JPH1143760A - Titanium hardened member and hardening treatment therefor - Google Patents

Titanium hardened member and hardening treatment therefor

Info

Publication number
JPH1143760A
JPH1143760A JP20014597A JP20014597A JPH1143760A JP H1143760 A JPH1143760 A JP H1143760A JP 20014597 A JP20014597 A JP 20014597A JP 20014597 A JP20014597 A JP 20014597A JP H1143760 A JPH1143760 A JP H1143760A
Authority
JP
Japan
Prior art keywords
titanium
nitrogen
gas
treatment
hardened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20014597A
Other languages
Japanese (ja)
Other versions
JP3958838B2 (en
Inventor
Yoshitsugu Shibuya
義継 渋谷
Masahiro Sato
雅浩 佐藤
Atsushi Satou
佐藤  惇司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP20014597A priority Critical patent/JP3958838B2/en
Publication of JPH1143760A publication Critical patent/JPH1143760A/en
Application granted granted Critical
Publication of JP3958838B2 publication Critical patent/JP3958838B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To impart high hardness not so as to generate scratches to the surface of a titanium member while the surface state before hardening treatment is maintained by forming a surface hardened layer of a specified thickness in which nitrogen is allowed to enter into solid solution by a specified amt. by hardening treatment on the surface of a titanium member subjected to annealing treatment at a specified temp. in a vacuum atmosphere. SOLUTION: A titanium or titanium allay member is subjected to annealing treatment of heating at 700 to 800 deg.C by a heating means in a vacuum atmosphere. Then, the member subjected to the annealing treatment is treated at 700 to 800 deg.C for a prescribed time in an evacuated atmosphere in which a gas contg. nitrogen components is introduced, and nitrogen 20 is diffused and allowed to enter into solid solution to a depth of >=5 μm from the surface of the member without forming nitrogen compds. to form a surface hardened layer 18 in which the nitrogen 20 is allowed to enter into solid solution by 0.2 to 6.0 wt.% on the surface of the titanium hardened member 2. This titanium hardened member 2 is held at 700 to 800 deg.C for a prescribed time in an evacuated atmosphere in which helium or argon is introduced and is cooled to an ordinary temp. In this way, surface cracks are not generated on the titanium hardened member 2, and the formation of colored materials on the surface is prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、チタンおよびチタ
ン合金からなり、その表面と内部が硬化処理されたチタ
ン硬化部材に関するもので、特に装飾用品として用いら
れるチタンおよびチタン合金製の時計ケ−ス、時計バン
ド、ピアス、イアリング、指輪、眼鏡フレ−ムなどに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a titanium hardened member made of titanium and a titanium alloy and having its surface and inside hardened, and particularly to a watch case made of titanium and a titanium alloy used as a decorative article. , Watch bands, piercings, earrings, rings, eyeglass frames and the like.

【0002】[0002]

【従来の技術】近年、チタンおよびチタン合金はメタル
アレルギ−を起こしにくい、人にやさしい金属として注
目されている。時計、眼鏡、宝飾などに代表される装飾
用品についても上記のコンセプトは広く支持されている
が、一方で使用中のキズ発生などによる外観品質の低下
が大きな問題として指摘されている。これは主に、チタ
ンおよびチタン合金からなる部材自身の表面硬度の低さ
に起因するものであり、解決を目指して種々の表面硬化
処理が試みられている。表面硬化処理には、大きく分け
て金属部材表面に硬質膜を被覆する方法と金属部材自身
を硬化する方法がある。金属部材表面に硬質膜を被覆す
る方法としては電気メッキに代表されるウェットプロセ
ス、真空蒸着・イオンプレ−ティング・スパッタリング
・プラズマCVDなどに代表されるドライプロセスが公
知であり、一方、金属部材自身を硬化する方法としては
イオン注入、イオン窒化、ガス窒化、浸炭などが知られ
ている。
2. Description of the Related Art In recent years, titanium and titanium alloys have been attracting attention as human-friendly metals which are unlikely to cause metal allergy. Although the above concept is widely supported for decorative articles represented by watches, glasses, jewelry, etc., on the other hand, deterioration of appearance quality due to scratches during use has been pointed out as a major problem. This is mainly due to the low surface hardness of the member made of titanium and titanium alloy itself, and various surface hardening treatments have been attempted to solve the problem. The surface hardening treatment is roughly classified into a method of coating a hard film on the surface of a metal member and a method of hardening the metal member itself. As a method of coating a hard film on a metal member surface, a wet process typified by electroplating and a dry process typified by vacuum deposition, ion plating, sputtering, plasma CVD, and the like are known. Known methods for curing include ion implantation, ion nitriding, gas nitriding, carburizing, and the like.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、チタン
およびチタン合金からなる部材の表面硬度を増加させる
ために部材上に硬質膜を被覆形成させた場合には、部材
と被膜間の密着性に難があり膜剥離の問題に対しては完
全に解決するまでには至っていないことや、部材上に直
接被膜を施すことから、チタンおよびチタン合金の地金
色のままでの表面硬化層が得られないという欠点があっ
た。
However, when a hard film is formed on a member made of titanium and a titanium alloy to increase the surface hardness of the member, the adhesion between the member and the film is difficult. Because the problem of film peeling has not yet been completely solved, and since a coating is applied directly on the member, it is not possible to obtain a surface hardened layer of titanium and titanium alloy as it is in the base metal color There were drawbacks.

【0004】一般にチタンおよびチタン合金を硬化処理
する方法としてイオン窒化、ガス窒化などの方法が広く
採用されているが、これらの方法を採用した場合、表面
でキズがつきにくい高硬度の表面硬化層を得るために
は、表面のビッカ−ス硬度Hvが最低でもHv=450
以上の硬度が必要である。このビッカ−ス硬度Hv=4
50以上を得るためには処理温度を850℃以上に設定
しなければならないが、処理温度が850℃以上の高温
度では部材の結晶粒が粗大化して表面粗れが生ずること
や、部材の表面に窒化チタンに代表されるチタンと窒素
の化合物を形成し黄色く着色してしまうため、処理前の
表面状態を維持し、かつチタン地金色のままでの硬化処
理ができないなどの問題があった。また、処理時間も長
く生産性にも難点があった。従って、本発明の課題は、
表面粗れを生じさせない温度で部材を硬化処理し、表面
に窒化チタンなどの着色物質を形成させないためのチタ
ン中での窒素の適正な濃度と、表面でのビッカ−ス硬度
Hv=450以上を得るための硬化層の適正な厚みを見
出すことである。
In general, methods such as ion nitriding and gas nitriding are widely used as a method for hardening titanium and titanium alloys. However, when these methods are employed, a hardened surface hard layer having high hardness which is hardly scratched on the surface. In order to obtain Vickers hardness Hv of the surface at least Hv = 450
The above hardness is required. This Vickers hardness Hv = 4
In order to obtain 50 or more, the processing temperature must be set to 850 ° C. or higher. However, if the processing temperature is higher than 850 ° C., the crystal grains of the member become coarse and the surface becomes rough. In addition, since a compound of titanium and nitrogen typified by titanium nitride is formed and colored yellow, there is a problem that the surface state before the treatment is maintained and the hardening treatment cannot be performed while keeping the titanium base metal color. In addition, the processing time was long and there was a problem in productivity. Therefore, the object of the present invention is to
The member is hardened at a temperature at which surface roughness does not occur, and an appropriate concentration of nitrogen in titanium to prevent the formation of a coloring substance such as titanium nitride on the surface and a Vickers hardness Hv = 450 or more on the surface are required. The purpose is to find the appropriate thickness of the cured layer to obtain.

【0005】本発明の目的は、チタンおよびチタン合金
からなる部材において、表面粗れを生じさせず、表面に
着色物質を形成させずに処理前の表面状態を維持したま
まで部材の表面と内部が硬化処理されたキズのつきにく
い高硬度のチタンおよびチタン合金からなるチタン硬化
部材とその硬化処理方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a member made of titanium and a titanium alloy, which does not cause surface roughness and does not form a coloring substance on the surface while maintaining the surface state before the treatment. It is an object of the present invention to provide a hardened titanium member made of hardened titanium and a titanium alloy which are hardened and are hardly scratched and a hardening method thereof.

【0006】[0006]

【課題を解決するための手段】本発明において上記課題
を解決するために、ガス導入口とガス排気口とを備えた
真空槽に加熱手段とトレイとチタンおよびチタン合金か
らなる部材を配置し真空排気した後、真空雰囲気中また
はヘリウムもしくはアルゴンを該真空槽内部に導入した
減圧雰囲気中でトレイ上に載置されたチタンおよびチタ
ン合金からなる部材を加熱手段により700〜800℃
まで所定時間加熱し焼鈍処理する加熱工程と、窒素成分
を含むガスを導入した減圧雰囲気中で加熱工程と同一温
度で所定時間保持しチタンおよびチタン合金からなる部
材の表面から内部へ窒素を拡散、固溶させて窒素が固溶
した硬化層を形成させる硬化処理工程と、窒素成分を含
むガスの供給を停止し真空排気した後にヘリウムもしく
はアルゴンを導入した減圧雰囲気中で硬化処理工程と同
一温度で所定時間保持した後に常温まで冷却する冷却工
程とからなる3工程により硬化処理することを特徴とす
る硬化処理方法を採用することで、表面から深さ5μm
以上に形成された表面硬化層を有するチタンおよびチタ
ン合金からなる部材において、前記表面硬化層には0.
2〜6.0重量%の窒素が化合物を形成せずに固溶した
状態で含有されていることを特徴するチタンおよびチタ
ン合金からなるチタン硬化部材が達成される。
In order to solve the above-mentioned problems in the present invention, a heating means, a tray, and a member made of titanium and a titanium alloy are arranged in a vacuum chamber having a gas inlet and a gas outlet. After evacuation, a member made of titanium and a titanium alloy placed on a tray is heated to 700 to 800 ° C. by a heating means in a vacuum atmosphere or a reduced pressure atmosphere in which helium or argon is introduced into the vacuum chamber.
Heating for a predetermined time until the annealing process, annealing, and in a reduced pressure atmosphere in which a gas containing a nitrogen component is introduced, nitrogen is diffused from the surface of the member made of titanium and the titanium alloy to the inside by holding for a predetermined time at the same temperature as the heating process, At the same temperature as the hardening process in a reduced pressure atmosphere in which helium or argon is introduced after stopping the supply of the gas containing the nitrogen component and evacuating after stopping the supply of the gas containing the nitrogen component, A hardening treatment method characterized by performing a hardening treatment in three steps of a cooling step of cooling to room temperature after holding for a predetermined time, thereby obtaining a depth of 5 μm from the surface.
In the member made of titanium and a titanium alloy having the surface hardened layer formed as described above, the surface hardened layer has a thickness of 0.1 mm.
A titanium-hardened member made of titanium and a titanium alloy is characterized in that 2 to 6.0% by weight of nitrogen is contained in a solid solution state without forming a compound.

【0007】表面状態を維持したまま表面硬化層を有す
る硬化部材の構成を詳細に検討した結果、以下のような
ことを見い出した。すなわち、表面粗れを生じさせずに
処理前の表面状態を維持したまま表面の硬度を上昇させ
るためには、窒素が化合物を形成せずに固溶した状態で
硬化層を形成していることである。窒素が化合物を形成
した状態で硬化層に含有された場合には、表面に着色物
質が形成され外観品質を低下させるため好ましくない。
また、化合物を形成することで硬化部材上に界面を有す
る硬化層を形成することになり剥離などの問題が発生す
るため、窒素が化合物を形成せずに固溶した状態で硬化
層を形成していることが必要である。このように窒素が
固溶した5μm以上の厚みがある硬化層を形成させるこ
とにより、表面粗れを生じさせずに処理前の表面状態を
維持したままで、表面に窒化チタンなどの着色物質がな
く、剥離の心配のない、表面のビッカ−ス硬度がHv=
450以上の高硬度の表面硬化が達成されることが明ら
かになった。このような構成において、部材中に固溶さ
せる窒素量と厚みを種々検討した結果、表面から深さ5
μm以上に0.2〜6.0重量%の窒素が固溶した表面
硬化層を形成させる必要があることが判明した。
As a result of a detailed study of the configuration of a cured member having a surface-hardened layer while maintaining the surface state, the following was found. In other words, in order to increase the hardness of the surface while maintaining the surface state before the treatment without causing surface roughness, the hardened layer must be formed in a state where nitrogen forms a solid solution without forming a compound. It is. It is not preferable that nitrogen is contained in the cured layer in a state where a compound is formed, since a colored substance is formed on the surface to deteriorate the appearance quality.
In addition, since the formation of the compound forms a cured layer having an interface on the cured member and causes problems such as peeling, the cured layer is formed in a state where nitrogen forms a solid solution without forming the compound. It is necessary to be. By forming a hardened layer having a thickness of 5 μm or more in which nitrogen is dissolved as described above, a colored substance such as titanium nitride is formed on the surface while maintaining the surface state before the treatment without causing surface roughness. Vickers hardness of the surface is Hv =
It has been found that a surface hardness of 450 or more is achieved. In such a configuration, as a result of various studies on the amount and thickness of nitrogen to be dissolved in the member, a depth of 5
It has been found that it is necessary to form a surface-hardened layer in which 0.2 to 6.0% by weight of nitrogen is dissolved as a solid solution in the area of μm or more.

