JPH1137589A - Absorption type refrigerator - Google Patents

Absorption type refrigerator

Info

Publication number
JPH1137589A
JPH1137589A JP9188134A JP18813497A JPH1137589A JP H1137589 A JPH1137589 A JP H1137589A JP 9188134 A JP9188134 A JP 9188134A JP 18813497 A JP18813497 A JP 18813497A JP H1137589 A JPH1137589 A JP H1137589A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
heat exchanger
pressure refrigerant
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9188134A
Other languages
Japanese (ja)
Inventor
Yuji Watabe
裕司 渡部
Sadayasu Inagaki
定保 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP9188134A priority Critical patent/JPH1137589A/en
Publication of JPH1137589A publication Critical patent/JPH1137589A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase refrigerant solubility in an absorber by using mixed refrigerant obtained by combining at least one type of high pressure refrigerant having higher evaporating pressure than that of low pressure refrigerant with the low pressure refrigerant having relatively low evaporating pressure. SOLUTION: High temperature refrigerant vapor g1 generated from a generator 2 at the time of a cooling operation is condensed to be liquefied by an outdoor heat exchanger 4, supercooled by a supercooling gas-liquid heat exchanger 15 and then pressure-reduced by a cooling pressure reducing mechanism 5A. Thereafter, cold heat generated in the case of evaporating and vaporizing it in an indoor heat exchanger 6 is utilized as a heat source for indoor cooling. Refrigerant vapor g2 evaporated and vaporized by the exchanger 6 is guided to an absorption heat exchanger 7 and air-cooled absorber 8, and absorbed to absorbed dilute solution 11 guided from a vapor-liquid separator 3. And, obtained absorbed concentrated liquid 12 is circulated to the generator 2 via a supercooler 11 and liquid pump 10. In this case, as the refrigerant, mixed refrigerant of pentafluoroethane of low pressure refrigerant and difluoromethane of high pressure refrigerant is used to improve refrigerant solubility in the absorber 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願発明は、吸収式冷凍装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigeration system.

【0002】[0002]

【従来の技術】一般に、吸収式冷凍装置においては、単
一の冷媒とこれを吸収する吸収剤とを用い、発生器にお
ける入力熱と吸収器において発生する吸収熱とを冷媒に
より利用側熱交換器に搬送するようにしているが、単一
の冷媒の場合、蒸発圧力に対応する吸収器での冷媒吸収
量が十分に得られないところから、十分な成績係数(以
下、COPという)が得られにくいという問題があっ
た。
2. Description of the Related Art Generally, an absorption refrigeration system uses a single refrigerant and an absorbent for absorbing the same, and uses the refrigerant to exchange heat input into a generator and heat absorbed in an absorber by a refrigerant. However, in the case of a single refrigerant, a sufficient coefficient of performance (hereinafter referred to as COP) is obtained because the amount of refrigerant absorbed by the absorber corresponding to the evaporating pressure cannot be sufficiently obtained. There was a problem that it was difficult to be.

【0003】また、塩素を含んだ分子構造をもつ冷媒
(例えば、R−22:クロロジフルオロメタン)と各種
吸収剤とを組み合わせた吸収式冷凍装置もあるが、オゾ
ン層破壊の問題から、将来は全廃されることとなってい
る。
There is also an absorption refrigeration system in which a refrigerant having a molecular structure containing chlorine (for example, R-22: chlorodifluoromethane) is combined with various absorbents. It is to be totally abolished.

【0004】さらに、沸騰点が異なる2種以上の冷媒を
用い、複数の吸収器においてそれぞれの冷媒を段階的に
吸収させることにより、吸収熱を段階的に高温度化させ
るようにした吸収式冷凍装置も提案されている(例え
ば、特公昭62−32384号公報参照)。
Furthermore, an absorption refrigeration system in which two or more kinds of refrigerants having different boiling points are used and each of the refrigerants is absorbed stepwise by a plurality of absorbers so that the heat of absorption is raised stepwise. An apparatus has also been proposed (for example, see Japanese Patent Publication No. 62-32384).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記公
知例の吸収式冷凍装置の場合、複数の吸収器において複
数の冷媒を吸収させるようにしているため、構造および
配管系が複雑化せざるを得ないという問題がある。
However, in the absorption refrigeration apparatus of the above-mentioned known example, since a plurality of refrigerants are absorbed by a plurality of absorbers, the structure and piping system must be complicated. There is no problem.

【0006】本願発明は、上記の点に鑑みてなされたも
ので、蒸発圧力の異なる複数の冷媒からなる混合冷媒を
用いることにより、吸収器における冷媒溶解度が可及的
に大きくなるようにすることを目的とするものである。
[0006] The present invention has been made in view of the above points, and is intended to increase the solubility of refrigerant in an absorber as much as possible by using a mixed refrigerant composed of a plurality of refrigerants having different evaporation pressures. It is intended for.

