JPH1138314A - Scanning image formation optical system and optical scanner - Google Patents

Scanning image formation optical system and optical scanner

Info

Publication number
JPH1138314A
JPH1138314A JP18861797A JP18861797A JPH1138314A JP H1138314 A JPH1138314 A JP H1138314A JP 18861797 A JP18861797 A JP 18861797A JP 18861797 A JP18861797 A JP 18861797A JP H1138314 A JPH1138314 A JP H1138314A
Authority
JP
Japan
Prior art keywords
scanning
optical system
refractive index
lens
image forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18861797A
Other languages
Japanese (ja)
Other versions
JP3441624B2 (en
Inventor
Koji Masuda
浩二 増田
Seizo Suzuki
清三 鈴木
Yoshiaki Hayashi
善紀 林
Hiroyuki Suhara
浩之 須原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16226821&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH1138314(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP18861797A priority Critical patent/JP3441624B2/en
Priority to US09/060,769 priority patent/US6081386A/en
Publication of JPH1138314A publication Critical patent/JPH1138314A/en
Application granted granted Critical
Publication of JP3441624B2 publication Critical patent/JP3441624B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To effectively reduce the pitch unevenness of a scanning line by taking the ununiformity of refractive index distribution at the scanning image formation optical system of an optical scanner into consideration. SOLUTION: This optical system is the scanning image formation optical system of the optical scanner performing optical scanning by forming an image of linear image long in a direction corresponding to main scanning from a luminous flux from the side of a light source 10 and deflecting it by a polygon mirror 18 having a deflecting reflection surface in the vicinity of the image formation position of the linear image and condensing a deflected luminous flux as a light spot on a surface to be scanned 22 by the scanning image formation optical system. In this case, the optical system is constituted of a lens 20 which possesses refractive index distribution in the direction corresponding to subscanning and whose refractive index is ununiform, and the power changing quantity of the optical system in the direction corresponding to subscanning originating from the refractive index distribution in set as ΔPc on an optical axis and as ΔPE on the most peripheral optical path of an effective scanning area, and the image formation position of the deflected luminous flux when the lens 20 has a uniform refractive index N0 in the direction corresponding to subscanning by the scanning image formation optical system is set negative on the side of the polygon mirror 18 by measuring from the position of the surface to be scanned, and is set as Qc on the optical axis and as QE on the most peripheral optical path of the effective scanning area, and conditions such as (1) |ΔPc |>|ΔPE| and (2) QE>0>Qc are satisfied.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は走査結像光学系お
よび光走査装置に関する。
The present invention relates to a scanning image forming optical system and an optical scanning device.

【0002】[0002]

【従来の技術】走査結像光学系は「光走査装置におい
て、偏向光束を被走査面上に光スポットとして集光させ
る光学系」であり、fθ特性等の等速特性や像面湾曲の
補正等の光学特性が要求され、球面のみで上記光学特性
を実現することが困難であることから、非球面に代表さ
れる特殊なレンズ面が使用されるようになり、これに伴
いプラスチック成形によるプラスチックレンズの使用が
増えてきている。プラスチック成形は、溶融したプラス
チックを、レンズ面を型どった駒型により成形すること
により行われるが、溶融したプラスチックが駒型内で冷
却するとき、駒型に接触した部分から徐々に温度が下が
り、レンズ中心部との間に温度差を生じる。この温度差
により溶融プラスチックが冷却により温度の下がった部
分に移動する。このため、冷却が完了した状態では、出
来上がったプラスチックレンズ内のプラスチック密度
は、先に冷却が始まったレンズ周辺部で高く、レンズ中
心部で低くなる。このような密度の不均一に応じて、プ
ラスチックレンズ内の屈折率が均一にならず、レンズ内
に「屈折率分布」が発生する。この屈折率分布は、プラ
スチック密度の高いところで屈折率が高くなるので、一
般に、レンズの周辺部で屈折率が高くなる。屈折率分布
発生は、駒形内でのプラスチックレンズの冷却時間を短
くして、急速な冷却を行う場合に特に顕著になる。
2. Description of the Related Art A scanning image forming optical system is an "optical system for condensing a deflected light beam as a light spot on a surface to be scanned in an optical scanning device", and corrects constant velocity characteristics such as fθ characteristics and field curvature. Since it is difficult to realize the above optical characteristics only with a spherical surface, a special lens surface represented by an aspheric surface has been used, and accordingly, plastics formed by plastic molding have been used. The use of lenses is increasing. Plastic molding is performed by molding the molten plastic with a piece mold that molds the lens surface.When the molten plastic cools in the piece mold, the temperature gradually decreases from the part in contact with the piece mold. Temperature difference between the lens and the center of the lens. Due to this temperature difference, the molten plastic moves to a portion where the temperature is lowered by cooling. For this reason, in the state where the cooling is completed, the plastic density in the completed plastic lens is high in the peripheral portion of the lens where the cooling has begun first, and low in the central portion of the lens. In accordance with such non-uniform density, the refractive index in the plastic lens does not become uniform, and a “refractive index distribution” occurs in the lens. In the refractive index distribution, since the refractive index increases at a high plastic density, the refractive index generally increases around the lens. The occurrence of the refractive index distribution becomes particularly remarkable when the cooling time of the plastic lens in the bridge is shortened to perform rapid cooling.

【0003】また、走査結像レンズに用いられるレンズ
は一般に、偏向光束に対するレンズ作用として必要な部
分のみを形成するため、副走査対応方向(光源から被走
査面に至る光路上で副走査方向に対応する方向)を幅方
向とする短冊形状に形成され、このような形状のため、
短冊幅方向である副走査対応方向両端部での温度低下が
顕著となるため、屈折率の不均一は特に副走査対応方向
に顕著に現われやすい。 走査結像光学系は、プラスチ
ックレンズにより構成される場合も、プラスチックレン
ズを含んで構成される場合も、レンズ内の屈折率を均一
として設計されるので、走査結像光学系のプラスチック
レンズに屈折率の不均一な分布が存在すると、走査結像
光学系が設計通りの光学性能を発揮しない。従って、所
望の光学性能を実現するためには、プラスチックレンズ
に生じる屈折率分布を考慮に入れて設計を行う必要があ
る。レンズ内の屈折率分布を考慮した走査結像光学系と
して、特開平9−49976号公報記載のものがある。
この走査結像光学系は、レンズ内の屈折率の分布を考慮
して、副走査対応方向における波面収差が最小となる像
面を被走査面に合致させることにより副走査方向の光ス
ポット径を小径化している。
In general, a lens used for a scanning image forming lens forms only a portion required as a lens function for a deflected light beam, and therefore, a lens in a sub-scanning direction (in a sub-scanning direction on an optical path from a light source to a surface to be scanned). (Corresponding direction) is formed in a strip shape with the width direction.
Since the temperature drop at both ends in the sub-scanning corresponding direction, which is the strip width direction, becomes remarkable, the unevenness of the refractive index tends to appear remarkably especially in the sub-scanning corresponding direction. The scanning imaging optical system is designed to have a uniform refractive index inside the lens, whether it is made of a plastic lens or includes a plastic lens. If a non-uniform distribution of the ratio exists, the scanning imaging optical system does not exhibit the designed optical performance. Therefore, in order to realize the desired optical performance, it is necessary to design in consideration of the refractive index distribution generated in the plastic lens. Japanese Patent Application Laid-Open No. 9-49976 discloses a scanning image forming optical system in consideration of the refractive index distribution in a lens.
This scanning imaging optical system adjusts the light spot diameter in the sub-scanning direction by matching the image plane where the wavefront aberration in the sub-scanning corresponding direction is minimized to the surface to be scanned, in consideration of the distribution of the refractive index in the lens. The diameter has been reduced.

【0004】光走査装置における重要な特性として「走
査線ピッチ」がある。「走査線」は光スポットによる走
査の軌跡であり、走査線ピッチは「隣接する走査線の間
隔」であるが、走査線ピッチが一定でなく「ピッチむ
ら」があると、光走査により書き込まれる画像に歪みが
生じるので、良好な画像を書き込むためには「ピッチむ
らを可及的に小さく」する必要がある。ピッチむらを発
生させる主要な原因は、光偏向器として用いられるポリ
ゴンミラーの「面倒れ」である。即ち、ポリゴンミラー
の偏向反射面が、ポリゴンミラーの回転軸に対して完全
に平行に成っていないと、偏向光束が、個々の偏向反射
面に応じて副走査対応方向へ変動して、光スポットの結
像位置が被走査面上で副走査方向に変動し、ピッチむら
を生じるのである。ピッチむらの発生を防止する方法と
して、光源側からの光束を、ポリゴンミラーの偏向反射
面近傍に主走査対応方向(光源から被走査面に至る光路
上で主走査方向に対応する方向)に長い線像として結像
させ、走査結像光学系により偏向反射面近傍と被走査面
位置とを副走査対応方向に関して共役関係とする「面倒
れ補正」方法が知られている。
[0004] An important characteristic of an optical scanning device is "scanning line pitch". The “scanning line” is a trajectory of scanning by the light spot, and the scanning line pitch is “interval between adjacent scanning lines”. However, if the scanning line pitch is not constant and “pitch unevenness” is present, writing is performed by optical scanning. Since an image is distorted, it is necessary to “pitch unevenness as small as possible” to write a good image. The main cause of the pitch unevenness is “surface tilt” of the polygon mirror used as the optical deflector. That is, if the deflecting reflection surface of the polygon mirror is not completely parallel to the rotation axis of the polygon mirror, the deflecting light beam fluctuates in the sub-scanning corresponding direction according to each deflecting reflection surface, and Is fluctuated in the sub-scanning direction on the surface to be scanned, causing pitch unevenness. As a method of preventing the occurrence of pitch unevenness, a light beam from the light source side is lengthened in the main scanning direction (direction corresponding to the main scanning direction on the optical path from the light source to the surface to be scanned) near the deflecting reflection surface of the polygon mirror. A “plane tilt correction” method is known in which an image is formed as a line image, and the vicinity of the deflecting reflection surface and the position of the surface to be scanned are conjugated with respect to the sub-scanning corresponding direction by a scanning image forming optical system.