【0008】処理前の表面状態を維持したままで表面硬
化層を有する硬化部材の硬化処理方法を種々検討した結
果、以下の硬化処理方法を用いることによりチタンおよ
びチタン合金からなる部材の表面と内部を硬化処理する
ことが可能であることを見い出した。すなわち、加熱手
段とトレイとチタンおよびチタン合金からなる部材を配
置した真空槽内部を残留ガスの影響が排除できる圧力ま
で真空排気した後に、真空雰囲気中またはヘリウムもし
くはアルゴンを該真空槽内部に導入した減圧雰囲気中で
トレイ上に載置されたチタンおよびチタン合金からなる
部材を加熱手段により700〜800℃まで所定時間加
熱し焼鈍処理する加熱工程と、窒素成分を含むガスを導
入した減圧雰囲気中で加熱工程と同一温度で所定時間保
持し硬化部材の表面から内部へ窒素を拡散、固溶させて
窒素化合物を形成させることなく窒素が固溶した硬化層
を形成させる硬化処理工程と、窒素成分を含むガスの供
給を停止し真空排気した後にヘリウムもしくはアルゴン
を導入した減圧雰囲気中で硬化処理工程と同一温度で所
定時間保持した後に、加熱を停止し常温まで冷却させる
ことにより部材の表面とその内部を硬化処理することが
可能となる。
[0008] As a result of various investigations on the hardening method of a hardened member having a surface hardened layer while maintaining the surface condition before the processing, the following hardening method was used to obtain the surface and the inside of the member made of titanium and titanium alloy. Has been found to be capable of being cured. That is, after the inside of the vacuum chamber in which the heating means, the tray, and the member made of titanium and titanium alloy were arranged was evacuated to a pressure at which the influence of the residual gas could be eliminated, helium or argon was introduced into the vacuum chamber. A heating step of heating a member made of titanium and a titanium alloy placed on a tray in a reduced-pressure atmosphere to 700 to 800 ° C. for a predetermined time by a heating means to perform an annealing treatment, and in a reduced-pressure atmosphere in which a gas containing a nitrogen component is introduced. A curing treatment step of maintaining nitrogen at the same temperature as the heating step for a predetermined time and diffusing nitrogen from the surface of the cured member to the inside to form a solid solution and form a cured layer in which nitrogen is dissolved without forming a nitrogen compound, After stopping the supply of the gas containing gas and evacuating it to a vacuum, place it at the same temperature as the curing process in a reduced pressure atmosphere in which helium or argon is introduced. After the retention time, it is possible to cure the treated surface of the member and the interior and then cooled to room temperature to stop heating.

【0009】本発明において、チタンおよびチタン合金
からなる部材を硬化処理する硬化処理方法は、装飾部材
を加熱手段により700〜800℃まで所定時間加熱し
焼鈍処理する加熱工程と、窒素成分を含むガスを真空槽
内部に導入した減圧雰囲気中で加熱工程と同一温度を所
定時間保持しチタンおよびチタン合金からなる部材の表
面から内部へ窒素を拡散、固溶させ硬化層を形成させる
硬化処理工程と、ヘリウムもしくはアルゴン雰囲気中で
常温まで冷却させる冷却工程とからなることを特徴とし
ている。
In the present invention, a curing method for curing a member made of titanium and a titanium alloy includes a heating step of heating a decorative member to 700 to 800 ° C. for a predetermined time by a heating means and performing an annealing treatment; In a reduced pressure atmosphere introduced into the vacuum chamber, the same temperature as the heating step is maintained for a predetermined time, nitrogen is diffused from the surface of the member made of titanium and the titanium alloy into the inside, a hardening process of forming a hardened layer by forming a solid solution, A cooling step of cooling to a normal temperature in a helium or argon atmosphere.

【0010】チタンおよびチタン合金からなる部材を7
00〜800℃まで加熱し焼鈍処理する加熱工程は、熱
間鍛造後の研磨加工でチタンおよびチタン合金からなる
部材を加工するときに発生する加工ひずみ層を緩和させ
ることを目的として行なうものである。加工ひずみ層は
研磨加工時の応力が格子ひずみとなって残っている状態
で結晶的にはアモルファス相である。研磨加工後のチタ
ンおよびチタン合金からなる部材に対し焼鈍処理を行な
わず硬化処理を施すと、加工ひずみ層を緩和しながら窒
素の熱拡散による拡散、固溶を行なうことになるため、
チタンおよびチタン合金からなる部材の最表面では窒素
の反応量が高くなり、内部へ拡散、固溶する量よりも最
表面層で反応する量の方が大きくなり、結果として最表
面に着色物質である窒化物が形成される。この着色物質
が形成されると外観品質が低下するため硬化部材として
好ましい状態ではない。従って研磨加工したチタンおよ
びチタン合金からなる部材は本発明における硬化処理工
程を施す前に加熱工程を施す必要がある。
A member made of titanium and a titanium alloy is
The heating step of heating to 00 to 800 ° C. and annealing is performed for the purpose of relaxing a work strain layer generated when a member made of titanium and a titanium alloy is worked by polishing after hot forging. . The work-strained layer is a crystalline amorphous phase in a state where the stress at the time of polishing remains as a lattice strain. When the hardening treatment is performed on the member made of titanium and titanium alloy after the polishing processing without performing the annealing treatment, the diffusion by thermal diffusion of nitrogen and the solid solution are performed while relaxing the work strain layer.
At the outermost surface of a member made of titanium and a titanium alloy, the reaction amount of nitrogen is higher, and the amount reacted in the outermost surface layer is larger than the amount diffused and dissolved in the inside, and as a result, a colored substance is formed on the outermost surface. Certain nitrides are formed. When this colored substance is formed, the appearance quality is deteriorated, so that it is not a preferable state as a cured member. Therefore, a member made of polished titanium and a titanium alloy needs to be subjected to a heating step before the hardening step in the present invention.

【0011】硬化処理工程は加熱工程が終了後、直ちに
窒素成分を含むガスを真空槽内に導入した雰囲気中で加
熱工程と同じ加熱状態を所定時間保持することを特徴と
している。
The curing step is characterized in that the same heating state as in the heating step is maintained for a predetermined time in an atmosphere in which a gas containing a nitrogen component is introduced into the vacuum chamber immediately after the heating step is completed.

【0012】図1に鏡面外観を有するJIS規格で定義
されたチタン第2種材を、窒素ガス雰囲気中で処理温度
をパラメ−タ−にとり690〜810℃に変化させ7時
間硬化処理した後のビッカ−ス硬度を測定した結果を示
す。処理温度が690℃以下の温度では、ビッカ−ス硬
度がHv=450以下となり充分な硬化処理がなされな
い。この原因は690℃以下の温度ではチタンおよびチ
タン合金からなる部材に対し窒素が充分に拡散、固溶し
ないため硬化層が形成されず表面硬度が上昇しないから
である。一方、処理温度が810℃以上ではチタンおよ
びチタン合金からなる部材に対して窒素の拡散、固溶速
度が大きく、厚い硬化層が得られるためビッカ−ス硬度
はHv=1050以上となるが処理温度が高いために結
晶粒が粗大化して表面粗れが発生してしまい、処理前の
表面状態を維持することができない。
[0012] Fig. 1 shows a second type of titanium material having a mirror-finished appearance defined by JIS standard after curing for 7 hours in a nitrogen gas atmosphere by changing the processing temperature to 690-810 ° C. The result of measuring Vickers hardness is shown. If the processing temperature is 690 ° C. or lower, the Vickers hardness becomes Hv = 450 or lower, and a sufficient curing process cannot be performed. This is because at a temperature of 690 ° C. or lower, nitrogen does not sufficiently diffuse and dissolve in a member made of titanium and a titanium alloy, so that a hardened layer is not formed and the surface hardness does not increase. On the other hand, when the processing temperature is 810 ° C. or higher, the diffusion and dissolution rate of nitrogen are large in a member made of titanium and a titanium alloy, and a thick hardened layer is obtained, so that the Vickers hardness becomes Hv = 1050 or higher. , The crystal grains become coarse and surface roughness occurs, and the surface state before the treatment cannot be maintained.

【0013】図2(a)は鏡面外観を有するJIS規格
で定義されたチタン第2種材の表面を、X線の入射角α
=0.5°で薄膜X線回折により分析した結果を示す。
同様に、図2(b)は窒素ガス雰囲気中でチタン第2種
材を処理温度800℃で、図2(c)は窒素ガス雰囲気
中でチタン第2種材を処理温度810℃で10時間処理
した後の表面を薄膜X線回折により分析した結果を示
す。処理温度800℃のピ−クはチタン第2種材とほぼ
同等のピ−クを示していて、表面に着色物質である窒化
チタンなどの窒素の化合物を形成していない。目視によ
る外観検査でも表面は無着色である。これに対し、処理
温度810℃ではチタン第2種材のピ−クと異なり、2
Θで36.7°と42.6°の部分に明らかなピ−クが
認められ、これは着色物質である窒化チタンのピ−クと
一致する。目視による外観検査でも表面が黄色く着色し
ていることから、表面に窒化チタンが形成されているこ
とは明らかである。従って処理温度が810℃以上で
は、表面への窒素の供給量が過剰となり着色物質である
窒化チタンを形成して外観品質を低下させるため硬化部
材への適用は困難である。
FIG. 2 (a) shows the surface of a titanium type 2 material defined by the JIS standard having a mirror surface appearance as an X-ray incident angle α.
= 0.5 ° shows the result of analysis by thin film X-ray diffraction.
Similarly, FIG. 2 (b) shows the treatment of a titanium second material in a nitrogen gas atmosphere at 800 ° C., and FIG. 2 (c) shows the treatment of a titanium second material in a nitrogen gas atmosphere at 810 ° C. for 10 hours. The result of having analyzed the surface after processing by the thin film X-ray diffraction is shown. The peak at the treatment temperature of 800 ° C. shows a peak almost equivalent to that of the second kind of titanium, and no nitrogen compound such as titanium nitride which is a coloring substance is formed on the surface. The surface is also uncolored by visual inspection. On the other hand, at the processing temperature of 810 ° C., unlike the peak of titanium
A clear peak was observed at 36.7 ° and 42.6 ° in Θ, which coincides with the peak of titanium nitride as a coloring substance. It is clear from the visual inspection that the surface is colored yellow, indicating that titanium nitride is formed on the surface. Therefore, when the treatment temperature is 810 ° C. or more, the supply amount of nitrogen to the surface becomes excessive and titanium nitride as a coloring substance is formed to deteriorate the appearance quality, so that application to a hardened member is difficult.

【0014】以上の理由から、本発明において硬化処理
工程の処理温度は700〜800℃の範囲内とする必要
がある。チタンおよびチタン合金からなる部材を処理前
の表面状態を維持したままで部材の表面と内部を硬化処
理するためには、表面粗れを生じさせないこと、部材の
表面近傍で窒素が化合物を形成せずに固溶した状態で硬
化層を形成していることである。このような構成の硬化
層を形成させることにより、表面粗れを生じさせずに処
理前の表面状態を維持したままでの表面硬化処理が可能
となる。
For the above reasons, in the present invention, the treatment temperature in the curing treatment step needs to be in the range of 700 to 800.degree. In order to harden the surface and inside of the member made of titanium and titanium alloy while maintaining the surface state before the treatment, it is necessary to prevent surface roughness and to form a compound by nitrogen near the surface of the member. The hardened layer is formed in a solid solution state. By forming a cured layer having such a configuration, a surface hardening treatment can be performed while maintaining the surface state before the treatment without causing surface roughness.

【0015】窒素成分を含むガスとして窒素ガスもしく
はアンモニアガスを用いることができるが、窒素ガスも
しくはアンモニアガスにヘリウムもしくはアルゴンを混
合させたガスを用いてもかまわない。重要なことはチタ
ンおよびチタン合金からなる部材に対し、表面から窒素
が窒化チタンなどのような窒素化合物を形成することな
く拡散、固溶していることである。
As the gas containing a nitrogen component, nitrogen gas or ammonia gas can be used, but a gas obtained by mixing helium or argon with nitrogen gas or ammonia gas may be used. What is important is that nitrogen diffuses and forms a solid solution from a surface of a member made of titanium and a titanium alloy without forming a nitrogen compound such as titanium nitride.

【0016】冷却工程は硬化処理工程が終了したチタン
およびチタン合金からなる部材の表面に着色物質である
窒化チタンなどの窒素化合物を形成させることなく、速
やかに常温まで冷却させ真空槽内部から取り出すため工
程である。冷却工程は硬化処理工程が終了後、窒素成分
を含むガスの供給を停止し真空排気した後にヘリウムも
しくはアルゴンを導入した減圧雰囲気中で硬化処理工程
と同一温度で所定時間保持した後に常温まで冷却するこ
とを特徴としている。冷却工程を硬化処理工程と同一の
ガス雰囲気とすると、冷却しながら窒素を供給している
ことになるため、チタンまたはチタン合金からなる部材
の表面から窒素が拡散しなくなった後も吸着し続け、窒
素が供給過多となり表面で着色物である窒化チタンなど
の窒素化合物を形成する。この着色物質である窒化チタ
ンなどの窒素化合物の形成を防止するために冷却工程の
雰囲気はヘリウムもしくはアルゴン雰囲気とする必要が
ある。重要なことは冷却工程では、窒素成分を含むガス
雰囲気としないことである。
In the cooling step, the member made of titanium and titanium alloy after the hardening treatment step is cooled to room temperature quickly without taking out a nitrogen compound such as titanium nitride which is a coloring substance, and is taken out of the vacuum chamber. It is a process. In the cooling step, after the completion of the curing step, the supply of the gas containing the nitrogen component is stopped, the gas is evacuated, and then maintained at the same temperature as the curing step for a predetermined time in a reduced pressure atmosphere in which helium or argon is introduced, and then cooled to room temperature. It is characterized by: If the cooling step is the same gas atmosphere as the hardening step, the nitrogen is supplied while cooling, so it continues to be adsorbed even after nitrogen is no longer diffused from the surface of the member made of titanium or titanium alloy, Nitrogen is supplied excessively, and a nitrogen compound such as titanium nitride, which is a coloring matter, is formed on the surface. In order to prevent the formation of a nitrogen compound such as titanium nitride as the coloring substance, the atmosphere in the cooling step needs to be a helium or argon atmosphere. It is important that the cooling process does not use a gas atmosphere containing a nitrogen component.