【0007】[0007]

【課題を解決するための手段】本願発明の基本構成(請
求項1の発明)では、上記課題を解決するための手段と
して、比較的蒸発圧力の低い低圧冷媒に対して該低圧冷
媒に比較して蒸発圧力の高い高圧冷媒を少なくとも1種
類を組み合わせた混合冷媒を用いている。
According to the basic structure of the present invention (the invention of claim 1), as a means for solving the above-mentioned problems, a low-pressure refrigerant having a relatively low evaporation pressure is compared with the low-pressure refrigerant. In addition, a mixed refrigerant in which at least one high-pressure refrigerant having a high evaporation pressure is combined is used.

【0008】上記のように構成したことにより、低圧冷
媒を単独で用いる場合に比べて、蒸発器での圧力が高く
なるため、吸収器での冷媒溶解度が向上する。従って、
吸収サイクルにおける溶液循環量を減少させることが可
能となり、COPが改善できる。なお、高圧冷媒を単独
で用いると、一般に吸収液との相溶性が悪いため、CO
Pは低下する。
[0008] With the above configuration, the pressure in the evaporator is higher than in the case where the low-pressure refrigerant is used alone, so that the solubility of the refrigerant in the absorber is improved. Therefore,
It becomes possible to reduce the amount of solution circulated in the absorption cycle, and COP can be improved. When a high-pressure refrigerant is used alone, the compatibility with the absorbing liquid is generally poor.
P decreases.

【0009】請求項2あるいは請求項3の発明における
ように、前記低圧冷媒として1,1,1,2−テトラフ
ルオロエタンおよび(あるいは)ペンタフルオロエタン
を用い、高圧冷媒としてジフルオロメタンを用いた場
合、いずれの冷媒も塩素を含まない分子構造を有してい
るのでオゾン層破壊規制に適合できる。
According to a second or third aspect of the present invention, the low-pressure refrigerant uses 1,1,1,2-tetrafluoroethane and / or pentafluoroethane and the high-pressure refrigerant uses difluoromethane. Since each of the refrigerants has a molecular structure containing no chlorine, it can comply with ozone depletion regulations.

【0010】[0010]

【発明の実施の形態】以下、添付の図面を参照して、本
願発明の好適な実施の形態について詳述する。
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0011】図1には、本願発明の実施の形態にかかる
吸収式冷凍装置の冷媒回路が示されている。
FIG. 1 shows a refrigerant circuit of an absorption refrigerating apparatus according to an embodiment of the present invention.

【0012】この吸収式冷凍装置は、加熱手段として作
用するガスバーナ1により加熱され、高温冷媒蒸気g1
を発生させる発生器2と、該発生器2により発生された
高温冷媒蒸気g1中に含まれる吸収剤成分を分離する気
液分離器3と、該気液分離器3から導かれる高温冷媒蒸
気g1が四路切換弁13を介して冷房運転時および暖房
運転時においてそれぞれ供給される室外熱交換器4およ
び室内熱交換器6と、該室外熱交換器4と室内熱交換器
6との間に介設された冷房用および暖房用減圧機構5
A,5Bと、冷房運転時に前記室内熱交換器6により蒸
発気化され且つ前記四路切換弁13を介して供給される
低温冷媒蒸気g2を前記発生器2から導かれる吸収希溶
液l1に吸収させる際に発生する吸収熱を回収する吸収
熱交換器7と、該吸収熱交換器7から導かれる溶液にさ
らに冷媒蒸気を吸収させる空冷吸収器8と、該空冷吸収
器8から前記吸収熱交換器7を経て前記発生器2に導か
れる途中の吸収濃溶液l2に前記発生器2から前記吸収
熱交換器7に導かれる途中の吸収希溶液l1の保有する
熱を回収する熱回収用溶液熱交換器9とを備えて構成さ
れている。符号10は吸収濃溶液l2を圧送するための
溶液ポンプ、11は溶液ポンプ10を保護するために吸
収濃溶液l2を過冷却する過冷却器、12は発生器2か
らの吸収希溶液l1を減圧するための減圧機構である。
This absorption type refrigeration system is heated by a gas burner 1 acting as a heating means, and a high-temperature refrigerant vapor g 1
, A gas-liquid separator 3 for separating an absorbent component contained in the high-temperature refrigerant vapor g 1 generated by the generator 2, and a high-temperature refrigerant vapor guided from the gas-liquid separator 3. g 1 is an outdoor heat exchanger 4 and the indoor heat exchanger 6 is supplied during cooling operation and during heating operation via the four-way switching valve 13, and the outdoor heat exchanger 4 and the indoor heat exchanger 6 Cooling and heating decompression mechanism 5 interposed
A, 5B and the low-temperature refrigerant vapor g 2 supplied via and is vaporized the four-way switching valve 13 by the indoor heat exchanger 6 during cooling operation to absorb a dilute solution l 1 derived from the generator 2 An absorption heat exchanger 7 for recovering the absorption heat generated during absorption; an air-cooled absorber 8 for further absorbing the refrigerant vapor into the solution led from the absorption heat exchanger 7; heat recovery for recovering heat held exchanger 7 to the generator absorbent concentrated solution l 2 of the middle led to 2 through from the generator 2 of the absorbent dilute solution l 1 of the course to be guided to the absorber heat exchanger 7 And a solution heat exchanger 9 for use. Reference numeral 10 denotes a solution pump for pumping the concentrated solution l 2 , 11 denotes a supercooler for supercooling the concentrated solution l 2 to protect the solution pump 10, and 12 denotes a dilute solution 1 from the generator 2. This is a decompression mechanism for decompressing 1 .