【0005】しかし、走査結像光学系に用いられるレン
ズに屈折率の不均一があると、これを考慮しないで上記
面倒れ補正を行っても所望の面倒れ補正を実現できず、
ポリゴンミラーにおける面倒れに起因するピッチむら発
生が生じてしまう。上記特開平9−49976号公報記
載の発明では、このような屈折率分布に起因するピッチ
むらに就いては考慮されていない。また、ポリゴンミラ
ーは偏向反射面の回転軸が偏向反射面とずれているた
め、偏向反射面の回転に従い、上記線像の結像位置と偏
向反射面とがずれる所謂「サグ」の問題があり、ピッチ
むらを小さくするには走査線ピッチに対するサグの影響
を考慮しなければならない。
However, if the lens used in the scanning imaging optical system has a non-uniform refractive index, the desired surface tilt correction cannot be realized even if the above-described surface tilt correction is performed without taking this into account.
Pitch unevenness occurs due to surface tilt in the polygon mirror. In the invention described in JP-A-9-49976, no consideration is given to pitch unevenness caused by such a refractive index distribution. Further, since the rotation axis of the deflecting and reflecting surface of the polygon mirror is displaced from the deflecting and reflecting surface, there is a problem of so-called "sag" in which the image forming position of the line image and the deflecting and reflecting surface are shifted according to the rotation of the deflecting and reflecting surface. In order to reduce the pitch unevenness, it is necessary to consider the effect of sag on the scanning line pitch.

【0006】[0006]

【発明が解決しようとする課題】この発明は上述した事
情に鑑み、光走査装置における走査結像光学系における
屈折率分布の不均一を考慮し、走査線のピッチむらを有
効に軽減させることを課題としている。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above circumstances, and has been made to reduce unevenness in the pitch of scanning lines in consideration of non-uniformity of a refractive index distribution in a scanning image forming optical system in an optical scanning device. It is an issue.

【0007】[0007]

【課題を解決するための手段】この発明の走査結像装置
は「光源側からの光束を主走査対応方向に長い線像に結
像させ、線像の結像位置近傍に偏向反射面を有するポリ
ゴンミラーにより偏向させ、偏向光束を走査結像光学系
により被走査面上に光スポットとして集光させ、光走査
を行う光走査装置における走査結像光学系」であって、
以下の点を特徴とする。即ち、走査結像光学系は「副走
査対応方向において屈折率分布を有する屈折率不均一レ
ンズ」を有する。上記屈折率分布に由来する、走査結像
光学系の副走査対応方向のパワー変化量を「ΔP」、屈
折率不均一レンズが均一な屈折率:N0 を有するとした
ときの偏向光束の走査結像光学系による副走査対応方向
における結像位置をQ(被走査面位置から計り、ポリゴ
ンミラー側を「負」とする)とする。これらの量:Δ
P,Qは偏向光束の偏向角に応じて異なるが、走査結像
光学系の光軸上での値は「サフィックス:C」により表
し、有効走査領域(光走査による画像書込みが行われる
領域)の最周辺光路における値は「サフィックス:E」
により表すことにする。以下、ΔP,Q以外の量につい
ても同様とする。
SUMMARY OF THE INVENTION A scanning image forming apparatus according to the present invention is arranged such that "a light beam from a light source side is formed into a long line image in a direction corresponding to the main scanning, and a deflecting reflection surface is provided in the vicinity of the line image forming position. Scanning imaging optical system in an optical scanning device that performs optical scanning by deflecting by a polygon mirror, condensing the deflected light beam as a light spot on the surface to be scanned by the scanning imaging optical system,
The features are as follows. That is, the scanning image forming optical system has a “non-uniform refractive index lens having a refractive index distribution in the sub-scanning corresponding direction”. Deflection light beam scanning when the amount of power change in the sub-scanning corresponding direction of the scanning imaging optical system due to the refractive index distribution is “ΔP” and the non-uniform refractive index lens has a uniform refractive index: N 0. The image forming position in the sub-scanning corresponding direction by the image forming optical system is defined as Q (measured from the position of the surface to be scanned, and the polygon mirror side is “negative”). These quantities: Δ
Although P and Q differ depending on the deflection angle of the deflected light beam, the value on the optical axis of the scanning image forming optical system is represented by "suffix: C", and the effective scanning area (the area where image writing by optical scanning is performed). The value on the outermost optical path is “Suffix: E”
Will be represented by Hereinafter, the same applies to amounts other than ΔP and Q.

【0008】請求項1記載の発明は、光路上におけるΔ
P,QであるΔPC,QC及び、上記最周辺光路上におけ
るΔP,QであるΔPE,QEが、条件: (1) |ΔPC|>|ΔPE| (2) QE>0>QC を満足する。走査結像光学系が「屈折率不均一レンズを
有する」とは、屈折率不均一レンズが、走査結像光学系
の一部として含まれる場合と、走査結像光学系が屈折率
不均一レンズにより構成される場合とを含む。
[0008] The first aspect of the present invention provides a method for detecting Δ on an optical path.
P, [Delta] P is Q C, Q C and, [Delta] P in the most peripheral light path, [Delta] P is Q E, is Q E, the condition: (1) | ΔP C | > | ΔP E | (2) Q E>0> to satisfy the Q C. The scanning imaging optical system “having a non-uniform refractive index lens” means that the non-uniform refractive index lens is included as a part of the scanning imaging optical system, and that the scanning imaging optical system has the non-uniform refractive index lens. And the case where it comprises.

【0009】請求項2記載の走査結像光学系は、請求項
1記載の発明において「屈折率不均一レンズにおける屈
折率分布を考慮したとき、偏向光束の走査結像光学系に
よる副走査対応方向における結像位置:Q’(被走査面
位置から計り、ポリゴンミラー側を「負」とする)の光
軸上の値:QC’、有効走査領域の最周辺光路上におけ
る値:QE’が、条件: (3) QE’>QC’ を満足する」ことを特徴とする(請求項2)。請求項3
記載の走査結像光学系は、請求項1記載の発明において
「走査結像光学系の、副走査対応方向における後側主点
から副走査対応方向の結像点までの距離:S’の、光軸
上の値:SC’、有効走査領域の最周辺光路上における
値:SE’が、条件: (4) QE−SE2・ΔPE>QC−SC2・ΔPC を満足する」ことを特徴とする(請求項3)。
According to a second aspect of the present invention, there is provided a scanning image forming optical system according to the first aspect of the invention, wherein the direction of the deflection beam in the sub-scanning direction by the scanning image forming optical system is considered in consideration of the refractive index distribution in the non-uniform refractive index lens. Position on the optical axis of Q ′ (measured from the position of the surface to be scanned, and the polygon mirror side is “negative”): Q C ′, value on the most peripheral optical path of the effective scanning area: Q E ′ Satisfies the condition: (3) Q E ′> Q C ′ (claim 2). Claim 3
The scanning imaging optical system according to claim 1, wherein the distance from the rear principal point of the scanning imaging optical system in the sub-scanning corresponding direction to the imaging point in the sub-scanning corresponding direction is S ′. The value on the optical axis: S C ′, the value on the outermost optical path of the effective scanning area: S E ′ is the condition: (4) Q E −S E2 · ΔP E > Q C −S C ' 2 · satisfies the [Delta] P C "be characterized (claim 3).

【0010】請求項4記載の発明の走査結像光学系は、
請求項2または3記載の走査結像光学系において、ΔP
E,QE,QE’,SE’が「サグが大きい側の最周辺光路
上の値」であることを特徴とする。請求項5記載の発明
の走査結像光学系は、請求項2または3記載の走査結像
光学系において、ΔPE,QE,QE’,SE’が「屈折率
不均一レンズを偏向光束が透過する距離の長い側の最周
辺光路上の値」であることを特徴とする。
A scanning image forming optical system according to a fourth aspect of the present invention comprises:
4. The scanning image forming optical system according to claim 2, wherein ΔP
It is characterized in that E , Q E , Q E ′, and S E ′ are “values on the outermost optical path on the side where sag is large”. According to a fifth aspect of the present invention, in the scanning image forming optical system according to the second or third aspect, ΔP E , Q E , Q E ′, and S E ′ deflect the non-uniform refractive index lens. The value is the value on the longest optical path on the long side through which the light beam passes.

