JPH1137725A - Method for measuring film thickness distribution - Google Patents

Method for measuring film thickness distribution

Info

Publication number
JPH1137725A
JPH1137725A JP20540497A JP20540497A JPH1137725A JP H1137725 A JPH1137725 A JP H1137725A JP 20540497 A JP20540497 A JP 20540497A JP 20540497 A JP20540497 A JP 20540497A JP H1137725 A JPH1137725 A JP H1137725A
Authority
JP
Japan
Prior art keywords
film
measured
wavelength
thickness
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20540497A
Other languages
Japanese (ja)
Inventor
Kohei Eguchi
公平 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20540497A priority Critical patent/JPH1137725A/en
Publication of JPH1137725A publication Critical patent/JPH1137725A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method by which the thickness of a film to be measured, which has different thicknesses in projecting section and recessed section on the base step of a semiconductor substrate, can be measured simultaneously after a CPM step in a semiconductor manufacturing process. SOLUTION: The thickness of a film 6 having different thicknesses on the uneven surface of a semiconductor substrate 5 on projecting sections and recessed sections on the base step of the substrate 5 is simultaneously measured by irradiating the film 6 with light from a multi-wavelength oscillation coherent light source 1 and detecting the intensity spectra of reflected light rays caused by intra-film reflection by separating the spectra for every prescribed plural wavelength, and then, performing spectrum separation on the detected results for every film thickness of the film 6. In the method, the spectrum separation is performed for every film thickness by the method of least squares by using the intensity spectra of reflected light rays with respect to detected wavelength components and the calculated values of intensity spectra of the reflected light rays at a previously deduced wavelength and at every prescribed thickness of the film 6 or the actually measured values of the intensity spectra of the reflected light rays at a prescribed wavelength of a previously prepared standard sample and at every prescribed thickness of the film 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置の製造
方法における膜厚分布測定方法関し、特に、半導体基板
表面の凹凸部上に形成された被測定膜の厚みを同時に測
定する方法に関する。
The present invention relates to a method for measuring a film thickness distribution in a method for manufacturing a semiconductor device, and more particularly to a method for simultaneously measuring the thickness of a film to be measured formed on an uneven portion on the surface of a semiconductor substrate.

【0002】[0002]

【従来の技術】半導体基板表面の凹凸部上に形成された
絶縁膜の膜厚測定方法の従来例としては、光の干渉を利
用した干渉膜厚計による測定が行われている。この方法
は、例えば特開昭64-57107号公報に見られるように、波
長の変化に対応する干渉強度をモニタ−し、二つの干渉
強度ピ−クにおける波長から膜厚を求めるものである。
2. Description of the Related Art As a conventional example of a method of measuring the thickness of an insulating film formed on an uneven portion on the surface of a semiconductor substrate, measurement is performed by an interference film thickness meter utilizing light interference. This method monitors interference intensity corresponding to a change in wavelength, and obtains a film thickness from wavelengths at two interference intensity peaks as disclosed in, for example, Japanese Patent Application Laid-Open No. 64-57107.

【0003】前記公報には、パタ−ン付ウエハ上のレジ
スト膜厚分布測定について、波長に関する干渉パタ−ン
強度の測定方法及び各サンプル点ごとに計測した干渉パ
タ−ン強度を用いて膜厚分布を求める手段が開示されて
いる。
The above publication discloses a method for measuring a resist film thickness distribution on a patterned wafer by using a method of measuring an interference pattern intensity with respect to wavelength and an interference pattern intensity measured at each sample point. Means for determining the distribution are disclosed.

【0004】測定の基本的な原理は、入射光の被測定膜
の表面からの反射光と被測定膜の下地基板界面からの反
射光との干渉を利用するものである。例えば、前記被測
定膜の厚さが dで屈折率が nの場合、入射光の波長λを
変化させた場合、反射光強度は4d/(n ・λ) が偶数の整
数倍のときには強くなり、奇数の整数倍のときには弱く
なる。この反射光強度の隣り合うピ−ク値に対する波長
をそれぞれλ1 、λ2とすると、(2d/n)( 1/λ2- 1/
λ1)=1が成立する。
[0004] The basic principle of measurement is to use the interference between the reflected light of the incident light from the surface of the film to be measured and the light reflected from the interface of the base film of the film to be measured. For example, when the thickness of the film to be measured is d and the refractive index is n, when the wavelength λ of the incident light is changed, the reflected light intensity becomes strong when 4d / (n × λ) is an integer multiple of an even number. , When it is an odd integer multiple. If the wavelengths of adjacent peak values of the reflected light intensity are λ 1 and λ 2 , respectively, then (2d / n) (1 / λ 2 -1 / 1 /
λ 1 ) = 1 holds.