【0013】この吸収式冷凍装置においては、冷房運転
時においては凝縮器として作用している室外熱交換器4
から導かれる凝縮液冷媒l3(実線矢印で示す)が減圧
機構5Bを側路して逆止弁14B、過冷却用気液熱交換
器15、レシーバ16および減圧機構5Aを介して室内
熱交換器6に供給される一方、暖房運転時においては凝
縮器として作用している室内熱交換器6から導かれる凝
縮液冷媒l3(点線矢印で示す)が減圧機構5Aを側路
して逆止弁14A、過冷却用気液熱交換器15、レシー
バ16および減圧機構14Bを介して室外熱交換器4に
供給されることとなっている。このようにすれば、冷房
運転時および暖房運転時において、凝縮器として作用し
ている室外熱交換器4および室内熱交換器6から導かれ
る凝縮液冷媒l3が過冷却用気液熱交換器13およびレ
シーバ14へ供給されることとなるのである。
In the absorption refrigeration system, the outdoor heat exchanger 4 acting as a condenser during the cooling operation is provided.
Refrigerant l 3 (indicated by a solid arrow) drawn from the flow path passes through the pressure reducing mechanism 5B and passes through the check valve 14B, the subcooling gas-liquid heat exchanger 15, the receiver 16, and the pressure reducing mechanism 5A for indoor heat exchange. While being supplied to the heat exchanger 6, the condensed liquid refrigerant l 3 (indicated by a dotted arrow) guided from the indoor heat exchanger 6 acting as a condenser during the heating operation is checked by way of the pressure reducing mechanism 5A. It is to be supplied to the outdoor heat exchanger 4 via the valve 14A, the subcooling gas-liquid heat exchanger 15, the receiver 16, and the pressure reducing mechanism 14B. Thus, in and during the heating operation during the cooling operation, the condensed liquid refrigerant l 3 supercooling liquid heat exchanger derived from the outdoor heat exchanger 4 and the indoor heat exchanger 6 acts as a condenser 13 and the receiver 14.

【0014】また、吸収熱交換器7から導かれる吸収濃
溶液l2に気液分離器3から導かれる高温冷媒蒸気g1
保有する熱を回収する熱回収用気液熱交換器17が、熱
回収用溶液熱交換器9と並列に設けられている。従っ
て、吸収熱交換器7から導かれる吸収濃溶液l2には、
気液分離器3から導かれる吸収希溶液l1の保有する
熱、気液分離器3から導かれる冷媒蒸気g1の保有する
熱が回収されることとなっているのである。
Further, the heat recovery gas-liquid heat exchanger 17 for recovering heat held by the high-temperature refrigerant vapor g 1 to be guided to the absorbent concentrated solution l 2 derived from the absorber heat exchanger 7 from the gas-liquid separator 3, It is provided in parallel with the heat recovery solution heat exchanger 9. Therefore, the absorption concentrated solution l 2 guided from the absorption heat exchanger 7 includes:
Liquid heat possessed by the separator 3 absorption dilute solution l 1 derived from is the heat held by the refrigerant vapor g 1 derived from the gas-liquid separator 3 is in the to be recovered.

【0015】上記のように構成された吸収式冷凍装置
は、次のように作用する。
The absorption refrigeration system configured as described above operates as follows.

【0016】(I) 冷房運転時 四路切換弁13は実線方向に切り換えられており、発生
器2から発生された高温冷媒蒸気g1は凝縮器として作
用する室外熱交換器4において凝縮液化され、逆止弁1
4B、過冷却用気液熱交換器15において過冷却された
後、レシーバ16を経て冷房用減圧機構5Aにおいて減
圧され、その後蒸発器として作用する室内熱交換器6に
おいて蒸発気化され、その際発生せしめられる冷熱が室
内冷房用熱源として利用される。なお、室内熱交換器6
において蒸発気化された冷媒蒸気g2は、四路切換弁1
3を経て吸収熱交換器7、空冷吸収器8に導かれ、気液
分離器3から導かれた吸収希溶液l1に吸収され、得ら
れた吸収濃溶液l2は、過冷却器11、溶液ポンプ1
0、吸収熱交換器7、熱回収用溶液熱交換器9および熱
回収用気液熱交換器17を経て発生器2へ還流される。
[0016] (I) cooling operation during the four-way switching valve 13 is switched to the solid line direction, the high-temperature refrigerant vapor g 1 generated from the generator 2 is condensed and liquefied in the outdoor heat exchanger 4, which acts as a condenser , Check valve 1
4B, after being supercooled in the subcooling gas-liquid heat exchanger 15, passed through the receiver 16 and depressurized in the cooling decompression mechanism 5A, and then evaporated and vaporized in the indoor heat exchanger 6 acting as an evaporator. The chilled heat is used as a heat source for indoor cooling. In addition, the indoor heat exchanger 6
The refrigerant vapor g 2 evaporated and vaporized in the four-way switching valve 1
3 through the absorption heat exchanger 7, is led to the air-cooled absorber 8, is absorbed into the absorbent dilute solution l 1 derived from the gas-liquid separator 3, resulting absorbent concentrated solution l 2 are subcooler 11, Solution pump 1
The heat is returned to the generator 2 through the absorption heat exchanger 7, the heat recovery solution heat exchanger 9, and the heat recovery gas-liquid heat exchanger 17.