【0011】上記請求項1または2または3または4ま
たは5記載の走査結像光学系は「1枚の屈折率不均一レ
ンズにより構成され、主走査断面形状が両凸形状であ
る」ことができる(請求項6)。「主走査断面形状」
は、屈折率不均一レンズの光軸を含み、主走査対応方向
に平行な平断面による断面形状である。
The scanning image forming optical system according to the first, second, third, fourth or fifth aspect of the present invention can be "configured with one non-uniform refractive index lens, and has a biconvex sectional shape in the main scanning direction." (Claim 6). `` Main scanning section shape ''
Is a cross-sectional shape of a plane cross-section that includes the optical axis of the non-uniform refractive index lens and is parallel to the main scanning corresponding direction.

【0012】上記のΔP,Q,Q’、S’の光スポット
の像高:h(光軸と最周辺光路との間にある任意の像
高)に対する値をΔPh,Qh,Qh’、Sh’とすると
き、上記の条件(2),(3),(4)は、 (2’) QE>Qh>QC ,0>QC (3’) QE’>Qh’>QC’ (4’) QE−SE2・ΔPE>Qh−Sh2・ΔPh
C−SC2・ΔPC を満足することがより好ましい。
The values for the image heights of the light spots of ΔP, Q, Q ′ and S ′ described above: h (arbitrary image height between the optical axis and the outermost optical path) are represented by ΔP h , Q h and Q h. ', S h' when the above condition (2), (3), (4), (2 ') Q E> Q h> Q C, 0> Q C (3') Q E '> Q h '> Q C' ( 4 ') Q E -S E' 2 · ΔP E> Q h -S h '2 · ΔP h>
Q C -S C 'it is more preferable to satisfy the 2 · ΔP C.

【0013】この発明の光走査装置は「光源側からの光
束を主走査対応方向に長い線像に結像させ、線像の結像
位置近傍に偏向反射面を有するポリゴンミラーにより偏
向させ、偏向光束を走査結像光学系により被走査面上に
光スポットとして集光させ、光走査を行う光走査装置」
であって、走査結像光学系として請求項1〜6の任意の
1に記載の走査結像光学系を用いることを特徴とする
(請求項7)。
According to the optical scanning device of the present invention, "a light beam from the light source side is formed into a long linear image in the main scanning direction, and the light beam is deflected by a polygon mirror having a deflecting / reflecting surface near the image forming position of the linear image. An optical scanning device that performs light scanning by condensing a light beam as a light spot on a surface to be scanned by a scanning imaging optical system. "
Wherein the scanning imaging optical system according to any one of claims 1 to 6 is used as the scanning imaging optical system (claim 7).

【0014】この発明の走査結像光学系に含まれる、あ
るいは走査結像光学系を構成する屈折率不均一レンズ
は、プラスチック成形により作製されるが、同一の材料
・同一の条件でプラスチック成形されるから、作製され
た屈折率不均一レンズにおける屈折率の分布も、レンズ
間に実質的な差異は無く、上記屈折率分布は予め実験等
を通じて知ることができるので、レンズの設計の段階か
ら、屈折率不均一レンズの屈折率分布を考慮した設計が
可能である。
The non-uniform refractive index lens included in the scanning imaging optical system of the present invention or constituting the scanning imaging optical system is manufactured by plastic molding, but is molded by the same material and under the same conditions. Therefore, the refractive index distribution in the manufactured non-uniform refractive index lens also has no substantial difference between the lenses, and the refractive index distribution can be known in advance through experiments and the like. The design in consideration of the refractive index distribution of the non-uniform refractive index lens is possible.

【0015】[0015]

【発明の実施の形態】図1は、この発明の光走査装置の
実施の1形態を示す図である。光源である半導体レーザ
10からの光束はカップリングレンズ12により以後の
光学系にカップリングされる。カップリングされた光束
は「平行光束」または「弱い発散性の光束」もしくは
「弱い集束性の光束」となる。カップリングレンズ12
によりカップリングされた光束は、次いでアパーチュア
14を通過することにより光束周辺部を遮光されて「ビ
ーム整形」され、シリンダレンズ16により副走査対応
方向(図面に直交する方向)へ集束され、光偏向器であ
るポリゴンミラー18の偏向反射面近傍に主走査対応方
向に長い線像として結像する。なお、シリンダレンズ1
4は「シリンダ凹面鏡」に代えることもできる。
FIG. 1 is a diagram showing an embodiment of an optical scanning device according to the present invention. A light beam from a semiconductor laser 10 as a light source is coupled to a subsequent optical system by a coupling lens 12. The coupled light beam becomes a “parallel light beam” or a “weakly divergent light beam” or a “weakly convergent light beam”. Coupling lens 12
The light beam coupled by the light source is then passed through an aperture 14 to block the light beam at its peripheral portion and is "beam-shaped". The light beam is converged by a cylinder lens 16 in a sub-scanning corresponding direction (a direction orthogonal to the drawing). An image is formed as a long line image in the main scanning direction in the vicinity of the deflecting and reflecting surface of the polygon mirror 18, which is a device. The cylinder lens 1
4 can be replaced with a "cylinder concave mirror".

【0016】ポリゴンミラー18の偏向反射面による反
射光束は、ポリゴンミラー18の定速回転に伴い、等角
速度的に偏向する偏向光束と成って「走査結像光学系」
を構成するレンズ20に入射する。レンズ20は、主走
査対応方向と副走査対応方向とで異なる正のパワーを持
ち、偏向光束を被走査面22上に光スポットとして集光
させ、同光スポットにより被走査面22(実体的には、
この部分に配備される感光体の感光面)の有効走査領域
Wを等速的に光走査する。
The light beam reflected by the deflecting / reflecting surface of the polygon mirror 18 is turned into a deflecting light beam deflected at a constant angular velocity as the polygon mirror 18 rotates at a constant speed.
Is incident on the lens 20. The lens 20 has different positive powers in the main scanning corresponding direction and the sub-scanning corresponding direction, condenses the deflected light beam as a light spot on the scanned surface 22, and uses the same light spot to scan the scanned surface 22 (substantially). Is
The effective scanning area W of the photosensitive surface of the photosensitive member provided at this portion is optically scanned at a constant speed.

【0017】即ち、図1に示す光走査装置は「光源10
側からの光束を主走査対応方向に長い線像に結像させ、
線像の結像位置近傍に偏向反射面を有するポリゴンミラ
ー18により偏向させ、偏向光束を走査結像光学系20
により被走査面22上に光スポットとして集光させ、光
走査を行う光走査装置」である(請求項7)。
That is, the optical scanning device shown in FIG.
The light beam from the side is formed into a long line image in the main scanning corresponding direction,
Deflected by a polygon mirror 18 having a deflecting / reflecting surface in the vicinity of the image forming position of the line image, and the deflected light beam is
The light scanning device performs light scanning by condensing the light as a light spot on the surface 22 to be scanned (claim 7).

【0018】走査結像光学系は単一のレンズ20により
構成される。レンズ20は「屈折率不均一レンズ」であ
り、主走査断面形状(図1に示された形状)は(少なく
とも光軸近傍の部分では)「両凸形状」である(請求項
6)。
The scanning image forming optical system includes a single lens 20. The lens 20 is a “non-uniform refractive index lens”, and the main scanning cross-sectional shape (the shape shown in FIG. 1) is a “biconvex shape” (at least at a portion near the optical axis) (claim 6).

【0019】図2は、レンズ20における「レンズ内部
の屈折率分布」を説明するための模式図である。(a)
は、レンズ20の主走査断面における屈折率の分布を
「等高線表示」したもので、図中の鎖線に沿っての屈折
率の変化を見ると、(b)に示すごとく、レンズの中央
部から(主走査対応方向の)両端部に向かって屈折率が
漸次増加している。(c)は、レンズ2の副走査断面
(レンズ20の光軸を含み、副走査対応不幸に平行な平
断面)内における屈折率分布を等高線表示したものであ
り、(d)は副走査断面内の光軸上の屈折率変化を示
し、(e)は、副走査断面内における副走査対応方向の
屈折率分布を示している。(e)に示すように、副走査
対応方向の屈折率分布は「副走査対応方向において光軸
を離れるに従い増大する」ような分布である。副走査対
応方向の屈折率分布が「副走査対応方向において光軸を
離れるに従い増大する」傾向は、レンズ20における副
走査断面内のみならず、副走査断面に平行な任意の平断
面において共通する。しかし、レンズ20の光軸を「主
走査対応方向に離れる」に従い、副走査対応方向の屈折
率の分布における屈折率の変化(主走査断面上の屈折率
と、副走査対応方向縁部の屈折率の差)は小さくなって
いく。このことは、図2(a)において、主走査対応方
向に光軸を離れるほど「屈折率の等高線の間隔」が広く
なって屈折率変化が小さくなっていることから容易に理
解されるであろう。
FIG. 2 is a schematic diagram for explaining the “refractive index distribution inside the lens” of the lens 20. (A)
Is a "contour display" of the distribution of the refractive index in the main scanning section of the lens 20. When the change in the refractive index along the chain line in the figure is seen, as shown in FIG. The refractive index gradually increases toward both ends (in the main scanning corresponding direction). (C) shows the refractive index distribution in the sub-scanning cross section of the lens 2 (the plane section including the optical axis of the lens 20 and being unfortunately parallel to the sub-scanning), and (d) shows the sub-scanning cross section. (E) shows the refractive index distribution in the sub-scanning direction in the sub-scanning cross section. As shown in (e), the refractive index distribution in the sub-scanning corresponding direction is a distribution that “increases as the optical axis is separated in the sub-scanning corresponding direction”. The tendency that the refractive index distribution in the sub-scanning corresponding direction increases with increasing distance from the optical axis in the sub-scanning corresponding direction is common not only in the sub-scanning section of the lens 20 but also in any plane section parallel to the sub-scanning section. . However, as the optical axis of the lens 20 is moved away from the main scanning direction, the change in the refractive index in the distribution of the refractive index in the sub scanning direction (the refractive index on the main scanning section and the refraction at the edge in the sub scanning direction). Rate difference) becomes smaller. This can be easily understood from the fact that in FIG. 2A, the “distance between contours of the refractive index” increases and the change in the refractive index decreases as the optical axis is separated in the main scanning corresponding direction. Would.