【0017】本発明において、チタンおよびチタン合金
からなる硬化部材とは、その表面と内部が硬化処理され
たものでチタンおよびチタン合金製の時計ケ−ス、時計
バンド、ピアス、イアリング、指輪、メガネフレ−ムな
どの装飾用品の他にも、処理前の表面状態を維持したま
で硬化処理が可能な部材であれば、前記の装飾用品に限
らず適用可能なもの全てを意味するものである。
In the present invention, a hardened member made of titanium and a titanium alloy is a hardened member whose surface and inside are hardened, and is made of a watch case, a watch band, a pierced earring, an earring, a ring, a spectacle frame made of titanium or a titanium alloy. In addition to decorative articles such as rubber, any other applicable material can be used as long as the member can be cured until the surface state before the treatment is maintained.

【0018】[0018]

【発明の実施の形態】本発明においては、チタンおよび
チタン合金からなる部材を処理前の表面状態を維持した
ままで、表面に着色物がなく、剥離の心配のない硬化処
理することが目的であり、これに対しては、ガス導入口
とガス排気口とを備えた真空槽に加熱手段とトレイとチ
タンおよびチタン合金からなる部材を配置し、高真空排
気した後に真空雰囲気中またはヘリウムもしくはアルゴ
ンを該真空槽に導入した減圧雰囲気中でトレイ上に載置
された部材を加熱手段により700〜800℃まで所定
時間加熱し焼純処理する加熱工程と、窒素成分を含むガ
スを該真空槽内部に導入した減圧雰囲気中で加熱工程と
同一温度で所定時間保持し部材の表面から内部へ窒素を
拡散、固溶させ硬化層を形成させる硬化処理工程と、ヘ
リウムもしくはアルゴンを導入した減圧雰囲気中で常温
まで冷却する冷却工程とからなること特徴とする硬化処
理方法を採ることで、表面から深さ5μm以上に0.2
〜6.0重量%の窒素が固溶した表面硬化層を形成さ
れ、その目的が達成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The object of the present invention is to carry out a hardening treatment of a member made of titanium and a titanium alloy without any coloring on the surface and without fear of peeling, while maintaining the surface state before the treatment. For this purpose, a heating means, a tray, and a member made of titanium and a titanium alloy are arranged in a vacuum chamber having a gas inlet and a gas exhaust port, and after evacuation with high vacuum, a vacuum atmosphere or helium or argon is used. Heating a member placed on a tray in a reduced-pressure atmosphere introduced into the vacuum chamber by heating means to a temperature of 700 to 800 ° C. for a predetermined time to perform a refining process, and supplying a gas containing a nitrogen component to the inside of the vacuum chamber. A hardening treatment step of maintaining nitrogen at the same temperature as the heating step for a predetermined time in a reduced pressure atmosphere introduced into the member, diffusing nitrogen from the surface of the member to the inside to form a hardened layer, and forming a hardened layer. By taking the curing process wherein it comprising the step of cooling to room temperature at a reduced pressure atmosphere obtained by introducing Gon, over a depth 5μm from the surface 0.2
A surface hardened layer in which up to 6.0% by weight of nitrogen forms a solid solution is formed, and the object is achieved.

【0019】[0019]

【実施例】【Example】

(実施例1)本発明の第1の実施例を図3、図4を用い
て説明する。図3はチタンおよびチタン合金からなる部
材を硬化処理するための装置構成を示す模式図で、図4
は硬化処理された部材の構造を示す断面模式図である。
ガス導入口10とガス排気口14を備えた真空槽6の内
部には、基材支持台であるトレイ4上にチタンおよびチ
タン合金からなる部材2と、チタンおよびチタン合金か
らなる部材2を加熱して活性化するための加熱手段とし
てヒ−タ−8が配置されている。真空槽6の内部をガス
排気口14を通じて真空ポンプ16により、残留ガス雰
囲気の影響が排除される1×10- 5 Torr以下の圧
力まで真空排気した後にヒ−タ−8によりチタンおよび
チタン合金からなる部材2を690〜810℃まで30
分間加熱し焼鈍処理してから、ガス導入口10のガス導
入弁12を開け窒素ガスを導入し圧力を0.3Torr
に調整した雰囲気中で焼鈍処理したときの温度を保なが
ら7時間一定に保持して、チタンおよびチタン合金から
なる部材2の表面に窒素20を吸着及び拡散させて、チ
タンおよびチタン合金からなる部材2の表面から内部へ
窒素20を拡散、固溶させ表面硬化層18を形成した。
この後、ガス導入口10のガス導入弁12を閉じ、ガス
排気口14を通じて真空ポンプ16により真空槽6の内
部を1×10- 3 Torr以下の圧力まで真空排気して
から、ガス導入口10のガス導入弁12を開けヘリウム
を導入し圧力を0.3Torrに調整した雰囲気中で硬
化処理したときの温度を保ながら30分間一定に保持し
た後、ヒ−タ−8による加熱を停止しヘリウム雰囲気中
で常温まで冷却した。
(Embodiment 1) A first embodiment of the present invention will be described with reference to FIGS. FIG. 3 is a schematic view showing an apparatus configuration for hardening a member made of titanium and a titanium alloy.
FIG. 3 is a schematic cross-sectional view showing the structure of a member that has been cured.
Inside a vacuum chamber 6 having a gas inlet 10 and a gas exhaust port 14, a member 2 made of titanium and a titanium alloy and a member 2 made of titanium and a titanium alloy are heated on a tray 4 serving as a substrate support. A heater 8 is provided as a heating means for activating the heater. By the vacuum pump 16 through the gas outlet 14 inside the vacuum chamber 6, 1 × 10 influence of the residual gas atmosphere is eliminated - titanium by motor 8 and the titanium alloy - 5 Torr heat after evacuated to a pressure of less than Member 2 to 690-810 ° C for 30
After heating and annealing for one minute, the gas introduction valve 12 of the gas introduction port 10 is opened and nitrogen gas is introduced to reduce the pressure to 0.3 Torr.
A member made of titanium and a titanium alloy by adsorbing and diffusing nitrogen 20 on the surface of the member 2 made of titanium and a titanium alloy while maintaining the temperature at the time of annealing treatment in an atmosphere adjusted to a constant value for 7 hours. Nitrogen 20 was diffused from the surface of No. 2 to the inside to form a solid solution to form a hardened surface layer 18.
Thereafter, the gas introduction valve 12 of the gas introduction port 10 is closed, and the inside of the vacuum chamber 6 is evacuated to a pressure of 1 × 10 −3 Torr or less by the vacuum pump 16 through the gas exhaust port 14. The gas introduction valve 12 is opened, helium is introduced, and the temperature is kept constant for 30 minutes while maintaining the temperature at which the curing process is performed in an atmosphere adjusted to a pressure of 0.3 Torr. Then, the heating by the heater 8 is stopped and the helium is stopped. It was cooled to room temperature in an atmosphere.

【0020】被硬化処理部材には、鏡面外観を有するJ
IS規格で定義されたチタン第2種材からなる時計ケ−
スを使用し、上記690〜810℃の温度範囲で処理温
度を変化させて処理した。その後に硬さ、窒素の拡散深
さと濃度、表面粗れ、表面組織の結晶粒の大きさ、着色
物質である窒化チタンの有無を測定評価した。硬さはビ
ッカ−ス硬度計により測定し、負荷荷重50gfで表面
の硬度がHv=450以上であるものを合格とした。窒
素の拡散深さと濃度は2次イオン質量分析計(SIM
S)により測定し、表面から5μm以上の深さで0.2
〜6.0重量%の窒素を含有しているものを合格とし
た。これらの結果を図5、図6、図7、表1に示す。表
面粗れは表面粗さ計を使用して平均表面粗さRaを測定
し、0.4μm以下のものを合格とした。結晶粒Rcの
大きさは表面の結晶組織を電子顕微鏡により測定し、2
0〜65μmの範囲内にあるものを合格とした。着色物
質である窒化チタンの有無はX線入射角α=0.5°の
薄膜X線回折により測定し、窒化チタンのピ−クが存在
しないものを合格とした。これらの測定結果を表1に示
す。
The member to be cured has a mirror-finished J
Clock case made of titanium second class material defined by IS standard
The treatment was performed by changing the treatment temperature in the above temperature range of 690 to 810 ° C. Thereafter, the hardness, the diffusion depth and concentration of nitrogen, the surface roughness, the size of the crystal grains of the surface texture, and the presence or absence of titanium nitride as a coloring substance were measured and evaluated. The hardness was measured with a Vickers hardness tester, and those having a load of 50 gf and a surface hardness of Hv = 450 or more were accepted. The diffusion depth and concentration of nitrogen can be measured using a secondary ion mass spectrometer (SIM).
S), and 0.2 at a depth of 5 μm or more from the surface.
Those containing 66.0% by weight of nitrogen were accepted. These results are shown in FIG. 5, FIG. 6, FIG. 7, and Table 1. As for the surface roughness, the average surface roughness Ra was measured using a surface roughness meter, and those having a surface roughness of 0.4 μm or less were accepted. The size of the crystal grain Rc is determined by measuring the crystal structure of the surface with an electron microscope.
Those within the range of 0 to 65 µm were regarded as acceptable. The presence or absence of the coloring substance, titanium nitride, was measured by thin-film X-ray diffraction at an X-ray incidence angle α = 0.5 °, and those having no peak of titanium nitride were accepted. Table 1 shows the measurement results.

【0021】[0021]

【表1】 [Table 1]

【0022】試料番号a〜dはそれぞれ、690℃から
810℃まで処理温度を変化させて処理したもので、試
料番号eは未処理のチタン第2種材である。
Sample numbers a to d are each processed by changing the processing temperature from 690 ° C. to 810 ° C., and sample number e is an untreated titanium second class material.

【0023】表1から明らかなように、試料番号a(処
理温度690℃)では処理後の平均表面粗さRa、処理
後の結晶粒の大きさRcともに試料番号eの未処理のチ
タン第2種材と同等で外観品質は良好であるが、表面の
硬度がHv=340と低いこと、0.2〜6.0重量%
の窒素の含有深さが2.1μmであることから充分な厚
みを有する硬化層が形成されていない。図5に試料番号
aにおける窒素の拡散深さと濃度を2次イオン質量分析
計(SIMS)により測定した結果を示す。試料番号d
(処理温度810℃)では表面の硬度がHv=1050
と高いこと、0.2〜6.0重量%の窒素の含有深さが
11.4μmであることから充分な厚みを有する硬化層
が形成されているが、処理後の平均表面粗さがRa=
1.0μmと大きく、処理後の結晶粒もRc=70〜2
20μmに粗大化していて処理後の表面粗れが顕著に認
められ処理前の表面状態を維持した硬化処理がなされて
いない。また処理後の表面では窒化チタンのピ−クが明
らかに認められるので窒素が固溶した状態での硬化層が
形成されていない。これらに対し試料番号b(処理温度
700℃)では表面での硬度がHv=500と高いこ
と、0.2〜6.0重量%の窒素の含有深さが5.2μ
mであることから充分な厚みを有する硬化層が形成され
ている。図6に試料番号bにおける窒素の拡散深さと濃
度を2次イオン質量分析計(SIMS)により測定した
結果を示す。処理後の平均表面粗さはRa=0.25μ
m、処理後の結晶粒もRc=30〜50μmと試料番号
eの未処理のチタン第2種材と比較してほとんど変化が
なく処理前の表面状態を維持したままの硬化処理がなさ
れている。また、処理後の表面では窒化チタンのピ−ク
が認められないことから窒素が窒化チタンを形成せずに
固溶した状態で硬化層を形成していることが明らかであ
る。同様に試料番号c(処理温度800℃)では表面で
の硬度がHv=900と高いこと、0.2〜6.0重量
%の窒素の含有深さが9.9μmであることから充分な
厚みを有する硬化層が形成されている。図7に試料番号
bにおける窒素の拡散深さと濃度を2次イオン質量分析
計(SIMS)により測定した結果を示す。処理後の平
均表面粗さはRa=0.35μm、処理後の結晶粒もR
c=30〜60μmと試料番号eの未処理のチタン第2
種材と比較してほとんど変化がなく処理前の表面状態を
維持したままの硬化処理がなされている。また、処理後
の表面では窒化チタンのピ−クが認められないことから
窒素が窒化チタンを形成せずに固溶した状態で硬化層を
形成していることが明らかである。以上、試料番号bと
cは表面から5μm以上の深さに0.2〜6.0重量%
の窒素を窒化チタンなどの化合物を形成せずに固溶した
状態で含有している硬化層が形成されていることが明ら
かで、本発明で限定する窒素量を含有し充分な表面硬化
層を有するものとなっていることが認められた。
As is clear from Table 1, in sample No. a (processing temperature: 690 ° C.), both the average surface roughness Ra after the treatment and the crystal grain size Rc after the treatment are the same as those of the sample No. e. The appearance quality is as good as the seed material, but the surface hardness is as low as Hv = 340, 0.2-6.0% by weight
Since the nitrogen content depth of 2.1 μm was 2.1 μm, a cured layer having a sufficient thickness was not formed. FIG. 5 shows the results of measuring the diffusion depth and concentration of nitrogen in sample number a using a secondary ion mass spectrometer (SIMS). Sample number d
(The processing temperature is 810 ° C.), the surface hardness is Hv = 1050
And a cured layer having a sufficient thickness is formed since the nitrogen content of 0.2 to 6.0% by weight is 11.4 μm, but the average surface roughness after the treatment is Ra. =
As large as 1.0 μm, the crystal grains after treatment are also Rc = 70 to 2
The surface was coarsened to 20 μm, the surface roughness after the treatment was remarkably observed, and the curing treatment maintaining the surface state before the treatment was not performed. Since a peak of titanium nitride is clearly observed on the surface after the treatment, a hardened layer in a state where nitrogen is dissolved is not formed. On the other hand, in sample number b (processing temperature 700 ° C.), the hardness at the surface was as high as Hv = 500, and the nitrogen content depth of 0.2 to 6.0% by weight was 5.2 μm.
m, a cured layer having a sufficient thickness is formed. FIG. 6 shows the results of measuring the diffusion depth and concentration of nitrogen in sample number b using a secondary ion mass spectrometer (SIMS). Average surface roughness after treatment is Ra = 0.25μ
m, the crystal grains after the treatment are also Rc = 30 to 50 μm, hardly changing compared to the untreated titanium second material of sample number e, and the hardening treatment is performed while maintaining the surface state before the treatment. . Further, since no peak of titanium nitride is observed on the surface after the treatment, it is clear that the hardened layer is formed in a state where nitrogen forms a solid solution without forming titanium nitride. Similarly, in sample number c (processing temperature 800 ° C.), the hardness on the surface is as high as Hv = 900, and the nitrogen-containing depth of 0.2 to 6.0% by weight is 9.9 μm, so that a sufficient thickness is obtained. Is formed. FIG. 7 shows the results of measuring the diffusion depth and concentration of nitrogen in sample number b using a secondary ion mass spectrometer (SIMS). The average surface roughness after the treatment is Ra = 0.35 μm, and the crystal grains after the treatment are also R
c = 30 to 60 μm and untreated titanium second sample number e
The hardening treatment has been performed with little change compared to the seed material and the surface condition before the treatment maintained. Further, since no peak of titanium nitride is observed on the surface after the treatment, it is clear that the hardened layer is formed in a state where nitrogen forms a solid solution without forming titanium nitride. As described above, the sample numbers b and c are 0.2 to 6.0% by weight at a depth of 5 μm or more from the surface.
It is clear that a hardened layer containing nitrogen as a solid solution without forming a compound such as titanium nitride is formed, and a sufficient hardened surface layer containing a limited amount of nitrogen in the present invention is formed. It was recognized that it had.

