JPH1137597A - Adsorption-type freezer - Google Patents

Adsorption-type freezer

Info

Publication number
JPH1137597A
JPH1137597A JP9192924A JP19292497A JPH1137597A JP H1137597 A JPH1137597 A JP H1137597A JP 9192924 A JP9192924 A JP 9192924A JP 19292497 A JP19292497 A JP 19292497A JP H1137597 A JPH1137597 A JP H1137597A
Authority
JP
Japan
Prior art keywords
refrigerant
adsorption
circulation path
heat exchange
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9192924A
Other languages
Japanese (ja)
Other versions
JP3918239B2 (en
Inventor
Satoru Inoue
哲 井上
Yukihiko Takeda
幸彦 武田
Shin Honda
伸 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP19292497A priority Critical patent/JP3918239B2/en
Publication of JPH1137597A publication Critical patent/JPH1137597A/en
Application granted granted Critical
Publication of JP3918239B2 publication Critical patent/JP3918239B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve the miniaturization of an adsorption-type freezer that can continuously refrigerate an object to be refrigerated. SOLUTION: In an adsorption-type freezer, a heat exchange fluid is refrigerated due to chill being generated by evaporating a refrigerant in an evaporation condenser 13 when the refrigerant is absorbed by an adsorption core 12, the refrigerated heat exchange fluid is circulated in an indoor heat exchanger 27 and a cold storage device 28 through a fluid circulation path C, indoor air is cooled, at the same time, the cold heat is stored in the cold storage device 28, the heat exchange fluid is refrigerated by the chill being stored by the cold storage device 28 when the adsorption core 12 desorbs the refrigerant, the refrigerated heat exchange fluid is circulated in the indoor heat exchanger 27 through a fluid circulation path D, and the indoor air is cooled, thus eliminating the need for desorbing another adsorption core and preventing the number of the adsorption cores 12 to be required from being increased when the adsorption core 12 is adsorbed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吸着剤により水等
の冷媒を吸着、脱着することを利用した吸着式冷凍装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adsorption refrigeration apparatus utilizing adsorption and desorption of a refrigerant such as water by an adsorbent.

【0002】[0002]

【従来の技術】従来の吸着式冷凍装置は、冷却流体およ
び加熱流体が交互に流れる熱交換器の周囲に多数の吸着
剤を配してなる吸着コアを2つ備えている。そして、一
方の吸着コアが冷媒を吸着し、他方の吸着コアが冷媒を
脱着する第1行程と、一方の吸着コアが冷媒を脱着し、
他方の吸着コアが冷媒を吸着する第2行程とを、所定時
間毎に交互に行なうことにより、冷媒の吸着(換言すれ
ば冷媒の蒸発)を連続的に行ない、これにより、室内空
気(被冷却体)を連続的に冷却している。
2. Description of the Related Art A conventional adsorption refrigerating apparatus has two adsorption cores each having a large number of adsorbents arranged around a heat exchanger through which a cooling fluid and a heating fluid alternately flow. Then, a first step in which one adsorption core adsorbs the refrigerant and the other adsorption core desorbs the refrigerant, and one adsorption core desorbs the refrigerant,
By alternately performing the second step in which the other adsorption core adsorbs the refrigerant at predetermined time intervals, the adsorption of the refrigerant (in other words, the evaporation of the refrigerant) is continuously performed. Body) is cooling continuously.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記従来技
術では、室内空気の冷却を連続的に行なうために、上記
した第1、第2行程のように冷媒の吸着と脱着を並列し
て行なっているため、少なくとも2つの吸着コアが必要
となり、吸着式冷凍装置の体格が大型となる、といった
問題があった。
However, in the prior art, in order to continuously cool the indoor air, the adsorption and desorption of the refrigerant are performed in parallel as in the first and second steps. Therefore, there is a problem that at least two adsorption cores are required, and the size of the adsorption refrigeration apparatus becomes large.

【0004】本発明は上記問題に鑑みてなされたもの
で、被冷却体を連続的に冷却可能な吸着式冷凍装置に関
して、小型化を図ることを目的とする。
The present invention has been made in view of the above problems, and has as its object to reduce the size of an adsorption refrigeration apparatus capable of continuously cooling an object to be cooled.

【0005】[0005]

【課題を解決するための手段】本発明者らは、従来技術
では、冷媒の吸着と脱着を並列して行なうために、少な
くとも2つの吸着コアを必要としており、この結果、装
置が大型となることに着目して、冷媒の吸着と脱着を単
独に行なうことにより、被冷却体を連続的に冷却するよ
うにして、必要となる吸着コアの数を減らして、上記目
的を達成することを見出した。
According to the prior art, the present inventors require at least two adsorption cores in order to perform adsorption and desorption of a refrigerant in parallel, which results in an increase in the size of the apparatus. Focusing on that, by performing the adsorption and desorption of the refrigerant alone, it is found that the object to be cooled is continuously cooled, the number of necessary adsorption cores is reduced, and the above object is achieved. Was.

【0006】すなわち、請求項1、2、4、および5に
記載の発明では、吸着コア(12)が冷媒を吸着する冷
媒吸着時に、蒸発器(13)にて冷媒が蒸発するときの
冷熱にて被冷却体を冷却するとともに、上記冷熱を蓄冷
器(28)に蓄え、吸着コア(12)が冷媒を脱着する
冷媒脱着時は、上記冷媒吸着時に蓄冷器(28)が蓄え
た冷熱にて被冷却体を冷却することを特徴としている。
In other words, according to the first, second, fourth and fifth aspects of the present invention, when the refrigerant is adsorbed by the adsorption core (12), the refrigerant is cooled by the evaporator (13). In addition to cooling the cooled object, the cold heat is stored in the regenerator (28), and when the refrigerant is desorbed by the adsorption core (12) to desorb the refrigerant, the cold stored by the regenerator (28) at the time of adsorbing the refrigerant is used. It is characterized in that the object to be cooled is cooled.

【0007】従って、冷媒吸着時に蓄冷器(28)に蓄
えた冷熱を用いて、冷媒脱着時における被冷却部の冷却
を行なうことができるため、冷媒吸着時に、別の吸着コ
アを脱着させておく必要はない。この結果、必要となる
吸着コア(12)の数を従来技術よりも減らすことがで
きるので、吸着式冷凍装置が小型となり、コストダウン
を図ることができる。
[0007] Therefore, since the cooled portion can be cooled at the time of desorbing the refrigerant by using the cold stored in the regenerator (28) at the time of adsorbing the refrigerant, another adsorption core is detached at the time of adsorbing the refrigerant. No need. As a result, the number of necessary adsorption cores (12) can be reduced as compared with the conventional art, so that the adsorption refrigeration apparatus can be reduced in size and cost can be reduced.

【0008】なお、冷媒の吸着、脱着を1回ずつ行なう
間に必要となる冷熱(つまり、所定の冷却能力を発揮す
るために必要となる総冷熱量)を、冷媒の吸着を1回行
なう間に蒸発器(13)にて生成できるように、吸着コ
ア(12)の体格(具体的には吸着剤(S)の充填量
等)が設定されている。また、請求項2に記載の発明で
は、蒸発器(13)と、蓄冷器(28)と、被冷却体を
冷却する冷却器(27)との間に熱交換流体を循環させ
る第1流体循環路(C)と、蓄冷器(28)と、冷却器
(27)との間に熱交換流体を循環させる第2流体循環
路(D)とを備え、冷媒吸着時に、上記第1流体循環路
(C)に熱交換流体を循環させ、冷媒脱着時に、上記第
2流体循環路(D)に熱交換流体を循環させることを特
徴としている。
The amount of cold required for performing the adsorption and desorption of the refrigerant once (ie, the total amount of cold required for exhibiting the predetermined cooling capacity) is reduced during the operation for performing the adsorption of the refrigerant once. The physique (specifically, the filling amount of the adsorbent (S), etc.) of the adsorption core (12) is set so that it can be generated by the evaporator (13). According to the second aspect of the present invention, the first fluid circulation for circulating the heat exchange fluid between the evaporator (13), the regenerator (28), and the cooler (27) for cooling the object to be cooled. A second fluid circulation path (D) for circulating a heat exchange fluid between the path (C), the regenerator (28), and the cooler (27); The heat exchange fluid is circulated in (C), and the heat exchange fluid is circulated in the second fluid circulation path (D) when the refrigerant is desorbed.

【0009】このようにして、本発明を良好に実施可能
となる。また、請求項3、4、および5に記載の発明で
は、蒸発器(13)と、被冷却体を冷却する冷却器(2
70)との間に熱交換流体を循環させる主流体循環路
(C)と、この主流体循環路(C)において、蒸発器
(13)をバイパスして冷却器(270)に熱交換流体
を循環させるバイパス流体循環路(D)とを備え、冷媒
吸着時に、蒸発器(13)にて冷媒が蒸発するときの冷
熱にて熱交換流体を冷却し、この冷却された熱交換流体
を、主流体循環路(C)を経て冷却器(270)に循環
させることにより被冷却体を冷却し、冷媒脱着時に、上
記冷却された熱交換流体を、バイパス流体循環路(D)
を経て冷却器(270)に循環させることにより被冷却
体を冷却することを特徴としている。
In this manner, the present invention can be satisfactorily implemented. According to the third, fourth and fifth aspects of the present invention, the evaporator (13) and the cooler (2) for cooling the object to be cooled are provided.
70), and a main fluid circulation path (C) for circulating the heat exchange fluid between the main fluid circulation path (C) and the heat exchange fluid in the cooler (270) bypassing the evaporator (13) in the main fluid circulation path (C). And a bypass fluid circulation path (D) for circulating the heat exchange fluid. At the time of refrigerant adsorption, the heat exchange fluid is cooled by cold heat when the refrigerant evaporates in the evaporator (13). The object to be cooled is cooled by circulating through the body circulation path (C) to the cooler (270), and the cooled heat exchange fluid is supplied to the bypass fluid circulation path (D) when the refrigerant is desorbed.
Then, the object to be cooled is cooled by circulating through a cooler (270).

