ただし、f(I)、fx(I)、f
xx(I)等は、I番目の格子点におけるそれぞれの関数
値、Δxは格子幅である。ここではxに関する差分式に
ついて説明したが、yについても全く同様である。
Where f (I), f x (I), f
xx (I) and the like are respective function values at the I-th grid point, and Δx is a grid width. Here, the difference equation regarding x has been described, but the same applies to y.

【0022】これに対し、Nを端部における節点番号と
するとき、端点(開境界)における関数fの一階、二階
微分に対する高精度差分式は次のようになる。一階微分
は直前の2点、二階微分は直前の3点を用いる後退差分
を用いる。
On the other hand, when N is a node number at an end, a high-precision difference formula for the first and second derivatives of the function f at the end (open boundary) is as follows. The first derivative uses a backward difference using the immediately preceding two points, and the second derivative uses a backward difference using the immediately preceding three points.

【0023】[0023]

【数4】 (Equation 4)

【0024】開境界ではKdV方程式(数2)式を適用
し、式中の微分を上の高精度差分式を用いて離散化した
ものが開境界での計算式となる。ut=gηxの関係を用
いて空間微分を時間微分に置き換えると計算式は次のよ
うになる。なお、この式は、空間微分の階数を下げるた
めのテクニックで本発明の本質的なものではない。
At the open boundary, the KdV equation (Equation 2) is applied, and the differentiation in the equation is discretized using the above high-precision difference equation, which is the calculation equation at the open boundary. When the space derivative is replaced with the time derivative using the relationship u t = gη x, the calculation formula is as follows. Note that this equation is a technique for lowering the order of spatial differentiation and is not essential to the present invention.

【0025】[0025]

【数5】 (Equation 5)

【0026】なお、空間微分については(数4)式で、
fをu、η等とし、対応する時間ステップの値を代入し
て得られる。また、Δtは時間刻みである。
The spatial derivative is given by equation (4).
f is u, η, etc., and the value of the corresponding time step is substituted. Δt is a time step.

【0027】以上に示したように、上記手順に従って具
体的な手続きを進めると、(数5)式のように開境界に
おける計算式が得られる。そして、このような計算式に
よって開境界における値を計算すると、従来の手法に比
較して安定して計算を行うことが可能になる。ここで
は、(数1)式のBoussinesq方程式に対して(数2)式
のKdV方程式を用いて具体的手法を示したが、本発明
はこれに限定されるものではなく、他の方程式系でも全
く同様の手順によって開境界における計算式が得られる
ことは明らかである。開境界では内部点と同じ物理法
則、したがって同じ基礎方程式が適用されるべきである
こと、ただし、開境界では波は外部に出ていく成分のみ
が許されることから、その一方向伝播方程式を適用し、
さらにその離散化にあたって内部点と同程度の精度が得
られるように高精度差分式を採用するところに本発明の
独創性がある。
As described above, when a specific procedure is performed in accordance with the above procedure, a calculation formula at the open boundary is obtained as shown in Expression (5). Then, when the value at the open boundary is calculated by such a calculation formula, the calculation can be performed more stably than in the conventional method. Here, a specific method has been shown using the KdV equation of equation (2) with respect to the Boussinesq equation of equation (1). However, the present invention is not limited to this, and other equation systems may be used. It is clear that the calculation procedure at the open boundary can be obtained by a completely similar procedure. The same physical laws as the interior points should be applied at the open boundary and therefore the same basic equations should be applied, except that at the open boundary only waves that go out can be applied, so the one-way propagation equation is applied And
Further, the originality of the present invention resides in that a high-precision difference equation is adopted so that the same degree of accuracy as the internal points can be obtained in the discretization.

【0028】次に、本発明によるシミュレーションの結
果及び効果について説明する。適用例として図2に示す
ような1/100勾配の一様斜面上を波が左から右へ伝
播する場合を考える。この例では波の伝播に伴って水深
が浅くなるため、強い非線形性が現れる。
Next, the results and effects of the simulation according to the present invention will be described. As an application example, consider a case where a wave propagates from left to right on a uniform slope having a 1/100 gradient as shown in FIG. In this example, since the water depth becomes shallower with the propagation of the wave, strong nonlinearity appears.