【0024】(実施例2)本発明の第2の実施例を第1
の実施例と同様に図3、図4を用いて説明する。図3は
チタンおよびチタン合金からなる部材を硬化処理するた
めの装置構成を示す模式図で、図4は硬化処理された部
材の構造を示す断面模式図である。ガス導入口10とガ
ス排気口14を備えた真空槽6の内部には、基材支持台
であるトレイ4上にチタンおよびチタン合金からなる部
材2と、チタンおよびチタン合金からなる部材2を加熱
して活性化するための加熱手段としてヒ−タ−8が配置
されている。真空槽6の内部をガス排気口14を通じて
真空ポンプ16により、残留ガス雰囲気の影響が排除さ
れる1×10- 5 Torr以下の圧力まで真空排気した
後、ガス導入口10のガス導入弁12を開けヘリウムを
導入し圧力を0.5Torrに調整し、ヒ−タ−8によ
りチタンおよびチタン合金からなる部材2を690〜8
10℃まで30分間加熱し焼鈍処理してから、ガス導入
口10のガス導入弁12を閉じ、ガス排気口14を通じ
て真空ポンプ16により真空槽6の内部を1×10- 3
Torr以下の圧力まで真空排気してから、ガス導入口
10のガス導入弁12を開けヘリウムに窒素ガスを混合
させたガスを導入し圧力を0.5Torrに調整した雰
囲気中で焼鈍処理したときの温度を保ながら7時間一定
に保持して、チタンおよびチタン合金からなる部材2の
表面に窒素20を吸着及び拡散させて、チタンおよびチ
タン合金からなる部材2の表面から内部へ窒素20を拡
散、固溶させ表面硬化層18を形成した。この後、ガス
導入口10のガス導入弁12を閉じ、ガス排気口14を
通じて真空ポンプ16により真空槽6の内部を1×10
- 3 Torr以下の圧力まで真空排気してから、ガス導
入口10のガス導入弁12を開けヘリウムを導入し圧力
を0.5Torrに調整した雰囲気中で硬化処理したと
きの温度を保ながら30分間一定に保持した後、ヒ−タ
−8による加熱を停止しヘリウム雰囲気中で常温まで冷
却した。
(Embodiment 2) A second embodiment of the present invention will be described as a first embodiment.
A description will be given with reference to FIGS. FIG. 3 is a schematic diagram showing an apparatus configuration for hardening a member made of titanium and a titanium alloy, and FIG. 4 is a schematic cross-sectional view showing the structure of the hardened member. Inside a vacuum chamber 6 having a gas inlet 10 and a gas exhaust port 14, a member 2 made of titanium and a titanium alloy and a member 2 made of titanium and a titanium alloy are heated on a tray 4 serving as a substrate support. A heater 8 is provided as a heating means for activating the heater. By the vacuum pump 16 through the gas outlet 14 inside the vacuum chamber 6, 1 × 10 influence of the residual gas atmosphere is eliminated - was evacuated to 5 Torr or less pressure, the gas inlet valve 12 of the gas inlet 10 Open helium was introduced, the pressure was adjusted to 0.5 Torr, and the member 2 made of titanium and a titanium alloy was heated to 690 to 8 by a heater-8.
After heating to 10 ° C. for 30 minutes for annealing, the gas inlet valve 12 of the gas inlet 10 is closed, and the inside of the vacuum chamber 6 is reduced to 1 × 10 −3 by the vacuum pump 16 through the gas outlet 14.
After evacuating to a pressure equal to or lower than Torr, the gas inlet valve 12 of the gas inlet 10 is opened, a gas obtained by mixing nitrogen gas with helium is introduced, and annealing is performed in an atmosphere where the pressure is adjusted to 0.5 Torr. While keeping the temperature constant for 7 hours, nitrogen 20 is adsorbed and diffused on the surface of the member 2 made of titanium and titanium alloy, and the nitrogen 20 is diffused from the surface of the member 2 made of titanium and titanium alloy to the inside. A solid solution was formed to form a surface hardened layer 18. After that, the gas introduction valve 12 of the gas introduction port 10 is closed, and the inside of the vacuum chamber 6 is
-After evacuating to a pressure of -3 Torr or less, open the gas introduction valve 12 of the gas introduction port 10, introduce helium, and maintain the temperature at the time of curing treatment in an atmosphere adjusted to 0.5 Torr for 30 minutes while maintaining the temperature. After keeping the temperature constant, the heating by the heater 8 was stopped, and the mixture was cooled to room temperature in a helium atmosphere.

【0025】本実施例2においても、被硬化処理部材に
は実施例1と同様に鏡面外観を有するJIS規格に定義
されたチタン第2種材からなる時計ケ−スを実施例1と
全く同等な温度条件で処理した後、実施例1と同様に、
硬さ、窒素の拡散深さと濃度、表面粗れ、表面組織の結
晶粒の大きさ、着色物質である窒素の化合物の有無を測
定した。これらの測定結果を表2に示す。
In the second embodiment, a watch case made of a titanium second-class material defined by JIS standards having a mirror-finished appearance as in the first embodiment is completely the same as the first embodiment. After treatment under various temperature conditions, as in Example 1,
The hardness, the diffusion depth and concentration of nitrogen, the surface roughness, the size of crystal grains in the surface texture, and the presence or absence of a nitrogen compound as a coloring substance were measured. Table 2 shows the measurement results.

【0026】[0026]

【表2】 [Table 2]

【0027】試料番号f〜iはそれぞれ、690℃から
810℃まで処理温度を変化させて処理したもので、試
料番号eは未処理のチタン第2種材である。
Sample numbers f to i were obtained by changing the processing temperature from 690 ° C. to 810 ° C., respectively, and sample number e was untreated titanium second-class material.

【0028】表2から明らかなように、試料番号f(処
理温度690℃)では処理後の平均表面粗さRa、処理
後の結晶粒の大きさRcともに試料番号eの未処理のチ
タン第2種材と同等で外観品質は良好であるが、表面の
硬度がHv=390と低いこと、0.2〜6.0重量%
の窒素の含有深さが2.0μmであることから充分な厚
みを有する硬化層が形成されていない。試料番号i(処
理温度810℃)では表面の硬度がHv=1030と高
いこと、0.2〜6.0重量%の窒素の含有深さが1
1.4μmであることから充分な厚みを有する硬化層が
形成されているが、処理後の平均表面粗さがRa=1.
0μmと大きく、処理後の結晶粒もRc=70〜220
μmに粗大化していて処理後の表面粗れが顕著に認めら
れ処理前の表面状態を維持した硬化処理がなされていな
い。また処理後の表面では窒化チタンのピ−クが明らか
に認められるので窒素が固溶した状態での硬化層が形成
されていない。これらに対し試料番号g(処理温度70
0℃)では表面での硬度がHv=480と高いこと、
0.2〜6.0重量%の窒素の含有深さが5.1μmで
あることから充分な厚みを有する硬化層が形成されてい
る。処理後の平均表面粗さはRa=0.25μm、処理
後の結晶粒もRc=30〜50μmと試料番号eの未処
理のチタン第2種材と比較してほとんど変化がなく処理
前の表面状態を維持したままの硬化処理がなされてい
る。また、処理後の表面では窒化チタンのピ−クが認め
られないことから窒素が窒化チタンを形成せずに固溶し
た状態で硬化層を形成していることが明らかである。同
様に試料番号h(処理温度800℃)では表面での硬度
がHv=880と高いこと、0.2〜6.0重量%の窒
素の含有深さが9.8μmであることから充分な厚みを
有する硬化層が形成されている。処理後の平均表面粗さ
はRa=0.35μm、処理後の結晶粒もRc=35〜
60μmと試料番号eの未処理のチタン第2種材と比較
してほとんど変化がなく処理前の表面状態を維持したま
まの硬化処理がなされている。また、処理後の表面では
窒化チタンのピ−クが認められないことから窒素が窒化
チタンを形成せずに固溶した状態で硬化層を形成してい
ることが明らかである。以上、試料番号gとhは表面か
ら5μm以上の深さに0.2〜6.0重量%の窒素を窒
化チタンなどの化合物を形成せずに固溶した状態で含有
している硬化層が形成されていることが明らかで、本発
明で限定する窒素量を含有し充分な表面硬化層を有する
ものとなっていることが認められた。
As is clear from Table 2, in sample number f (treatment temperature: 690 ° C.), both the average surface roughness Ra after the treatment and the crystal grain size Rc after the treatment correspond to the untreated titanium second sample number e. The appearance quality is as good as the seed material, but the surface hardness is as low as Hv = 390, 0.2-6.0% by weight
Since the nitrogen content depth of the sample was 2.0 μm, a cured layer having a sufficient thickness was not formed. In sample number i (processing temperature of 810 ° C.), the hardness of the surface was as high as Hv = 1030, and the nitrogen content depth of 0.2 to 6.0% by weight was 1
Although the cured layer having a sufficient thickness was formed because of the 1.4 μm, the average surface roughness after the treatment was Ra = 1.
0 μm and Rc = 70-220 after treatment
The surface was coarsened to μm, and the surface roughness after the treatment was remarkably observed, and the hardening treatment maintaining the surface state before the treatment was not performed. Since a peak of titanium nitride is clearly observed on the surface after the treatment, a hardened layer in a state where nitrogen is dissolved is not formed. Sample number g (processing temperature 70
0 ° C), the hardness on the surface is as high as Hv = 480,
Since the content depth of nitrogen of 0.2 to 6.0% by weight is 5.1 μm, a cured layer having a sufficient thickness is formed. The average surface roughness after the treatment is Ra = 0.25 μm, and the crystal grains after the treatment are Rc = 30 to 50 μm, and there is almost no change as compared with the untreated titanium second material of sample number e. The hardening process is performed while maintaining the state. Further, since no peak of titanium nitride is observed on the surface after the treatment, it is clear that the hardened layer is formed in a state where nitrogen forms a solid solution without forming titanium nitride. Similarly, in sample number h (processing temperature 800 ° C.), the hardness on the surface is as high as Hv = 880, and the nitrogen-containing depth of 0.2 to 6.0% by weight is 9.8 μm, so that a sufficient thickness is obtained. Is formed. The average surface roughness after the treatment is Ra = 0.35 μm, and the crystal grains after the treatment are also Rc = 35 to
The hardening treatment is performed with almost no change as compared with the untreated titanium second material of 60 μm and the sample number e, and the surface state before the treatment is maintained. Further, since no peak of titanium nitride is observed on the surface after the treatment, it is clear that the hardened layer is formed in a state where nitrogen forms a solid solution without forming titanium nitride. As described above, sample numbers g and h have a cured layer containing 0.2 to 6.0% by weight of nitrogen at a depth of 5 μm or more from the surface in a solid solution state without forming a compound such as titanium nitride. It was clear that the layer had been formed, and it was confirmed that the layer contained a limited amount of nitrogen in the present invention and had a sufficient surface hardened layer.