【0005】前記の関係式から膜厚 dが求められる。実
際の測定では、入射光はせいぜい10μm φ程度しか絞れ
ないため、入射光領域端部の影響を考慮して、通常、膜
厚測定用の20-30 μm φ程度のパタ−ンを設けて膜厚の
測定を行っている。そして、前記膜厚測定用に用意され
た領域の平均的な膜厚を前記原理に従って求めている。
The film thickness d is obtained from the above relational expression. In actual measurement, the incident light can be narrowed down to only about 10 μm at most, so in consideration of the influence of the edge of the incident light area, a film with a thickness of about 20 to 30 μm is usually provided for film thickness measurement. We are measuring the thickness. Then, the average film thickness of the region prepared for the film thickness measurement is obtained according to the above principle.

【0006】[0006]

【発明が解決しようとする課題】以上のように測定して
いるので、従来の膜厚測定技術によれば、あくまでポイ
ントデ−タとしての膜厚、もしくはある大きさをもった
領域の平均的膜厚しか得られなかった。入射光の照明領
域内の平均的膜厚に関しても、CMP(Chemical Mechanica
l Polishing)法はパタ−ン依存度が強く、パタ−ンの大
きさによって求められる膜厚に差異が生じるため、用意
された膜厚チェックパタ−ンを用いた測定によって決定
されるCMP 後の残膜の厚さと、実際のデバイスパタ−ン
の残膜の厚さとでは異なる結果を生じるといった問題も
あった。
Since the measurement is performed as described above, according to the conventional film thickness measurement technique, the film thickness as point data or the average of the area having a certain size is used. Only a film thickness was obtained. Regarding the average film thickness in the illumination area of incident light, CMP (Chemical Mechanical
l Polishing) has a strong pattern dependence, and the thickness of the film depends on the size of the pattern. There is also a problem that the result is different between the thickness of the remaining film and the thickness of the actual remaining device pattern.

【0007】更に、半導体デバイス製造プロセスにおい
て、図6に示すような凹凸を有する半導体基板5 の表面
上に被測定膜6 を形成し、CMP 法により前記被測定膜6
を研磨して得られる段差パターンがμm オーダー以下の
微細パターンの場合、半導体基板への入射光径がそれよ
りも非常に大きいため、従来、半導体基板5 の凸部上の
被測定膜の膜厚a 、凹部上の被測定膜の膜厚b を測定す
ることは不可能であった。
Further, in a semiconductor device manufacturing process, a film to be measured 6 is formed on the surface of a semiconductor substrate 5 having irregularities as shown in FIG.
When the step pattern obtained by polishing the fine pattern is a fine pattern of the order of μm or less, the diameter of the light to be incident on the semiconductor substrate is much larger than that. a, it was impossible to measure the thickness b of the film to be measured on the concave portion.

【0008】本発明は前記問題を解決するために、CMP
を実施した後、膜厚が異なる半導体基板下地段の凸部と
凹部上の被測定膜の膜厚を同時に測定することが可能な
方法を提供することを目的とする。
[0008] The present invention solves the above problem by using CMP.
It is an object of the present invention to provide a method capable of simultaneously measuring the film thickness of a film to be measured on a convex portion and a concave portion of a semiconductor substrate base stage having different film thicknesses after performing the above.

【0009】[0009]

【課題を解決するための手段】本発明の膜厚分布測定方
法は、半導体基板上の凹凸面上に形成された被測定膜
に、多波長発振可干渉性光源からの光を照射し、膜内干
渉によって生じた反射光強度スペクトルを所定の複数の
波長ごとに分離して検出し、検出された波長成分に関す
る前記反射光強度スペクトルを、多波長発振可干渉性光
源による入射光の波長、前記被測定膜の屈折率及び厚み
の理論的関係に基づいて、前記被測定膜の異なる膜厚ご
とにスペクトル分離し、半導体基板下地段の凸部と凹部
上の被測定膜の膜厚を同時に測定する。
According to the present invention, there is provided a method for measuring a film thickness distribution, comprising irradiating a film to be measured formed on an uneven surface on a semiconductor substrate with light from a multi-wavelength oscillation coherent light source. The reflected light intensity spectrum generated by the internal interference is detected separately for each of a plurality of predetermined wavelengths, and the reflected light intensity spectrum related to the detected wavelength component is the wavelength of the incident light by the multi-wavelength oscillation coherent light source, Based on the theoretical relationship between the refractive index and the thickness of the film to be measured, the spectrum is separated for each of the different film thicknesses of the film to be measured, and the film thickness of the film to be measured on the convex portions and the concave portions of the semiconductor substrate base stage is simultaneously measured. I do.