【0029】先ず、従来の開境界処理による計算例とし
て、波が伝播していく様子を10秒毎に示したのが図3
である。左端が造波境界で振幅1cm、周期2秒の規則
波を発生させている。右端が開境界である。なお、この
計算では格子間隔を10cm、時間刻みを0.05秒と
している。波は伝播に伴い斜面上で上下非対称な非線形
波となっており、それが右端の開境界に達した後もその
まま開境界から抜けているが、時間の経過に伴って右端
から発生した乱れが左端へ伝播しているのがわかる。図
4は60秒の時(図3の下から3番目のグラフ)の右端
付近の波形を拡大して示したものであるが、開境界で発
生した乱れが既に左方向に伝播しているのがわかる。そ
して、この乱れは時間の経過に伴って計算領域全体に広
がってゆく。規則波を対象とした計算であれば、この計
算の場合、50秒でほぼ定常に達しており、これを最終
結果として採用すれば問題がないが、不規則波を対象と
する長時間のシミュレーションは不可能であることがわ
かる。実際に、この後計算を続行すると、図5に示すよ
うに大きく波形が乱れ、この後すぐに発散した。
First, as an example of calculation by the conventional open boundary processing, the state of propagation of a wave every 10 seconds is shown in FIG.
It is. The left end generates a regular wave with an amplitude of 1 cm and a period of 2 seconds at the wave-making boundary. The right end is the open boundary. In this calculation, the lattice interval is set to 10 cm, and the time interval is set to 0.05 second. The wave becomes a non-linear wave that is vertically asymmetric on the slope as it propagates, and it passes through the open boundary as it reaches the open boundary at the right end, but the turbulence generated from the right end over time It can be seen that it has propagated to the left end. FIG. 4 is an enlarged view of the waveform near the right end at the time of 60 seconds (third graph from the bottom in FIG. 3). The turbulence generated at the open boundary has already propagated to the left. I understand. Then, this disturbance spreads over the entire calculation area with the passage of time. In the case of calculation for regular waves, in this case, almost steady state was reached in 50 seconds, and there is no problem if this is adopted as a final result. Proves impossible. In fact, when the calculation was continued after this, the waveform was greatly disturbed as shown in FIG. 5 and diverged immediately thereafter.

【0030】図6に従来法と本発明の方法を用いた計算
結果の比較を示す。まだ波が開境界(x=50m)に達
していない40秒までは両者にそれほど顕著な違いは見
られないが、波が開境界に到達し、そこから抜けるよう
になると、従来法による計算結果は、誤差により波形が
かなり乱れていることがわかる。これに対し、本発明に
よる計算結果は、比較的整ったクノイド波となってお
り、開境界において波がきれいに抜けており、本発明の
有効性が確かめられた。
FIG. 6 shows a comparison of calculation results obtained by using the conventional method and the method of the present invention. Up to 40 seconds, when the wave has not yet reached the open boundary (x = 50 m), there is no notable difference between the two, but when the wave reaches the open boundary and comes out of it, the calculation result by the conventional method Shows that the waveform is considerably disturbed by the error. On the other hand, the calculation result according to the present invention is a relatively well-ordered cunoid wave, and the wave is clearly removed at the open boundary, confirming the effectiveness of the present invention.

【0031】図7は、有義波周期T1/3=3S、有義波高
1/3=2cmのブレッドシュナイダー・光易型スペク
トルを有する不規則波を図2の地形に入力した場合の計
算結果を各時間毎に示したものである。この例の場合、
タイムステップが12万ステップでも波が開境界からス
ムーズに抜けており安定して計算されている。波数にし
て約400波であり、この程度の波が通過すれば実用上
何の問題もないであろう。以上のように、本発明による
開境界処理方法は実用上極めて優れており、これによっ
て非線形不規則波のシミュレーションが実用に大きく近
づいたと言える。
FIG. 7 shows a case where an irregular wave having a Bled Schneider / Easy spectrum having a significant wave period T 1/3 = 3S and a significant wave height H 1/3 = 2 cm is input to the terrain of FIG. The calculation results are shown for each time. In this case,
Even when the time step is 120,000 steps, the wave smoothly escapes from the open boundary and is calculated stably. The wave number is about 400, and if such a wave passes, there will be no practical problem. As described above, the open boundary processing method according to the present invention is extremely excellent in practical use, and as a result, it can be said that the simulation of nonlinear irregular waves has come to practical use.