【0029】(実施例3)本発明の第3の実施例を第1
の実施例と同様に図3、図4を用いて説明する。図3は
チタンおよびチタン合金からなる部材を硬化処理するた
めの装置構成を示す模式図で、図4は硬化処理された部
材の構造を示す断面模式図である。ガス導入口10とガ
ス排気口14を備えた真空槽6の内部には、基材支持台
であるトレイ4上にチタンおよびチタン合金からなる部
材2と、チタンおよびチタン合金からなる部材2を加熱
して活性化するための加熱手段としてヒ−タ−8が配置
されている。真空槽6の内部をガス排気口14を通じて
真空ポンプ16により、残留ガス雰囲気の影響が排除さ
れる1×10- 5 Torr以下の圧力まで真空排気した
後、ガス導入口10のガス導入弁12を開けヘリウムを
導入し圧力を0.01Torrに調整し、ヒ−タ−8に
よりチタンおよびチタン合金からなる部材2を690〜
810℃まで30分間加熱し焼鈍処理してから、ガス導
入口10のガス導入弁12を閉じ、ガス排気口14を通
じて真空ポンプ16により真空槽6の内部を1×10
- 3 Torr以下の圧力まで真空排気してから、ガス導
入口10のガス導入弁12を開けヘリウムにアンモニア
ガスを混合させたガスを導入し圧力を0.01Torr
に調整した雰囲気中で焼鈍処理したときの温度を保なが
ら5時間一定に保持して、チタンおよびチタン合金から
なる部材2の表面に窒素20を吸着及び拡散させて、チ
タンおよびチタン合金からなる部材2の表面から内部へ
窒素20を拡散、固溶させ表面硬化層18を形成した。
この後、ガス導入口10のガス導入弁12を閉じ、ガス
排気口14を通じて真空ポンプ16により真空槽6の内
部を1×10- 3 Torr以下の圧力まで真空排気して
から、ガス導入口10のガス導入弁12を開けヘリウム
を導入し圧力を0.1Torrに調整した雰囲気中で硬
化処理したときの温度を保ながら30分間一定に保持し
た後、ヒ−タ−8による加熱を停止しヘリウム雰囲気中
で常温まで冷却した。
(Embodiment 3) A third embodiment of the present invention will be described as a first embodiment.
A description will be given with reference to FIGS. FIG. 3 is a schematic diagram showing an apparatus configuration for hardening a member made of titanium and a titanium alloy, and FIG. 4 is a schematic cross-sectional view showing the structure of the hardened member. Inside a vacuum chamber 6 having a gas inlet 10 and a gas exhaust port 14, a member 2 made of titanium and a titanium alloy and a member 2 made of titanium and a titanium alloy are heated on a tray 4 serving as a substrate support. A heater 8 is provided as a heating means for activating the heater. By the vacuum pump 16 through the gas outlet 14 inside the vacuum chamber 6, 1 × 10 influence of the residual gas atmosphere is eliminated - was evacuated to 5 Torr or less pressure, the gas inlet valve 12 of the gas inlet 10 Open helium was introduced, the pressure was adjusted to 0.01 Torr, and the member 2 made of titanium and a titanium alloy was heated to 690 to 690 by a heater-8.
After heating to 810 ° C. for 30 minutes for annealing, the gas inlet valve 12 of the gas inlet 10 is closed, and the inside of the vacuum chamber 6 is
After evacuating to a pressure of −3 Torr or less, open the gas introduction valve 12 of the gas introduction port 10 and introduce a gas obtained by mixing helium with ammonia gas to reduce the pressure to 0.01 Torr.
A member made of titanium and a titanium alloy by adsorbing and diffusing nitrogen 20 on the surface of the member 2 made of titanium and a titanium alloy while maintaining the temperature at the time of the annealing treatment in the atmosphere adjusted to 5 hours, Nitrogen 20 was diffused from the surface of No. 2 to the inside to form a solid solution to form a hardened surface layer 18.
Thereafter, the gas introduction valve 12 of the gas introduction port 10 is closed, and the inside of the vacuum chamber 6 is evacuated to a pressure of 1 × 10 −3 Torr or less by the vacuum pump 16 through the gas exhaust port 14. The gas introduction valve 12 is opened, helium is introduced, and the temperature is kept constant for 30 minutes while maintaining the temperature at which the curing process is performed in an atmosphere adjusted to 0.1 Torr. Then, the heating by the heater 8 is stopped and the helium is stopped. It was cooled to room temperature in an atmosphere.

【0030】本実施例3においても、被硬化処理部材に
は実施例1、実施例2と同様に鏡面外観を有するJIS
規格に定義されたチタン第2種材からなる時計ケ−スを
実施例1、実施例2と全く同等な温度条件で処理した
後、実施例1、実施例2と同様に、硬さ、窒素の拡散深
さと濃度、表面粗れ、表面組織の結晶粒の大きさ、着色
物質である窒素の化合物の有無を測定した。これらの測
定結果を表3に示す。
Also in the third embodiment, the member to be cured has a JIS having a mirror-like appearance as in the first and second embodiments.
A watch case made of the second class titanium material defined in the standard was treated under the same temperature conditions as in the first and second embodiments, and then the hardness and the nitrogen were measured in the same manner as in the first and second embodiments. Was measured for the diffusion depth and concentration, the surface roughness, the size of crystal grains in the surface texture, and the presence or absence of a nitrogen compound as a coloring substance. Table 3 shows the measurement results.

【0031】[0031]

【表3】 [Table 3]

【0032】試料番号j〜mはそれぞれ、690℃から
810℃まで処理温度を変化させて処理したもので、試
料番号eは未処理のチタン第2種材である。
Sample numbers j to m are each processed by changing the processing temperature from 690 ° C. to 810 ° C., and sample number e is an untreated titanium second class material.

【0033】表3から明らかなように、試料番号j(処
理温度690℃)では処理後の平均表面粗さRa、処理
後の結晶粒の大きさRcともに試料番号eの未処理のチ
タン第2種材と同等で外観品質は良好であるが、表面の
硬度がHv=390と低いこと、0.2〜6.0重量%
の窒素の含有深さが2.5μmであることから充分な厚
みを有する硬化層が形成されていない。試料番号m(処
理温度810℃)では表面の硬度がHv=1100と高
いこと、0.2〜6.0重量%の窒素の含有深さが1
2.0μmであることから充分な厚みを有する硬化層が
形成されているが、処理後の平均表面粗さがRa=1.
0μmと大きく、処理後の結晶粒もRc=70〜250
μmに粗大化していて処理後の表面粗れが顕著に認めら
れ処理前の表面状態を維持した硬化処理がなされていな
い。また処理後の表面では窒化チタンのピ−クが明らか
に認められるので窒素が固溶した状態での硬化層が形成
されていない。これらに対し試料番号k(処理温度70
0℃)では表面での硬度がHv=550と高いこと、
0.2〜6.0重量%の窒素の含有深さが5.5μmで
あることから充分な厚みを有する硬化層が形成されてい
る。処理後の平均表面粗さはRa=0.25μm、処理
後の結晶粒もRc=30〜50μmと試料番号eの未処
理のチタン第2種材と比較してほとんど変化がなく処理
前の表面状態を維持したままの硬化処理がなされてい
る。また、処理後の表面では窒化チタンのピ−クが認め
られないことから窒素が窒化チタンを形成せずに固溶し
た状態で硬化層を形成していることが明らかである。同
様に試料番号l(処理温度800℃)では表面での硬度
がHv=960と高いこと、0.2〜6.0重量%の窒
素の含有深さが11.2μmであることから充分な厚み
を有する硬化層が形成されている。処理後の平均表面粗
さはRa=0.35μm、処理後の結晶粒もRc=35
〜60μmと試料番号eの未処理のチタン第2種材と比
較してほとんど変化がなく処理前の表面状態を維持した
ままの硬化処理がなされている。また、処理後の表面で
は窒化チタンのピ−クが認められないことから窒素が窒
化チタンを形成せずに固溶した状態で硬化層を形成して
いることが明らかである。以上、試料番号kとlは表面
から5μm以上の深さに0.2〜6.0重量%の窒素を
窒化チタンなどの化合物を形成せずに固溶した状態で含
有している硬化層が形成されていることが明らかで、本
発明で限定する窒素量を含有し充分な表面硬化層を有す
るものとなっていることが認められた。
As is clear from Table 3, in sample number j (processing temperature: 690 ° C.), both the average surface roughness Ra after the treatment and the crystal grain size Rc after the treatment correspond to the untreated titanium second sample of the sample number e. The appearance quality is as good as the seed material, but the surface hardness is as low as Hv = 390, 0.2-6.0% by weight
Since the nitrogen containing depth was 2.5 μm, a cured layer having a sufficient thickness was not formed. In sample number m (processing temperature: 810 ° C.), the surface hardness was as high as Hv = 1100, and the nitrogen content depth of 0.2 to 6.0% by weight was 1
Although the cured layer having a sufficient thickness is formed because the average surface roughness is 2.0 μm, the average surface roughness after the treatment is Ra = 1.
0 μm, and the crystal grains after treatment are also Rc = 70 to 250
The surface was coarsened to μm, and the surface roughness after the treatment was remarkably observed, and the hardening treatment maintaining the surface state before the treatment was not performed. Since a peak of titanium nitride is clearly observed on the surface after the treatment, a hardened layer in a state where nitrogen is dissolved is not formed. Sample number k (processing temperature 70
0 ° C), the hardness on the surface is as high as Hv = 550,
Since the content depth of nitrogen of 0.2 to 6.0% by weight is 5.5 μm, a cured layer having a sufficient thickness is formed. The average surface roughness after the treatment is Ra = 0.25 μm, and the crystal grains after the treatment are Rc = 30 to 50 μm, and there is almost no change as compared with the untreated titanium second material of sample number e. The hardening process is performed while maintaining the state. Further, since no peak of titanium nitride is observed on the surface after the treatment, it is clear that the hardened layer is formed in a state where nitrogen forms a solid solution without forming titanium nitride. Similarly, in sample No. 1 (processing temperature 800 ° C.), the hardness on the surface is as high as Hv = 960, and the depth of nitrogen content of 0.2 to 6.0% by weight is 11.2 μm. Is formed. The average surface roughness after the treatment is Ra = 0.35 μm, and the crystal grains after the treatment are also Rc = 35.
The hardening treatment is performed with almost no change compared to the untreated titanium second material of the sample number e of μ60 μm and the surface state before the treatment is maintained. Further, since no peak of titanium nitride is observed on the surface after the treatment, it is clear that the hardened layer is formed in a state where nitrogen forms a solid solution without forming titanium nitride. As described above, Sample Nos. K and 1 have a cured layer containing 0.2 to 6.0% by weight of nitrogen at a depth of 5 μm or more from the surface in a solid solution state without forming a compound such as titanium nitride. It was clear that the layer had been formed, and it was confirmed that the layer contained a limited amount of nitrogen in the present invention and had a sufficient surface hardened layer.

【0034】(実施例4)本発明の第4の実施例を第1
の実施例と同様に図3、図4を用いて説明する。図3は
チタンおよびチタン合金からなる部材を硬化処理するた
めの装置構成を示す模式図で、図4は硬化処理された部
材の構造を示す断面模式図である。ガス導入口10とガ
ス排気口14を備えた真空槽6の内部には、基材支持台
であるトレイ4上にチタンおよびチタン合金からなる部
材2と、チタンおよびチタン合金からなる部材2を加熱
して活性化するための加熱手段としてヒ−タ−8が配置
されている。真空槽6の内部をガス排気口14を通じて
真空ポンプ16により、残留ガス雰囲気の影響が排除さ
れる1×10- 5 Torr以下の圧力まで真空排気した
後、ヒ−タ−8によりチタンおよびチタン合金からなる
部材2を690〜810℃まで30分間加熱し焼鈍処理
してから、ガス導入口10のガス導入弁12を開け窒素
ガスにアンモニアガスを混合させたガス導入し圧力を5
×10- 3 Torrに調整した雰囲気中で焼鈍処理した
ときの温度を保ながら5時間一定に保持して、チタンお
よびチタン合金からなる部材2の表面に窒素20を吸着
及び拡散させて、チタンおよびチタン合金からなる部材
2の表面から内部へ窒素20を拡散、固溶させ表面硬化
層18を形成した。この後、ガス導入口10のガス導入
弁12を閉じ、ガス排気口14を通じて真空ポンプ16
により真空槽6の内部を1×10- 3 Torr以下の圧
力まで真空排気してから、ガス導入口10のガス導入弁
12を開けヘリウムを導入し圧力を0.1Torrに調
整した雰囲気中で硬化処理したときの温度を保ながら3
0分間一定に保持した後、ヒ−タ−8による加熱を停止
しヘリウム雰囲気中で常温まで冷却した。
(Embodiment 4) A fourth embodiment of the present invention will be described as a first embodiment.
A description will be given with reference to FIGS. FIG. 3 is a schematic diagram showing an apparatus configuration for hardening a member made of titanium and a titanium alloy, and FIG. 4 is a schematic cross-sectional view showing the structure of the hardened member. Inside a vacuum chamber 6 having a gas inlet 10 and a gas exhaust port 14, a member 2 made of titanium and a titanium alloy and a member 2 made of titanium and a titanium alloy are heated on a tray 4 serving as a substrate support. A heater 8 is provided as a heating means for activating the heater. By the vacuum pump 16 through the gas outlet 14 inside the vacuum chamber 6, 1 × influence of the residual gas atmosphere is eliminated 10 - 5 Torr was evacuated to a pressure of less than, heat - titanium by motor 8 and titanium alloys Is heated to 690 to 810 ° C. for 30 minutes to perform an annealing treatment, and then the gas introduction valve 12 of the gas introduction port 10 is opened to introduce a gas in which ammonia gas is mixed with nitrogen gas, and the pressure is reduced to 5.
While maintaining the temperature at the time of annealing treatment in an atmosphere adjusted to × 10 −3 Torr, the temperature was kept constant for 5 hours to adsorb and diffuse nitrogen 20 on the surface of the member 2 made of titanium and a titanium alloy. Nitrogen 20 was diffused from the surface of the member 2 made of a titanium alloy to the inside to form a solid solution to form a hardened surface layer 18. Thereafter, the gas inlet valve 12 of the gas inlet 10 is closed, and the vacuum pump 16
After evacuating the inside of the vacuum chamber 6 to a pressure of 1 × 10 −3 Torr or less, the gas introduction valve 12 of the gas introduction port 10 is opened, helium is introduced, and curing is performed in an atmosphere where the pressure is adjusted to 0.1 Torr. Keep the temperature at the time of treatment 3
After the temperature was kept constant for 0 minutes, the heating by the heater 8 was stopped and the system was cooled to room temperature in a helium atmosphere.