【0010】従って、冷媒吸着時に冷却された熱交換流
体を、冷媒脱着時にバイパス流体循環路(D)を経て冷
却器(270)に循環させることにより、被冷却部の冷
却を行なうことができる。よって、冷媒吸着時に、別の
吸着コアを脱着させておく必要はない。この結果、必要
となる吸着コア(12)の数を従来技術よりも減らすこ
とができるので、吸着式冷凍装置が小型となり、コスト
ダウンを図ることができる。
Therefore, the heat exchange fluid cooled at the time of adsorption of the refrigerant is circulated to the cooler (270) via the bypass fluid circulation path (D) at the time of desorption of the refrigerant, whereby the portion to be cooled can be cooled. Therefore, it is not necessary to detach another adsorption core when adsorbing the refrigerant. As a result, the number of necessary adsorption cores (12) can be reduced as compared with the conventional art, so that the adsorption refrigeration apparatus can be reduced in size and cost can be reduced.

【0011】また、請求項4に記載の発明では、エンジ
ン(22)と、吸着コア(12)との間にエンジン冷却
水を循環させる主冷却水循環路(E)と、この主冷却水
循環路(E)において、吸着コア(12)をバイパスす
るバイパス冷却水循環路(E0)とを備え、冷媒脱着時
に、エンジン冷却水を主冷却水循環路(E)を経て吸着
コア(12)に循環させることにより、吸着コア(1
2)を加熱し、冷媒吸着時は、バイパス冷却水循環路
(E0)にエンジン冷却水を循環させることにより、バ
イパス冷却水循環路(E0)を循環するエンジン冷却水
にエンジン(22)の熱を蓄えることを特徴としてい
る。
According to the present invention, a main cooling water circuit (E) for circulating engine cooling water between the engine (22) and the adsorption core (12), and a main cooling water circuit (E) are provided. E), a bypass cooling water circulation path (E0) for bypassing the adsorption core (12) is provided, and the engine cooling water is circulated to the adsorption core (12) through the main cooling water circulation path (E) when the refrigerant is desorbed. , Adsorption core (1
2) is heated and the engine cooling water is circulated through the bypass cooling water circulation path (E0) when the refrigerant is adsorbed, thereby storing the heat of the engine (22) in the engine cooling water circulating through the bypass cooling water circulation path (E0). It is characterized by:

【0012】これにより、冷媒吸着時においてエンジン
(22)の熱を蓄えたエンジン冷却水を、冷媒脱着時に
吸着コア(12)に循環させることができるので、冷媒
吸着時にエンジン(22)の熱を室外へ放出する場合に
比べて、エンジン(22)の熱を、吸着コア(12)の
加熱に有効に利用できる。また、請求項5に記載の発明
では、吸着コア(12)の加熱温度と、凝縮器(13)
での凝縮温度との差を、吸着コア(12)の冷却温度
と、蒸発器(13)での蒸発温度との差よりも大きく
し、吸着コア(12)を加熱して冷媒を脱着させる時間
(T2)を、吸着コア(12)を冷却して冷媒を吸着さ
せる時間(T1)よりも短くすることを特徴としてい
る。
[0012] Thus, the engine cooling water storing the heat of the engine (22) during the adsorption of the refrigerant can be circulated to the adsorption core (12) during the desorption of the refrigerant, so that the heat of the engine (22) is absorbed during the adsorption of the refrigerant. The heat of the engine (22) can be used more effectively for heating the adsorption core (12) than in the case where the heat is released outside the room. According to the fifth aspect of the present invention, the heating temperature of the adsorption core (12) and the condenser (13)
The difference between the cooling temperature of the adsorption core (12) and the difference between the cooling temperature of the adsorption core (12) and the evaporation temperature of the evaporator (13) is set so that the adsorption core (12) is heated to desorb the refrigerant. (T2) is characterized in that it is shorter than the time (T1) for cooling the adsorption core (12) and adsorbing the refrigerant.

【0013】ここで、吸着コア(12)の加熱温度と、
凝縮器(13)での凝縮温度との差が、吸着コア(1
2)の冷却温度と、蒸発器(13)での蒸発温度との差
よりも大きいとき、吸着コア(12)が冷媒を脱着する
速さは、吸着コア(12)が冷媒を吸着する速さよりも
速くなる。このため、上述のように、吸着コア(12)
を加熱して冷媒を脱着させる時間(T2)を、吸着コア
(12)を冷却して冷媒を吸着させる時間(T1)より
も短くしても、吸着コア(12)を脱着完了状態(再生
状態)とすることができる。
[0013] Here, the heating temperature of the adsorption core (12),
The difference between the condensation temperature in the condenser (13) and the adsorption core (1)
When the cooling temperature in 2) is larger than the evaporation temperature in the evaporator (13), the speed at which the adsorption core (12) desorbs the refrigerant is higher than the speed at which the adsorption core (12) adsorbs the refrigerant. Will also be faster. For this reason, as described above, the suction core (12)
Even if the time (T2) for heating and desorbing the refrigerant is shorter than the time (T1) for cooling the adsorption core (12) and adsorbing the refrigerant, the adsorption core (12) is completely desorbed (regeneration state). ).

【0014】そして、吸着コア(12)に冷媒を脱着さ
せる時間を短くした分だけ、冷媒の吸着、脱着を1回ず
つ行なう時間が短くなり、この分だけ、吸着、脱着を1
回ずつ行なう間に必要となる冷熱が少なくて済むので、
吸着コア(12)の体格を小型化できる。
[0014] The time required to perform the adsorption and desorption of the refrigerant once each becomes shorter by the amount of time required to desorb the refrigerant to and from the adsorption core (12).
Since less heat is required during each cycle,
The size of the suction core (12) can be reduced.

【0015】[0015]

【発明の実施の形態】以下に、本発明の実施形態につい
て図に基づいて説明する。 (第1の実施形態)図1は、本発明の第1の実施形態を
示す吸着式冷凍装置1の全体構成図である。本実施形態
では、吸着式冷凍装置1の冷却能力を、車室内空気(被
冷却体)の冷却(つまり、車室内の冷房)に用いてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. (First Embodiment) FIG. 1 is an overall configuration diagram of an adsorption-type refrigeration apparatus 1 showing a first embodiment of the present invention. In the present embodiment, the cooling capacity of the adsorption-type refrigeration apparatus 1 is used for cooling the vehicle interior air (the object to be cooled) (that is, for cooling the vehicle interior).

【0016】この吸着式冷凍装置1は、1つの密閉空間
を形成する密閉容器(密閉回路)11の内部に、吸着コ
ア12、蒸発凝縮器(請求項でいう蒸発器、および、凝
縮器)13を、上方から順に収容してなるユニット10
を備えている。なお、密閉容器11は、吸着コア12を
収容する吸着コア収容部111と、蒸発凝縮器13を収
容する蒸発凝縮器収容部112と、これら収容部11
1、112の間に位置する冷媒蒸気通路110とを有し
ている。
The adsorption refrigeration system 1 includes an adsorption core 12, an evaporative condenser (evaporator and condenser) 13 inside a closed vessel (sealed circuit) 11 forming one closed space. 10 in which are stored in order from the top
It has. The closed container 11 includes an adsorption core accommodating section 111 accommodating the adsorption core 12, an evaporating condenser accommodating section 112 accommodating the evaporating condenser 13, and
1 and 112, and a refrigerant vapor passage 110 located between the two.

【0017】密閉容器11の蒸発凝縮器収容部112の
内部には、所定量の液冷媒Lが封入されている。そし
て、主蒸発凝縮器13の全体あるいは一部が液冷媒Lと
接触して設けられ、吸着コア12の全体が液冷媒Lと非
接触状態で(つまり、液冷媒Lの表面よりも上方に)設
けられている。なお、本実施形態では、蒸発凝縮器13
の高さ方向半分程度を液冷媒Lと接触させている。ま
た、冷媒としては、例えば水、アルコール、フロン等が
用いられている。
A predetermined amount of liquid refrigerant L is sealed inside the evaporative condenser accommodating section 112 of the closed vessel 11. The entire or a part of the main evaporative condenser 13 is provided in contact with the liquid refrigerant L, and the entire adsorption core 12 is not in contact with the liquid refrigerant L (that is, above the surface of the liquid refrigerant L). Is provided. In the present embodiment, the evaporative condenser 13
About half in the height direction is in contact with the liquid refrigerant L. As the refrigerant, for example, water, alcohol, chlorofluorocarbon or the like is used.