【0020】さて、この発明において問題としている
「走査線ピッチのピッチむら」に影響するのは、上記屈
折率分布のうち、主として副走査対応方向の屈折率分布
(図2(e)参照)である。副走査対応方向の屈折率分
布の、レンズ20の光学性能への影響は「副走査対応方
向の結像作用における焦点距離の変化」として現われ
る。上述したように、レンズ20において副走査対応方
向の屈折率分布は「副走査対応方向に光軸を離れるに従
い、屈折率が増加するような分布」であるが、このよう
な屈折率分布は「凹レンズと等価」である。
The influence of the "pitch unevenness of the scanning line pitch", which is a problem in the present invention, mainly depends on the refractive index distribution in the sub-scanning corresponding direction (see FIG. 2E). is there. The effect of the refractive index distribution in the sub-scanning corresponding direction on the optical performance of the lens 20 appears as “change in focal length in the imaging operation in the sub-scanning corresponding direction”. As described above, the refractive index distribution in the sub-scanning corresponding direction in the lens 20 is “a distribution in which the refractive index increases as the optical axis is separated in the sub-scanning corresponding direction”. Equivalent to a concave lens ".

【0021】図3は、レンズ20の副走査対応方向にお
ける結像性能を示す図である。副走査対応方向に関す
る、レンズ20の前側主点をH、後側主点をH’、前側
主点:Hから物点:Aに至る距離をS、後側主点:H’
から像点:Bに至る距離をS’とすると、レンズ20の
屈折率が一定値:N0としたときの副走査対応方向のパ
ワーをP(焦点距離の逆数)とすると、結像関係の式
は、 (1/S’)=(1/S)+P (5) である。レンズ20に「副走査対応方向において光軸を
離れるに従い増大する」ような屈折率分布が生じたこと
によるパワー:Pの変化をΔPとすると、パワー変化:
ΔPに起因する像点:Bの変位量:ΔS’は以下のよう
に求められる。即ち、(5)式をS’に就いて解くと、 S’=S/(S・P+1) (6) であるから、変化量をPとして、両辺の微分をとると、 ΔS’=S2/(S・P+1)2・(−1)ΔP (7) となる。「副走査対応方向において光軸を離れるに従い
増大する屈折率分布」は凹レンズと等価であるから、パ
ワーの変化:ΔPは「負」で、(7)式の右辺は「正」
である。従って、パワーの変化:ΔPは、像点:Bを後
側主点:H’から遠ざけるように変位させることにな
る。これはレンズ20の焦点距離(屈折率が均一として
算出された値)を大きくする作用に他ならない。上記
(7)をΔPに就いて解くと、 ΔP=ΔS’・(S・P+1)2/S2 (8) となる。ここで、屈折率分布に由来する、走査結像光学
系の副走査対応方向のパワー変化量:ΔPの値を、レン
ズ20の光軸上においてΔPC 、有効走査領域Wの最周
辺光路上においてΔPE とすると、前述の如く、副走査
対応方向における屈折率変化は、主走査対応方向に光軸
を離れるほど小さくなるから、屈折率分布がパワー変化
に及ぼす影響も光軸を離れるほど小さくなる。
FIG. 3 is a diagram showing the imaging performance of the lens 20 in the direction corresponding to the sub-scanning. In the sub-scanning corresponding direction, the front principal point of the lens 20 is H, the rear principal point is H ′, the distance from the front principal point H to the object point A is S, and the rear principal point is H ′.
If the distance from the lens 20 to the image point: B is S ′, the power in the sub-scanning corresponding direction when the refractive index of the lens 20 is a constant value: N 0 is P (the reciprocal of the focal length), The equation is: (1 / S ′) = (1 / S) + P (5) Assuming that a change in the power: P caused by the refractive index distribution such that “increases as the distance from the optical axis in the sub-scanning corresponding direction increases” in the lens 20 is ΔP, a power change:
The amount of displacement of the image point B due to ΔP: ΔS ′ is obtained as follows. That is, when the equation (5) is solved for S ′, S ′ = S / (S · P + 1) (6) As a result, when the amount of change is P and the differential of both sides is obtained, ΔS ′ = S 2 / (S · P + 1) 2 · (−1) ΔP (7) Since the “refractive index distribution that increases with increasing distance from the optical axis in the sub-scanning corresponding direction” is equivalent to a concave lens, the power change: ΔP is “negative”, and the right side of equation (7) is “positive”.
It is. Therefore, the change in power: ΔP displaces the image point: B away from the rear principal point: H ′. This is nothing but an action to increase the focal length of the lens 20 (a value calculated as a uniform refractive index). Solving the above (7) for ΔP gives ΔP = ΔS ′ · (S · P + 1) 2 / S 2 (8) Here, the value of the power change amount ΔP in the sub-scanning corresponding direction of the scanning imaging optical system, which is derived from the refractive index distribution, is ΔP C on the optical axis of the lens 20, and on the most peripheral optical path of the effective scanning area W. Assuming that ΔP E , as described above, the change in the refractive index in the sub-scanning corresponding direction becomes smaller as the distance from the optical axis in the main scanning corresponding direction becomes smaller. .

【0022】即ち、請求項1記載の発明における条件: (1) |ΔPC|>|ΔPE| は、走査結像光学系に含まれる屈折率不均一レンズの副
走査対応方向の屈折率不均一の程度が、主走査対応方向
端部側よりも光軸部で大きいことを表している。
That is, the condition in the first aspect of the present invention is as follows: (1) | ΔP C |> | ΔP E | is the refractive index non-uniformity of the non-uniform refractive index lens included in the scanning image forming optical system in the sub-scanning corresponding direction. This indicates that the degree of uniformity is greater at the optical axis than at the end in the main scanning direction.

【0023】図4(a)は、ポリゴンミラー18におけ
る偏向反射面18Aと、光源側からの光束(の主光線)
Lとの位置関係を示している。ポリゴンミラーの偏向反
射面18Aは、ポリゴンミラーの反時計回りの回転に伴
って、18A(1),18A(2),18A(3)のよ
うに変化し、それに伴い、光源側からの光束Lの(主光
線の)反射位置は、位置:M(−),M(0),M
(+)のように変化する。
FIG. 4 (a) shows the deflection light reflecting surface 18A of the polygon mirror 18 and the light flux (principal ray of light) from the light source side.
The positional relationship with L is shown. The deflecting / reflecting surface 18A of the polygon mirror changes as indicated by 18A (1), 18A (2), and 18A (3) with the rotation of the polygon mirror in the counterclockwise direction. The reflection positions (of the chief rays) are M: (-), M (0), M
It changes like (+).

【0024】光源側からの光束Lは反射位置:M(0)
に「線像」として結像する。このため、光源側からの光
束は反射位置:M(+),M(−)に入射するときは、
偏向反射面18Aと線像の結像位置との間に「ずれ」が
生じ、反射位置:M(+),M(−)に入射するとき光
束はまだ結像していない。上記偏向反射面と反射位置の
「ずれ」が、所謂「サグ」であり、一般には、図4に示
すように反射位置:M(0)の両側に非対称に発生する
(図では入射位置:M(−)でのサグの方がM(+)で
のサグよりも大きい)が、ポリゴンミラーと入射側光学
系との位置関係を調整することにより、反射位置:M
(0)の両側にサグが対称に発生するようにすることも
可能である。
The light beam L from the light source is reflected at a reflection position: M (0).
Is formed as a “line image”. Therefore, when the light flux from the light source side enters the reflection positions: M (+) and M (-),
A “shift” occurs between the deflecting / reflecting surface 18A and the image forming position of the line image, and the light beam has not yet formed an image when the light enters the reflecting positions: M (+) and M (−). The “deviation” between the deflecting reflection surface and the reflection position is a so-called “sag”, and generally occurs asymmetrically on both sides of the reflection position: M (0) as shown in FIG. The sag at (−) is larger than the sag at M (+)), but by adjusting the positional relationship between the polygon mirror and the incident side optical system, the reflection position: M
It is also possible to cause sag to occur symmetrically on both sides of (0).