【0010】前記スペクトル分離方法は、検出された波
長成分に関する前記反射光強度スペクトルを、予め導出
しておいた所定の波長及び被測定膜の所定の膜厚ごとの
反射光強度スペクトルの計算値、或いは予め用意した被
測定膜の標準サンプルによる所定の波長及び被測定膜の
所定の膜厚ごとの反射光強度スペクトルの実測値を用い
て最小自乗法によって膜厚ごとにスペクトル分離する。
In the spectrum separating method, the reflected light intensity spectrum relating to the detected wavelength component is obtained by calculating a reflected light intensity spectrum for each of a predetermined wavelength and a predetermined thickness of a film to be measured, Alternatively, the spectrum is separated for each film thickness by the least square method using a predetermined wavelength prepared by a standard sample of the film to be measured and an actually measured value of the reflected light intensity spectrum for each predetermined film thickness of the film to be measured.

【0011】[0011]

【作用】本発明の膜厚分布測定方法によれば、実デバイ
ス上に光を入射して得られる波長に依存した反射光スペ
クトルを入射光の波長λk 、被測定膜の屈折率 n及び厚
み dp の理論的関係に基づいて、(2d p /n)(1 / λk+1
- 1/λk ) =1となるように、スペクトル分離することに
よって、半導体基板凹凸上の膜厚に対応するスペクトル
を分離し、このスペクトルを用いて半導体基板凹凸上の
膜厚を導出することができるようになる。
According to the method of measuring the film thickness distribution of the present invention, the reflected light spectrum dependent on the wavelength obtained by irradiating the light on the actual device is converted into the wavelength λ k of the incident light, the refractive index n and the thickness of the film to be measured. Based on the theoretical relationship of d p , (2d p / n) (1 / λ k + 1
-1 / λ k ) = 1 to separate the spectrum corresponding to the film thickness on the semiconductor substrate unevenness by spectrum separation, and to derive the film thickness on the semiconductor substrate unevenness using this spectrum. Will be able to

【0012】[0012]

【実施例】以下に、本発明の第1の実施例を、図面を参
照しながら具体的に説明する。図1及び図2は、本発明
の実施例に係わる測定系の概略構成図を示す。図1に示
すように、本実施例の測定系は、多波長発振可干渉性光
源1 から多色光を半導体基板5 に入射し、被測定膜6 に
より干渉を受けた反射光をモノクロメータ3 で分光し、
波長ごとの反射光強度を光電子増倍管4 にて検出する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be specifically described below with reference to the drawings. 1 and 2 show schematic configuration diagrams of a measurement system according to an embodiment of the present invention. As shown in FIG. 1, the measuring system of the present embodiment is configured such that polychromatic light from a multi-wavelength oscillation coherent light source 1 is incident on a semiconductor substrate 5 and reflected light interfered by a film to be measured 6 is converted by a monochromator 3. Spectroscopy,
The reflected light intensity for each wavelength is detected by the photomultiplier tube 4.

【0013】あるいは、測定系は図2に示すように、多
波長発振可干渉性光源1 から発せられた多色光をモノク
ロメータ3 で分光した後、これを半導体基板5 に入射
し、被測定膜6 による干渉を受けた反射光強度を光電子
増倍管4 にて検出しても良い。なお、半導体基板5 への
入射光はレンズ系(図1及び図2では図示せず)によ
り、20μm φ程度に集光されている。
Alternatively, as shown in FIG. 2, the measuring system disperses the polychromatic light emitted from the multi-wavelength oscillation coherent light source 1 by the monochromator 3 and then makes it incident on the semiconductor substrate 5 to be measured. The intensity of the reflected light that has been interfered by 6 may be detected by the photomultiplier 4. The light incident on the semiconductor substrate 5 is focused to about 20 μmφ by a lens system (not shown in FIGS. 1 and 2).

【0014】図6に示すように、測定サンプルは、凹凸
を有する半導体基板5 表面上に被測定膜6 を形成し、CM
P 法により被測定膜6 を研磨したものである。これは、
半導体デバイス製造プロセスで通常行われる工程途中の
状態であり、段差パターンがμm オーダー以下の微細パ
ターンである。
As shown in FIG. 6, a measurement sample is formed by forming a film 6 to be measured on the surface of a semiconductor substrate 5 having irregularities,
The film to be measured 6 is polished by the P method. this is,
This is a state in the middle of a process usually performed in a semiconductor device manufacturing process, and a step pattern is a fine pattern of μm order or less.