【0018】吸着コア12は、周知の熱交換器形状を有
する熱交換器121に、多数の吸着剤Sを保持させたも
のである。熱交換器121は、一対のタンク121a、
121bの間に、複数の流体配管121cと、複数の蛇
行状伝熱フィン121dを交互に並列配置してなる。な
お、一対のタンク121a、121bの一方121a
に、熱交換流体が流入する入口部12aが形成され、他
方121bに、熱交換流体が流出する出口部12bが形
成されており、熱交換流体としては、水にエチレングリ
コール等を混入させたいわゆる不凍液を用いている。
The adsorbing core 12 has a large number of adsorbents S held in a heat exchanger 121 having a well-known heat exchanger shape. The heat exchanger 121 includes a pair of tanks 121a,
A plurality of fluid pipes 121c and a plurality of meandering heat transfer fins 121d are alternately arranged in parallel between 121b. One of the pair of tanks 121a and 121b 121a
An inlet 12a through which the heat exchange fluid flows is formed, and an outlet 12b through which the heat exchange fluid flows out is formed at the other end 121b. As the heat exchange fluid, so-called water obtained by mixing ethylene glycol or the like into water is used. Uses antifreeze.

【0019】吸着剤Sは、冷却されることにより冷媒蒸
気を吸着し、加熱されることにより吸着していた冷媒蒸
気を脱着するものであり、例えば、シリカゲル、ゼオラ
イト、活性炭、活性アルミナ等からなる。そして、上記
した熱交換器121のうち、タンク121a、121b
や、複数の流体配管121cや、複数の伝熱フィン12
1dの間に多数の吸着剤Sを充填し、接着固定してあ
る。なお、吸着コア12は上下方向に平行に配置されて
いる。これにより、冷媒蒸気通路110からの冷媒蒸気
が、吸着コア12の両面から吸着剤Sに良好に供給され
る。
The adsorbent S adsorbs the refrigerant vapor when cooled and desorbs the adsorbed refrigerant vapor when heated, and is made of, for example, silica gel, zeolite, activated carbon, activated alumina and the like. . And among the heat exchangers 121, the tanks 121a and 121b
And a plurality of fluid pipes 121c, a plurality of heat transfer fins 12
A large number of adsorbents S are filled during 1d and fixed by adhesion. Note that the suction cores 12 are arranged in parallel in the vertical direction. Thereby, the refrigerant vapor from the refrigerant vapor passage 110 is favorably supplied to the adsorbent S from both surfaces of the adsorption core 12.

【0020】蒸発凝縮器13は、上記した吸着コア12
の熱交換器121と同様の熱交換器形状をなしており、
熱交換流体が流入する入口部13a、および、熱交換流
体が流出する出口部13bを有している。そして、吸着
コア12の熱交換器121と、室外熱交換器24とは、
流体配管にて直列に接続されており、これにより、吸着
コア12の熱交換器121と、室外熱交換器24との間
に熱交換流体を循環させる流体循環路Aを構成してい
る。また、吸着コア12の熱交換器121と、エンジン
22とは、流体配管にて直列に接続されており、これに
より、吸着コア12の熱交換器121と、エンジン22
との間に熱交換流体を循環させる流体循環路(主冷却水
循環路)Eを構成している。
The evaporative condenser 13 is provided with the above-described adsorption core 12.
Has the same heat exchanger shape as the heat exchanger 121 of
It has an inlet 13a through which the heat exchange fluid flows in and an outlet 13b through which the heat exchange fluid flows out. And the heat exchanger 121 of the adsorption core 12 and the outdoor heat exchanger 24
They are connected in series by a fluid pipe, thereby forming a fluid circulation path A for circulating a heat exchange fluid between the heat exchanger 121 of the adsorption core 12 and the outdoor heat exchanger 24. Further, the heat exchanger 121 of the adsorption core 12 and the engine 22 are connected in series by a fluid pipe, whereby the heat exchanger 121 of the adsorption core 12 and the engine 22 are connected.
And a fluid circulation path (main cooling water circulation path) E for circulating the heat exchange fluid.

【0021】また、蒸発凝縮器13と、室外熱交換器2
4とは、流体配管にて直列に接続されており、これによ
り、蒸発凝縮器13と、室外熱交換器24との間に熱交
換流体を循環させる流体循環路Bを構成している。ま
た、蒸発凝縮器13と、室内熱交換器(冷却器)27
と、蓄冷器28とは、流体配管にてこの順に直列に接続
されており、これにより、蒸発凝縮器13と、室内熱交
換器27と、蓄冷器28との間に熱交換流体を循環させ
る流体循環路(第1流体循環路、主流体循環路)Cを構
成している。また、流体循環路Cには、蒸発凝縮器13
をバイパスして、室内熱交換器27と、蓄冷器28との
間に熱交換流体を循環させる流体循環路(第2流体循環
路、バイパス流体循環路)Dが設けられている。
Further, the evaporative condenser 13 and the outdoor heat exchanger 2
4 is connected in series by a fluid pipe, thereby constituting a fluid circulation path B for circulating a heat exchange fluid between the evaporative condenser 13 and the outdoor heat exchanger 24. Further, the evaporative condenser 13 and the indoor heat exchanger (cooler) 27
And the regenerator 28 are connected in series in this order by a fluid pipe, whereby the heat exchange fluid is circulated between the evaporative condenser 13, the indoor heat exchanger 27, and the regenerator 28. A fluid circulation path (first fluid circulation path, main fluid circulation path) C is configured. Further, the evaporative condenser 13 is provided in the fluid circulation path C.
And a fluid circulation path (second fluid circulation path, bypass fluid circulation path) D for circulating the heat exchange fluid between the indoor heat exchanger 27 and the regenerator 28 by bypassing the heat exchange fluid.

【0022】そして、吸着コア12の熱交換器121の
入口部12a近傍(流体循環路A、Eの途中)、およ
び、出口部12b近傍(流体循環路A、Eの途中)に
は、三方切替弁21、23が設けられており、この三方
切替弁21、23により、エンジン22からのエンジン
冷却水(加熱流体)を吸着コア12の熱交換器121に
循環させるか(つまり、流体循環路Eに熱交換器を循環
させるか)、室外熱交換器24からの熱交換流体(冷却
流体)を吸着コア12の熱交換器121に循環させるか
(つまり、流体循環路Aに熱交換器を循環させるか)を
切り替えている。
A three-way switch is provided near the inlet 12a of the heat exchanger 121 of the adsorption core 12 (on the way of the fluid circulation paths A and E) and near the outlet 12b (on the way of the fluid circulation paths A and E). The valves 21 and 23 are provided, and the engine cooling water (heating fluid) from the engine 22 is circulated to the heat exchanger 121 of the adsorption core 12 by the three-way switching valves 21 and 23 (that is, the fluid circulation path E Or the heat exchanger fluid (cooling fluid) from the outdoor heat exchanger 24 is circulated to the heat exchanger 121 of the adsorption core 12 (that is, the heat exchanger is circulated to the fluid circulation path A). Or switch).

【0023】また、蒸発凝縮器13の入口部13a近傍
(流体循環路B、Cの途中)、および、出口部13b近
傍(流体循環路B、Cの途中)には、三方切替弁25、
26が設けられており、この三方切替弁25、26によ
り、室外熱交換器24からの熱交換流体を蒸発凝縮器1
3に循環させるか(つまり、流体循環路Bに熱交換器を
循環させるか)、室内熱交換器27からの熱交換流体を
蒸発凝縮器13に循環させるか(つまり、流体循環路C
に熱交換器を循環させるか)を切り替えている。
A three-way switching valve 25 is provided near the inlet 13a of the evaporative condenser 13 (midway of the fluid circulation paths B and C) and near the outlet 13b (midway of the fluid circulation paths B and C).
The three-way switching valves 25 and 26 allow the heat exchange fluid from the outdoor heat exchanger 24 to flow through the evaporative condenser 1.
3 (that is, whether the heat exchanger is circulated through the fluid circulation path B), or the heat exchange fluid from the indoor heat exchanger 27 is circulated through the evaporative condenser 13 (that is, the fluid circulation path C).
Circulating the heat exchanger).

【0024】また、上記した蓄冷器28は、密閉容器2
80の内部に、周知の熱交換器形状である熱交換器28
1と、蓄冷剤282とを収容してなる。蓄熱材282
は、室内熱交換器27へ流入させる熱交換流体の目標温
度(例えば10℃)程度の融点をもつ材料が用いられて
おり、例えば、分子量が400〜600のポリエチレン
グリコール等が挙げられる。
Further, the regenerator 28 described above is
Inside the heat exchanger 28 is a heat exchanger 28 of a well-known heat exchanger shape.
1 and a cold storage agent 282. Heat storage material 282
A material having a melting point about the target temperature (for example, 10 ° C.) of the heat exchange fluid flowing into the indoor heat exchanger 27 is used. For example, polyethylene glycol having a molecular weight of 400 to 600 is used.