【0025】走査結像光学系は一般に「サグが0となる
反射位置:M(0)で反射された光束の主光線が走査結
像光学系の光軸に合致する」ように配備される。図4
(b)は、偏向反射面18Aの位置と被走査面22の位
置とを、レンズ20が副走査対応方向において略共役な
関係としている状態を示している。但し、図4(b)に
おいて、レンズ20は屈折率が「均一な屈折率:N0
を有するとしている。反射位置:M(0)で反射される
光束(主走査対応方向に長い線像はM(0)に一致して
いる)は上記共役関係により、結像位置:qC と被走査
面22とが一致する。図4(b)において、破線で示す
光束が「反射位置:M(+)で反射される光束」である
とすると、このとき線像は図の位置:pに結像し、レン
ズ20による「線像の像」は像位置:qEに結像するこ
とになる。
The scanning image forming optical system is generally arranged so that "the reflection position at which the sag becomes 0: the principal ray of the light beam reflected at M (0) coincides with the optical axis of the scanning image forming optical system". FIG.
(B) shows a state in which the position of the deflecting / reflecting surface 18A and the position of the surface to be scanned 22 have a substantially conjugate relationship in the sub-scanning corresponding direction. However, in FIG. 4B, the refractive index of the lens 20 is “uniform refractive index: N 0 ”.
It is said to have. Reflection position: The light beam reflected at M (0) (the line image long in the main scanning corresponding direction coincides with M (0)) has an image forming position: q C and the scanning surface 22 due to the above conjugate relationship. Matches. In FIG. 4B, assuming that the luminous flux indicated by the broken line is “a luminous flux reflected at the reflection position: M (+)”, a line image is formed at the position: p in FIG. image "is the image position of the line image: will be imaged to q E.

【0026】ここで、レンズ20における「屈折率の分
布の影響(焦点距離を長くする作用に等価である)」を
考慮すると、現実の結像位置:qC,qEは、屈折率分布
の作用により、図4(b)における右方へずれることに
なる。
Here, considering “the influence of the distribution of the refractive index (equivalent to the effect of increasing the focal length)” in the lens 20, the actual image forming positions: q C and q E are calculated as follows. Due to the action, it shifts rightward in FIG. 4B.

【0027】すると、レンズ20により「偏向反射面1
8Aと共役関係にある位置」は、被走査面22よりも図
4(b)で右側に移動し、被走査面22と合致しなくな
る。従って、被走査面上における光スポットの走査線
は、偏向反射面に面倒れがあると副走査方向に微小距離
変動してピッチむらを生ずる。そこで、これを有効に軽
減するには、レンズ22を設計する際に、上記屈折率の
分布(上述の如く、実験的に知ることができる)を予め
考慮する必要がある。先ず、レンズ20の「副走査断面
内の副走査対応方向の屈折率分布」を考慮すると、屈折
率分布が前述の如く「偏向光束の結像位置を被走査面の
裏面側へ向かって変位させる」ように作用することを考
慮すれば、レンズ20の屈折率を均一として設計すると
きの、サグのない光束の副走査対応方向における光軸上
の結像位置:QC(被走査面位置からポリゴンミラー側を
負として計ったqCの位置)は、被走査面22よりもポ
リゴンミラー側に位置すべきであることが分かる。即
ち、上記QC は「負」であるべきである。
Then, the “deflection / reflection surface 1”
The position having a conjugate relationship with 8A moves to the right in FIG. 4B with respect to the surface 22 to be scanned, and does not coincide with the surface 22 to be scanned. Accordingly, the scanning line of the light spot on the surface to be scanned fluctuates a minute distance in the sub-scanning direction if the deflecting / reflecting surface is tilted, causing pitch unevenness. Therefore, in order to effectively reduce this, when designing the lens 22, it is necessary to consider in advance the distribution of the refractive index (which can be experimentally known as described above). First, considering the “refractive index distribution in the sub-scanning corresponding direction in the sub-scanning section” of the lens 20, the refractive index distribution shifts the “imaging position of the deflected light beam toward the back side of the surface to be scanned” as described above. considering that act "like, when designing the refractive index of the lens 20 as a uniform, an imaging position on the optical axis in the sub-scanning direction of the sag-free light beam: a Q C (surface to be scanned position It can be seen that the position of q C measured with the polygon mirror side being negative) should be located closer to the polygon mirror than the surface 22 to be scanned. That is, the Q C should be "negative".

【0028】また、有効走査領域の最周辺光路上の結像
位置:QE(被走査面位置から計ったqEの位置)に就い
て見てみると、反射位置:M(+)に入射した光束は図
4(b)の位置:pで線像として結像するので、Q
Eは、図中の距離:dpをレンズ20の縦倍率:α(=β
2:βは横倍率)で拡大したものである。偏向反射面1
8Aに面倒れがあれば、結像位置:pは面倒れに応じて
副走査対応方向に変動し、その変動がレンズ20の横倍
率:βで拡大される。
Looking at the imaging position on the outermost optical path of the effective scanning area: Q E (the position of q E measured from the position of the surface to be scanned), the light is incident on the reflection position: M (+). The formed light flux forms a line image at the position p in FIG.
E is the distance in the figure: d p is the longitudinal magnification of the lens 20: α (= β
2 : β is enlarged by lateral magnification). Deflective reflection surface 1
If there is a surface tilt in 8A, the imaging position: p fluctuates in the sub-scanning corresponding direction according to the surface tilt, and the fluctuation is magnified by the lateral magnification β of the lens 20.

【0029】結像位置:qE の「屈折率分布の作用によ
る変位量」は、光軸上の変位量に比して小さいことを考
えると、QE を予め「正」としておくことが良いことが
分かる。即ち、QEを予め「正」にしておけば、屈折率
分布の作用はQE を正の側に増大させるように作用する
ので、被走査面上に形成される光スポットの変動は最周
辺光路において有効に軽減される。
The imaging position: "displacement amount due to the action of the refractive index distribution" of q E, given the less than the amount of displacement of the optical axis, it is better to keep the previously "positive" the Q E You can see that. That is, if Q E is set to “positive” in advance, the action of the refractive index distribution acts to increase Q E to the positive side, so that the fluctuation of the light spot formed on the surface to be scanned is the outermost. It is effectively reduced in the optical path.

【0030】従って、QC が負であることを考慮する
と、条件: (2) QE>0>QC を満足すべきことが分かる。従って条件(1),(2)
を満足することにより、(より好ましくは(1)と
(2’)とを満足することにより)偏向反射面の面倒れ
を屈折率分布の存在に拘らず良好に補正して走査線のピ
ッチむらを有効に軽減できる。
[0030] Therefore, considering that Q C is negative, the condition: (2) Q E> 0 > can be seen to be satisfied Q C. Therefore, conditions (1) and (2)
(Preferably, by satisfying (1) and (2 ′)), the tilt of the deflecting and reflecting surface can be corrected well regardless of the presence of the refractive index distribution, and the scanning line pitch unevenness can be improved. Can be effectively reduced.

【0031】また、屈折率分布が存在するとき、上記Q
C,QEがそれぞれQC’,QE’に変化するものとする
と、これらQC’,QE’の大小関係は、条件: (3) QE’>QC’ を満足すること、即ち、屈折率分布を考慮した実際の結
像位置が、光軸部で被走査面に近いことが好ましい(請
求項2)。このようにすると、光軸近傍の部分では偏向
反射面と被走査面位置の共役関係によりピッチむらが有
効に補正され、走査領域周辺部では、サグの影響による
偏向光束結像点の変動が、被走査面上では有効に軽減さ
れてピッチむらを軽減する。
When a refractive index distribution exists, the above Q
C, and Q E is Q C, respectively ', Q E' shall change to, the magnitude relation of Q C ', Q E', a condition: (3) Q E satisfying the '> Q C', That is, it is preferable that the actual image forming position in consideration of the refractive index distribution is close to the surface to be scanned in the optical axis portion. In this manner, in the portion near the optical axis, the pitch unevenness is effectively corrected by the conjugate relationship between the position of the deflection reflecting surface and the position of the surface to be scanned, and in the periphery of the scanning region, the fluctuation of the deflection light flux image point due to the effect of sag is reduced. It is effectively reduced on the surface to be scanned, thereby reducing pitch unevenness.

【0032】QCとQC’、QEとQE’の関係は、前述の
ΔS’を用いると、 QC’=QC+ΔSC’,QE’=QE+ΔSE’ であるから、前記(6),(7),(8)式を用いる
と、 QC’=QC−SC2・ΔPC,QE’=QE−SE2・ΔPE となるから、前記条件(3)は、条件: (4) QE−SE2・ΔPE>QC−SC2・ΔPC と等価である(請求項3)。
[0032] Q C and Q C relationship ', Q E and Q E' is' the use of, Q C 'aforementioned ΔS = Q C + ΔS C' , Q E ' because a = Q E + ΔS E' the (6), (7), the use of (8), Q C '= Q C -S C' 2 · ΔP C, because the Q E '= Q E -S E ' 2 · ΔP E The condition (3) is equivalent to the following condition: (4) Q E -S E ' 2 · ΔP E > Q C -S C ' 2 · ΔP C (claim 3).

【0033】従って、条件(3),(4)、より好まし
くは(3’),(4’)を満足することにより、ピッチ
むらを有効に軽減させることができる。
Therefore, by satisfying the conditions (3) and (4), more preferably (3 ') and (4'), pitch unevenness can be effectively reduced.