【0032】[0032]

【発明の効果】以上の説明から明らかなように、本発明
によれば、先ず、開境界で内部領域の波動方程式と等価
な一方向伝播方程式を適用する。例えば、内部でBoussi
nesq方程式の場合、開境界でKdV方程式(1次元)ま
たはKP方程式(2次元)、他の非線形波動方程式の場
合も、Boussinesq方程式からKdV方程式あるいはKP
方程式を導くのと同様にして一方向伝播方程式を導くこ
とができる。これにより、開境界に内部点と全く同様な
メカニズムによる波動を与えることが可能になる。しか
も、計算領域から外へ向けて抜けていく波のみを表現す
ることができ、開境界に求められる本来の機能を満足さ
せることができる。
As is apparent from the above description, according to the present invention, first, a one-way propagation equation equivalent to the wave equation in the internal region at the open boundary is applied. For example, Boussi inside
In the case of the nesq equation, the KdV equation (one-dimensional) or KP equation (two-dimensional) is used at the open boundary, and in the case of other nonlinear wave equations, the Boussinesq equation is used to calculate the KdV equation or KP equation.
One-way propagation equations can be derived in the same way as the equations are derived. This makes it possible to give a wave to the open boundary by exactly the same mechanism as the internal point. In addition, it is possible to represent only the waves that escape from the calculation area to the outside, and it is possible to satisfy the original function required for the open boundary.

【0033】次に、その一方向伝播方程式を内部点より
高精度の差分式を用いて離散化する。開境界端部ではで
は片側(内部)の情報しか利用できないので、内部点に
比較して精度が落ちる。そこで、開境界では、内部点よ
り高精度の評価式を用いる。これにより、端部における
計算を内部点と同程度の精度で行うことができ、開境界
で内部領域の波動方程式と等価な一方向伝播方程式を適
用したことと相まって、開境界における計算を物理的に
も計算精度的にも内部とほとんど区別なく行うことが可
能となる。
Next, the one-way propagation equation is discretized from the internal points by using a differential equation with higher precision. Since only one side (inside) information is available at the end of the open boundary, the accuracy is lower than that of the inner point. Therefore, at the open boundary, an evaluation formula with higher accuracy than the internal point is used. As a result, the calculation at the end can be performed with the same accuracy as that of the internal point, and the calculation at the open boundary is physically performed in combination with the application of the one-way propagation equation equivalent to the wave equation of the internal region at the open boundary. In addition, the calculation can be performed almost indistinguishably from the inside in terms of calculation accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる非線形波動伝播シミュレーショ
ンの処理手順を説明するための図である。
FIG. 1 is a diagram for explaining a processing procedure of a nonlinear wave propagation simulation according to the present invention.

【図2】海底地形の計算モデルを示す図である。FIG. 2 is a diagram showing a calculation model of a seabed topography.

【図3】従来の開境界処理による計算例の結果を示す図
である。
FIG. 3 is a diagram showing a result of a calculation example by the conventional open boundary processing.

【図4】図3において60秒の時の右端付近の波形を拡
大した図である。
FIG. 4 is an enlarged view of a waveform near the right end at 60 seconds in FIG. 3;

【図5】従来法による発散に至る強い乱れの発生を示す
図である。
FIG. 5 is a diagram showing occurrence of strong turbulence leading to divergence according to a conventional method.

【図6】従来法と本発明の方法を用いた計算結果の比較
を示す図である。
FIG. 6 is a diagram showing a comparison of calculation results using a conventional method and the method of the present invention.

【図7】ある不規則波について本発明による計算結果を
示した図である。
FIG. 7 is a diagram showing a calculation result according to the present invention for a certain irregular wave.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】波動伝播計算領域の境界である開境界の処
理において、内部領域の波動方程式と等価な一方向伝播
方程式を適用し、次に、その一方向伝播方程式を内部点
より高精度の差分式を用いて離散化することにより、開
境界での計算式を取得することを特徴とする非線形波動
伝播シミュレーションにおける開境界処理方法。
In the processing of an open boundary which is a boundary of a wave propagation calculation area, a one-way propagation equation equivalent to a wave equation of an inner area is applied, and then the one-way propagation equation is applied with higher precision than an inner point. An open boundary processing method in a nonlinear wave propagation simulation, wherein a calculation expression at an open boundary is obtained by discretization using a difference expression.
【請求項2】上記高精度の差分式は、開境界から直前の
複数の内部点を用いることを特徴とする請求項1記載の
非線形波動伝播シミュレーションにおける開境界処理方
法。
2. The method according to claim 1, wherein the high-precision difference equation uses a plurality of internal points immediately before the open boundary.
【請求項3】上記内部領域の波動方程式がBoussinesq方
程式であり、一方向伝播方程式がKdV方程式であるこ
とを特徴とする請求項1記載の非線形波動伝播シミュレ
ーションにおける開境界処理方法。
3. The method according to claim 1, wherein the wave equation in the internal region is a Boussinesq equation, and the one-way propagation equation is a KdV equation.
JP20353597A 1997-07-29 1997-07-29 Method for processing open boundary in non-linear wave propagation simulation Pending JPH1144560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20353597A JPH1144560A (en) 1997-07-29 1997-07-29 Method for processing open boundary in non-linear wave propagation simulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20353597A JPH1144560A (en) 1997-07-29 1997-07-29 Method for processing open boundary in non-linear wave propagation simulation