【0025】そして、室内熱交換器27の入口部27a
近傍(流体循環路C、Dの途中)、および、蓄冷器28
の出口部28b近傍(流体循環路C、Dの途中)には、
三方切替弁29、30が設けられており、この三方切替
弁29、30により、蒸発凝縮器13、室内熱交換器2
7および蓄冷器28の順に熱交換流体を循環させるか
(つまり、流体循環路Cに熱交換流体を循環させる
か)、室内熱交換器27と蓄冷器28との間に熱交換流
体を循環させるか(つまり、流体循環路Dに熱交換流体
を循環させるか)を切り替えている。
The inlet 27a of the indoor heat exchanger 27
Near (in the middle of the fluid circulation paths C and D) and the regenerator 28
In the vicinity of the outlet 28b (in the middle of the fluid circulation paths C and D)
The three-way switching valves 29 and 30 are provided, and the evaporating condenser 13 and the indoor heat exchanger 2 are provided by the three-way switching valves 29 and 30.
7 and the regenerator 28 in this order (that is, whether to circulate the heat exchange fluid in the fluid circulation path C) or to circulate the heat exchange fluid between the indoor heat exchanger 27 and the regenerator 28. (That is, whether to circulate the heat exchange fluid through the fluid circulation path D).

【0026】また、室外熱交換器24の近傍(流体循環
路A、Bが合流する部位)に設けた電動ポンプ25によ
り熱交換流体を圧送して、流体循環路A、または、流体
循環路Bに熱交換流体を循環させている。また、室内熱
交換器27の近傍(流体循環路C、Dが合流する部位)
に設けた電動ポンプ32により熱交換流体を圧送して、
流体循環路C、または、流体循環路Dに熱交換流体を循
環させている。また、エンジン22を駆動源とする機械
ポンプ33により、流体循環路Eにエンジン冷却水(熱
交換流体)を循環させている。
The heat exchange fluid is pressure-fed by an electric pump 25 provided in the vicinity of the outdoor heat exchanger 24 (the portion where the fluid circulation paths A and B join), and the fluid circulation path A or the fluid circulation path B The heat exchange fluid is circulated through In addition, the vicinity of the indoor heat exchanger 27 (the portion where the fluid circulation paths C and D join).
The heat exchange fluid is pumped by the electric pump 32 provided in
The heat exchange fluid is circulated through the fluid circulation path C or the fluid circulation path D. Further, engine cooling water (heat exchange fluid) is circulated in the fluid circulation path E by a mechanical pump 33 driven by the engine 22.

【0027】なお、室内熱交換器27は、空調ダクト3
内に収容されており、送風ファン4にて送風される室内
空気(被冷却体)と冷媒を熱交換させることにより、室
内空気を冷却している。次に、上記構成による作動を説
明する。まず、使用者が図示しないエアコンスイッチを
オンすることにより、電動ポンプ25、32を作動させ
るとともに、三方切替弁21、23、25、26、2
9、30を図1中実線位置に回動させることにより、吸
着コア12の吸着剤Sに冷媒蒸気を吸着させる吸着モー
ドを実行する。
Note that the indoor heat exchanger 27 is
The room air is cooled by exchanging heat between the room air (cooled body) blown by the blower fan 4 and the refrigerant. Next, the operation of the above configuration will be described. First, when the user turns on an air conditioner switch (not shown), the electric pumps 25, 32 are operated, and the three-way switching valves 21, 23, 25, 26, 2,
The adsorption mode in which the refrigerant vapor is adsorbed on the adsorbent S of the adsorption core 12 is executed by rotating 9, 9 to the solid line position in FIG.

【0028】すなわち、流体循環路Aおよび流体循環路
Cに熱交換流体が循環して、吸着剤Sが冷媒蒸気を吸着
するとともに、液冷媒Lが蒸発する。そして、液冷媒が
蒸発するときに発生する蒸発潜熱により、蒸発凝縮器1
3を循環する熱交換流体が例えば0℃〜5℃程度に冷却
され、この冷却された熱交換流体を、流体循環路Cを経
て室内熱交換器27に供給することにより室内(被冷却
部)を冷却し、さらに、室内熱交換器27を通過した比
較的低温な熱交換流体を蓄冷器28に供給する。これに
より、蓄冷器28に冷熱が蓄えられる。
That is, the heat exchange fluid circulates through the fluid circulation paths A and C, the adsorbent S adsorbs the refrigerant vapor, and the liquid refrigerant L evaporates. Then, the evaporative condenser 1 is heated by the evaporative latent heat generated when the liquid refrigerant evaporates.
3 is cooled to, for example, about 0 ° C. to 5 ° C., and the cooled heat exchange fluid is supplied to the indoor heat exchanger 27 via the fluid circulation path C, thereby indoors (the part to be cooled). , And the relatively low-temperature heat exchange fluid that has passed through the indoor heat exchanger 27 is supplied to the regenerator 28. Thereby, cold heat is stored in the cool storage device 28.

【0029】なお、室内熱交換器27を通過した熱交換
流体の温度は、室内温度により上下するが、この熱交換
流体の温度が、蓄熱剤282の融点以下のときに、熱交
換流体の冷熱が、蓄熱剤282の融解潜熱として良好に
蓄えられる。ここで、本実施形態では、吸着コア12に
冷媒を脱着させる脱着モード時間T2(例えば50秒)
を、吸着コア12に冷媒を吸着させる吸着モード時間T
1(例えば70秒)よりも短く設定している。これは、
吸着コア12の加熱温度(つまり、エンジン22からの
熱交換流体の温度、例えば90℃)と、蒸発凝縮器13
での冷媒の凝縮温度(例えば30℃程度)との差(例え
ば60℃程度)が、吸着コア12の冷却温度(つまり、
室外熱交換器24からの熱交換流体の温度、例えば40
℃)と、蒸発凝縮器13での冷媒の蒸発温度(例えば1
0℃)との差(例えば30℃程度)よりも大きいため、
吸着コア12が脱着を完了する時間(つまり、吸着剤S
から所定量の冷媒を脱着させるのに必要な時間)が、吸
着コア12が吸着を完了する時間(つまり、吸着剤Sに
所定量の冷媒を吸着させるのに必要な時間)よりも短い
ためである。
The temperature of the heat exchange fluid passing through the indoor heat exchanger 27 fluctuates depending on the indoor temperature. When the temperature of the heat exchange fluid is lower than the melting point of the heat storage agent 282, Is well stored as the latent heat of fusion of the heat storage agent 282. Here, in the present embodiment, the desorption mode time T2 (for example, 50 seconds) for desorbing the refrigerant to and from the adsorption core 12
To the adsorption mode time T for adsorbing the refrigerant on the adsorption core 12.
1 (for example, 70 seconds). this is,
The heating temperature of the adsorption core 12 (that is, the temperature of the heat exchange fluid from the engine 22, for example, 90 ° C.)
The difference (for example, about 60 ° C.) from the condensation temperature of the refrigerant (for example, about 30 ° C.) depends on the cooling temperature of the adsorption core 12 (that is,
The temperature of the heat exchange fluid from the outdoor heat exchanger 24, for example, 40
° C) and the evaporation temperature of the refrigerant in the evaporative condenser 13 (for example, 1
0 ° C.) (eg, about 30 ° C.)
The time when the adsorption core 12 completes desorption (that is, the adsorbent S
This is because the time required for desorbing a predetermined amount of refrigerant from the adsorption core 12) is shorter than the time required for the adsorption core 12 to complete adsorption (that is, the time required for causing the adsorbent S to adsorb a predetermined amount of refrigerant). is there.

【0030】よって、吸着モード時に必要とされる冷房
能力を例えば3kWとし、後述する脱着モード時に必要
とされる冷房能力を例えば2kWとしており、吸着式冷
凍装置1にて生成すべき冷房能力は例えば5kWとな
る。このため、吸着モード時には、吸着コア12および
蒸発凝縮器13により5kWの冷房能力を生成し、この
生成された冷房能力のうち、3kW分を室内冷房に用い
るとともに、2kW分を蓄冷器28に蓄えている。
Accordingly, the cooling capacity required in the adsorption mode is, for example, 3 kW, and the cooling capacity required in the desorption mode, which will be described later, is, for example, 2 kW. 5 kW. For this reason, in the adsorption mode, a cooling capacity of 5 kW is generated by the adsorption core 12 and the evaporative condenser 13, and 3 kW of the generated cooling capacity is used for indoor cooling and 2 kW is stored in the regenerator 28. ing.

【0031】また、吸着コア12の熱交換器121を循
環する熱交換流体が吸着熱により加熱され、この加熱さ
れた熱交換流体を、流体循環路Aを経て室外熱交換器2
4に循環させることにより、熱交換流体から室外へ放熱
する。そして、このような吸着モードを上記時間T1の
間行なった後、三方切替弁21、23、25、26、2
9、30を図1中一点鎖線位置に切り替えることによ
り、吸着剤Sから冷媒蒸気を脱着させる脱着モードを実
行する。なお、このモードの切替時においては、吸着剤
Sの吸着能力は低下している。
The heat exchange fluid circulating in the heat exchanger 121 of the adsorption core 12 is heated by the heat of adsorption, and the heated heat exchange fluid is passed through the fluid circulation path A to the outdoor heat exchanger 2.
By circulating the heat to the outside, heat is radiated from the heat exchange fluid to the outside of the room. After performing such an adsorption mode for the time T1, the three-way switching valves 21, 23, 25, 26, 2
The desorption mode for desorbing the refrigerant vapor from the adsorbent S is executed by switching the positions 9 and 30 to the positions indicated by the alternate long and short dash lines in FIG. In addition, at the time of switching this mode, the adsorption capacity of the adsorbent S is reduced.