【0034】ここまで、条件(1)〜(4)を説明する
上で、ΔPE,QE,QE’,SE’は「有効走査領域にお
ける最周辺光路に関する値」であるとした。有効走査領
域における最周辺光路は、光走査の開始側と終了側とに
ある。前述のように「サグ」は光学系の配置によって
は、反射位置:M(0)の両側に対称的に発生するよう
にすることもでき、このような場合、上記最周辺光路は
走査開始側と走査終了側のどちらを取っても同じであ
る。
In the description of the conditions (1) to (4), ΔP E , Q E , Q E ′, S E ′ are assumed to be “values related to the most peripheral light path in the effective scanning area”. The most peripheral light paths in the effective scanning area are on the start side and the end side of optical scanning. As described above, "sag" can be generated symmetrically on both sides of the reflection position: M (0) depending on the arrangement of the optical system. In such a case, the above-mentioned peripheral light path is located on the scanning start side. The same is true for both the scan end side and the scan end side.

【0035】しかし一般には、サグの発生は、反射位
置:M(0)の両側に非対称に派生するので、そのよう
な場合には「ΔPE,QE,QE’,SE’」として、サグ
が大きい側の最周辺光路上の値を用いることが、ピッチ
むらを良好に軽減するために好ましい(請求項4)。
However, in general, the occurrence of the sag is asymmetrically derived on both sides of the reflection position: M (0). In such a case, “ΔP E , Q E , Q E ′, S E ′” is used. It is preferable to use a value on the outermost optical path on the side where the sag is large in order to favorably reduce pitch unevenness (claim 4).

【0036】あるいはまた、偏向光束の偏向が、屈折率
不均一レンズの光軸に対して対称的でなく、レンズを透
過する距離が両最周辺光路で異なる場合には、屈折率不
均一レンズを透過する距離が長い程、屈折率分布による
パワー変動も大きいので、上記の「ΔPE,QE
E’,SE’」は、屈折率不均一レンズを偏向光束が透
過する距離の長い側の最周辺光路上の値を用いることが
好ましい(請求項5)。
Alternatively, if the deflection of the deflected light beam is not symmetrical with respect to the optical axis of the non-uniform refractive index lens, and the distance that passes through the lens differs between the two outermost optical paths, the non-uniform refractive index lens is used. Since the power variation due to the refractive index distribution increases as the transmission distance increases, the above-mentioned “ΔP E , Q E ,
For Q E ′ and S E ′ ”, it is preferable to use values on the longest optical path on the long side where the deflecting light beam passes through the non-uniform refractive index lens (Claim 5).

【0037】[0037]

【実施例】具体的な実施例を挙げる。この実施例は、図
1に実施の形態を示した光走査装置の実施例である。光
源である半導体レーザ10は波長:780nmのレーザ
光束を放射する。カップリングレンズ12は半導体レー
ザ10からの光束を「弱い集束性の光束」にしてカップ
リングを行う。ポリゴンミラー18は偏向反射面数が6
面で、偏向反射面に対する内接円半径が18mmのもの
である。シリンダレンズ16により主走査対応方向に長
い線像として結像する「光源側からの光束」の主光線
は、走査結像光学系としてのレンズ20の光軸に対し
「60度を成す方向」からポリゴンミラー18に入射
し、偏向光束の主光線がレンズ20の光軸と合致すると
き(サグが0のとき)、上記線像が偏向反射面位置に結
像する。カップリングレンズ12によりカップリングさ
れた「弱い集束性の光束」は、他の光学系の屈折作用が
無いとすれば、偏向反射面位置からレンズ20の光軸に
沿って被走査面22の側へ向かって308.6mmの位
置に集光する。また、有効走査領域:Wは210mmで
ある。レンズ20の主走査断面内における近軸曲率半
径:Rm、偏向反射面(サグが0の位置)から被走査面
に至る光路上の面間隔:D、レンズ20の材質の屈折
率:N0 のデータは以下の通りである。
EXAMPLES Specific examples will be described. This example is an example of the optical scanning device whose embodiment is shown in FIG. The semiconductor laser 10 serving as a light source emits a laser beam having a wavelength of 780 nm. The coupling lens 12 couples the light beam from the semiconductor laser 10 into a “light beam having a weak focusing property”. The polygon mirror 18 has six deflection reflection surfaces.
In this case, the radius of the inscribed circle with respect to the deflection reflecting surface is 18 mm. The principal ray of the “light flux from the light source side” formed as a long line image in the main scanning corresponding direction by the cylinder lens 16 is from a “direction forming 60 degrees” with respect to the optical axis of the lens 20 as the scanning image forming optical system. When the light enters the polygon mirror 18 and the principal ray of the deflected light beam coincides with the optical axis of the lens 20 (when the sag is 0), the line image is formed at the position of the deflective reflection surface. The “weakly converging light flux” coupled by the coupling lens 12 is located on the side of the scanning surface 22 along the optical axis of the lens 20 from the position of the deflecting reflection surface, if there is no refraction effect of other optical systems. The light is focused at a position of 308.6 mm toward. The effective scanning area: W is 210 mm. The paraxial radius of curvature of the lens 20 in the main scanning section: Rm, the surface interval on the optical path from the deflecting / reflecting surface (the position where sag is 0) to the surface to be scanned: D, and the refractive index of the material of the lens 20: N 0 The data is as follows.

【0038】 Rm D N0 偏向反射面 − 48.06 − 入射側面 199.5 20.00 1.51933 射出側面 −216.0 106.64 − 。Rm DN 0 deflection reflection surface-48.06-entrance side surface 199.5 20.00 1.51933 exit side surface-216.0 106.64-.

【0039】主走査断面内におけるレンズ20の形状は
両面とも「非円弧形状」であり、非球面に関連して周知
の式、 X=Y2/[Rm+Rm√{1−(1+K)(Y/Rm)2}]
+AY4+BY6+CY8+DY10+.. において、主走査対応方向の座標:Y(光軸の位置が原
点である)、光軸方向の座標:Xとし、Rm(近軸曲率
半径),K,A〜Dを与えて形状を特定する。 レンズ20の入射側面の主走査断面内の形状: Rm=199.5,K=−35.1384,A=−1.
985E−7,B= 2.169E−11,C= 1.
902E−15,D=−1.880E−19 レンズ20の射出側面の主走査断面内の形状: Rm=−216.0,K= 2.106,A=−3.7
09E−7,B= 1.713E−11,C=−5.9
30E−15,D= 1.480E−18
The shape of the lens 20 in the main scanning section is a "non-arc shape" on both sides, and a well-known formula relating to the aspheric surface is as follows: X = Y 2 / [Rm + Rm√ {1- (1 + K) (Y / Rm) 2 }]
+ AY 4 + BY 6 + CY 8 + DY 10 +. . , The coordinates in the main scanning direction: Y (the position of the optical axis is the origin), the coordinates in the optical axis direction: X, and the shape is specified by giving Rm (paraxial radius of curvature), K, and A to D. . Shape of the incident side surface of the lens 20 in the main scanning section: Rm = 199.5, K = −35.1384, A = −1.
985E-7, B = 2.169E-11, C = 1.
902E-15, D = -1.880E-19 Shape of the exit side surface of the lens 20 in the main scanning section: Rm = -216.0, K = 2.106, A = -3.7
09E-7, B = 1.713E-11, C = -5.9
30E-15, D = 1.480E-18
.

【0040】主走査対応方向に直交する面内におけるレ
ンズ20の形状は、両面とも、上記面内における曲率半
径を、上記Y座標に従い、多項式:Rs(Y)=Rs+
Σbn・Y**n(n=1,2,3,...)で表し、
光軸上の曲率半径:Rsと係数:bnを与えて形状を特
定する。 レンズ20の入射側面の主走査対応方向に直交する面内
の曲率半径: Rs=−40.03,b2=−1.1900E−2,b4
= 1.6780E−5,b6=−1.7646E−
8,b8= 9.9902E−12,b10=−2.83
55E−15,b12= 3.1540E−19 レンズ20の射出側面の主走査対応方向に直交する面内
の曲率半径: Rs=−15.76,b1=−4.0244E−4,b2
=−1.0448E−3,b3= 1.6834E−
6,b4= 7.8853E−7,b5=−4.0206
E−10,b6=−1.0976E−10
The shape of the lens 20 in a plane perpendicular to the main scanning corresponding direction is such that the radius of curvature in the plane on both surfaces is determined by a polynomial: Rs (Y) = Rs +
Σb n · Y ** n (n = 1, 2, 3,...)
The shape is specified by giving the radius of curvature on the optical axis: Rs and the coefficient: b n . Radius of curvature in a plane orthogonal to the main scanning direction of the incident side surface of the lens 20: Rs = −40.03, b 2 = −1.1900E−2, b 4
= 1.6780E-5, b 6 = -1.7646E-
8, b 8 = 9.9902E-12, b 10 = -2.83
55E-15, b 12 = 3.1540E -19 lens in the plane perpendicular to the main scanning correspondence direction of the exit side of 20 curvature radius: Rs = -15.76, b 1 = -4.0244E-4, b 2
= -1.0448E-3, b 3 = 1.6834E-
6, b 4 = 7.8853E-7 , b 5 = -4.0206
E-10, b 6 = -1.0976E -10
.