Publications (1)

Publication Number Publication Date
JPH1144560A true JPH1144560A (en) 1999-02-16

Family

ID=16475768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20353597A Pending JPH1144560A (en) 1997-07-29 1997-07-29 Method for processing open boundary in non-linear wave propagation simulation

Country Status (1)

Country Link
JP (1) JPH1144560A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109696292A (en) * 2017-10-20 2019-04-30 交通运输部天津水运工程科学研究所 The wave simulation method, apparatus and wave making epparatus of pond wave maker
CN112033640A (en) * 2020-08-24 2020-12-04 智慧航海(青岛)科技有限公司 Simulation experience system for ship hydrodynamic performance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109696292A (en) * 2017-10-20 2019-04-30 交通运输部天津水运工程科学研究所 The wave simulation method, apparatus and wave making epparatus of pond wave maker
CN109696292B (en) * 2017-10-20 2020-11-17 交通运输部天津水运工程科学研究所 Wave simulation method and device of pool wave generator and wave generating equipment
CN112033640A (en) * 2020-08-24 2020-12-04 智慧航海(青岛)科技有限公司 Simulation experience system for ship hydrodynamic performance

Similar Documents

Publication Publication Date Title
Higuera et al. Three-dimensional numerical wave generation with moving boundaries
Haidvogel et al. A semi-spectral primitive equation ocean circulation model using vertical sigma and orthogonal curvilinear horizontal coordinates
Liang et al. Adaptive quadtree simulation of shallow flows with wet–dry fronts over complex topography
Zeller et al. Improved parameterization of seagrass blade dynamics and wave attenuation based on numerical and laboratory experiments
Escauriaza et al. Initial stages of erosion and bed form development in a turbulent flow around a cylindrical pier
Walters A semi‐implicit finite element model for non‐hydrostatic (dispersive) surface waves
Hassani et al. Application of isogeometric analysis in structural shape optimization
AU2015315846B2 (en) A method of stratigraphic modeling of faults
US10108760B2 (en) Sediment transport simulation with parameterized templates for depth profiling
Wu et al. An implicit 2-D shallow water flow model on unstructured quadtree rectangular mesh
Özkan-Haller et al. A Fourier-Chebyshev collocation method for the shallow water equations including shoreline runup
Nadiga et al. Different approximations of shallow fluid flow over an obstacle
Güneralp et al. Empirical analysis of the planform curvature‐migration relation of meandering rivers
Abou-Kassem et al. Petroleum reservoir simulation: the engineering approach
Lawrence et al. Variational Boussinesq model for strongly nonlinear dispersive waves
Emamzadeh et al. Dynamic adaptive finite element analysis of acoustic wave propagation due to underwater explosion for fluid-structure interaction problems
JPH1144560A (en) Method for processing open boundary in non-linear wave propagation simulation
Allen et al. A semi-Lagrangian semi-implicit immersed boundary method for atmospheric flow over complex terrain
Avolio et al. Modelling combined subaerial-subaqueous flow-like landslides by Cellular Automata
Melnikova et al. Reservoir modelling using parametric surfaces and dynamically adaptive fully unstructured grids
Quinay et al. Waveform Inversion for Modeling Three‐Dimensional Crust Structure with Topographic Effects
Marras et al. A continuous/discontinuous Galerkin solution of the shallow water equations with dynamic viscosity, high-order wetting and drying, and implicit time integration
Wei et al. A New Model for Acoustic Wave Propagation and Scattering in the Vocal Tract.
Calandra et al. Recent advances in numerical methods for solving the wave equation in the context of seismic depth imaging
Bokhove Variational water-wave modeling: from deep water to beaches

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040512