【0032】そして、脱着モードでは、流体回路B、流
体循環路D、および流体循環路Eに熱交換流体が循環す
る。これにより、吸着コア12の熱交換器121に、エ
ンジン22のエンジン冷却水(熱交換流体)が循環され
るので、吸着剤Sが加熱されて、吸着剤Sが吸着してい
た冷媒を脱着する。この脱着された冷媒蒸気は、蒸発凝
縮器13近傍において凝縮される。このときの凝縮熱に
より、蒸発凝縮器13を流れる熱交換流体が加熱され、
この加熱された熱交換流体を、第2流体循環路Bを経て
室内熱交換器24に循環させることにより、熱交換流体
から室外へ放熱する。
In the desorption mode, the heat exchange fluid circulates through the fluid circuit B, the fluid circulation path D, and the fluid circulation path E. As a result, the engine coolant (heat exchange fluid) of the engine 22 is circulated through the heat exchanger 121 of the adsorption core 12, so that the adsorbent S is heated and the refrigerant on which the adsorbent S is adsorbed is desorbed. . The desorbed refrigerant vapor is condensed near the evaporative condenser 13. The heat of condensation at this time heats the heat exchange fluid flowing through the evaporative condenser 13,
The heated heat exchange fluid is circulated to the indoor heat exchanger 24 via the second fluid circulation path B, so that heat is released from the heat exchange fluid to the outside.

【0033】また、室内熱交換器27において冷熱が室
内へ放出されるため、この室内熱交換器27を流れる熱
交換流体の温度が上昇して、蓄冷材282の融点以上と
なる。これにより、蓄冷材282は融解潜熱に対応する
冷熱を熱交換流体へ放出する(換言すれば、融解潜熱を
熱交換流体から吸熱する)ので、この熱交換流体が冷却
され、この冷却された熱交換流体を室内熱交換器27に
循環させることにより、脱着モードにおいて室内を冷却
できる。そして、このような脱着モードを上記時間T2
の間行なった後、吸着剤Sの吸着能力が再生されるた
め、再び上記吸着モードを実行させる。
Further, since the cold heat is released into the room in the indoor heat exchanger 27, the temperature of the heat exchange fluid flowing through the indoor heat exchanger 27 rises and becomes higher than the melting point of the cold storage material 282. As a result, the cold storage material 282 emits cold heat corresponding to the latent heat of fusion to the heat exchange fluid (in other words, absorbs the latent heat of fusion from the heat exchange fluid), so that the heat exchange fluid is cooled and the cooled heat is cooled. By circulating the exchange fluid through the indoor heat exchanger 27, the room can be cooled in the desorption mode. Then, such a desorption mode is set to the time T2.
After that, the adsorption capacity of the adsorbent S is regenerated, so that the adsorption mode is executed again.

【0034】そして、本実施形態によれば、吸着コア1
2が冷媒を吸着する吸着モード時(冷媒の吸着時)に蓄
冷器28に蓄えた冷熱を用いて、吸着コア12が冷媒を
脱着する脱着モード時(冷媒の脱着時)における車室内
空気の冷却(車室内の冷房)を行なうことができる。こ
のため、1つの吸着コア12にて、連続的に車室内空気
の冷却を行なうことができるので、吸着モード時に、吸
着コア12とは別の吸着コアを脱着させておく必要がな
い。よって、連続的な冷却を行なうために必要な吸着コ
アの数を、従来よりも減らすことができるので、吸着式
冷凍装置1が小型となり、コストダウンを図ることがで
きる。
According to the present embodiment, the suction core 1
2 uses the cold stored in the regenerator 28 in the adsorption mode in which the refrigerant is adsorbed (when the refrigerant is adsorbed), and cools the vehicle interior air in the desorption mode in which the adsorption core 12 desorbs the refrigerant (when the refrigerant is desorbed). (Cooling of the passenger compartment). Therefore, the air in the passenger compartment can be continuously cooled by one suction core 12, so that it is not necessary to detach and attach another suction core from the suction core 12 in the suction mode. Therefore, the number of adsorption cores required for continuous cooling can be reduced as compared with the conventional case, so that the adsorption refrigeration apparatus 1 can be reduced in size and cost can be reduced.

【0035】特に、必要な吸着コアの数が従来よりも減
ることにより、吸着コアに熱交換流体(冷却流体または
加熱流体)を循環させるための流体循環路の構造がより
単純となるため、吸着式冷凍装置1が小型となり、コス
トダウンを図ることができる。また、本実施形態では、
脱着モード時間T2を、吸着モード時間T1よりも短く
設定しているので、吸着式冷凍装置1にて生成すべき冷
房能力が少なくて済む。この効果について、従来技術の
吸着式冷凍装置と比較して、以下に詳しく説明する。
In particular, since the number of required adsorbing cores is smaller than before, the structure of a fluid circulation path for circulating a heat exchange fluid (cooling fluid or heating fluid) through the adsorbing cores becomes simpler. The size of the refrigerating apparatus 1 can be reduced, and the cost can be reduced. In the present embodiment,
Since the desorption mode time T2 is set shorter than the adsorption mode time T1, the cooling capacity to be generated by the adsorption refrigeration apparatus 1 can be reduced. This effect will be described in detail below in comparison with a conventional adsorption refrigeration apparatus.

【0036】まず、従来の吸着式冷凍装置としては、上
記ユニット10と同じ構造の2つのユニットA、Bを備
えたものとし、これら2つのユニットA、Bに、上記し
た吸着モードおよび脱着モードを上記第1所定時間T1
毎に交互に行なわせるものを想定している。そして、吸
着式冷凍装置にて生成すべき単位時間当たりの冷房能力
をQとすると、従来の吸着式冷凍装置では、ユニットA
にて冷媒の吸着、脱着を1回ずつ行なう間に(換言すれ
ば、ユニットBにて冷媒の脱着、吸着を1回ずつ行なう
間に)、2T1×Qに相当する冷房能力を蒸発凝縮器1
3にて生成する必要がある。一方、本実施形態の吸着式
冷凍装置では、ユニット10にて冷媒の吸着、脱着を1
回ずつ行なう間に、(T1+T2)×Qに相当する冷房
能力を生成する必要がある。
First, a conventional adsorption refrigerating apparatus is provided with two units A and B having the same structure as the unit 10, and the two units A and B are provided with the above adsorption mode and desorption mode. The first predetermined time T1
It is assumed that it is performed alternately every time. Then, assuming that the cooling capacity per unit time to be generated by the adsorption refrigeration apparatus is Q, in the conventional adsorption refrigeration apparatus, unit A
While the refrigerant is adsorbed and desorbed once (in other words, while the desorption and adsorption of the refrigerant is performed once in the unit B), the cooling capacity corresponding to 2T1 × Q is reduced by the evaporative condenser 1.
3 must be generated. On the other hand, in the adsorption refrigeration apparatus of the present embodiment, the adsorption and desorption of the refrigerant by the unit 10 is performed by 1 unit.
It is necessary to generate a cooling capacity equivalent to (T1 + T2) × Q during each cycle.

【0037】ここで、脱着モード時間T2<吸着モード
時間T1であるため、(T1+T2)×Q<2T1×Q
となり、本実施形態の方が従来技術よりも、冷媒の吸
着、脱着を1回ずつ行なう間に生成すべき冷房能力が小
さくなる。一方、吸着剤Sの充填量が多いほど、冷媒の
吸着量が多くなり、蒸発凝縮器13にて生成可能な冷房
能力も大きくなる。よって、本実施形態の方が従来技術
よりも吸着剤Sの充填量が少なくてすむため、吸着コア
12の体格を小型化でき、吸着式冷凍装置1の小型化を
図ることができる。
Here, since the desorption mode time T2 <the adsorption mode time T1, (T1 + T2) × Q <2T1 × Q
Thus, in the present embodiment, the cooling capacity to be generated during the one-time adsorption and desorption of the refrigerant is smaller than in the conventional technology. On the other hand, the larger the filling amount of the adsorbent S, the larger the amount of adsorbed refrigerant, and the larger the cooling capacity that can be generated by the evaporative condenser 13. Therefore, in the present embodiment, the amount of the adsorbent S to be filled is smaller than in the conventional technique, so that the size of the adsorption core 12 can be reduced, and the adsorption refrigeration apparatus 1 can be reduced in size.

【0038】(第2の実施形態)本実施形態の吸着式冷
凍装置は、図2に示すように、ユニット10を複数(例
えば3つ)備えている。そして、複数の吸着コア12
は、流体循環路A、Eに直列的に配置され、複数の蒸発
凝縮器13は、流体循環路B、C、Dに直列的に配置さ
れている。そして、複数の吸着コア12に流れる熱交換
流体の流れ方向と、複数の蒸発凝縮器13に流れる熱交
換流体の流れ方向とが、向流となるように(つまり、逆
向きとなるように)、熱交換流体が循環される。これに
より、吸着式冷凍装置1の冷却能力を向上できる。
(Second Embodiment) As shown in FIG. 2, the adsorption refrigeration apparatus of this embodiment includes a plurality (for example, three) of units 10. Then, the plurality of suction cores 12
Are arranged in series in the fluid circulation paths A and E, and the plurality of evaporative condensers 13 are arranged in series in the fluid circulation paths B, C and D. Then, the flow direction of the heat exchange fluid flowing through the plurality of adsorption cores 12 and the flow direction of the heat exchange fluid flowing through the plurality of evaporative condensers 13 are countercurrent (that is, opposite to each other). The heat exchange fluid is circulated. Thereby, the cooling capacity of the adsorption refrigeration apparatus 1 can be improved.