【0041】図5に、上記データで特定されるレンズ2
0を用いたときの「屈折率分布がないとき」の主走査方
向の像面湾曲(図5(a))、fθ特性の式で算出した
等速特性(同(b))、副走査方向の像面湾曲(同
(c)の実線)を示す。実施例における上記各データ
は、レンズ20におけ「屈折率の不均一」を予め考慮し
て設計され、図5(c)における実線は、前述の「Q」
を表している。条件(1)〜(4)における各パラメー
タの値は以下の通りである。 |ΔPC|=3.22E−4,|ΔPE|=0 QE=4.72mm,QC=−3.27mm QE’=4.72mm,QC’=−0.05mm QE−SE2・ΔPE=4.72mm,QC−SC2・Δ
C=−0.06mm 従って、実施例は条件(1)〜(4)を全て満足してい
る。なお、上記において「Eとそれに続く数値」は「1
0のべき乗」を示す。従って、例えば「E−9]とあれ
ば、これは「10~9」を意味し、この数値がその直前の
数値に掛かるのである。
FIG. 5 shows the lens 2 specified by the above data.
0, the curvature of field in the main scanning direction when there is no refractive index distribution (FIG. 5A), the constant velocity characteristic calculated by the equation of fθ characteristic (FIG. 5B), and the sub-scanning direction. (Solid line in (c)). Each of the data in the embodiment is designed in consideration of “non-uniformity of the refractive index” in the lens 20, and the solid line in FIG.
Is represented. The values of the parameters in the conditions (1) to (4) are as follows. | ΔP C | = 3.22E-4 , | ΔP E | = 0 Q E = 4.72mm, Q C = -3.27mm Q E '= 4.72mm, Q C' = -0.05mm Q E - S E '2 · ΔP E = 4.72mm, Q C -S C' 2 · Δ
P C = −0.06 mm Accordingly, the embodiment satisfies all of the conditions (1) to (4). In the above, “E and the numerical value following it” are “1”
Power of zero. " Therefore, for example, if "E-9" is given, this means "10 to 9 ", and this numerical value is multiplied by the numerical value immediately before it.

【0042】レンズ20に屈折率分布があるときの副走
査方向の像面湾曲、即ち「実際の副走査方向の像面湾
曲」を図5(c)にとびとびの測定値(偏向光束の副走
査対応方向のビームウエスト位置。波動光学的な結像位
置であるが幾何光学的な像面湾曲と実質的な差異はな
い)で示す。図5(c)の像面湾曲(実線とドット)を
見れば明らかなように、条件(2’),(3’),
(4’)が満足されている。なお、図5(a),(b)
に示す、主走査方向の像面湾曲や等速特性には、屈折率
分布は実質的に影響を与えない。
The field curvature in the sub-scanning direction when the lens 20 has a refractive index distribution, that is, the “actual field curvature in the sub-scanning direction” is shown in FIG. The beam waist position in the corresponding direction, which is a wave optical imaging position, but does not substantially differ from geometric optical field curvature). As is clear from the field curvature (solid line and dot) in FIG. 5C, the conditions (2 ′), (3 ′),
(4 ′) is satisfied. Note that FIGS. 5A and 5B
The refractive index distribution does not substantially affect the curvature of field in the main scanning direction and the constant velocity characteristic shown in FIG.

【0043】図6に、「ピッチむら特性」を上記実施例
と比較例とについて示す。横軸は、光スポットの像高、
縦軸のピッチむらは、偏向反射面に「60’’の面倒
れ」があるときの光スポットの副走査方向へのずれ量を
表している。
FIG. 6 shows the "pitch unevenness characteristic" for the above embodiment and comparative example. The horizontal axis is the image height of the light spot,
The pitch unevenness on the vertical axis represents the shift amount of the light spot in the sub-scanning direction when the deflecting reflection surface has “60 ″ surface tilt”.

【0044】図6における「○」は実施例、「×」は比
較例であり、これら「○」,「×」の横に記載した括弧
内の数値は、偏向光束の副走査対応方向の結像位置を被
走査面から計った距離である。
In FIG. 6, “は” is an example, and “×” is a comparative example. Numerical values in parentheses next to “○” and “×” indicate results of the deflection light beam in the sub-scanning direction. This is the distance measured from the image position to the surface to be scanned.

【0045】例えば、像高:−105mmの部分を見る
と、比較例ではこのとき偏向光束は副走査対応方向にお
いて被走査面位置(Q’=0.0mm)に結像している
が、サグのために、上記「60’’の面倒れ」の影響
で、光スポットの副走査方向の結像位置は、面倒れがな
いときの結像位置から副走査方向に1μm近くずれるこ
とになる。これに対し、実施例では副走査対応方向にお
ける偏向光束の結像位置は、被走査面の後方「4.7m
m」の位置になるが、面倒れによる光スポットの変動量
は0.2μm程度に軽減されている。例えば、像高:0
mmでは、光スポットの副走査対応方向の結像位置が−
3.3mm(図5(c)の実線)から0mm(図5
(c)のドット)になることによって、ピッチむらは改
善されている。
For example, looking at a portion where the image height is -105 mm, in the comparative example, the deflection light beam forms an image at the position of the surface to be scanned (Q '= 0.0 mm) in the sub-scanning corresponding direction at this time. Therefore, due to the influence of the above-mentioned “60 ″ plane tilt”, the image forming position of the light spot in the sub-scanning direction is shifted from the image forming position when there is no surface tilt by about 1 μm in the sub-scanning direction. On the other hand, in the embodiment, the image forming position of the deflected light beam in the sub-scanning corresponding direction is "4.7 m behind the surface to be scanned".
m, but the fluctuation amount of the light spot due to the surface tilt is reduced to about 0.2 μm. For example, image height: 0
mm, the image forming position of the light spot in the sub-scanning corresponding direction is-
5 mm (solid line in FIG. 5C) to 0 mm (FIG. 5C).
(C), the pitch unevenness is improved.

【0046】有効走査領域全域で見ると、上記「6
0’’の面倒れ」による走査線のずれは、比較例におい
て、0.5μmより大きいが実施例では0.5μmより
小さい。即ち、実施例では、走査線のピッチむらが良好
に補正されている。
Looking at the entire effective scanning area, the above “6.
The deviation of the scanning line due to “0 ″ plane tilt” is larger than 0.5 μm in the comparative example, but smaller than 0.5 μm in the embodiment. That is, in the embodiment, the pitch unevenness of the scanning lines is corrected well.

【0047】[0047]

【発明の効果】以上に説明したように、この発明によれ
ば新規な走査結像光学系と、これを用いた光走査装置を
実現できる。この発明の走査結像光学系は、屈折率不均
一レンズにおける屈折率を予め考慮して所定の光学特性
を得るように走査結像光学系を設計するので、屈折率不
均一レンズにおける屈折率の分布に拘らず、走査線のピ
ッチむらを有効に軽減させることができる。
As described above, according to the present invention, a novel scanning image forming optical system and an optical scanning device using the same can be realized. Since the scanning imaging optical system of the present invention is designed to obtain predetermined optical characteristics by considering the refractive index of the non-uniform refractive index lens in advance, the refractive index of the non-uniform refractive index lens is adjusted. Irrespective of the distribution, it is possible to effectively reduce the scan line pitch unevenness.

【0048】また、この発明の光走査装置は、上記走査
結像光学系を用いるので、走査線のピッチむらを有効に
軽減して良好な光走査を実現できる。
Further, since the optical scanning device of the present invention uses the above-mentioned scanning image forming optical system, it is possible to effectively reduce the unevenness of the scanning line pitch and realize good optical scanning.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の光走査装置の実施の1形態を説明す
るための図である。
FIG. 1 is a diagram for explaining one embodiment of an optical scanning device of the present invention.

【図2】上記実施の形態における屈折率不均一レンズ2
0の屈折率分布を説明する模式図である。
FIG. 2 shows a non-uniform refractive index lens 2 according to the embodiment.
It is a schematic diagram explaining the refractive index distribution of 0.

【図3】屈折率不均一レンズ20の副走査対応方向にお
ける結像機能を説明するための図である。
FIG. 3 is a diagram for explaining an image forming function of a non-uniform refractive index lens 20 in a direction corresponding to sub-scanning.

【図4】ポリゴンミラーによるサグと、その影響を説明
するための図である。
FIG. 4 is a diagram for explaining sag by a polygon mirror and its influence.

【図5】実施例に関する像面湾曲と等速特性の図であ
る。
FIG. 5 is a diagram illustrating field curvature and constant velocity characteristics according to the embodiment.

【図6】実施例によるピッチむら軽減効果を説明するた
めの図である。
FIG. 6 is a diagram for explaining a pitch unevenness reducing effect according to the embodiment.