【0017】(II) 暖房運転時 四路切換弁13は点線方向に切り換えられており、発生
器2において発生された高温冷媒蒸気g1が凝縮器とし
て作用する室内熱交換器6において凝縮液化され、その
際発生せしめられる温熱が室内暖房用熱源として利用さ
れる。なお、室内熱交換器6において凝縮液化された凝
縮液冷媒l3は、逆止弁14Aを経て、過冷却用気液熱
交換器15において過冷却され、レシーバ16を経て暖
房用減圧機構5Bにおいて減圧された後、蒸発器として
作用する室外熱交換器4において蒸発気化されて低温冷
媒蒸気g2となり、その後吸収熱交換器7および吸収器
8において気液分離器3から導かれた吸収希溶液l1
吸収されて吸収濃溶液l2となって過冷却器11、溶液
ポンプ10、吸収熱交換器7、熱回収用溶液熱交換器9
および熱回収用気液熱交換器17を経て発生器2へ還流
される。
[0017] (II) heating operation when the four-way switching valve 13 is switched to the tangential direction, the high-temperature refrigerant vapor g 1 which is generated in the generator 2 is condensed and liquefied in the indoor heat exchanger 6 which acts as a condenser The generated heat is used as a heat source for indoor heating. Incidentally, the condensed liquid refrigerant l 3, which is condensed in the indoor heat exchanger 6, through the check valve 14A, is subcooled in subcooling liquid heat exchanger 15, the pressure reducing mechanism 5B for heating via the receiver 16 After being depressurized, it is evaporated and vaporized in the outdoor heat exchanger 4 acting as an evaporator to become a low-temperature refrigerant vapor g 2 , and then the absorption dilute solution guided from the gas-liquid separator 3 in the absorption heat exchanger 7 and the absorber 8. become absorbed concentrated solution l 2 is absorbed by the l 1 subcooler 11, solution pump 10, absorbing heat exchanger 7, the heat-recovery solution heat exchanger 9
Then, it is returned to the generator 2 through the gas-liquid heat exchanger 17 for heat recovery.

【0018】第1の実施例 この場合、上記構成の吸収式冷凍装置において、比較的
蒸発圧力の低い低圧冷媒である1,1,1,2−テトラ
フルオロエタン(CF3−CH2F)(以下、R134a
という)およびペンタフルオロエタン(C2HF5)(以
下、R125という)と、該低圧冷媒に比較して蒸発圧
力の高い高圧冷媒であるジフルオロメタン(CH22
(以下、R32という)とを組み合わせた混合冷媒が用
いられている。該混合冷媒は、R32:R125:R1
34a=23:25:52の組成を有する冷媒(以下、
R407Cという)とされている。なお、吸収剤として
は、ジエチレングリコールジメチルエーテル(以下、D
EGDMEという)が用いられている。
First Embodiment In this case, in the absorption refrigerating apparatus having the above-mentioned structure, 1,1,1,2-tetrafluoroethane (CF 3 —CH 2 F) (CF 3 —CH 2 F) which is a low-pressure refrigerant having a relatively low evaporation pressure is used. Hereinafter, R134a
Pentafluoroethane (C 2 HF 5 ) (hereinafter referred to as R125) and difluoromethane (CH 2 F 2 ), which is a high-pressure refrigerant having a higher evaporation pressure than the low-pressure refrigerant.
(Hereinafter, referred to as R32). The mixed refrigerant is R32: R125: R1
34a = a refrigerant having a composition of 23:25:52 (hereinafter referred to as a refrigerant)
R407C). In addition, as an absorbent, diethylene glycol dimethyl ether (hereinafter, D
EGDME).