【0039】このような吸着式冷凍装置1において、上
記第1の実施形態と同様に蓄熱器28を設けるととも
に、上記第1の実施形態と同様の作動を行なっている。
ここで、従来では、複数のユニットを1対(2組)備
え、一方の複数のユニットが冷媒の吸着を行なうとき、
他方の複数のユニットにて冷媒の脱着を行なわせること
により、冷却を連続的に行なっていたが本実施形態で
は、1つの複数のユニットにて吸着を行い、その後、脱
着を行なう、といった行程を繰り返すことにより、冷却
を連続的に行なうことができる。
In such an adsorption-type refrigeration system 1, the heat storage device 28 is provided as in the first embodiment, and the same operation as in the first embodiment is performed.
Here, conventionally, a plurality of units are provided in one pair (two sets), and when one of the plurality of units performs the adsorption of the refrigerant,
The cooling was continuously performed by allowing the other plurality of units to desorb and cool the refrigerant. In the present embodiment, however, a process of performing adsorption by one of the plurality of units and then performing desorption is performed. By repeating, cooling can be performed continuously.

【0040】(第3の実施形態)本実施形態では、図3
に示すように、吸着式冷凍装置1にて得られる冷却能力
を、蒸気圧縮式冷凍装置2の過冷却部43を流れる冷媒
(被冷却体)の冷却に用いている。蒸気圧縮式冷凍装置
2は、ガス冷媒を吸入圧縮する冷媒圧縮機41と、送風
ファン42aにて送風される外気と冷媒とを熱交換させ
る室外熱交換器42と、過冷却部43と、膨張弁44
と、送風ファン45aにて送風される内気と冷媒とを熱
交換させる室内熱交換器45と、冷媒を気液に分離する
とともに、ガス冷媒を導出するアキュムレータ46とを
備えている。
(Third Embodiment) In this embodiment, FIG.
As shown in (1), the cooling capacity obtained by the adsorption refrigeration apparatus 1 is used for cooling the refrigerant (cooling target) flowing through the supercooling section 43 of the vapor compression refrigeration apparatus 2. The vapor compression refrigeration apparatus 2 includes a refrigerant compressor 41 that sucks and compresses a gas refrigerant, an outdoor heat exchanger 42 that exchanges heat between the outside air blown by a blower fan 42a and the refrigerant, a supercooling unit 43, and an expansion unit. Valve 44
And an indoor heat exchanger 45 for exchanging heat between the inside air blown by the blower fan 45a and the refrigerant, and an accumulator 46 for separating the refrigerant into gas and liquid and leading out a gas refrigerant.

【0041】そして、四方切替弁47が図3中実線位置
に切り替えられたときは、圧縮機1からの冷媒が、室外
熱交換器42にて凝縮され、この凝縮された冷媒が過冷
却部43にて過冷却され、この過冷却された冷媒が膨張
弁44にて減圧され、この減圧された冷媒が室内熱交換
器45にて蒸発し、この蒸発した冷媒がアキュムレータ
46にて気液分離され、ガス冷媒のみを圧縮機1に再び
吸入させている。これにより、車室内の冷房が行なわれ
る。
When the four-way switching valve 47 is switched to the solid line position in FIG. 3, the refrigerant from the compressor 1 is condensed in the outdoor heat exchanger 42 and the condensed refrigerant is The supercooled refrigerant is decompressed by the expansion valve 44, the depressurized refrigerant is evaporated by the indoor heat exchanger 45, and the evaporated refrigerant is gas-liquid separated by the accumulator 46. Only the gas refrigerant is sucked into the compressor 1 again. Thereby, cooling of the vehicle interior is performed.

【0042】また、四方切替弁47が図3中点線位置に
切り替えられたときは、圧縮機1からの冷媒が、室内熱
交換器45にて凝縮され、この凝縮された冷媒が膨張弁
44にて減圧され、この減圧された冷媒が過冷却部43
を通過して(つまり、過冷却部43は作動しない)、室
外熱交換器42にて蒸発し、この蒸発した冷媒がアキュ
ムレータ46にて気液分離され、ガス冷媒のみを圧縮機
1に再び吸入させている。これにより、車室内の暖房が
行なわれる。
When the four-way switching valve 47 is switched to the position indicated by the dotted line in FIG. 3, the refrigerant from the compressor 1 is condensed in the indoor heat exchanger 45, and the condensed refrigerant is supplied to the expansion valve 44. The decompressed refrigerant is supplied to the subcooling unit 43
(That is, the supercooling section 43 does not operate), evaporates in the outdoor heat exchanger 42, the evaporated refrigerant is gas-liquid separated in the accumulator 46, and only the gas refrigerant is sucked into the compressor 1 again. Let me. Thereby, heating of the vehicle interior is performed.

【0043】なお、蒸気圧縮式冷凍装置2のうち、室内
熱交換器43以外の全ての機器(41、42、44、4
5、46)は、車室の外部(走行用モータが搭載される
室)に設置されている。そして、上記した流体循環路E
において、エンジン22の下流には、断熱容器からなる
冷却水タンク51が接続してあり、さらに、流体循環路
Eには、室外熱交換器24をバイパスして、エンジン2
2と、冷却水タンク51との間に熱交換流体を循環させ
る流体循環路(バイパス冷却水循環炉)E0が設けられ
ている。冷却水タンク51は、流体循環路E0における
エンジン冷却水の封入量を多くするために設けられてお
り、これにより、流体循環路E0におけるエンジン冷却
水の熱容量を大きくして、エンジン冷却水の温度変化を
緩和させている。
In the vapor compression refrigeration system 2, all the devices (41, 42, 44, 4) except the indoor heat exchanger 43 are used.
5, 46) are installed outside the vehicle compartment (the room where the traveling motor is mounted). Then, the above-described fluid circulation path E
, A cooling water tank 51 composed of a heat insulating container is connected downstream of the engine 22, and further, the fluid circulation path E bypasses the outdoor heat exchanger 24 and
2 and a cooling water tank 51, a fluid circulation path (bypass cooling water circulation furnace) E0 for circulating a heat exchange fluid is provided. The cooling water tank 51 is provided to increase the amount of the engine cooling water filled in the fluid circulation path E0, thereby increasing the heat capacity of the engine cooling water in the fluid circulation path E0 and increasing the temperature of the engine cooling water. It is mitigating change.

【0044】そして、流体循環路Eと流体循環路E0と
の分岐部に設けた三方切替弁52により、エンジン22
からのエンジン冷却水(加熱流体)を、吸着コア12の
熱交換器121に循環させるか(つまり、流体循環路E
に熱交換流体を循環させるか)、吸着コア12の熱交換
器121をバイパスさせるか(つまり、流体循環路E0
に熱交換流体を循環させるか)を切り替えている。
The engine 22 is controlled by a three-way switching valve 52 provided at the branch between the fluid circulation path E and the fluid circulation path E0.
Is circulated through the heat exchanger 121 of the adsorption core 12 (that is, the fluid circulation path E
Circulates the heat exchange fluid) or bypasses the heat exchanger 121 of the adsorption core 12 (that is, the fluid circulation path E0).
Or circulate the heat exchange fluid).

【0045】また、上記した室内熱交換器27(図1参
照)にかえて、過冷却部冷却器(冷却器)270を、流
体循環路Dに接続している。この過冷却部冷却器270
の流体通路は、熱交換流体が過冷却部43の冷媒通路に
接触するように構成されている。さらに、上記した蓄冷
器28にかえて、断熱容器からなる熱交換流体タンク2
8aを、流体循環路Dのうち、室内熱交換器27の下流
に接続している。熱交換流体タンク28aは、流体循環
路CおよびDにおける熱交換流体の封入量を多くするた
めに設けられており、これにより、流体循環路Cおよび
Dにおける熱交換流体の熱容量を大きくして、熱交換流
体の温度変化を緩和させている。
A subcooling unit cooler (cooler) 270 is connected to the fluid circulation path D instead of the indoor heat exchanger 27 (see FIG. 1). This supercooler cooler 270
Is configured such that the heat exchange fluid comes into contact with the refrigerant passage of the subcooling unit 43. Further, instead of the regenerator 28 described above, the heat exchange fluid tank 2 made of a heat insulating container is used.
8a is connected to the downstream side of the indoor heat exchanger 27 in the fluid circulation path D. The heat exchange fluid tank 28a is provided to increase the amount of heat exchange fluid enclosed in the fluid circulation paths C and D, thereby increasing the heat capacity of the heat exchange fluid in the fluid circulation paths C and D, The temperature change of the heat exchange fluid is reduced.