【0035】本実施例4においても、被硬化処理部材に
は実施例1、実施例2、実施例3と同様に鏡面外観を有
するJIS規格に定義されたチタン第2種材からなる時
計ケ−スを実施例1、実施例2、実施例3と全く同等な
温度条件で処理した後、実施例1、実施例2、実施例3
と同様に、硬さ、窒素の拡散深さと濃度、表面粗れ、表
面組織の結晶粒の大きさ、着色物質である窒素の化合物
の有無を測定した。これらの測定結果を表4に示す。
In the fourth embodiment, as in the first, second and third embodiments, the member to be cured is a watch case made of a titanium second-class material defined by JIS having a mirror-like appearance. After the heat treatment was performed under exactly the same temperature conditions as those of Examples 1, 2, and 3, Examples 1, 2, and 3 were performed.
In the same manner as in the above, the hardness, diffusion depth and concentration of nitrogen, surface roughness, the size of crystal grains in the surface texture, and the presence or absence of a nitrogen compound as a coloring substance were measured. Table 4 shows the measurement results.

【0036】[0036]

【表4】 [Table 4]

【0037】試料番号n〜qはそれぞれ、690℃から
810℃まで処理温度を変化させて処理したもので、試
料番号eは未処理のチタン第2種材である。
Each of the sample numbers n to q was processed by changing the processing temperature from 690 ° C. to 810 ° C., and the sample number e was an untreated titanium second class material.

【0038】表4から明らかなように、試料番号n(処
理温度690℃)では処理後の平均表面粗さRa、処理
後の結晶粒の大きさRcともに試料番号eの未処理のチ
タン第2種材と同等で外観品質は良好であるが、表面の
硬度がHv=380と低いこと、0.2〜6.0重量%
の窒素の含有深さが2.5μmであることから充分な厚
みを有する硬化層が形成されていない。試料番号q(処
理温度810℃)では表面の硬度がHv=1120と高
いこと、0.2〜6.0重量%の窒素の含有深さが1
2.1μmであることから充分な厚みを有する硬化層が
形成されているが、処理後の平均表面粗さがRa=1.
0μmと大きく、処理後の結晶粒もRc=80〜250
μmに粗大化していて処理後の表面粗れが顕著に認めら
れ処理前の表面状態を維持した硬化処理がなされていな
い。また処理後の表面では窒化チタンのピ−クが明らか
に認められるので窒素が固溶した状態での硬化層が形成
されていない。これらに対し試料番号o(処理温度70
0℃)では表面での硬度がHv=560と高いこと、
0.2〜6.0重量%の窒素の含有深さが5.5μmで
あることから充分な厚みを有する硬化層が形成されてい
る。処理後の平均表面粗さはRa=0.25μm、処理
後の結晶粒もRc=30〜50μmと試料番号eの未処
理のチタン第2種材と比較してほとんど変化がなく処理
前の表面状態を維持したままの硬化処理がなされてい
る。また、処理後の表面では窒化チタンのピ−クが認め
られないことから窒素が窒化チタンを形成せずに固溶し
た状態で硬化層を形成していることが明らかである。同
様に試料番号p(処理温度800℃)では表面での硬度
がHv=980と高いこと、0.2〜6.0重量%の窒
素の含有深さが12.1μmであることから充分な厚み
を有する硬化層が形成されている。処理後の平均表面粗
さはRa=0.35μm、処理後の結晶粒もRc=35
〜60μmと試料番号eの未処理のチタン第2種材と比
較してほとんど変化がなく処理前の表面状態を維持した
ままの硬化処理がなされている。また、処理後の表面で
は窒化チタンのピ−クが認められないことから窒素が窒
化チタンを形成せずに固溶した状態で硬化層を形成して
いることが明らかである。以上、試料番号oとpは表面
から5μm以上の深さに0.2〜6.0重量%の窒素を
窒化チタンなどの化合物を形成せずに固溶した状態で含
有している硬化層が形成されていることが明らかで、本
発明で限定する窒素量を含有し充分な表面硬化層を有す
るものとなっていることが認められた。
As is apparent from Table 4, in the sample number n (treatment temperature: 690 ° C.), both the average surface roughness Ra after the treatment and the crystal grain size Rc after the treatment correspond to the untreated titanium second sample No. e. The appearance quality is as good as the seed material, but the surface hardness is as low as Hv = 380, 0.2 to 6.0% by weight.
Since the nitrogen containing depth was 2.5 μm, a cured layer having a sufficient thickness was not formed. In sample number q (processing temperature 810 ° C.), the surface hardness was as high as Hv = 1120, and the nitrogen content depth of 0.2 to 6.0% by weight was 1
The cured layer having a sufficient thickness was formed because the average surface roughness was Ra = 1.
0 μm and Rc = 80 to 250
The surface was coarsened to μm, and the surface roughness after the treatment was remarkably observed, and the hardening treatment maintaining the surface state before the treatment was not performed. Since a peak of titanium nitride is clearly observed on the surface after the treatment, a hardened layer in a state where nitrogen is dissolved is not formed. The sample number o (processing temperature 70
0 ° C), the hardness on the surface is as high as Hv = 560,
Since the content depth of nitrogen of 0.2 to 6.0% by weight is 5.5 μm, a cured layer having a sufficient thickness is formed. The average surface roughness after the treatment is Ra = 0.25 μm, and the crystal grains after the treatment are Rc = 30 to 50 μm, and there is almost no change as compared with the untreated titanium second material of sample number e. The hardening process is performed while maintaining the state. Further, since no peak of titanium nitride is observed on the surface after the treatment, it is clear that the hardened layer is formed in a state where nitrogen forms a solid solution without forming titanium nitride. Similarly, in sample number p (processing temperature 800 ° C.), the hardness on the surface is as high as Hv = 980, and the nitrogen-containing depth of 0.2 to 6.0% by weight is 12.1 μm, so that a sufficient thickness is obtained. Is formed. The average surface roughness after the treatment is Ra = 0.35 μm, and the crystal grains after the treatment are also Rc = 35.
The hardening treatment is performed with almost no change compared to the untreated titanium second material of the sample number e of μ60 μm and the surface state before the treatment is maintained. Further, since no peak of titanium nitride is observed on the surface after the treatment, it is clear that the hardened layer is formed in a state where nitrogen forms a solid solution without forming titanium nitride. As described above, Sample Nos. O and p have a hardened layer containing 0.2 to 6.0% by weight of nitrogen at a depth of 5 μm or more from the surface in a solid solution state without forming a compound such as titanium nitride. It was clear that the layer had been formed, and it was confirmed that the layer contained a limited amount of nitrogen in the present invention and had a sufficient surface hardened layer.

【0039】これら実施例1、実施例2、実施例3、実
施例4の結果から、チタンおよびチタン合金からなる部
材を、真空雰囲気中またはヘリウムもしくはアルゴンを
導入した減圧雰囲気中で加熱手段により700〜800
℃まで所定時間加熱し焼鈍処理する加熱工程と、窒素成
分を含むガスを真空槽内部に導入した減圧雰囲気中で加
熱工程と同一温度で所定時間保持しチタンおよびチタン
合金からなる部材の表面から内部へ窒素を熱拡散により
拡散、固溶させ硬化層を形成させる硬化処理工程と、ヘ
リウムもしくはアルゴンを導入した減圧雰囲気中で常温
まで冷却させる冷却工程からなる3工程を通すことによ
り、チタンおよびチタン合金からなる部材の表面が処理
前の表面状態を維持したままで、窒素が化合物を形成せ
ずに固溶した状態の硬化層を形成させることが可能とな
った。また、表面硬化層の厚みと表面粗れ防止はガス雰
囲気の温度により制御されることが明らかになった。処
理温度は高温であるほど窒素の拡散速度が大きく深い硬
化層が得られるが、その一方で結晶粒が粗大化して表面
が粗れること、また810℃以上の温度ではチタンおよ
びチタン合金と窒素が反応し着色物質である窒化チタン
などの窒素化合物を形成することにより外観品質を劣化
させるため、処理温度は結晶粒が粗大化せず窒化チタン
などの窒素化合物を形成しない800℃以下にする必要
がある。一方、690℃以下の処理温度では窒素が十分
に固溶せず表面硬度が上昇しないため700℃以上の温
度が必要である。
From the results of Example 1, Example 2, Example 3, and Example 4, the member made of titanium and the titanium alloy was heated by heating means in a vacuum atmosphere or a reduced pressure atmosphere into which helium or argon was introduced. ~ 800
° C for a predetermined time and an annealing treatment, and a gas containing a nitrogen component is held for a predetermined time at the same temperature as that of the heating step in a reduced-pressure atmosphere in which a gas containing nitrogen is introduced into the vacuum chamber. Titanium and titanium alloys by passing through three steps: a hardening treatment step of diffusing and dissolving nitrogen by thermal diffusion to form a hardened layer to form a hardened layer; and a cooling step of cooling to room temperature in a reduced pressure atmosphere containing helium or argon. It has become possible to form a hardened layer in a state in which nitrogen forms a solid solution without forming a compound while the surface of the member made of is maintained in the surface state before the treatment. It was also found that the thickness of the surface hardened layer and the prevention of surface roughness were controlled by the temperature of the gas atmosphere. The higher the treatment temperature, the higher the diffusion rate of nitrogen and the deeper the hardened layer is obtained. On the other hand, the crystal grains are coarsened and the surface is roughened. Since the appearance quality is degraded by reacting and forming a nitrogen compound such as titanium nitride which is a coloring substance, the processing temperature needs to be 800 ° C. or lower where crystal grains are not coarsened and a nitrogen compound such as titanium nitride is not formed. is there. On the other hand, at a processing temperature of 690 ° C. or lower, a temperature of 700 ° C. or higher is necessary because nitrogen does not form a solid solution and the surface hardness does not increase.

【0040】本発明の実施例において、実施例1、実施
例2、実施例3、実施例4ともに被硬化処理部材として
時計ケ−スを用いたが、チタンおよびチタン合金からな
る部材とは、時計ケ−スに限らず、その表面と内部が硬
化処理されたものでチタンおよびチタン合金製の時計ケ
−ス、時計バンド、ピアス、イアリング、指輪、メガネ
フレ−ムなどの装飾用品の他にも、処理前の表面状態を
維持したまで硬化処理が可能な部材であれば、前記の装
飾用品に限らず適用可能なもの全てを意味するものであ
る。
In the embodiments of the present invention, the watch case was used as the member to be hardened in each of the first, second, third and fourth embodiments. Not only watch cases but also those whose surfaces and inside are hardened and which are made of titanium and titanium alloy, watch accessories, watch bands, piercings, earrings, rings, eyeglass frames, etc. As long as the member can be cured until the surface state before the treatment is maintained, it is not limited to the decorative article, but means any applicable one.

【0041】本発明の実施例の加熱工程において、実施
例1では1×10- 5 Torr以下の圧力まで真空排気
した真空雰囲気中で、実施例2では1×10- 5 Tor
r以下の圧力まで真空排気後にヘリウムを導入し0.5
Torrの圧力に調整した雰囲気中で、実施例3では1
×10- 5 Torr以下の圧力まで真空排気後にヘリウ
ムを導入し0.01Torrの圧力に調整した雰囲気中
で、実施例4では1×10- 5 Torr以下の圧力まで
真空排気した真空雰囲気中で加熱手段により700から
800℃まで30分間加熱し焼鈍処理しているが、焼鈍
時間は30分間に限らず、30分以上2時間以下であれ
ば任意の時間でよい。加熱工程での焼鈍処理は熱間鍛造
後の研磨加工により、チタンおよびチタン合金からなる
部材上に生じた加工ひずみ層を緩和させることを目的と
して行なうもので、焼鈍温度は700〜800℃に限ら
ず550〜800℃の範囲内の温度であれば任意の温度
で焼鈍処理が可能であるが、加熱工程が終了後直ちに硬
化処理工程に移行する必要があるため、加熱工程の処理
温度と硬化処理工程の温度を同一にすることが好まし
い。従って、加熱工程の処理温度は700〜800℃と
する必要がある。
[0041] In the heating step of the embodiment of the present invention, 1 × 10 Example 1 - in a vacuum atmosphere evacuated to a pressure of less than 5 Torr, Example 2, 1 × 10 - 5 Tor
helium was introduced after evacuation to a pressure of
In Example 3 in an atmosphere adjusted to Torr pressure, 1
× 10 - up to 5 Torr or less pressure in an atmosphere adjusted to a pressure of 0.01Torr introducing helium after evacuation, Example 4, 1 × 10 - heating in a vacuum atmosphere evacuated to a pressure of less than 5 Torr The annealing treatment is performed by heating from 700 to 800 ° C. for 30 minutes by means, but the annealing time is not limited to 30 minutes, and may be any time as long as it is 30 minutes or more and 2 hours or less. The annealing treatment in the heating step is performed for the purpose of relaxing the strained layer formed on the member made of titanium and titanium alloy by polishing after hot forging, and the annealing temperature is limited to 700 to 800 ° C. If the temperature is within the range of 550 to 800 ° C., the annealing process can be performed at any temperature. However, it is necessary to shift to the curing process immediately after the heating process is completed. It is preferable to make the temperature of the process the same. Therefore, the processing temperature in the heating step needs to be 700 to 800 ° C.