【0019】上記した混合冷媒R407Cを用いた場
合、低圧冷媒であるR134aあるいはR125を単独
で用いた場合に比べて、蒸発圧力が高くなる。例えば、
図2に示すように、R134aあるいはR125単独の
場合、蒸発圧力は3kg/cm2程度であるのに対して
R407Cの場合6kg/cm2となる。すると、吸収
熱交換器7および空冷吸収器8における吸収冷媒の組成
(換言すれば、冷媒溶解度)が大幅に高くなる。即ち、
低圧冷媒であるR134aおよびR125の冷媒溶解度
が、A→BおよびC→Dへと大幅に高くなる。なお、高
圧冷媒であるR32の冷媒溶解度はE→Fへとあまり高
くならないが、R407C全体としての冷媒溶解度が大
幅に高くなる。従って、吸収サイクルにおける溶液循環
量を多くしなくとも冷媒の吸収が十分に得られるところ
から、COPが向上することとなる。また、発生器2に
おける加熱量の節約ができ、ランニングコストが低減で
きる。本実施の形態におけるように、R407CとDE
GDMEとの組み合わせでは、蒸発温度5℃、凝縮温度
45℃の空冷条件で、COP=0.89を達成すること
ができた。
When the above-described mixed refrigerant R407C is used, the evaporation pressure becomes higher than when the low-pressure refrigerant R134a or R125 is used alone. For example,
As shown in FIG. 2, in the case of R134a or R125 alone, the evaporation pressure is about 3 kg / cm 2 , whereas in the case of R407C, it is 6 kg / cm 2 . Then, the composition of the absorbing refrigerant (in other words, the solubility of the refrigerant) in the absorption heat exchanger 7 and the air-cooled absorber 8 is significantly increased. That is,
The refrigerant solubilities of the low-pressure refrigerants R134a and R125 greatly increase from A to B and C to D. The refrigerant solubility of R32, which is a high-pressure refrigerant, does not increase so much from E to F, but the refrigerant solubility of R407C as a whole increases significantly. Therefore, the COP is improved because the absorption of the refrigerant can be sufficiently obtained without increasing the circulation amount of the solution in the absorption cycle. Further, the amount of heating in the generator 2 can be saved, and the running cost can be reduced. As in this embodiment, R407C and DE
In combination with GDME, COP = 0.89 was able to be achieved under air cooling conditions at an evaporation temperature of 5 ° C. and a condensation temperature of 45 ° C.

【0020】また、低圧冷媒(即ち、R134a、R1
25)に対して少ない量の高圧冷媒(即ち、R32)を
含むようにしているが、R32は下記表1に示すよう
に、低圧冷媒に比べて蒸発潜熱が大きいため、溶液循環
比が少なくてすむところから、COPが向上する。
Also, low-pressure refrigerants (ie, R134a, R1
25), a small amount of high-pressure refrigerant (that is, R32) is contained, but as shown in Table 1 below, R32 has a large latent heat of vaporization as compared with low-pressure refrigerant, and therefore requires a small solution circulation ratio. Therefore, the COP is improved.

【0021】[0021]

【表1】 [Table 1]

【0022】しかも、いずれの冷媒(R134a、R1
25、R32)も塩素を含まない分子構造を有している
のでオゾン層破壊規制に適合できる。
In addition, any refrigerant (R134a, R1
25, R32) also has a molecular structure that does not contain chlorine, and thus can conform to ozone depletion regulations.

【0023】第2の実施例 この場合、上記構成の吸収式冷凍装置において、低圧冷
媒であるR125と、高圧冷媒であるR32とを組み合
わせた混合冷媒が用いられている。該混合冷媒は、R3
2:R125=45:55の組成を有する冷媒(以下、
R410B)という)とされている。なお、吸収剤とし
ては、DEGDMEが用いられている。この場合にも、
第1の実施例と同様な作用効果が得られる。
Second Embodiment In this case, in the absorption refrigeration system having the above structure, a mixed refrigerant in which R125 as a low-pressure refrigerant and R32 as a high-pressure refrigerant are combined is used. The mixed refrigerant is R3
A refrigerant having a composition of 2: R125 = 45: 55 (hereinafter, referred to as a refrigerant)
R410B)). Note that DEGDME is used as the absorbent. Again, in this case,
The same operation and effect as those of the first embodiment can be obtained.

【0024】なお、上記実施例以外の低圧冷媒と高圧冷
媒との組み合わせとしては、以下に挙げるものがある。
Other combinations of the low-pressure refrigerant and the high-pressure refrigerant other than the above-described embodiment include the following.

【0025】R401A 高圧冷媒であるクロロジフルオロメタン(CHF2
l)(以下R22という)と低圧冷媒である1,1−ジ
フルオロエタン(CHF2CH3)(以下R152aとい
う)および1−クロロ−1,2,2,2−テトラフルオ
ロエタン(CHFCl−CH3)との組み合わせであ
り、(R22:R152a:R124=53:13:3
4)とされる。この場合、高圧冷媒の方が低圧冷媒より
多くなるとともに、塩素を含む分子構造を有している。
R401A High pressure refrigerant chlorodifluoromethane (CHF 2 C
1) (hereinafter referred to as R22) and 1,1-difluoroethane (CHF 2 CH 3 ) (hereinafter referred to as R152a) and 1-chloro-1,2,2,2-tetrafluoroethane (CHFCl-CH 3 ) which are low-pressure refrigerants And (R22: R152a: R124 = 53: 13: 3
4). In this case, the high-pressure refrigerant has a higher molecular weight than the low-pressure refrigerant and has a molecular structure containing chlorine.