【0046】そして、上記した吸着モードの実行時(四
方弁21、23、25、26、29、47、52が図3
中実線位置)には、蒸発凝縮器13において冷媒が蒸発
するときの冷熱により熱交換流体が冷却され、この冷却
された熱交換流体を過冷却部冷却器270に循環させる
ことにより過冷却部43を冷却する。ここで、冷媒が蒸
発するときの冷熱のうち、過冷却部冷却器270の冷却
に使用されない分は、流体循環路Cを循環する熱交換流
体に全て蓄えられる。また、エンジン冷却水は冷却水循
環路E0を循環するため、エンジン22の熱は冷却水循
環路E0を循環するエンジン冷却水に全て蓄えられる。
なお、冷却水タンク51の分だけ熱容量が大きく、しか
も、この吸着モードは比較的短時間(上記した吸着モー
ド時間T1、例えば70秒)であるため、冷却水循環路
E0を循環するエンジン冷却水の水温が非常に高温とな
ることは抑制される。
When the above-described suction mode is executed (the four-way valves 21, 23, 25, 26, 29, 47, and 52 are
In the position indicated by the solid line, the heat exchange fluid is cooled by the cold heat when the refrigerant evaporates in the evaporative condenser 13, and the cooled heat exchange fluid is circulated to the supercooling unit cooler 270, whereby the supercooling unit 43 To cool. Here, of the cold heat when the refrigerant evaporates, the portion not used for cooling the supercooling unit cooler 270 is all stored in the heat exchange fluid circulating in the fluid circulation path C. Further, since the engine cooling water circulates through the cooling water circuit E0, all the heat of the engine 22 is stored in the engine cooling water circulating through the cooling water circuit E0.
Since the heat capacity is large by the amount of the cooling water tank 51 and the adsorption mode is relatively short (the above-described adsorption mode time T1, for example, 70 seconds), the engine cooling water circulating through the cooling water circulation path E0 is used. Extremely high water temperature is suppressed.

【0047】そして、上記した脱着モード(四方弁2
1、23、25、26、29、47、52が図3中点線
位置)に切り替えると、上記冷熱を蓄えた熱交換流体が
流体循環路Dを経て過冷却部冷却器270に循環するこ
とにより、過冷却部冷却器270を冷却する。また、吸
着モード時には、エンジン22の熱が流体循環路E0を
循環するエンジン冷却水に蓄えられ、このエンジン冷却
水を、冷媒脱着時に流体循環路Eを経て吸着コア12に
循環させているので、冷媒吸着時にエンジン22の熱を
室外へ放出する場合に比べて、エンジン22の熱を、吸
着コア12の加熱に有効に利用できる。
Then, the above-mentioned desorption mode (four-way valve 2)
When the positions 1, 23, 25, 26, 29, 47, and 52 are switched to the positions indicated by the dotted lines in FIG. 3), the heat exchange fluid storing the cold heat is circulated to the supercooling unit cooler 270 via the fluid circulation path D. The supercooling unit cooler 270 is cooled. In addition, in the adsorption mode, the heat of the engine 22 is stored in the engine cooling water circulating through the fluid circulation path E0, and the engine cooling water is circulated to the adsorption core 12 via the fluid circulation path E when the refrigerant is desorbed. The heat of the engine 22 can be used more effectively for heating the adsorption core 12 as compared with the case where the heat of the engine 22 is released outside the room at the time of refrigerant adsorption.

【0048】なお、蒸気圧縮式冷凍装置2の冷房時の
み、過冷却部43を流れる冷媒を冷却する必要があるた
め、蒸気圧縮式冷凍装置2の冷房時のみ吸着式冷凍装置
1を作動させ、蒸気圧縮式冷凍装置2の暖房時には吸着
式冷凍装置1を作動させない。そして、本実施形態で
は、吸着モード時に、流体循環路Cを循環する熱交換流
体に冷熱を蓄え、脱着モード時には、吸着モード時に冷
熱を蓄えた熱交換流体を、バイパス流体循環路Dを経て
冷却器270に循環させることにより、加熱部43を流
れる冷媒を冷却できるので、1つの吸着コア12にて連
続的に過冷却部43を流れる冷媒を冷却できる。よっ
て、吸着モード時に、吸着コア12とは別の吸着コアを
脱着させておく必要はない。この結果、連続的に冷却を
行なうために必要な吸着コア12の数を従来技術よりも
減らすことができるので、吸着式冷凍装置1が小型とな
り、コストダウンを図ることができる。
Since it is necessary to cool the refrigerant flowing through the supercooling section 43 only when the vapor compression refrigeration apparatus 2 is being cooled, the adsorption refrigeration apparatus 1 is operated only when the vapor compression refrigeration apparatus 2 is being cooled. During heating of the vapor compression refrigeration system 2, the adsorption refrigeration system 1 is not operated. In the present embodiment, in the adsorption mode, cold heat is stored in the heat exchange fluid circulating in the fluid circulation path C, and in the desorption mode, the heat exchange fluid that has accumulated cold heat in the adsorption mode is cooled through the bypass fluid circulation path D. By circulating through the heater 270, the refrigerant flowing through the heating unit 43 can be cooled, so that the refrigerant flowing through the supercooling unit 43 can be continuously cooled by one adsorption core 12. Therefore, in the suction mode, it is not necessary to desorb a suction core different from the suction core 12. As a result, the number of adsorption cores 12 required for continuous cooling can be reduced as compared with the related art, so that the adsorption refrigeration apparatus 1 can be reduced in size and cost can be reduced.

【0049】(他の実施形態)まず、上記第1、第2の
実施形態において、蓄冷器28を室内熱交換器27の流
体流れ下流側に配していたが、蓄冷器28を室内熱交換
器27の流体流れ上流側に配してもよい。また、上記第
3の実施形態において、タンク51、28aを設けるか
わりに、流体配管を長くすることにより、それぞれの流
体循環路における流体の熱容量を大きくしてもよい。
(Other Embodiments) First, in the first and second embodiments, the regenerator 28 is arranged downstream of the indoor heat exchanger 27 in the fluid flow. It may be arranged upstream of the fluid flow of the vessel 27. In the third embodiment, instead of providing the tanks 51 and 28a, the heat capacity of the fluid in each fluid circulation path may be increased by lengthening the fluid pipe.

【0050】また、上記第1ないし第3の実施形態にお
いて、蒸発凝縮器13により、請求項でいう蒸発器およ
び凝縮器を構成していたが、蒸発器と凝縮器とを別体に
設けてもよい。その他、本発明は上記した各実施形態に
限定されるものではなく、例えば蒸発コアを収容する蒸
発コア収容部112において直接的に外部(外気)と熱
交換するような構成であっても良い等、要旨を逸脱しな
い範囲内で適宜変更して実施し得るものである。
In the first to third embodiments, the evaporator and the condenser are constituted by the evaporative condenser 13, but the evaporator and the condenser are provided separately. Is also good. In addition, the present invention is not limited to each of the above-described embodiments. For example, a configuration may be employed in which the heat exchange with the outside (outside air) is directly performed in the evaporating core accommodating portion 112 accommodating the evaporating core. However, the present invention can be implemented with appropriate changes without departing from the scope of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態に係わる吸着式冷凍装
置の概略構成図である。
FIG. 1 is a schematic configuration diagram of an adsorption-type refrigeration apparatus according to a first embodiment of the present invention.

【図2】本発明の第2の実施形態に係わる吸着式冷凍装
置の概略構成図である。
FIG. 2 is a schematic configuration diagram of an adsorption refrigeration apparatus according to a second embodiment of the present invention.

【図3】本発明の第3の実施形態に係わる吸着式冷凍装
置の概略構成図である。
FIG. 3 is a schematic configuration diagram of an adsorption-type refrigeration apparatus according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