【0042】本発明の実施例の加熱工程において、実施
例1と実施例3では1×10- 5 Torr以下の圧力の
真空雰囲気中で、実施例2では0.5Torrの圧力に
調整したヘリウムの減圧雰囲気中で、実施例3では0.
01Torrの圧力に調整したヘリウムの減圧雰囲気中
で、焼鈍処理しているが、圧力はこの範囲内の圧力に限
らず減圧雰囲気であれば任意の圧力でかまわない。また
真空雰囲気、ヘリウムの減圧雰囲気のいずれの雰囲気で
もよく。ヘリウムにかえてアルゴンを用いても差し支え
がない。
[0042] In the heating step of the embodiment of the present invention, Examples 1 and 3, 1 × 10 - in a vacuum atmosphere of 5 Torr or less of pressure, the helium was adjusted to a pressure of 0.5Torr Example 2 In the reduced pressure atmosphere, in Example 3, the pressure was set to 0.
Annealing is performed in a reduced pressure atmosphere of helium adjusted to a pressure of 01 Torr, but the pressure is not limited to a pressure within this range, and any pressure may be used as long as it is a reduced pressure atmosphere. Either a vacuum atmosphere or a reduced pressure atmosphere of helium may be used. It is safe to use argon instead of helium.

【0043】本発明の実施例の硬化処理工程において、
硬化処理工程の処理時間は窒素成分を含むガスを導入し
て所定の圧力に調整した後、実施例1と実施例2では加
熱工程での温度と同一の温度で7時間、実施例3と実施
例4では加熱工程での温度と同一の温度で5時間保持し
たが、硬化処理工程の処理時間が1時間以下では負荷荷
重50gfでの表面のビッカース硬度Hv=450以上
が得られない。また硬化処理工程の処理時間が10時間
以上になると表面のビッカース硬度は飽和してしまう。
従って、硬化処理工程の処理時間は1〜10時間の範囲
内の任意の時間でよい。
In the curing step of the embodiment of the present invention,
The treatment time of the curing process is adjusted to a predetermined pressure by introducing a gas containing a nitrogen component, and then, in Examples 1 and 2, the same temperature as that in the heating process is used for 7 hours, and in Example 3 In Example 4, the temperature was maintained at the same temperature as that of the heating step for 5 hours. However, if the processing time of the curing step was 1 hour or less, Vickers hardness Hv = 450 or more at the surface with a load of 50 gf could not be obtained. Further, when the processing time of the hardening step is 10 hours or more, the Vickers hardness of the surface is saturated.
Therefore, the treatment time of the curing treatment step may be any time within the range of 1 to 10 hours.

【0044】本発明の実施例2の硬化処理工程において
は、チタンおよびチタン合金からなる部材に対しヘリウ
ムに窒素ガスを混合させたガス雰囲気中で窒素の化合物
を形成させずに窒素を固溶させることにより、処理前の
表面状態を維持したままで無着色の表面硬化層を有する
硬化部材を得ることが可能となったが、雰囲気ガスはヘ
リウムと窒素ガスの混合ガスに限らず、アルゴンと窒素
ガスの混合ガスを用いてもよい。
In the hardening process of the second embodiment of the present invention, nitrogen is dissolved in a member made of titanium and a titanium alloy without forming a nitrogen compound in a gas atmosphere in which nitrogen gas is mixed with helium. By this, it became possible to obtain a cured member having an uncolored surface hardened layer while maintaining the surface state before the treatment, but the atmosphere gas was not limited to a mixed gas of helium and nitrogen gas, and argon and nitrogen were used. A mixed gas of gases may be used.

【0045】本発明の実施例3の硬化処理工程において
は、チタンおよびチタン合金からなる部材に対しヘリウ
ムにアンモニアガスを混合させたガス雰囲気中で窒素の
化合物を形成させずに窒素を固溶させることにより、処
理前の表面状態を維持したままで無着色の表面硬化層を
有する硬化部材を得ることが可能となったが、雰囲気ガ
スはヘリウムとアンモニアガスの混合ガスに限らず、ア
ルゴンとアンモニアガスの混合ガスを用いてもよい。
In the hardening treatment step of the third embodiment of the present invention, nitrogen is dissolved in a member made of titanium and a titanium alloy in a gas atmosphere in which ammonia gas is mixed with helium without forming a nitrogen compound. This makes it possible to obtain a cured member having an uncolored surface cured layer while maintaining the surface state before the treatment, but the atmospheric gas is not limited to a mixed gas of helium and ammonia gas, but may be argon and ammonia. A mixed gas of gases may be used.

【0046】本発明の実施例4の硬化処理工程において
は、チタンおよびチタン合金からなる部材に対し窒素ガ
スにアンモニアガスを混合させたガス雰囲気中で窒素の
化合物を形成させずに窒素を固溶させることにより、処
理前の表面状態を維持したままで無着色の表面硬化層を
有する硬化部材を得ることが可能となったが、雰囲気ガ
スは窒素ガスとアンモニアガスの混合ガスに限らず、ヘ
リウムもしくはアルゴンを添加した混合ガスを用いても
よい。
In the hardening treatment step of the fourth embodiment of the present invention, nitrogen is dissolved in a member made of titanium and a titanium alloy in a gas atmosphere in which ammonia gas is mixed with nitrogen gas without forming a nitrogen compound. By doing so, it became possible to obtain a cured member having an uncolored surface cured layer while maintaining the surface state before the treatment, but the atmosphere gas was not limited to a mixed gas of nitrogen gas and ammonia gas, but helium. Alternatively, a mixed gas to which argon is added may be used.

【0047】本発明の実施例の硬化処理工程において
は、実施例1と実施例2では窒素成分を含むガスに窒素
ガスを用い圧力を0.3〜0.5Torrに調整した減
圧雰囲気で、実施例3と実施例4では窒素成分を含むガ
スにアンモニアガスを用い圧力を5×10- 3 〜0.0
1Torrに調整した減圧雰囲気で硬化処理を行なった
が、ガス雰囲気の圧力はこの範囲内の圧力に限定する必
要はなく、減圧雰囲気であれば任意の圧力でかまわな
い。
In the hardening process of the embodiment of the present invention, the embodiment 1 and the embodiment 2 are performed in a reduced pressure atmosphere in which the pressure is adjusted to 0.3 to 0.5 Torr by using nitrogen gas as the gas containing a nitrogen component. In Examples 3 and 4, ammonia gas was used as the gas containing the nitrogen component, and the pressure was 5 × 10 −3 to 0.0.
Although the curing treatment was performed in a reduced pressure atmosphere adjusted to 1 Torr, the pressure of the gas atmosphere does not need to be limited to a pressure within this range, and any pressure may be used as long as it is a reduced pressure atmosphere.

【0048】本発明の実施例の冷却工程において、実施
例1、実施例2、実施例3、実施例4ともに硬化処理工
程が終了後、窒素成分を含むガスの供給を停止し真空排
気した後にヘリウムを導入した雰囲気中で硬化処理工程
と同一温度で30分間保持した後、ヒ−タ−による加熱
を停止しヘリウム雰囲気中で常温まで冷却したが、硬化
処理工程と同一の温度で30分間保持したのは冷却工程
で窒素成分を含むガスを供給しながら冷却すると窒素が
熱拡散しなくなった後も表面に窒素が吸着し続け、窒素
が供給過多となり表面で着色物である窒化チタンなどの
窒素化合物を形成するため、加熱手段による加熱を停止
する前に真空槽内から窒素成分を含むガス雰囲気からヘ
リウムもしくはアルゴン雰囲気切換えるためである。こ
の硬化処理工程と同一の温度で保持する時間は30分間
以上であれば任意の時間でよいが、冷却工程の時間があ
まり長くなると処理効率が低下するため、30分以上1
時間以下が好ましい。重要なことは冷却工程おいては、
窒素成分を含むガス雰囲気とせずにヘリウムもしくはア
ルゴン雰囲気として常温まで冷却することである。
In the cooling step of the embodiment of the present invention, after the hardening step is completed in all of the first, second, third and fourth embodiments, the supply of the gas containing the nitrogen component is stopped and the evacuation is performed. After holding for 30 minutes at the same temperature as the curing process in the atmosphere in which helium was introduced, heating by the heater was stopped and the temperature was cooled to room temperature in the helium atmosphere, but the temperature was maintained for 30 minutes at the same temperature as the curing process. The reason for this is that when cooling is performed while supplying a gas containing a nitrogen component in the cooling step, nitrogen continues to be adsorbed on the surface even after the nitrogen does not diffuse thermally, resulting in excessive supply of nitrogen and nitrogen such as titanium nitride, which is a colored substance on the surface. This is because, in order to form a compound, the gas atmosphere containing a nitrogen component is switched from a gas atmosphere containing a nitrogen component to a helium or argon atmosphere before the heating by the heating means is stopped. The holding time at the same temperature as that of the curing step may be any time as long as it is 30 minutes or more. However, if the cooling step time is too long, the processing efficiency is reduced.
The time is preferably not more than the time. The important thing is that in the cooling process,
Cooling to room temperature as a helium or argon atmosphere without using a gas atmosphere containing a nitrogen component.

【0049】本発明の実施例の冷却工程において、実施
例1、実施例2、実施例3、実施例4ともにヘリウムを
導入した0.1〜0.5Torrの減圧雰囲気で常温ま
で冷却を行なっているが、ヘリウム雰囲気の圧力は0.
1〜0.5Torrに限らず減圧雰囲気であれば任意の
圧力でかまわない。
In the cooling step of the embodiment of the present invention, cooling was performed to room temperature in a reduced pressure atmosphere of 0.1 to 0.5 Torr in which helium was introduced in all of the first, second, third and fourth embodiments. However, the pressure of the helium atmosphere is 0.
The pressure is not limited to 1 to 0.5 Torr, but may be any pressure as long as it is a reduced pressure atmosphere.

【0050】本発明においては、処理前の表面状態を維
持したままで窒素が窒化チタンなどの化合物を形成せず
に固溶した硬化層を有する硬化部材を得ることが目的で
あるため、その硬化処理方法は上記方法に限定すること
はなくプラズマを用いても良い。重要なことは処理前後
で平均表面粗さがほとんど変化することなく、さらに結
晶粒が粗大化せずに、窒素が固溶している構造をとるこ
とにある。
The purpose of the present invention is to obtain a cured member having a cured layer in which nitrogen forms a solid solution without forming a compound such as titanium nitride while maintaining the surface state before the treatment. The treatment method is not limited to the above method, and plasma may be used. What is important is that the structure has a structure in which nitrogen is dissolved in a solid solution without substantially changing the average surface roughness before and after the treatment, and further without increasing the crystal grains.

【0051】本発明において、被硬化処理部材にはチタ
ンおよびチタン合金を用いたが、チタンとは純チタンを
主体とする金属部材を意味し、JIS規格で定義されて
いるチタン第1種、チタン第2種、チタン第3種などを
いう。またチタン合金とは、純チタンを主体とする金属
にアルミニウム、バナジウム、鉄などを添加した金属部
材をを意味し、JIS規格で定義されているチタン60
種、チタン60E種などをいう。この他にも、各種チタ
ン合金および各種チタン基の金属間化合物がチタン合金
に含まれる。
In the present invention, titanium and a titanium alloy are used for the member to be hardened. Titanium means a metal member mainly composed of pure titanium. It refers to the second type, the third type of titanium, and the like. Further, a titanium alloy means a metal member obtained by adding aluminum, vanadium, iron, or the like to a metal mainly composed of pure titanium, and is a titanium member defined by the JIS standard.
Species, such as titanium 60E species. In addition, various titanium alloys and various titanium-based intermetallic compounds are included in the titanium alloy.

【0052】[0052]

【発明の効果】以上述べてきたように、本発明によれば
チタンおよびチタン合金からなる部材において、表面か
ら深さ5μm以上に0.2〜6.0重量%の窒素が固溶
した表面硬化層を形成させることにより、チタンおよび
チタン合金からなる部材に対し、表面粗れを生じさせ
ず、かつ表面に着色物質を形成させずに処理前の表面状
態を維持したままで部材の表面と内部が硬化処理された
傷のつきにくい高硬度のチタン硬化部材とその硬化処理
方法を提供することが可能となった。また、本発明によ
って得られた硬化部材は硬化処理後も処理前の表面状態
が維持されるため、装飾性を高めた実用域の硬化部材を
提供することが可能となった。
As described above, according to the present invention, in a member made of titanium and a titanium alloy, surface hardening in which 0.2 to 6.0% by weight of nitrogen forms a solid solution at a depth of 5 μm or more from the surface. By forming the layer, the surface of the member made of titanium and a titanium alloy is not roughened, and the surface of the member and the inside of the member are maintained while maintaining the surface state before the treatment without forming a coloring substance on the surface. It has become possible to provide a hardened titanium hardened member which is hardened and hardly damaged, and a hardening method thereof. In addition, since the cured member obtained by the present invention maintains the surface state before the treatment even after the curing treatment, it has become possible to provide a cured member in a practical range with improved decorativeness.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における処理温度とビッカ−ス硬度の相
関関係を示す図である。
FIG. 1 is a diagram showing a correlation between a processing temperature and Vickers hardness in the present invention.