【符号の説明】[Explanation of symbols]

10 半導体レーザ 12 カップリングレンズ 14 アパーチュア 16 シリンダレンズ 18 ポリゴンミラー 20 屈折率不均一レンズ 22 被走査面 W 有効走査領域 DESCRIPTION OF SYMBOLS 10 Semiconductor laser 12 Coupling lens 14 Aperture 16 Cylinder lens 18 Polygon mirror 20 Non-uniform refractive index lens 22 Scanning surface W Effective scanning area

───────────────────────────────────────────────────── フロントページの続き (72)発明者 須原 浩之 東京都大田区中馬込1丁目3番6号・株式 会社リコー内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Hiroyuki Suhara 1-3-6 Nakamagome, Ota-ku, Tokyo, Ricoh Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】光源側からの光束を主走査対応方向に長い
線像に結像させ、上記線像の結像位置近傍に偏向反射面
を有するポリゴンミラーにより偏向させ、偏向光束を走
査結像光学系により被走査面上に光スポットとして集光
させ、光走査を行う光走査装置における走査結像光学系
であって、 副走査対応方向において屈折率分布を有する屈折率不均
一レンズを有し、 上記屈折率分布に由来する、走査結像光学系の副走査対
応方向のパワー変化量を、光軸上においてΔPC、有効
走査領域の最周辺光路上においてΔPEとし、上記屈折
率不均一レンズが均一な屈折率:N0 を有するとしたと
きの偏向光束の走査結像光学系による副走査対応方向に
おける結像位置を被走査面位置から計ってポリゴンミラ
ー側を負として、光軸上においてQC、有効走査領域の
最周辺光路上においてQEとするとき、条件: (1) |ΔPC|>|ΔPE| (2) QE>0>QC を満足することを特徴とする走査結像光学系。
A light beam from a light source side is formed into a long line image in a direction corresponding to the main scanning, and the light beam is deflected by a polygon mirror having a deflecting / reflecting surface in the vicinity of the image forming position of the line image. A scanning image forming optical system in an optical scanning device that performs light scanning by condensing a light spot on a surface to be scanned by an optical system, and has a non-uniform refractive index lens having a refractive index distribution in a sub-scanning corresponding direction. The amount of power change in the sub-scanning corresponding direction of the scanning imaging optical system derived from the refractive index distribution is ΔP C on the optical axis, ΔP E on the outermost optical path of the effective scanning area, and the refractive index non-uniformity When the lens has a uniform refractive index: N 0 , the image forming position of the deflected light beam in the sub-scanning corresponding direction by the scanning image forming optical system is measured from the position of the surface to be scanned, and the polygon mirror side is defined as a negative value. Q C, effective run in When the Q E at the outermost peripheral light path of査領zone conditions: (1) | ΔP C | > | ΔP E | (2) Q E>0> scanning imaging optics, characterized by satisfying the Q C system.
【請求項2】請求項1記載の走査結像光学系において、 屈折率不均一レンズにおける屈折率分布を考慮したと
き、偏向光束の走査結像光学系による副走査対応方向に
おける結像位置を被走査面位置から計ってポリゴンミラ
ー側を負として、光軸上においてQC’、有効走査領域
の最周辺光路上においてQE’とするとき、条件: (3) QE’>QC’ を満足することを特徴とする走査結像光学系。
2. A scanning imaging optical system according to claim 1, wherein an image forming position of the deflected light beam in the sub-scanning corresponding direction by the scanning imaging optical system is taken into consideration when a refractive index distribution of the non-uniform refractive index lens is considered. When the polygon mirror side is negative on the basis of the scanning plane position and Q C ′ on the optical axis and Q E ′ on the most peripheral optical path of the effective scanning area, condition: (3) Q E ′> Q C ′ A scanning imaging optical system characterized by satisfying.
【請求項3】請求項1記載の走査結像光学系において、 走査結像光学系の副走査対応方向における後側主点から
副走査対応方向の結像点までの距離を、光軸上において
C’、有効走査領域の最周辺光路上においてSE’とす
るとき、条件: (4) QE−SE2・ΔPE>QC−SC2・ΔPC を満足することを特徴とする走査結像光学系。
3. The scanning imaging optical system according to claim 1, wherein a distance from a rear principal point in the sub-scanning corresponding direction of the scanning imaging optical system to an imaging point in the sub-scanning corresponding direction is set on the optical axis. When S C ′ and S E ′ are on the outermost optical path of the effective scanning area, the condition: (4) satisfies Q E −S E2 · ΔP E > Q C −S C ' 2 · ΔP C A scanning imaging optical system characterized by the above.
【請求項4】請求項2または3記載の走査結像光学系に
おいて、 ΔPE,QE,QE’,SE’は、サグが大きい側の最周辺
光路上の値であることを特徴とする走査結像光学系。
4. A scanning image forming optical system according to claim 2, wherein ΔP E , Q E , Q E ′, S E ′ are values on the most peripheral optical path on the side where the sag is large. Scanning imaging optical system.
【請求項5】請求項2または3記載の走査結像光学系に
おいて、 ΔPE,QE,QE’,SE’は、屈折率不均一レンズを偏
向光束が透過する距離の長い側の最周辺光路上の値であ
ることを特徴とする走査結像光学系。
5. The scanning imaging optical system according to claim 2, wherein ΔP E , Q E , Q E ′, and S E ′ are on the long side of the distance through which the deflecting light beam passes through the non-uniform refractive index lens. A scanning image forming optical system characterized by being a value on an outermost optical path.
【請求項6】請求項1または2または3または4または
5記載の走査結像光学系において、 走査結像光学系は、1枚の屈折率不均一レンズにより構
成され、主走査断面形状が両凸形状であることを特徴と
する走査結像光学系。
6. The scanning image forming optical system according to claim 1, wherein the scanning image forming optical system is constituted by one non-uniform refractive index lens, and has a main scanning sectional shape of both. A scanning imaging optical system having a convex shape.
【請求項7】光源側からの光束を主走査対応方向に長い
線像に結像させ、上記線像の結像位置近傍に偏向反射面
を有するポリゴンミラーにより偏向させ、偏向光束を走
査結像光学系により被走査面上に光スポットとして集光
させ、光走査を行う光走査装置であって、 走査結像光学系として請求項1〜6の任意の1に記載の
走査結像光学系を用いることを特徴とする光走査装置。
7. A light beam from a light source side is formed into a long line image in a direction corresponding to the main scanning, and the light beam is deflected by a polygon mirror having a deflecting reflection surface near an image forming position of the line image. An optical scanning device that performs optical scanning by condensing a light spot on a surface to be scanned by an optical system, wherein the scanning imaging optical system according to any one of claims 1 to 6 is used as a scanning imaging optical system. An optical scanning device characterized by being used.
JP18861797A 1997-04-15 1997-07-14 Scanning optical system and optical scanning device Expired - Lifetime JP3441624B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP18861797A JP3441624B2 (en) 1997-07-14 1997-07-14 Scanning optical system and optical scanning device
US09/060,769 US6081386A (en) 1997-04-15 1998-04-15 Optical scanning lens, optical scanning and imaging system and optical scanning apparatus incorporating same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18861797A JP3441624B2 (en) 1997-07-14 1997-07-14 Scanning optical system and optical scanning device

Publications (2)

Publication Number Publication Date
JPH1138314A true JPH1138314A (en) 1999-02-12
JP3441624B2 JP3441624B2 (en) 2003-09-02

Family

ID=16226821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18861797A Expired - Lifetime JP3441624B2 (en) 1997-04-15 1997-07-14 Scanning optical system and optical scanning device

Country Status (1)

Country Link
JP (1) JP3441624B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6856438B2 (en) 2002-03-07 2005-02-15 Ricoh Company Ltd. Optical scanning lens and apparatus capable of effectively generating accurately-pitched light spots, and image forming apparatus using the same
US7038822B2 (en) 2002-05-22 2006-05-02 Ricoh Company, Ltd. Optical element, optical scanner and image forming apparatus
JP2012226076A (en) * 2011-04-19 2012-11-15 Ricoh Co Ltd Optical scanner and image forming apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6856438B2 (en) 2002-03-07 2005-02-15 Ricoh Company Ltd. Optical scanning lens and apparatus capable of effectively generating accurately-pitched light spots, and image forming apparatus using the same
US7038822B2 (en) 2002-05-22 2006-05-02 Ricoh Company, Ltd. Optical element, optical scanner and image forming apparatus
US7068407B2 (en) 2002-05-22 2006-06-27 Ricoh Company, Ltd. Optical element, optical scanner and image forming apparatus
JP2012226076A (en) * 2011-04-19 2012-11-15 Ricoh Co Ltd Optical scanner and image forming apparatus

Also Published As

Publication number Publication date
JP3441624B2 (en) 2003-09-02

Similar Documents

Publication Publication Date Title
US6069724A (en) Optical scanning lens and optical scanning apparatus
JP3072061B2 (en) Optical scanning device
US5652670A (en) Scanning image forming lens and optical scanner
JP3466863B2 (en) Scanning optical device and image recording device using the same
JP3445050B2 (en) Scanning optical device and multi-beam scanning optical device
US6133935A (en) Optical scanning apparatus
EP1482348A2 (en) Optical element and a scanning optical apparatus using the same
US5189546A (en) Scanning optical system with offset lens component
US6075638A (en) Scanning and imaging lens and optical scanning device
JP4139359B2 (en) Scanning imaging optical system, optical scanning device, and image forming apparatus
JP3546898B2 (en) Optical scanning device
JP3503920B2 (en) Optical scanning lens
US6134040A (en) Laser scanning system
JP3191538B2 (en) Scanning lens and optical scanning device
JPH1138314A (en) Scanning image formation optical system and optical scanner
JP3689290B2 (en) Scanning optical system
JP3500873B2 (en) Scanning optical system
JP3627781B2 (en) Laser scanner
JP4219429B2 (en) Manufacturing method of imaging mirror in multi-beam scanning imaging optical system
JP3492911B2 (en) Optical scanning device
JP3558837B2 (en) Scanning optical system and optical scanning device
JP3721487B2 (en) Scanning imaging lens and optical scanning device
JPH10288745A (en) Optical scanning lens and optical scanner
JP3472205B2 (en) Optical scanning optical device and image forming apparatus using the same
JP3484308B2 (en) Scanning imaging lens system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 10

EXPY Cancellation because of completion of term