【0015】本実施例では、半導体基板5 としてシリコ
ン、被測定膜6 として屈折率が1.47の酸化シリコン膜を
用いた。また、段差パターンは1 μm 程度のラインアン
ドスペースであり、段の高さは900nm である。
In this embodiment, silicon is used as the semiconductor substrate 5 and a silicon oxide film having a refractive index of 1.47 is used as the film 6 to be measured. The step pattern is a line and space of about 1 μm, and the height of the step is 900 nm.

【0016】前記図1または図2の測定系を用いて、図
6の測定サンプルを測定し、モノクロメータ3 により波
長を走査すると、図3に示す波長スペクトルが得られ
る。これは、図6の凸部上膜厚a からの反射光と、凹部
上膜厚b からの反射光とが合成されたものである。
When the measurement sample shown in FIG. 6 is measured using the measurement system shown in FIG. 1 or 2 and the wavelength is scanned by the monochromator 3, the wavelength spectrum shown in FIG. 3 is obtained. This is a combination of the reflected light from the film thickness a on the convex portion and the reflected light from the film thickness b on the concave portion in FIG.

【0017】以下に、本発明の第1の実施例に係わる膜
厚の解析方法について述べる。一般に、膜厚d からの反
射光強度I は、 I=COS2(4・π・d / n・λ)……………(1) 式 で表される。
Hereinafter, a method of analyzing the film thickness according to the first embodiment of the present invention will be described. In general, the reflected light intensity I from the film thickness d is represented by the following formula: I = COS 2 (4 · π · d / n · λ) (1)

【0018】したがって、凸部上膜厚a からの反射光強
度Iaは、 Ia=COS2 (4・π・a / n・λ)……………(2) 式 と表される。
Therefore, the intensity Ia of reflected light from the film thickness a on the convex portion is expressed by the following formula: Ia = COS 2 (4 · π · a / n · λ) (2)

【0019】また、凹部上膜厚b からの反射光強度Ib
は、 Ib=COS2(4 ・π・b / n・λ)……………(3) 式 と表される。結果として、光電子増倍管で検出されるス
ペクトルIsは、 Is=Ia+Ib=X・COS2(4・π・a / n・λ)+Y・COS2(4・π・b / n・λ)…(4) と表される。
The intensity Ib of reflected light from the film thickness b on the concave portion
Is expressed as Ib = COS 2 (4 · π · b / n · λ)... (3) As a result, the spectrum Is detected by the photomultiplier tube is Is = Ia + Ib = X · COS 2 (4 · π · a / n · λ) + Y · COS 2 (4 · π · b / n · λ) ... (4)

【0020】ここで、n は被測定膜の屈折率であり、本
実施例では1.47である。また、λは波長を示している。
X とY は、半導体基板5 の段差の凸部と凹部に面積に依
存する係数である。半導体基板5 に入射する入射光の領
域には多数の凹凸部を含み、この凹凸部に対応する面積
の割合に依存する。ここでは、膜厚 aと膜厚 bの値を求
めることが目的であるため、以下の演算を行う。
Here, n is the refractive index of the film to be measured, and is 1.47 in this embodiment. Λ indicates a wavelength.
X and Y are coefficients depending on the area of the convex and concave portions of the step of the semiconductor substrate 5. The region of the incident light incident on the semiconductor substrate 5 includes a large number of uneven portions, and depends on the ratio of the area corresponding to the uneven portions. Here, since the purpose is to obtain the values of the film thickness a and the film thickness b, the following calculation is performed.

【0021】まず、あらかじめ膜厚が種々の場合の反射
光スペクトルを前記(1) 式により数値的に求めておく。
ここでは膜厚の種類をk+1 個求める。すなわち、膜厚d
が0からL までの値をk 等分し、d が dp =L・p /k (p は0 からk の自然数)…(5) 式 の場合の波長スペクトルを求めておく。なお、L (最大
の厚み)の値としては、CMP による研磨を行う前に形成
された被測定膜の値を入力する。
First, reflected light spectra for various film thicknesses are obtained numerically in advance by the above equation (1).
Here, k + 1 types of film thickness are obtained. That is, the film thickness d
Divides the value from 0 to L into k equal parts, and obtains the wavelength spectrum when d is d p = Lp / k (p is a natural number from 0 to k) (5). As the value of L (maximum thickness), the value of the film to be measured formed before polishing by CMP is input.