【0026】R401B 高圧冷媒であるR22と低圧冷媒であるR152aおよ
びR124との組み合わせであり、(R22:R152
a:R124=61:11:28)とされる。この場
合、高圧冷媒の方が低圧冷媒より多くなるとともに、塩
素を含む分子構造を有している。
R401B is a combination of R22, which is a high-pressure refrigerant, and R152a and R124, which are low-pressure refrigerants, wherein (R22: R152
a: R124 = 61: 11: 28). In this case, the high-pressure refrigerant has a higher molecular weight than the low-pressure refrigerant and has a molecular structure containing chlorine.

【0027】R404A 高圧冷媒であるR125および1、1、1−トリフルオ
ロエタン(CF3−CH3)(以下R143aという)と
低圧冷媒であるR134aとの組み合わせであり、(R
125:R143a:R134a=44:52:4)と
される。この場合、高圧冷媒の方が低圧冷媒より多くな
るとともに、塩素を含まない分子構造を有している。
R404A is a combination of R125 and 1,1,1-trifluoroethane (CF 3 —CH 3 ) (hereinafter referred to as R143a) which are high-pressure refrigerants and R134a which is a low-pressure refrigerant.
125: R143a: R134a = 44: 52: 4). In this case, the high-pressure refrigerant has a higher molecular weight than the low-pressure refrigerant and has a molecular structure containing no chlorine.

【0028】R407A 高圧冷媒であるR32と低圧冷媒であるR125および
R134aとの組み合わせであり、(R32:R12
5:R134a=20:40:40)とされる。この場
合、低圧冷媒の方が高圧冷媒より多くなるとともに、塩
素を含まない分子構造を有している。
R407A is a combination of R32 which is a high-pressure refrigerant and R125 and R134a which are low-pressure refrigerants.
5: R134a = 20: 40: 40). In this case, the low-pressure refrigerant has a higher molecular weight than the high-pressure refrigerant and has a molecular structure containing no chlorine.

【0029】R407B 高圧冷媒であるR32と低圧冷媒であるR125および
R134aとの組み合わせであり、(R32:R12
5:R134a=10:70:20)とされる。この場
合、低圧冷媒の方が高圧冷媒より多くなるとともに、塩
素を含まない分子構造を有している。
R407B A combination of R32 which is a high-pressure refrigerant and R125 and R134a which are low-pressure refrigerants, wherein (R32: R12
5: R134a = 10: 70: 20). In this case, the low-pressure refrigerant has a higher molecular weight than the high-pressure refrigerant and has a molecular structure containing no chlorine.

【0030】R410A 高圧冷媒であるR32と低圧冷媒であるR125との組
み合わせであり、(R32:R125=50:50)と
される。この場合、低圧冷媒と高圧冷媒とが同量となる
とともに、塩素を含まない分子構造を有している。
R410A A combination of R32 as a high-pressure refrigerant and R125 as a low-pressure refrigerant, where R32: R125 = 50: 50. In this case, the low-pressure refrigerant and the high-pressure refrigerant have the same amount, and have a molecular structure containing no chlorine.

【0031】R410JA 高圧冷媒であるR32と低圧冷媒であるR125との組
み合わせであり、(R32:R125=48:52)と
される。この場合、低圧冷媒の方が高圧冷媒より多くな
るとともに、塩素を含まない分子構造を有している。
R410JA A combination of R32 which is a high-pressure refrigerant and R125 which is a low-pressure refrigerant, and is expressed as (R32: R125 = 48: 52). In this case, the low-pressure refrigerant has a higher molecular weight than the high-pressure refrigerant and has a molecular structure containing no chlorine.

【0032】R412A 高圧冷媒であるR22およびパーフルオロプロパン(C
38)(以下R218という)と低圧冷媒である1−ク
ロロ−1,1−ジフルオロエタン(CF2Cl−CH3
(以下R142bという)との組み合わせであり、(R
22:R218:R142b=70:5:25)とされ
る。この場合、高圧冷媒の方が低圧冷媒より多くなると
ともに、塩素を含む分子構造を有している。
R412A R22 as a high-pressure refrigerant and perfluoropropane (C
3 F 8) (hereinafter referred to as R218) and is low-pressure refrigerant 1-chloro-1,1-difluoroethane (CF 2 Cl-CH 3)
(Hereinafter referred to as R142b) and (R142b).
22: R218: R142b = 70: 5: 25). In this case, the high-pressure refrigerant has a higher molecular weight than the low-pressure refrigerant and has a molecular structure containing chlorine.

【0033】R407D 高圧冷媒であるR32と低圧冷媒であるR125および
R134aとの組み合わせであり、(R32:R12
5:R134a=15:15:70)とされる。この場
合、低圧冷媒の方が高圧冷媒より多くなるとともに、塩
素を含まない分子構造を有している。
R407D is a combination of R32 which is a high-pressure refrigerant and R125 and R134a which are low-pressure refrigerants, wherein (R32: R12
5: R134a = 15: 15: 70). In this case, the low-pressure refrigerant has a higher molecular weight than the high-pressure refrigerant and has a molecular structure containing no chlorine.

【0034】10R900JA 高圧冷媒であるR32と低圧冷媒であるR134aとの
組み合わせであり、(R32:R134a=30:7
0)とされる。この場合、低圧冷媒の方が高圧冷媒より
多くなるとともに、塩素を含まない分子構造を有してい
る。
10R900JA A combination of R32 which is a high-pressure refrigerant and R134a which is a low-pressure refrigerant, where (R32: R134a = 30: 7
0). In this case, the low-pressure refrigerant has a higher molecular weight than the high-pressure refrigerant and has a molecular structure containing no chlorine.

【0035】11R509A 高圧冷媒であるR22と低圧冷媒であるR218との組
み合わせであり、(R22:R218=44:56)と
される。この場合、低圧冷媒の方が高圧冷媒より多くな
るとともに、塩素を含む分子構造を有している。
11R509A This is a combination of R22 which is a high-pressure refrigerant and R218 which is a low-pressure refrigerant, and is expressed as (R22: R218 = 44: 56). In this case, the low-pressure refrigerant has a higher molecular weight than the high-pressure refrigerant and has a molecular structure containing chlorine.

【0036】また、吸収剤としては、上記DEGDME
以外の有機溶剤または冷凍機油が使用可能である。例え
ば、TEGDME:ビス(1,2−2−メトキシエトキ
シエタン、DMF:N,N−ジメチルホルムアミド、D
MA:N,N−ジメチルアセトアミド等が使用できる。
As the absorbent, the above DEGDME is used.
Other organic solvents or refrigeration oils can be used. For example, TEGDME: bis (1,2-methoxyethoxyethane, DMF: N, N-dimethylformamide, D
MA: N, N-dimethylacetamide and the like can be used.

【0037】[0037]

【発明の効果】本願発明の基本構成(請求項1の発明)
によれば、比較的蒸発圧力の低い低圧冷媒に対して該低
圧冷媒に比較して蒸発圧力の高い高圧冷媒を少なくとも
1種類を組み合わせた混合冷媒を用いて、低圧冷媒を単
独で用いる場合に比べて、蒸発器での圧力が高くなるよ
うにしたので、吸収器での冷媒溶解度が向上し、吸収サ
イクルにおける溶液循環量を減少させることが可能とな
り、COPが改善できる。なお、高圧冷媒を単独で用い
ると、一般に吸収液との相溶性が悪いため、COPは低
下するという優れた効果がある。また、発生器2におけ
る加熱量の節約ができ、ランニングコストが低減できる
という効果もある。
The basic structure of the present invention (the invention of claim 1)
According to the comparative example, a low-pressure refrigerant having a relatively low evaporation pressure is compared with a low-pressure refrigerant using a mixed refrigerant obtained by combining at least one type of a high-pressure refrigerant having a high evaporation pressure as compared with the low-pressure refrigerant, compared with a case where the low-pressure refrigerant is used alone Since the pressure in the evaporator is increased, the solubility of the refrigerant in the absorber is improved, the amount of circulating solution in the absorption cycle can be reduced, and the COP can be improved. In addition, when the high-pressure refrigerant is used alone, there is an excellent effect that COP is reduced because the compatibility with the absorbing liquid is generally poor. In addition, there is an effect that the amount of heating in the generator 2 can be saved and the running cost can be reduced.

【0038】請求項2あるいは請求項3の発明における
ように、前記低圧冷媒として1,1,1,2−テトラフ
ルオロエタンおよび(あるいは)ペンタフルオロエタン
を用い、高圧冷媒としてジフルオロメタンを用いた場
合、いずれの冷媒も塩素を含まない分子構造を有してい
るのでオゾン層破壊規制に適合できる。
According to the second or third aspect of the present invention, when 1,1,1,2-tetrafluoroethane and / or pentafluoroethane is used as the low-pressure refrigerant and difluoromethane is used as the high-pressure refrigerant Since each of the refrigerants has a molecular structure containing no chlorine, it can comply with ozone depletion regulations.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明の実施の形態にかかる吸収式冷凍装置
の冷媒回路図である。
FIG. 1 is a refrigerant circuit diagram of an absorption refrigeration apparatus according to an embodiment of the present invention.

【図2】本願発明の実施の形態にかかる吸収式冷凍装置
において用いられ低圧冷媒(R134a、R125)お
よび高圧冷媒(R32)の45℃における圧力と組成と
の関係を示す特性図である。
FIG. 2 is a characteristic diagram showing a relationship between pressure and composition at 45 ° C. of low-pressure refrigerants (R134a, R125) and high-pressure refrigerant (R32) used in the absorption refrigeration apparatus according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2は発生器、4は室外熱交換器、5Aは冷房用減圧機
構、5Bは暖房用減圧機構、6は室内熱交換器、7は吸
収熱交換器、8は吸収器(空冷吸収器)、13は四路切
換弁。
2 is a generator, 4 is an outdoor heat exchanger, 5A is a decompression mechanism for cooling, 5B is a decompression mechanism for heating, 6 is an indoor heat exchanger, 7 is an absorption heat exchanger, 8 is an absorber (air cooling absorber), 13 is a four-way switching valve.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 比較的蒸発圧力の低い低圧冷媒に対して
該低圧冷媒に比較して蒸発圧力の高い高圧冷媒を少なく
とも1種類を組み合わせた混合冷媒を用いたことを特徴
とする吸収式冷凍装置。
1. An absorption refrigeration system using a mixed refrigerant obtained by combining at least one type of high-pressure refrigerant having a higher evaporation pressure than a low-pressure refrigerant with respect to a low-pressure refrigerant having a relatively low evaporation pressure. .
【請求項2】 前記低圧冷媒として1,1,1,2−テ
トラフルオロエタンおよびペンタフルオロエタンを用
い、高圧冷媒としてジフルオロメタンを用いたことを特
徴とする前記請求項1記載の吸収式冷凍装置。
2. The absorption refrigeration system according to claim 1, wherein 1,1,1,2-tetrafluoroethane and pentafluoroethane are used as the low-pressure refrigerant and difluoromethane is used as the high-pressure refrigerant. .
【請求項3】 前記低圧冷媒としてペンタフルオロエタ
ンを用い、前記高圧冷媒としてジフルオロメタンを用い
たことを特徴とする前記請求項1記載の吸収式冷凍装
置。
3. The absorption refrigeration system according to claim 1, wherein pentafluoroethane is used as the low-pressure refrigerant, and difluoromethane is used as the high-pressure refrigerant.
JP9188134A 1997-07-14 1997-07-14 Absorption type refrigerator Pending JPH1137589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9188134A JPH1137589A (en) 1997-07-14 1997-07-14 Absorption type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9188134A JPH1137589A (en) 1997-07-14 1997-07-14 Absorption type refrigerator

Publications (1)

Publication Number Publication Date
JPH1137589A true JPH1137589A (en) 1999-02-12

Family

ID=16218340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9188134A Pending JPH1137589A (en) 1997-07-14 1997-07-14 Absorption type refrigerator

Country Status (1)

Country Link
JP (1) JPH1137589A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170167767A1 (en) * 2014-02-06 2017-06-15 Carrier Corporation Ejector Cycle Heat Recovery Refrigerant Separator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170167767A1 (en) * 2014-02-06 2017-06-15 Carrier Corporation Ejector Cycle Heat Recovery Refrigerant Separator

Similar Documents

Publication Publication Date Title
Didion et al. Role of refrigerant mixtures as alternatives to CFCs
JP3208151B2 (en) Refrigeration equipment
US4303536A (en) Nonazeotropic refrigerant composition containing monachlorodifluoromethane, and method of use
ES2098444T5 (en) COOLING COMPOSITIONS.
US7624585B2 (en) Freezer unit
US6814884B2 (en) Method of transferring heat using a working fluid containing 1,1,1,3,3-pentafluorobutane as refrigerant or heat transfer medium
US20090095014A1 (en) Working fluid of a blend of 1,1,1,2-tetrafluoroethane, 1,1,1,2,3,3,3-heptafluoropropane, and 1,1,1,3,3,3-hexafluoropropane and method and apparatus for using
KR101811957B1 (en) Cascade Heat Pump with Two Stage Expansion Structure using CO2 Refrigerant and Method for Circulating thereof
CN110878195B (en) Coolant containing trifluoroiodomethane, mixture containing coolant and heat exchange system
JPH10332212A (en) Refrigeration cycle of air conditioner
JPH10318614A (en) Air conditioner
US5752392A (en) Air conditioner and heat exchanger therefor
EP0821046B1 (en) Refrigerant cycle plant with difluoromethane/hydrocarbon refrigerant mixture
JPH1137589A (en) Absorption type refrigerator
US20090049856A1 (en) Working fluid of a blend of 1,1,1,3,3-pentafluoropane, 1,1,1,2,3,3-hexafluoropropane, and 1,1,1,2-tetrafluoroethane and method and apparatus for using
US5254279A (en) Nonhazardous and environmentally nondestructive refrigerant composition
JP2507437B2 (en) Working medium mixture
CN113801635A (en) Binary near-azeotropic refrigerant mixture for new energy automobile heat pump
JPH08233386A (en) Heat exchanger
US6669862B1 (en) Refrigerant composition
JPH01153786A (en) Working medium mixture
JPH09318182A (en) Absorption room cooler
ES2201205T3 (en) REFRIGERANT COMPOSITION.
CN114181664B (en) Environment-friendly mixed refrigeration working medium, refrigerant and refrigeration system
WO2022210007A1 (en) Absorption refrigeration cycle and compression-absorption refrigeration cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051206