12…吸着コア、13…蒸発凝縮器(蒸発器、凝縮
器)、27…室内熱交換器(冷却器)、28…蓄冷器、
C、D…流体循環路。
12: adsorption core, 13: evaporative condenser (evaporator, condenser), 27: indoor heat exchanger (cooler), 28: regenerator
C, D: fluid circulation path.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 冷却されることにより冷媒を吸着し、加
熱されることにより冷媒を脱着する吸着コア(12)
と、 この吸着コア(12)が冷媒を吸着する冷媒吸着時に、
冷媒を蒸発させる蒸発器(13)と、 前記吸着コア(12)が冷媒を脱着する冷媒脱着時に、
冷媒を凝縮させる凝縮器(13)と、 前記蒸発器(13)にて冷媒が蒸発するときの冷熱を蓄
える蓄冷器(28)とを備え、 前記冷媒吸着時に、前記冷熱にて被冷却体を冷却すると
ともに、前記冷熱を前記蓄冷器(28)に蓄え、 前記冷媒脱着時は、前記冷媒吸着時に前記蓄冷器(2
8)が蓄えた冷熱にて前記被冷却体を冷却することを特
徴とする吸着式冷凍装置。
An adsorption core (12) that adsorbs a refrigerant by being cooled and desorbs the refrigerant by being heated.
When the refrigerant is adsorbed by the adsorption core (12) to adsorb the refrigerant,
An evaporator (13) for evaporating the refrigerant; and a refrigerant desorption where the adsorption core (12) desorbs the refrigerant.
A condenser (13) for condensing the refrigerant; and a regenerator (28) for storing cold heat when the refrigerant evaporates in the evaporator (13). While cooling, the cold heat is stored in the regenerator (28), and when the refrigerant is desorbed, the regenerator (2
8) An adsorption refrigerating apparatus, wherein the object to be cooled is cooled by the cold heat stored in 8).
【請求項2】 前記被冷却体を冷却する冷却器(27)
を備え、 前記蒸発器(13)と、前記蓄冷器(28)と、前記冷
却器(27)との間に熱交換流体を循環させる第1流体
循環路(C)と、 前記蓄冷器(28)と、前記冷却器(27)との間に熱
交換流体を循環させる第2流体循環路(D)とを備え、 前記冷媒吸着時に、前記第1流体循環路(C)に熱交換
流体を循環させ、 前記冷媒脱着時に、前記第2流体循環路(D)に熱交換
流体を循環させることを特徴とする請求項1に記載の吸
着式冷凍装置。
2. A cooler (27) for cooling the object to be cooled.
A first fluid circulation path (C) for circulating a heat exchange fluid between the evaporator (13), the regenerator (28), and the cooler (27); ), And a second fluid circulation path (D) for circulating a heat exchange fluid between the cooler (27) and a heat exchange fluid in the first fluid circulation path (C) when the refrigerant is adsorbed. 2. The adsorptive refrigeration apparatus according to claim 1, wherein a heat exchange fluid is circulated through the second fluid circulation path (D) during the desorption of the refrigerant. 3.
【請求項3】 冷却されることにより冷媒を吸着し、加
熱されることにより冷媒を脱着する吸着コア(12)
と、 この吸着コア(12)が冷媒を吸着する冷媒吸着時に、
冷媒を蒸発させる蒸発器(13)と、 前記吸着コア(12)が冷媒を脱着する冷媒脱着時に、
冷媒を凝縮させる凝縮器(13)と、 被冷却体を冷却する冷却器(270)と、 前記蒸発器(13)と前記冷却器(270)との間に熱
交換流体を循環させる主流体循環路(C)と、 前記主流体循環路(C)において、前記蒸発器(13)
をバイパスして前記冷却器(270)に熱交換流体を循
環させるバイパス流体循環路(D)とを備え、 前記冷媒吸着時に、前記蒸発器(13)にて冷媒が蒸発
するときの冷熱にて熱交換流体を冷却し、この冷却され
た熱交換流体を、前記主流体循環路(C)を経て前記冷
却器(270)に循環させることにより前記被冷却体を
冷却し、 前記冷媒脱着時は、前記冷媒吸着時に前記冷熱にて冷却
された熱交換流体を、前記バイパス流体循環路(D)を
経て前記冷却器(270)に循環させることにより前記
被冷却体を冷却することを特徴とする吸着式冷凍装置。
3. An adsorption core for adsorbing a refrigerant by being cooled and desorbing the refrigerant by being heated.
When the refrigerant is adsorbed by the adsorption core (12) to adsorb the refrigerant,
An evaporator (13) for evaporating the refrigerant; and a refrigerant desorption where the adsorption core (12) desorbs the refrigerant.
A condenser (13) for condensing the refrigerant; a cooler (270) for cooling the object to be cooled; and a main fluid circulation for circulating a heat exchange fluid between the evaporator (13) and the cooler (270). The evaporator (13) in the path (C) and the main fluid circulation path (C).
And a bypass fluid circulation path (D) for circulating a heat exchange fluid to the cooler (270) by bypassing the cooling medium. When the refrigerant is adsorbed, the refrigerant is evaporated by the evaporator (13). The heat exchange fluid is cooled, and the cooled object is cooled by circulating the cooled heat exchange fluid through the main fluid circulation path (C) to the cooler (270). The cooling object is cooled by circulating the heat exchange fluid cooled by the cold heat during the adsorption of the refrigerant to the cooler (270) through the bypass fluid circulation path (D). Adsorption refrigeration equipment.
【請求項4】 エンジン(22)と、前記吸着コア(1
2)との間にエンジン冷却水を循環させる主冷却水循環
路(E)と、 前記冷却水循環路(E)において、前記吸着コア(1
2)をバイパスするバイパス冷却水循環路(E0)とを
備え、 前記冷媒脱着時に、前記エンジン冷却水を前記主冷却水
循環路(E)を経て前記吸着コア(12)に循環させる
ことにより、前記吸着コア(12)を加熱し、 前記冷媒吸着時は、前記バイパス冷却水循環路(E0)
にエンジン冷却水を循環させることにより、前記バイパ
ス冷却水循環路(E0)を循環するエンジン冷却水に前
記エンジン(22)の熱を蓄えることを特徴とする請求
項1ないし3のいずれか1つに記載の吸着式冷凍装置。
4. An engine (22) and said adsorption core (1).
2) a main cooling water circulation path (E) for circulating engine cooling water, and the cooling water circulation path (E).
2) a bypass cooling water circulation path (E0) for bypassing 2), wherein the engine cooling water is circulated to the adsorption core (12) through the main cooling water circulation path (E) at the time of desorption of the refrigerant. The core (12) is heated, and when the refrigerant is adsorbed, the bypass cooling water circulation path (E0)
The heat of the engine (22) is stored in the engine cooling water circulating in the bypass cooling water circulation path (E0) by circulating the engine cooling water to the engine. The adsorption-type refrigeration apparatus according to the above.
【請求項5】 前記吸着コア(12)の加熱温度と、前
記凝縮器(13)での凝縮温度との差を、前記吸着コア
(12)の冷却温度と、前記蒸発器(13)での蒸発温
度との差よりも大きくし、 前記吸着コア(12)を加熱して冷媒を脱着させる時間
(T2)を、前記吸着コア(12)を冷却して冷媒を吸
着させる時間(T1)よりも短くすることを特徴とする
請求項1ないし4のいずれか1つに記載の吸着式冷凍装
置。
5. The difference between the heating temperature of the adsorption core (12) and the condensation temperature in the condenser (13) is determined by the cooling temperature of the adsorption core (12) and the temperature in the evaporator (13). The time (T2) for heating the adsorption core (12) to desorb the refrigerant is made longer than the time for cooling the adsorption core (12) and adsorbing the refrigerant (T1). The adsorption refrigeration apparatus according to any one of claims 1 to 4, wherein the refrigeration apparatus is shortened.
JP19292497A 1997-07-17 1997-07-17 Adsorption refrigeration system Expired - Lifetime JP3918239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19292497A JP3918239B2 (en) 1997-07-17 1997-07-17 Adsorption refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19292497A JP3918239B2 (en) 1997-07-17 1997-07-17 Adsorption refrigeration system

Publications (2)

Publication Number Publication Date
JPH1137597A true JPH1137597A (en) 1999-02-12
JP3918239B2 JP3918239B2 (en) 2007-05-23

Family

ID=16299257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19292497A Expired - Lifetime JP3918239B2 (en) 1997-07-17 1997-07-17 Adsorption refrigeration system

Country Status (1)

Country Link
JP (1) JP3918239B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011087416A (en) * 2009-10-15 2011-04-28 Fujikura Ltd Solar thermal power generator
EP1391238A3 (en) * 2002-08-15 2013-01-02 Mitsubishi Plastics, Inc. Adsorbent for heat utilization system, adsorbent for regenerator system, regenerator system comprising the adsorbent, ferroaluminophosphate and method for production thereof
JP2015525867A (en) * 2012-07-17 2015-09-07 コールドウェイ Sub cooling system of compression cooling system
CN110220303A (en) * 2019-02-26 2019-09-10 华北电力大学 A kind of low * damage heat exchanger
JP2022000604A (en) * 2015-01-08 2022-01-04 ブライ・エアー・アジア・ピーヴイティー・リミテッド Division level adsorption cooling system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1391238A3 (en) * 2002-08-15 2013-01-02 Mitsubishi Plastics, Inc. Adsorbent for heat utilization system, adsorbent for regenerator system, regenerator system comprising the adsorbent, ferroaluminophosphate and method for production thereof
JP2011087416A (en) * 2009-10-15 2011-04-28 Fujikura Ltd Solar thermal power generator
JP2015525867A (en) * 2012-07-17 2015-09-07 コールドウェイ Sub cooling system of compression cooling system
JP2022000604A (en) * 2015-01-08 2022-01-04 ブライ・エアー・アジア・ピーヴイティー・リミテッド Division level adsorption cooling system
CN110220303A (en) * 2019-02-26 2019-09-10 华北电力大学 A kind of low * damage heat exchanger
CN110220303B (en) * 2019-02-26 2024-03-29 华北电力大学 Low exergy -loss heat exchanger

Also Published As

Publication number Publication date
JP3918239B2 (en) 2007-05-23

Similar Documents

Publication Publication Date Title
KR930008821B1 (en) Refrigerating system
JP2011242017A (en) Air conditioning device for vehicle
JPH08240357A (en) Adsorption frezeer
JP4363336B2 (en) Air conditioning
JP3918239B2 (en) Adsorption refrigeration system
US10864800B2 (en) Method for a vehicle climate control system
JP3959805B2 (en) Engine driven refrigeration system
JP2002162130A (en) Air conditioner
JP4066485B2 (en) Refrigeration equipment
JP4086011B2 (en) Refrigeration equipment
JP4082378B2 (en) Refrigeration equipment
JP2005098586A (en) Air conditioner
JP4069691B2 (en) Air conditioner for vehicles
WO2017154569A1 (en) Adsorption refrigeration system, and vehicle air-conditioning device
JP4022944B2 (en) Adsorption refrigeration system
JP4151095B2 (en) Refrigeration equipment
JPH10185352A (en) Adsorption core of adsorption type refrigerating apparatus
JP2018070038A (en) Air conditioner for vehicle having adsorption-type heat pump
JPH11223415A (en) Refrigerating device
JPH11223416A (en) Refrigerating device
JP4300677B2 (en) Adsorption type refrigerator
JPH11190567A (en) Refrigerating unit
JPH11223414A (en) Refrigerating device
JPH1026433A (en) Air conditioning system
JPH11190569A (en) Refrigerating unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term