【0022】ここで、波長λが350 から800(nm) の間を
等分した値、例えば2nm 毎の数値計算をしておく。すな
わち、膜厚が dp (=L ・p /k )、波長がλl の場合、
反射光強度をI(p 、λl ) とする。I(p 、350)、I(p 、
352)、I(p 、354)、…、I(p、 λl ) 、…、I(p 、79
6)、I(p 、798)、I(p 、800)のデータ集合を1 セットと
し、p が0 からk のk+1 個のセットを登録しておく。次
に、λがλl の場合の測定された反射光強度スペクトル
Isを、I(350)、I(352)、I(354)、…、I(λl )、…、I(7
96)、I(798)、I(800)として登録する。
Here, a numerical calculation is performed for each value obtained by equally dividing the wavelength λ between 350 and 800 (nm), for example, every 2 nm. That is, the film thickness is d p (= L · p / k), when the wavelength is lambda l,
The reflected light intensity and I (p, λ l). I (p, 350), I (p,
352), I (p, 354),…, I (p, λ l ),…, I (p, 79
6), a data set of I (p, 798) and I (p, 800) is set as one set, and k + 1 sets in which p is 0 to k are registered. Next, the measured reflected light intensity spectrum in the case of lambda is lambda l
Is, I (350), I (352), I (354),…, I (λ l ),…, I (7
96), I (798), and I (800).

【0023】 次いで、P(X ,Y,p,q)= ( I(350) -(X ・I(p ,350)+Y ・I(q ,350)))2+( I(352 ) -(X ・I(p ,352)+ Y・I(q ,352)))2+( I(354) - (X ・I(p ,354)+Y ・I(q ,3 54)))2+ ……+ ( I(λl )-( X ・I(p , λl )+Y ・I(q , λl)))2+……+ ( I(800) -( X ・I(p ,800)+Y ・I(q ,800)))2 ……(6) 式 を計算する。Then, P (X, Y, p, q) = (I (350) − (X · I (p, 350) + Y · I (q, 350))) 2 + (I (352) − (X · I (p, 352 ) + Y · I (q, 352))) 2 + (I (354) - (X · I (p, 354) + Y · I (q, 3 54))) 2 + …… + (I (λl)-(X II (p, λl) + Y II (q, λl))) 2 + …… + (I (800)-(X II (p, 800) + Y · I (q, 800))) 2 …… (6)

【0024】ここで、p 及びq はあらかじめセットされ
たデータベースの(5) 式において、各々0 からk までの
組み合わせで繰り返し計算する。また、X 及びY は、各
々Xは0 から1 までの値をx 個に分割した値、Y は0 か
ら1 までの値をy 個の分割した値で繰り返し計算する。
すなわち、(6) 式のP(X 、Y 、p 、q)の値は、(x+1)・
(y+1) ・(k+1)2個、求まる。
Here, p and q are repeatedly calculated for each combination of 0 to k in equation (5) of the preset database. For X and Y, X is a value obtained by dividing a value from 0 to 1 into x values, and Y is a value obtained by repeatedly dividing a value from 0 to 1 into y values.
That is, the value of P (X, Y, p, q) in equation (6) is (x + 1)
(y + 1) ・ (k + 1) Two are obtained.

【0025】これらの中から最も最小のP(X 、Y 、p 、
q)となるX 、Y 、p 、q の組み合わせの中のp 、q が測
定サンプルの各々凸部上と凹部上の被測定膜の膜厚を示
すものとなる。
The smallest P (X, Y, p,
In the combination of X, Y, p, and q, q), p and q indicate the thicknesses of the films to be measured on the convex portions and the concave portions, respectively, of the measurement sample.

【0026】この求まったp 及びq を(5) 式にいれて、
それぞれの膜厚a 及びb を求め、更に前記a 、b を(2)
式、(3) 式に入れると、各々図4及び、図5のスペクト
ルが得られる。図4及び、図5は実測した反射光強度ス
ペクトルを半導体基板凹凸部上の被測定膜の膜厚ごとに
分離した反射光強度スペクトル示す。
Putting the obtained p and q into the equation (5),
The respective film thicknesses a and b are obtained, and the above-mentioned a and b are further expressed as (2)
In the equations (3), the spectra shown in FIGS. 4 and 5 are obtained. FIGS. 4 and 5 show reflected light intensity spectra obtained by separating the actually measured reflected light intensity spectra for each film thickness of the film to be measured on the concave and convex portions of the semiconductor substrate.

【0027】これらが、それぞれ図6における凸部及び
凹部からの反射スペクトルを示すものである。図4は半
導体基板凸部上の被測定膜の膜厚に対応する反射光強度
スペクトルを示し、図5は半導体基板凹部上の被測定膜
の膜厚に対応する反射光強度スペクトルを示す。なお、
図4及び図5のスペクトルは、膜厚の違いによって生じ
るピ−クの周期が異なり、膜厚が薄いほど周期が短いこ
とを示している。
These show the reflection spectra from the convex portions and the concave portions in FIG. 6, respectively. FIG. 4 shows a reflected light intensity spectrum corresponding to the film thickness of the film to be measured on the convex portion of the semiconductor substrate, and FIG. 5 shows a reflected light intensity spectrum corresponding to the film thickness of the film to be measured on the concave portion of the semiconductor substrate. In addition,
The spectra in FIGS. 4 and 5 show that the cycle of the peak caused by the difference in the film thickness is different, and the shorter the film thickness, the shorter the cycle.

【0028】次に、本発明の第2の実施例を図面を参照
しながら具体的に説明する。なお、本実施例に用いる測
定系は、本発明の第1の実施例に用いた図1または図2
と同じものを用いる。ここでは、第1の実施例のよう
に、予め(1) 式から計算したk+1 個のデータのセット
を、膜厚の異なるフラットな標準サンプルをあらかじめ
多数測定しておくことにより、計算を用いずに準備する
ものである。
Next, a second embodiment of the present invention will be specifically described with reference to the drawings. The measurement system used in this embodiment is the same as that shown in FIG. 1 or FIG. 2 used in the first embodiment of the present invention.
Use the same as above. Here, as in the first embodiment, the calculation is performed by previously measuring a large number of flat standard samples having different film thicknesses from a set of k + 1 data previously calculated from the equation (1). It is prepared without using.

【0029】実際の測定法及び演算方法は、基本的には
第1の実施例と同様であるが、異なるのは次の2点であ
る。すなわち、第1の相違点は、あらかじめセットされ
るデータのパラメータである dp 数は、第1の実施例で
は計算する上で設定されたk+1 個であり、それぞれの d
p が一定に離散していたのに対し、本実施例では dp
数はあらかじめ標準サンプルとして準備されたサンプル
数であり、 dp は不規則に離散している点である。
The actual measuring method and calculation method are basically the same as those of the first embodiment, but differ in the following two points. That is, the first difference is that the number of d p which is a parameter of data set in advance is k + 1 set in calculation in the first embodiment.
While p is discretely constant, in the present embodiment, the number of d p is the number of samples prepared in advance as standard samples, and d p is a point that is irregularly discrete.

【0030】また、第2の相違点は、前記第1の点のデ
ータセットと対応して、(6) 式の計算を行う際に、p と
q の設定される数はいずれも標準サンプル数と同じとな
る。すなわち、標準サンプル数をz 個とすると、(6) 式
で計算されるP(X 、Y 、p 、q)の種類は、(x+1) ・(y+
1) ・z2個となる。第2の実施例においては、第1の実
施例と比較して被測定膜の局所的な屈折率や反射率を考
慮できるため、より正確な厚さの凹凸分布及び平均厚さ
を求めることができる。無論、あらかじめ準備される標
準サンプルの膜厚の種類が多いほど、測定精度が上がる
ことは明らかである。
The second difference is that, when calculating the equation (6), p and p correspond to the data set of the first point.
The set number of q is the same as the number of standard samples. That is, assuming that the number of standard samples is z, the type of P (X, Y, p, q) calculated by equation (6) is (x + 1) × (y +
1) ・ z becomes 2 . In the second embodiment, since the local refractive index and the reflectance of the film to be measured can be considered as compared with the first embodiment, more accurate thickness unevenness distribution and average thickness can be obtained. it can. Needless to say, it is clear that the greater the number of types of film thickness of the standard sample prepared in advance, the higher the measurement accuracy.

【0031】[0031]

【発明の効果】以上説明したように、本発明によれば、
従来は困難であった半導体基板の段差パターンがμm オ
ーダー以下の微細パターンの場合にも、半導体基板凹凸
部上の被測定膜の膜厚を測定することが可能となり、特
に、半導体製造プロセスにおけるCMP 工程後、膜厚が異
なる半導体基板下地段の凸部上及び凹部上の被測定膜の
膜厚を同時に測定することができる。
As described above, according to the present invention,
It is possible to measure the thickness of the film to be measured on the uneven portion of the semiconductor substrate even when the step pattern of the semiconductor substrate is a fine pattern of the order of μm or less, which has been difficult in the past. After the process, the film thickness of the film to be measured on the convex portion and the concave portion of the semiconductor substrate underlayer having different film thicknesses can be simultaneously measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係わる測定系の概略構成を示
す図である。
FIG. 1 is a diagram showing a schematic configuration of a measurement system according to an embodiment of the present invention.

【図2】本発明の実施例に係わる測定系の概略構成を示
す図である。
FIG. 2 is a diagram showing a schematic configuration of a measurement system according to an embodiment of the present invention.

【図3】本発明の実施例に係わる波長に対する実測反射
光強度スペクトルを示す図である。
FIG. 3 is a diagram showing a measured reflected light intensity spectrum with respect to a wavelength according to the embodiment of the present invention.

【図4】本発明によって、実測反射光強度スペクトルを
分離して得られる半導体基板凸部上の被測定膜の膜厚に
対応する反射光強度スペクトルを示す図である。
FIG. 4 is a diagram showing a reflected light intensity spectrum corresponding to the film thickness of a film to be measured on a convex portion of a semiconductor substrate obtained by separating an actually measured reflected light intensity spectrum according to the present invention.

【図5】本発明によって、実測反射光強度スペクトルを
分離して得られる半導体基板凹部上の被測定膜の膜厚に
対応する反射光強度スペクトルを示す図である。
FIG. 5 is a diagram showing a reflected light intensity spectrum corresponding to the thickness of a film to be measured on a semiconductor substrate recess obtained by separating an actually measured reflected light intensity spectrum according to the present invention.

【図6】本発明の実施例に係わる半導体基板上の被測定
膜の膜厚を示す模式図である。
FIG. 6 is a schematic diagram showing the thickness of a film to be measured on a semiconductor substrate according to an example of the present invention.

【符号の説明】[Explanation of symbols]

1 光源 2 ハ−フミラ− 3 モノロメ−タ 4 光電子増倍管 5 半導体基板 6 被測定膜 a 半導体基板凸部上の被測定膜の膜厚 b 半導体基板凹部上の被測定膜の膜厚 1 Light source 2 Half mirror 3 Monometer 4 Photomultiplier tube 5 Semiconductor substrate 6 Film to be measured a Thickness of film to be measured on convex portion of semiconductor substrate b Thickness of film to be measured on concave portion of semiconductor substrate

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上の凹凸面上に形成された被
測定膜に、多波長発振可干渉性光源からの光を照射し、
膜内干渉によって生じた反射光強度スペクトルを所定の
複数の波長ごとに分離して検出し、検出された波長成分
に関する反射光強度スペクトルを、前記多波長発振可干
渉性光源による入射光の波長、前記被測定膜の屈折率及
び膜厚の理論的関係に基づいて、前記被測定膜の異なる
膜厚ごとにスペクトル分離し、前記半導体基板の下地段
の凸部と凹部上の前記被測定膜の膜厚を同時に測定する
ことを特徴とする膜厚分布測定方法。
1. A method of irradiating a film to be measured formed on an uneven surface on a semiconductor substrate with light from a multi-wavelength oscillation coherent light source,
The reflected light intensity spectrum generated by the in-film interference is separated and detected for each of a plurality of predetermined wavelengths, and the reflected light intensity spectrum related to the detected wavelength component is the wavelength of the incident light by the multi-wavelength oscillation coherent light source, Based on the theoretical relationship between the refractive index and the film thickness of the film to be measured, the spectrum is separated for each different film thickness of the film to be measured, and A film thickness distribution measuring method characterized by simultaneously measuring the film thickness.
【請求項2】 前記スペクトル分離方法は、検出された
波長成分に関する前記反射光強度スペクトルを、予め導
出しておいた所定の波長及び前記被測定膜の所定の膜厚
ごとの反射光強度スペクトルの計算値を用いて最小自乗
法によって、膜厚ごとにスペクトル分離することを特徴
とする請求項1に記載の膜厚分布測定方法。
2. The spectrum separating method according to claim 1, wherein the reflected light intensity spectrum relating to the detected wavelength component is obtained by calculating a reflected light intensity spectrum for each of a predetermined wavelength and a predetermined thickness of the film to be measured. 2. The method according to claim 1, wherein a spectrum is separated for each film thickness by a least square method using the calculated values.
【請求項3】 前記スペクトル分離方法は、検出された
波長成分に関する前記反射光強度スペクトルを、予め用
意した被測定膜の標準サンプルによる所定の波長及び前
記被測定膜の所定の膜厚ごとの反射光強度スペクトルの
実測値を用いて最小自乗法によって、膜厚ごとにスペク
トル分離することを特徴とする請求項1に記載の膜厚分
布測定方法。
3. The method according to claim 1, wherein the reflected light intensity spectrum relating to the detected wavelength component is reflected by a standard sample of a film to be measured prepared at a predetermined wavelength and a predetermined thickness of the film to be measured. 2. The method according to claim 1, wherein a spectrum is separated for each film thickness by a least square method using an actually measured value of the light intensity spectrum.
【請求項4】 前記反射光強度スペクトルの波長領域は
350nm から800nm の範囲であることを特徴とする請求項
1〜3の何れか1項に記載の膜厚分布測定方法。
4. The wavelength region of the reflected light intensity spectrum is
4. The method according to claim 1, wherein the thickness is in the range of 350 nm to 800 nm.
【請求項5】 前記反射光強度スペクトルを検出する波
長間隔は2nm であることを特徴とする請求項1〜3の何
れか1項に記載の膜厚分布測定方法。
5. The film thickness distribution measuring method according to claim 1, wherein a wavelength interval for detecting the reflected light intensity spectrum is 2 nm.
JP20540497A 1997-07-15 1997-07-15 Method for measuring film thickness distribution Withdrawn JPH1137725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20540497A JPH1137725A (en) 1997-07-15 1997-07-15 Method for measuring film thickness distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20540497A JPH1137725A (en) 1997-07-15 1997-07-15 Method for measuring film thickness distribution

Publications (1)

Publication Number Publication Date
JPH1137725A true JPH1137725A (en) 1999-02-12

Family

ID=16506284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20540497A Withdrawn JPH1137725A (en) 1997-07-15 1997-07-15 Method for measuring film thickness distribution

Country Status (1)

Country Link
JP (1) JPH1137725A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005266084A (en) * 2004-03-17 2005-09-29 Lasertec Corp Confocal microscope and film thickness measuring instrument
JP2013096858A (en) * 2011-11-01 2013-05-20 Tokyo Electron Ltd Optical interference system, substrate processor, and measurement method
JP2017167295A (en) * 2016-03-15 2017-09-21 三菱ケミカル株式会社 Spectral reflectance design method, spectral reflectance design device, and spectral reflectance design program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005266084A (en) * 2004-03-17 2005-09-29 Lasertec Corp Confocal microscope and film thickness measuring instrument
JP4635145B2 (en) * 2004-03-17 2011-02-16 レーザーテック株式会社 Confocal microscope and film thickness measuring device
JP2013096858A (en) * 2011-11-01 2013-05-20 Tokyo Electron Ltd Optical interference system, substrate processor, and measurement method
JP2017167295A (en) * 2016-03-15 2017-09-21 三菱ケミカル株式会社 Spectral reflectance design method, spectral reflectance design device, and spectral reflectance design program

Similar Documents

Publication Publication Date Title
US6940592B2 (en) Calibration as well as measurement on the same workpiece during fabrication
JP3292029B2 (en) Dry etching end point monitoring method and apparatus therefor
JP4925507B2 (en) Film thickness control using spectral interferometry
EP0545738B1 (en) Apparatus for measuring the thickness of thin films
US6204922B1 (en) Rapid and accurate thin film measurement of individual layers in a multi-layered or patterned sample
US5543919A (en) Apparatus and method for performing high spatial resolution thin film layer thickness metrology
US5293214A (en) Apparatus and method for performing thin film layer thickness metrology by deforming a thin film layer into a reflective condenser
US5555472A (en) Method and apparatus for measuring film thickness in multilayer thin film stack by comparison to a reference library of theoretical signatures
US6999180B1 (en) Optical film topography and thickness measurement
CN1377457A (en) Method and apparatus for in-situ monitoring of plasma etch and deposition processes using a pulsed broadband light source
JP2009031301A (en) Device for measuring thin film characteristic using two-dimensional detector and its measurement method
WO2002004885A1 (en) Method and apparatus for high-speed thickness mapping of patterned thin films
KR100595348B1 (en) Method of and apparatus for measuring thickness of thin film or thin layer
US7002693B2 (en) Thickness measurement method and apparatus
TWI766116B (en) Film thickness measurement device, film thickness measurement method, film thickness measurement program, and recording medium for recording film thickness measurement program
US6900900B2 (en) Apparatus and method for enabling high resolution film thickness and thickness-uniformity measurements
US20230035404A1 (en) Combined ocd and photoreflectance method and system
JPH1137725A (en) Method for measuring film thickness distribution
EP3081901A1 (en) Inspection method and device for inspecting a surface pattern
KR20030000274A (en) Multichannel spectrum analyzer for real time plasma monitoring and thin film analysis in semiconductor manufacturing process
JP2006201162A (en) Method for calibrating wavelength of optical measuring system
CN101131318A (en) Measuring method and apparatus for measuring depth of trench pattern
KR20000020758A (en) Apparatus of analyzing impurity doping density of thin film for manufacturing semiconductor device and analyzing method using the same
US20230160687A1 (en) Wafer thickness, topography, and layer thickness metrology system
KR100438379B1 (en) Method and apparatus for determining endpoint of semiconductor element fabricating process and method and apparatus for processing member to be processed

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041005