【図2】本発明における処理温度と表面での窒化チタン
の形成の有無を示す薄膜X線回折によるピ−ク図であ
る。
FIG. 2 is a peak diagram by thin-film X-ray diffraction showing the processing temperature and the presence or absence of titanium nitride on the surface in the present invention.

【図3】本発明の一実施例である硬化部材の硬化処理方
法を説明するための装置構成を示す模式図である。
FIG. 3 is a schematic diagram showing an apparatus configuration for describing a method of curing a cured member according to an embodiment of the present invention.

【図4】本発明の一実施例である硬化部材の構造を示す
断面模式図である。
FIG. 4 is a schematic sectional view showing the structure of a cured member according to one embodiment of the present invention.

【図5】本発明の一実施例であるチタン第2種材を処理
温度690℃で硬化処理した後に、2次イオン質量分析
計(SIMS)で窒素の拡散深さと濃度を測定した結果
を示す図である。
FIG. 5 shows the results of measuring the diffusion depth and concentration of nitrogen using a secondary ion mass spectrometer (SIMS) after curing a titanium second material according to an embodiment of the present invention at a processing temperature of 690 ° C. FIG.

【図6】本発明の一実施例であるチタン第2種材を処理
温度700℃で硬化処理した後に、2次イオン質量分析
計(SIMS)で窒素の拡散深さと濃度を測定した結果
を示す図である。
FIG. 6 shows the results of measuring the diffusion depth and concentration of nitrogen using a secondary ion mass spectrometer (SIMS) after curing a titanium second material according to an embodiment of the present invention at a processing temperature of 700 ° C. FIG.

【図7】本発明の一実施例であるチタン第2種材を処理
温度800℃で硬化処理した後に、2次イオン質量分析
計(SIMS)で窒素の拡散深さと濃度を測定した結果
を示す図である。
FIG. 7 shows the results of measuring the diffusion depth and concentration of nitrogen with a secondary ion mass spectrometer (SIMS) after curing a titanium second material according to an embodiment of the present invention at a processing temperature of 800 ° C. FIG.

【符号の説明】 2 硬化部材 4 トレイ 6 真空槽 8 ヒ−タ− 10 ガス導入口 12 ガス導入弁 14 ガス排気口 16 真空ポンプ 18 表面硬化層 20 窒素[Description of Signs] 2 Curing member 4 Tray 6 Vacuum tank 8 Heater 10 Gas inlet 12 Gas inlet valve 14 Gas exhaust 16 Vacuum pump 18 Surface hardened layer 20 Nitrogen

フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 691 C22F 1/00 691Z 691B 692 692Z 1/18 1/18 H Continued on the front page (51) Int.Cl. 6 Identification code FI C22F 1/00 691 C22F 1/00 691Z 691B 692 692Z 1/18 1/18 H

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 表面硬化層を有してなるチタン硬化部材
であって、前記表面硬化層は表面から深さ5μm以上に
形成され、かつ0.2〜6.0重量%の窒素が固溶して
なることを特徴とするチタン硬化部材。
1. A hardened titanium member having a hardened surface layer, wherein the hardened surface layer is formed at a depth of 5 μm or more from the surface and has a solid solution of 0.2 to 6.0% by weight of nitrogen. A hardened titanium member, characterized in that it is made of:
【請求項2】 ガス導入口とガス排気口とを備えた真空
槽に加熱手段とトレイとチタンおよびチタン合金からな
る部材を配置し真空槽内部を真空排気した後、真空雰囲
気中でトレイ上に載置されたチタンおよびチタン合金か
らなる部材を加熱手段により700〜800℃まで所定
時間加熱し焼鈍処理する加熱工程と、 窒素成分を含むガスを導入した減圧雰囲気中で加熱工程
と同一温度で所定時間保持しチタンおよびチタン合金か
らなる部材の表面から内部へ窒素を拡散、固溶させて窒
素が固溶した硬化層を形成させる硬化処理工程と、 窒素成分を含むガスの供給を停止し真空排気した後にヘ
リウムもしくはアルゴンを導入した減圧雰囲気中で硬化
処理工程と同一温度で所定時間保持した後に常温まで冷
却する冷却工程と、からなることを特徴とするチタンお
よびチタン合金からなるチタン硬化部材の硬化処理方
法。
2. A heating means, a tray, and a member made of titanium and a titanium alloy are arranged in a vacuum chamber having a gas inlet and a gas exhaust port, and the inside of the vacuum chamber is evacuated. A heating step of heating the placed member made of titanium and titanium alloy by a heating means to 700 to 800 ° C. for a predetermined time and performing an annealing treatment; and a predetermined step at the same temperature as the heating step in a reduced-pressure atmosphere containing a gas containing a nitrogen component. A hardening process in which nitrogen is diffused and solid-dissolved from the surface of the member made of titanium and a titanium alloy to the inside to form a hardened layer in which nitrogen is solid-dissolved, and the supply of a gas containing a nitrogen component is stopped to evacuate. And a cooling step of maintaining the same temperature as the hardening treatment step for a predetermined time in a reduced pressure atmosphere in which helium or argon is introduced, and then cooling to room temperature. Titanium and hardening method of titanium curing member made of titanium alloy.
【請求項3】 ガス導入口とガス排気口とを備えた真空
槽に加熱手段とトレイとチタンおよびチタン合金からな
る部材を配置し真空槽内部を真空排気した後、ヘリウム
もしくはアルゴンを導入した減圧雰囲気中でトレイ上に
載置されたチタンおよびチタン合金からなる部材を加熱
手段により700〜800℃まで所定時間加熱し焼鈍処
理する加熱工程と、 窒素成分を含むガスを導入した減圧雰囲気中で加熱工程
と同一温度で所定時間保持しチタンおよびチタン合金か
らなる部材の表面から内部へ窒素を拡散、固溶させて窒
素が固溶した硬化層を形成させる硬化処理工程と、 窒素成分を含むガスの供給を停止し真空排気した後にヘ
リウムもしくはアルゴンを導入した減圧雰囲気中で硬化
処理工程と同一温度で所定時間保持した後に常温まで冷
却する冷却工程とからなることを特徴とするチタンおよ
びチタン合金からなるチタン硬化部材の硬化処理方法。
3. A vacuum chamber having a gas inlet and a gas exhaust port is provided with a heating means, a tray, and a member made of titanium or a titanium alloy. The inside of the vacuum chamber is evacuated, and then the pressure is reduced by introducing helium or argon. A heating step of heating a member made of titanium and a titanium alloy placed on a tray in an atmosphere to a temperature of 700 to 800 ° C. for a predetermined time by a heating means and performing an annealing treatment; and heating in a reduced-pressure atmosphere in which a gas containing a nitrogen component is introduced. A hardening treatment step in which nitrogen is diffused and solid-dissolved from the surface of the member made of titanium and titanium alloy to form a hardened layer in which nitrogen is solid-dissolved, and held at the same temperature as the process for a predetermined time; Stop supply, evacuate, hold in a reduced pressure atmosphere with helium or argon at the same temperature as the curing process for a predetermined time, then cool to room temperature Hardening a titanium curing member that consists of a cooling step consisting of titanium and titanium alloys, characterized in that.
【請求項4】 硬化処理工程の雰囲気は窒素ガスである
ことを特徴とする請求項2および請求項3に記載のチタ
ンおよびチタン合金からなるチタン硬化部材の硬化処理
方法。
4. The method according to claim 2, wherein the atmosphere of the hardening step is a nitrogen gas.
【請求項5】 硬化処理工程の雰囲気は窒素ガスにヘリ
ウムもしくはアルゴンを混合させたガスであることを特
徴とする請求項2および請求項3に記載のチタンおよび
チタン合金からなるチタン硬化部材の硬化処理方法。
5. The hardening of a hardened titanium member made of titanium and a titanium alloy according to claim 2, wherein the atmosphere in the hardening step is a gas obtained by mixing helium or argon with nitrogen gas. Processing method.
【請求項6】 硬化処理工程の雰囲気はアンモニアガス
にヘリウムもしくはアルゴンを混合させたガスであるこ
とを特徴とする請求項2および請求項3に記載のチタン
およびチタン合金からなるチタン硬化部材の硬化処理方
法。
6. The hardening of a hardened titanium member comprising titanium and a titanium alloy according to claim 2, wherein the atmosphere in the hardening step is a gas obtained by mixing helium or argon with ammonia gas. Processing method.
【請求項7】 硬化処理工程の雰囲気は窒素ガスにアン
モニアガスを混合させたガスであることを特徴とする請
求項2および請求項3に記載のチタンおよびチタン合金
からなるチタン硬化部材の硬化処理方法。
7. The hardening treatment of a titanium hardened member made of titanium and a titanium alloy according to claim 2, wherein the atmosphere of the hardening process is a gas obtained by mixing ammonia gas with nitrogen gas. Method.
JP20014597A 1997-07-25 1997-07-25 Method of curing titanium cured member Expired - Fee Related JP3958838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20014597A JP3958838B2 (en) 1997-07-25 1997-07-25 Method of curing titanium cured member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20014597A JP3958838B2 (en) 1997-07-25 1997-07-25 Method of curing titanium cured member

Publications (2)

Publication Number Publication Date
JPH1143760A true JPH1143760A (en) 1999-02-16
JP3958838B2 JP3958838B2 (en) 2007-08-15

Family

ID=16419544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20014597A Expired - Fee Related JP3958838B2 (en) 1997-07-25 1997-07-25 Method of curing titanium cured member

Country Status (1)

Country Link
JP (1) JP3958838B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003074752A1 (en) * 2002-02-28 2003-09-12 Swagelok Company Case hardening of titanium
US6857558B2 (en) * 2002-02-27 2005-02-22 Ferry, Iii Robert Thomas Metal lamination method and structure
JP2007254856A (en) * 2006-03-24 2007-10-04 Citizen Holdings Co Ltd Method for manufacturing titanium or titanium alloy decoration member
JP2020180309A (en) * 2019-04-23 2020-11-05 シチズン時計株式会社 Titanium member and manufacturing method of titanium member
CN112243464A (en) * 2018-07-11 2021-01-19 西铁城时计株式会社 Method for producing golden member and golden member
CN114164396A (en) * 2021-12-09 2022-03-11 西南交通大学 Titanium alloy surface modification treatment method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6857558B2 (en) * 2002-02-27 2005-02-22 Ferry, Iii Robert Thomas Metal lamination method and structure
WO2003074752A1 (en) * 2002-02-28 2003-09-12 Swagelok Company Case hardening of titanium
JP2007254856A (en) * 2006-03-24 2007-10-04 Citizen Holdings Co Ltd Method for manufacturing titanium or titanium alloy decoration member
JP4658843B2 (en) * 2006-03-24 2011-03-23 シチズンホールディングス株式会社 Method for manufacturing titanium or titanium alloy decorative member
CN112243464A (en) * 2018-07-11 2021-01-19 西铁城时计株式会社 Method for producing golden member and golden member
CN112243464B (en) * 2018-07-11 2023-03-17 西铁城时计株式会社 Method for producing golden member and golden member
JP2020180309A (en) * 2019-04-23 2020-11-05 シチズン時計株式会社 Titanium member and manufacturing method of titanium member
CN114164396A (en) * 2021-12-09 2022-03-11 西南交通大学 Titanium alloy surface modification treatment method
CN114164396B (en) * 2021-12-09 2022-06-10 西南交通大学 Titanium alloy surface modification treatment method
US11535924B1 (en) 2021-12-09 2022-12-27 Southwest Jiaotong University Method for surface-modifying titanium alloy

Also Published As

Publication number Publication date
JP3958838B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
EP0905271B1 (en) Titanium or titanium alloy member and surface treatment method therefor
US11578399B2 (en) Alloy member and method for hardening surface thereof
FR2884523A1 (en) LOW PRESSURE CARBONITRUTING PROCESS AND FURNACE
US20230167533A1 (en) Alloy member and method for hardening surface thereof
EP0931848B1 (en) Titanium-base decoration member and method for curing the same
JP3958838B2 (en) Method of curing titanium cured member
JP4658843B2 (en) Method for manufacturing titanium or titanium alloy decorative member
JPH1192911A (en) Hardening treatment into titanium hardened member
JPH1192910A (en) Hardening treatment method for titanium hardened member
JP2000220967A (en) Process and system for hardening member
JP3898288B2 (en) Titanium cured member and method of curing the same
JP2000144356A (en) Hardening treatment for member
JP2000096208A (en) Golf club member made of titanium and its hardening treatment
JP4664465B2 (en) Base material with hard decorative coating
JP2001081544A (en) Tableware made of titanium or titanium alloy and surface treating method therefor
CN112243464B (en) Method for producing golden member and golden member
JP2001107134A (en) Hardening apparatus
JPH11264063A (en) Hardening treatment of titanium decorative member
TW541355B (en) Modification of diffusion coating grain structure by nitriding
JPH10195612A (en) Method for hardening metallic ornamental member
JP4777558B2 (en) Surface-curing material and manufacturing method thereof
JPH10237619A (en) Hardening treating method of metallic decorative member
JP2020180308A (en) Manufacturing method of titanium member
JP2004190048A (en) White decorative member having hardened layer and manufacturing method therefor
JPH1060646A (en) Production of golden article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees