JPH11354348A - Isolation transformer - Google Patents

Isolation transformer

Info

Publication number
JPH11354348A
JPH11354348A JP10156325A JP15632598A JPH11354348A JP H11354348 A JPH11354348 A JP H11354348A JP 10156325 A JP10156325 A JP 10156325A JP 15632598 A JP15632598 A JP 15632598A JP H11354348 A JPH11354348 A JP H11354348A
Authority
JP
Japan
Prior art keywords
core
coils
signal
side core
magnetic shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10156325A
Other languages
Japanese (ja)
Inventor
Toji Kin
東治 金
Masahiro Hasegawa
正博 長谷川
Hajime Mochizuki
肇 望月
Fumihiko Abe
文彦 安倍
Yasunori Hanehiro
靖範 羽広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP10156325A priority Critical patent/JPH11354348A/en
Publication of JPH11354348A publication Critical patent/JPH11354348A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F19/00Fixed transformers or mutual inductances of the signal type
    • H01F19/04Transformers or mutual inductances suitable for handling frequencies considerably beyond the audio range
    • H01F19/08Transformers having magnetic bias, e.g. for handling pulses
    • H01F2019/085Transformer for galvanic isolation

Abstract

PROBLEM TO BE SOLVED: To provide an isolation transformer wherein, when both electric power and electric signal are transmitted, the interference between adjoining coils in the same core is suppressed with no increase in size of the primary side core and the secondary side core. SOLUTION: An isolation transformer 1 comprises at least first coils 2a and 3a and second coils 2b and 3b wound with electric wire, and cores 2c and 3c of soft magnetic material, in non-contact manner for transmission of an electric power and electric signal under electromagnetic induction between a primary side core 2 and a secondary side core 3 provided to face each other for free relative rotation. Here, related to the primary side core 2 and the secondary side core 3, magnetism shielding parts 2f and 3f for suppressing interference between both coils are formed at such positions across the coupling magnetic flux between the first and second coils, respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、互いに相対回転す
る固定部材と回転部材との間を非接触で電気的に接続
し、両部材間で電力あるいは電気信号を非接触で伝送す
る分離トランスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a separation transformer for electrically connecting a fixed member and a rotating member which rotate relative to each other in a non-contact manner, and for transmitting electric power or an electric signal between the two members in a non-contact manner. .

【0002】[0002]

【従来の技術】分離トランスは、互いに所定のギャップ
をおいて対向配置され、軟磁性素材を含む合成樹脂から
なるコアに電線を巻回したコイルを配置した1次側コア
と2次側コアとを有している。分離トランスは、前記1
次側コアと2次側コアとを共通の軸回りに相対回転さ
せ、前記両コア間を電磁誘導によって結合させるもの
で、回転体と固定体との間を電気的に非接触で接続する
コネクタとして使用されている。
2. Description of the Related Art Separation transformers are opposed to each other with a predetermined gap therebetween. A primary core and a secondary core each having a coil formed by winding an electric wire around a core made of a synthetic resin containing a soft magnetic material are arranged. have. The separation transformer is as described in 1 above.
A connector for rotating the secondary core and the secondary core relatively about a common axis and coupling the two cores by electromagnetic induction, and electrically connecting the rotating body and the fixed body in a non-contact manner. Has been used as

【0003】[0003]

【発明が解決しようとする課題】ところで、分離トラン
スにおいて、電力と電気信号の双方を伝送するときに
は、前記1次側及び2次側のコア内に、電力用と信号用
のコイルを半径方向に所定距離をおいて配置する必要が
ある。
When both power and electric signals are transmitted in the separating transformer, power and signal coils are radially provided in the primary and secondary cores. It is necessary to arrange them at a predetermined distance.

【0004】この場合、異なるコイルを同じコアに配置
することは、分離トランスが小型となり種々の利点があ
るが、以下のような異なるコイル相互間で干渉が生ずる
という問題がある。
In this case, arranging different coils on the same core has various advantages because the size of the separation transformer is small, but there is a problem that interference occurs between different coils as described below.

【0005】即ち、コア内に電力用と信号用のコイルを
配置した分離トランスにおいては、通常、1次側コアと
2次側コアとを所定のギャップをおいて対向配置し、電
力用のコイル相互間と信号用のコイル相互間を電磁誘導
によって結合させ、電力と信号とを非接触で伝送してい
る。
That is, in a separation transformer in which a power coil and a signal coil are arranged in a core, a primary core and a secondary core are usually opposed to each other with a predetermined gap therebetween, and a power coil is arranged. The coils and the signal coils are coupled by electromagnetic induction, and electric power and signals are transmitted in a non-contact manner.

【0006】このため、電力用と信号用のコイルの半径
方向における配置間隔が狭いときや対向配置される両コ
ア間のギャップが大きい等の場合には、電力用のコイル
と信号用のコイルとの間で干渉が生じる。即ち、このよ
うな構造の分離トランスでは、例えば、電力用のコイル
内を流れる電流による交流磁束が信号用のコイルと鎖交
し、信号伝送のノイズとなって信号伝送の信頼性が低下
する。
For this reason, when the distance between the power and signal coils in the radial direction is small, or when the gap between the opposed cores is large, etc., the power coil and the signal coil are separated from each other. Interference occurs between That is, in the separation transformer having such a structure, for example, the AC magnetic flux due to the current flowing in the power coil interlinks with the signal coil, resulting in signal transmission noise and reduced signal transmission reliability.

【0007】特に、対向配置される1次側コアと2次側
コアとの間のギャップが大きくなると、対向するコイル
相互間の結合効率が低下し、同じコア内で隣接する電力
用と信号用のコイル相互間における結合が強くなり、正
確な信号伝送が阻害される。
In particular, when the gap between the primary core and the secondary core that are opposed to each other is increased, the coupling efficiency between the opposed coils is reduced, and the adjacent power and signal coils within the same core are reduced. The coupling between the coils becomes stronger, and accurate signal transmission is hindered.

【0008】この対策として、従来は、1次側コアと2
次側コアのそれぞれにおいて、隣接するの半径方向にお
ける配置間隔を大きくしている。しかし、このようにす
るとコアが大型化し、電力用と信号用のコイルとを1つ
のコア内に配置することによる前記した小型化の利点が
失われてしまう。
As a countermeasure against this, conventionally, a primary side core and two
In each of the secondary cores, the distance between adjacent cores in the radial direction is increased. However, this increases the size of the core, and loses the advantage of miniaturization described above by disposing the power and signal coils in one core.

【0009】本発明は上記の点に鑑みてなされたもの
で、電力と電気信号の双方を伝送するときに、1次側及
び2次側のコアが大型化することがなく、同一コア内に
おける隣接するコイル相互間の干渉を抑制することが可
能な分離トランスを提供することを目的とする。
The present invention has been made in view of the above points, and when transmitting both electric power and electric signals, the primary and secondary cores are not enlarged, An object of the present invention is to provide a separation transformer capable of suppressing interference between adjacent coils.

【0010】[0010]

【課題を解決するための手段】本発明においては上記目
的を達成するため、電線を巻回した少なくとも第1及び
第2のコイルと軟磁性材料からなるコアとを有し、互い
に相対回転自在に対向配置される1次側コア及び2次側
コアとの間で電力及び電気信号を電磁誘導によって非接
触で伝送する分離トランスであって、前記1次側コア及
び2次側コアは、それぞれ前記第1及び第2のコイル間
で生ずる鎖交磁束を横切る位置に、前記両コイル間の干
渉を抑える磁気遮蔽部が形成されている構成としたので
ある。
In order to achieve the above object, the present invention has at least first and second coils wound with an electric wire and a core made of a soft magnetic material, and is relatively rotatable relative to each other. A separation transformer for transmitting electric power and an electric signal in a non-contact manner by electromagnetic induction between a primary side core and a secondary side core that are opposed to each other, wherein the primary side core and the secondary side core are respectively The configuration is such that a magnetic shielding portion for suppressing interference between the two coils is formed at a position crossing the interlinkage magnetic flux generated between the first and second coils.

【0011】好ましくは、前記磁気遮蔽部を、周方向に
形成される溝とする。
Preferably, the magnetic shielding portion is a groove formed in a circumferential direction.

【0012】また好ましくは、前記磁気遮蔽部を、リン
グ状の合成樹脂によって形成する。
Preferably, the magnetic shield is formed of a ring-shaped synthetic resin.

【0013】更に好ましくは、前記磁気遮蔽部を、周方
向にリング状に断続的に配置される複数の電気導体によ
って形成する。
[0013] More preferably, the magnetic shielding portion is formed by a plurality of electric conductors arranged intermittently in a ring shape in the circumferential direction.

【0014】[0014]

【作用】磁気遮蔽部は、隣接した第1及び第2のコイル
の間を磁気的に遮蔽し、両コイル間の干渉を抑制する。
The magnetic shielding section magnetically shields between the adjacent first and second coils and suppresses interference between the two coils.

【0015】[0015]

【発明の実施の形態】以下、本発明の一実施形態を図1
乃至図5に基づいて詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIG.
This will be described in detail with reference to FIGS.

【0016】分離トランス1は、図1に示すように、1
次側コア2と2次側コア3とが所定のギャップGをおい
て対向配置され、例えば、1次側コア2を固定部材に、
2次側コア3を回転部材に取り付けて前記両部材間を電
気的に接続し、両部材間で電力と電気信号とを非接触で
伝送するときに使用される。
As shown in FIG.
The secondary core 2 and the secondary core 3 are opposed to each other with a predetermined gap G. For example, the primary core 2 is used as a fixing member,
The secondary core 3 is attached to a rotating member to electrically connect the two members, and is used when electric power and an electric signal are transmitted between the two members in a non-contact manner.

【0017】ここで、2次側コア3は、1次側コア2と
構成が同一なので、1次側コア2について説明し、2次
側コア3については、以下の説明並びに図面において対
応する構成部分に対応する符号を使用することにより説
明を省略する。
Since the secondary core 3 has the same configuration as the primary core 2, the primary core 2 will be described, and the secondary core 3 will be described in the following description and the corresponding configuration in the drawings. The description is omitted by using the reference numerals corresponding to the parts.

【0018】1次側コア2は、電力コイル2a、信号コ
イル2b及びコア2cを有している。電力コイル2a及
び信号コイル2bは、それぞれ、例えば、ポリウレタン
系絶縁被膜の上にポリアミド系融着被膜をオーバーコー
トした巻線等の電線を所定回数巻回してリング状に成形
されている。ここで、上記電線は、リング状に成形する
ことができれば、導体の断面は、円形でも矩形でも何で
もよい。電力コイル2aは、伝送する電流が信号コイル
2bに比べて大きいことを考慮し、断面積が信号コイル
2bよりも大きく設定されている。
The primary core 2 has a power coil 2a, a signal coil 2b, and a core 2c. Each of the power coil 2a and the signal coil 2b is formed into a ring shape by winding an electric wire such as a winding in which a polyamide-based fusion coating is overcoated on a polyurethane-based insulation coating a predetermined number of times. Here, as long as the electric wire can be formed in a ring shape, the cross section of the conductor may be circular, rectangular or any shape. The power coil 2a is set to have a larger cross-sectional area than the signal coil 2b in consideration of the fact that the transmitted current is larger than that of the signal coil 2b.

【0019】一方、コア2cは、軟磁性フェライト粉末
(Ni−Zn系フェライトやMn−Zn系フェライト
等)を合成樹脂(ナイロンやポリフェニレンスルフィド
(PPS)等)に混入した軟磁性樹脂から円板状に成形
され、2次側コア3と対向する面に設けられた段部2d
の中央に貫通孔2eが形成されている。コア2cは、円
板状に成形された軟磁性フェライト焼結体(例えば、N
i−Zn系フェライトあるいはMn−Zn系フェライト
等にバインダー剤を混ぜて焼結したもの)を用いてもよ
い。コア2cは、図2に示すように、電力コイル2aと
信号コイル2bとの間の2次側コア3と対向する面の裏
面側に、電力コイル2aと信号コイル2bとの間の干渉
を抑える、断面形状が矩形の磁気遮蔽溝2fが全周に亘
って形成されている。
On the other hand, the core 2c is made of a soft magnetic resin obtained by mixing a soft magnetic ferrite powder (Ni—Zn ferrite or Mn—Zn ferrite) in a synthetic resin (nylon or polyphenylene sulfide (PPS) or the like). Step 2d provided on the surface facing the secondary core 3
Has a through hole 2e formed at the center. The core 2c is made of a soft magnetic ferrite sintered body (for example, N
i-Zn-based ferrite or Mn-Zn-based ferrite mixed with a binder agent and sintered) may be used. As shown in FIG. 2, the core 2c suppresses interference between the power coil 2a and the signal coil 2b on the back side of the surface facing the secondary core 3 between the power coil 2a and the signal coil 2b. A magnetic shielding groove 2f having a rectangular cross section is formed over the entire circumference.

【0020】磁気遮蔽溝2fは、図2に示したように、
電力コイル2aと信号コイル2bとの間に形成した単な
る空間であるから、この部分における透磁率はコア2c
の透磁率と比較すると格段に小さく、この部分における
磁気抵抗は、溝のない場合に比べると非常に大きくな
る。このため、磁気遮蔽溝2fは、電力コイル2aと信
号コイル2bとの間の干渉を小さく抑えることができ
る。ここで、磁気遮蔽溝2fは、全周に亘って形成せ
ず、断続的に設けると、コア2cの機械強度が向上する
と共に、全周に形成する場合に比べて深く形成すること
ができる。
The magnetic shielding groove 2f is, as shown in FIG.
Since it is a mere space formed between the power coil 2a and the signal coil 2b, the magnetic permeability in this portion is
The magnetic permeability in this portion is much smaller than that without the groove. Therefore, the magnetic shielding groove 2f can reduce interference between the power coil 2a and the signal coil 2b. Here, if the magnetic shielding groove 2f is not formed over the entire circumference, but is provided intermittently, the mechanical strength of the core 2c is improved, and the magnetic shielding groove 2f can be formed deeper than when it is formed over the entire circumference.

【0021】このとき、磁気遮蔽溝2fは、断面形状に
おける幅W及び深さDが大きい程干渉の防止効果が大き
い。しかし、磁気遮蔽溝2fは、電力コイル2aと信号
コイル2bとの間の設置位置を誤ったり、幅Wが大き過
ぎると以下のような問題が生じる。即ち、対向配置した
1次側コア2と2次側コア3との間において、電力コイ
ル2a,3aや信号コイル2b,3b間における鎖交磁
束BP,BSを遮断し、電力コイル2a,3aや信号コイ
ル2b,3b間における伝送効率を阻害する。また、磁
気遮蔽溝2fは、コア2c,3cの比透磁率が大きい
程、この部分における磁気遮蔽効果が大きくなり、幅W
が大き過ぎるとコア2cの機械強度が低下する。
At this time, the greater the width W and the depth D of the cross-sectional shape of the magnetic shielding groove 2f, the greater the effect of preventing interference. However, if the installation position of the magnetic shielding groove 2f between the power coil 2a and the signal coil 2b is incorrect or the width W is too large, the following problem occurs. That is, the interlinking magnetic fluxes BP and BS between the power coils 2a and 3a and the signal coils 2b and 3b are cut off between the primary core 2 and the secondary core 3 that are opposed to each other, and the power coils 2a and 3a The transmission efficiency between the signal coils 2b and 3b is impaired. The magnetic shielding groove 2f has a greater magnetic shielding effect in this portion as the relative permeability of the cores 2c and 3c is larger, and the width W
Is too large, the mechanical strength of the core 2c decreases.

【0022】従って、前記したギャップGの増大に伴う
電力コイル2aと信号コイル2bとの間での干渉も考慮
すると、磁気遮蔽溝2fは、ギャップGの許容範囲、設
置位置、コア2c,3cの比透磁率、コア2c,3cの
機械強度、分離トランス1の耐ノイズ特性等のファクタ
を考慮して配置並びに大きさを設計する必要がある。
Therefore, considering the interference between the power coil 2a and the signal coil 2b due to the increase in the gap G, the magnetic shield groove 2f is formed in the allowable range of the gap G, the installation position, the positions of the cores 2c, 3c. It is necessary to design the arrangement and size in consideration of factors such as the relative magnetic permeability, the mechanical strength of the cores 2c and 3c, the noise resistance of the separation transformer 1, and the like.

【0023】分離トランス1は以上のように構成されて
いるので、例えば、1次側コア2から2次側コア3へ電
力及び信号を伝送するため、電力コイル2aと信号コイ
ル2bのそれぞれに所定の電流を流すと、図2に示すよ
うに、それぞれ電力に関する鎖交磁束BPと信号に関す
る鎖交磁束BSが生ずる。そして、分離トランス1にお
いては、これらの電流による電磁誘導によって2次側コ
ア3の電力コイル3aと信号コイル3bに所定の結合効
率に基づく電流が流れ、電力及び信号が1次側コア2か
ら2次側コア3へと伝送される。
Since the separating transformer 1 is configured as described above, for example, in order to transmit power and a signal from the primary core 2 to the secondary core 3, predetermined power is applied to each of the power coil 2a and the signal coil 2b. 2, a flux linkage BP for electric power and a flux linkage BS for signal are generated as shown in FIG. Then, in the separation transformer 1, a current based on a predetermined coupling efficiency flows through the power coil 3 a and the signal coil 3 b of the secondary core 3 due to the electromagnetic induction by these currents, and the power and the signal are transmitted from the primary core 2 to It is transmitted to the secondary core 3.

【0024】このとき、分離トランス1は、磁気遮蔽溝
2fに関する前記ファクタが適切に設計されていない
と、図2に示したように、電力コイル2a内を流れる電
流による交流磁束BNが信号コイル2bと鎖交し、信号
伝送のノイズとなる。
At this time, if the above factors relating to the magnetic shielding groove 2f are not properly designed, as shown in FIG. 2, the separating transformer 1 generates the AC magnetic flux BN due to the current flowing in the power coil 2a. , And it becomes signal transmission noise.

【0025】そこで、コア2c,3cの最厚部が最薄部
の約3倍、外直径が最厚部の約11倍、磁気遮蔽溝2
f,3fの幅Wが、電力コイル2a,3aと信号コイル
2b,3bとの半径方向の間隔の1/5となる図1に示
す構造の分離トランス1を作製し、耐ノイズ特性(S/
N比)を測定した。また、比較のため磁気遮蔽溝2f,
3fが形成されていないことを除き、分離トランス1と
同一構造の分離トランスを作製し、同じ測定を行った。
Therefore, the thickest portions of the cores 2c and 3c are approximately three times the thinnest portions, the outer diameters are approximately 11 times the thickest portions, and the magnetic shielding grooves 2
The separation transformer 1 having the structure shown in FIG. 1 in which the width W of the power coils f and 3f is 1/5 of the radial distance between the power coils 2a and 3a and the signal coils 2b and 3b is manufactured.
N ratio) was measured. For comparison, the magnetic shielding grooves 2f,
Except that 3f was not formed, a separation transformer having the same structure as the separation transformer 1 was produced, and the same measurement was performed.

【0026】このとき、各分離トランスにおいては、1
次側コア2から2次側コア3へ電力及び信号を伝送する
ため、電力コイル2aに30KHz、5Aの電流を連続
して、信号コイル2bに128,143,174KHz
で20mAの電流を、それぞれ流し、ギャップGを0.1
〜2mmの範囲で適宜変化させた。そして、このときに
2次側コア3の信号コイル3bへ伝送された信号波形を
アナライザ機能を有する横河電機株式会社製,DL70
8型オシロスコープを使用して解析し、伝送された信号
のS/N比が5以上であれば信号伝送が可能、S/N比
が5よりも小さければ信号伝送が不能と判断した。測定
結果(S/N比)を、ギャップGの値と共に表1に記載
した。
At this time, in each separation transformer, 1
In order to transmit power and signals from the secondary core 2 to the secondary core 3, 30 KHz and 5 A currents are continuously applied to the power coil 2a and 128, 143 and 174 KHz are applied to the signal coil 2b.
, A current of 20 mA was applied, and the gap G was set to 0.1.
It was appropriately changed in the range of 22 mm. At this time, the signal waveform transmitted to the signal coil 3b of the secondary side core 3 is converted to a DL70 signal from Yokogawa Electric Corporation having an analyzer function.
Analysis was performed using an oscilloscope of type 8, and it was determined that signal transmission was possible if the S / N ratio of the transmitted signal was 5 or more, and that signal transmission was impossible if the S / N ratio was less than 5. The measurement results (S / N ratio) are shown in Table 1 together with the value of the gap G.

【0027】[0027]

【表1】 [Table 1]

【0028】表1に示す結果から明らかなように、磁気
遮蔽溝2f,3fが形成された1次側コア2と2次側コ
ア3を用いた分離トランス1は、ギャップGが2mmで
あっても、隣接する電力コイル2aと信号コイル2bと
の間の干渉が抑制され、信号コイル2bと信号コイル3
bとの間で確実に信号を伝送することができる。これに
対して、磁気遮蔽溝2f,3fを有していない1次側コ
アと2次側コアとを用いた分離トランスは、ギャップG
が1mmを越えると信号伝送が不能となり、磁気遮蔽溝
2f,3fを形成する効果が顕著に現れている。
As is clear from the results shown in Table 1, the separation transformer 1 using the primary core 2 and the secondary core 3 in which the magnetic shielding grooves 2f and 3f are formed has a gap G of 2 mm. Also, interference between adjacent power coil 2a and signal coil 2b is suppressed, and signal coil 2b and signal coil 3
b can be reliably transmitted. On the other hand, the separation transformer using the primary core and the secondary core without the magnetic shielding grooves 2f and 3f has a gap G
Exceeds 1 mm, signal transmission becomes impossible, and the effect of forming the magnetic shielding grooves 2f and 3f is remarkably exhibited.

【0029】ここで、磁気遮蔽溝2f,3fは、断面形
状を矩形の他、図3に示すように、深さ方向に幅が狭く
なる断面形状が台形状に形成してもよい。磁気遮蔽溝2
f,3fをこのような形状にすると、コア2c,3cを
金型を使用して成形した場合に、金型から抜け易くなる
利点がある。
Here, the magnetic shielding grooves 2f and 3f may be formed in a trapezoidal cross-sectional shape whose width decreases in the depth direction, as shown in FIG. 3, in addition to a rectangular cross-sectional shape. Magnetic shielding groove 2
When f and 3f are formed in such a shape, there is an advantage that when the cores 2c and 3c are molded using a mold, the cores 2c and 3c are easily removed from the mold.

【0030】また、磁気遮蔽部は、上記した溝に限定さ
れるものでないことは言うまでもなく、例えば、図4に
示す分離トランス1のように、磁気遮蔽溝2f,3fと
対応する位置に電気絶縁性のナイロン(PA),ポリプ
ロピレン(PP),ポリフェニレンサルファイド(PP
S),ポリオレフィン,ポリブチレンテレフタレート
(PBTP)等の合成樹脂からなる樹脂リング4,5を
埋め込んでもよい。このようにすると、1次側コア2及
び2次側コア3は、磁気遮蔽溝2f,3fとした場合に
比べて機械強度が向上する。
Further, it is needless to say that the magnetic shielding portion is not limited to the above-mentioned groove. For example, as shown in a separation transformer 1 shown in FIG. 4, an electrically insulating portion is provided at a position corresponding to the magnetic shielding groove 2f, 3f. Nylon (PA), polypropylene (PP), polyphenylene sulfide (PP
Resin rings 4 and 5 made of synthetic resin such as S), polyolefin, and polybutylene terephthalate (PBTP) may be embedded. By doing so, the primary core 2 and the secondary core 3 have improved mechanical strength as compared with the case where the magnetic shielding grooves 2f and 3f are used.

【0031】更に、分離トランス1の1次側及び2次側
コア2,3の双方に、例えば、図5に示す2次側コア3
のように、磁気遮蔽溝3fと対応する位置に、断面形状
が円形、楕円形あるいは矩形の銅,銅合金等からなる複
数の電気導体6を周方向に断続的に配置し、磁気遮蔽部
としてもよい。このとき、複数の電気導体6は、例え
ば、コア3cをインサートモールドによって成形すると
きに、コア3cに埋め込む。このようにすると、樹脂リ
ング4,5をコア2c,3cに埋め込む場合と同様に、
1次側コア2及び2次側コア3の機械強度が向上する。
Further, both the primary and secondary cores 2 and 3 of the separation transformer 1, for example, the secondary core 3 shown in FIG.
A plurality of electric conductors 6 made of copper, copper alloy or the like having a circular, elliptical or rectangular cross section are intermittently arranged in the circumferential direction at positions corresponding to the magnetic shielding grooves 3f as shown in FIG. Is also good. At this time, the plurality of electric conductors 6 are embedded in the core 3c, for example, when the core 3c is formed by insert molding. By doing so, similarly to the case where the resin rings 4 and 5 are embedded in the cores 2c and 3c,
The mechanical strength of the primary core 2 and the secondary core 3 is improved.

【0032】[0032]

【発明の効果】請求項1,2の発明によれば、電力と電
気信号の双方を伝送するときに、1次側及び2次側のコ
アが大型化することがなく、同一コア内における隣接す
るコイル相互間の干渉を抑制することが可能な分離トラ
ンスを提供することができる。
According to the first and second aspects of the present invention, when transmitting both electric power and electric signals, the primary and secondary cores do not increase in size, and are adjacent to each other in the same core. The present invention can provide a separation transformer capable of suppressing interference between coils.

【0033】請求項3,4の発明によれば、1次側及び
2次側のコアの機械強度を向上させることができる。
According to the third and fourth aspects of the invention, the mechanical strength of the primary and secondary cores can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の分離トランスを直径上で切断した断面
正面図である。
FIG. 1 is a sectional front view of a separation transformer of the present invention cut along a diameter.

【図2】図1の分離トランスの左半側を拡大し、磁気遮
蔽用の溝を示した断面図である。
FIG. 2 is an enlarged sectional view of the left half of the separation transformer shown in FIG. 1, showing a groove for magnetic shielding.

【図3】磁気遮蔽用の溝の他の形態を、図1の分離トラ
ンスの左半側を拡大した状態で示す断面図である。
3 is a cross-sectional view showing another form of the magnetic shielding groove in a state where the left half side of the separation transformer in FIG. 1 is enlarged.

【図4】磁気遮蔽部としてリング状の合成樹脂を用い
た、図1の分離トランスの左半側を拡大した状態で示す
断面図である。
FIG. 4 is a cross-sectional view showing an enlarged state of a left half side of the separation transformer of FIG. 1 using a ring-shaped synthetic resin as a magnetic shielding portion.

【図5】磁気遮蔽部としてコアの周方向にリング状に断
続的に配置される複数の導体を用いた分離トランスを、
図1の分離トランスの2次側コアの側から見た平面図で
ある。
FIG. 5 shows a separation transformer using a plurality of conductors intermittently arranged in a ring shape in the circumferential direction of a core as a magnetic shielding part.
FIG. 2 is a plan view of the separation transformer of FIG. 1 as viewed from a secondary core side.

【符号の説明】[Explanation of symbols]

1 分離トランス 2 1次側コア 2a 電力コイル 2b 信号コイル 2c コア 2f 磁気遮蔽溝 3 2次側コア 3a 電力コイル 3b 信号コイル 3c コア 3f 磁気遮蔽溝 4,5 樹脂リング(磁気遮蔽部) 6 電気導体(磁気遮蔽部) DESCRIPTION OF SYMBOLS 1 Separation transformer 2 Primary core 2a Power coil 2b Signal coil 2c Core 2f Magnetic shielding groove 3 Secondary core 3a Power coil 3b Signal coil 3c Core 3f Magnetic shielding groove 4,5 Resin ring (magnetic shielding part) 6 Electric conductor (Magnetic shield)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安倍 文彦 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 羽広 靖範 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Fumihiko Abe, Inventor Furukawa Electric Co., Ltd. 2-6-1 Marunouchi, Chiyoda-ku, Tokyo (72) Inventor Yasunori Hahiro 2-6-1 Marunouchi, Chiyoda-ku, Tokyo No. Furukawa Electric Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電線を巻回した少なくとも第1及び第2
のコイルと軟磁性材料からなるコアとを有し、互いに相
対回転自在に対向配置される1次側コア及び2次側コア
との間で電力及び電気信号を電磁誘導によって非接触で
伝送する分離トランスであって、前記1次側コア及び2
次側コアは、それぞれ前記第1及び第2のコイル間で生
ずる鎖交磁束を横切る位置に、前記両コイル間の干渉を
抑える磁気遮蔽部が形成されていることを特徴とする分
離トランス。
At least first and second windings of an electric wire
And a core that is made of a soft magnetic material and has a core that is made of a soft magnetic material. The primary and secondary cores are rotatably opposed to each other. A transformer, wherein said primary side core and 2
A separation transformer, wherein a magnetic shielding portion for suppressing interference between the two coils is formed on each of the secondary cores at a position crossing a linkage magnetic flux generated between the first and second coils.
【請求項2】 前記磁気遮蔽部が、周方向に形成される
溝である、請求項1の分離トランス。
2. The separation transformer according to claim 1, wherein the magnetic shield is a groove formed in a circumferential direction.
【請求項3】 前記磁気遮蔽部が、リング状の合成樹脂
によって形成されている、請求項1の分離トランス。
3. The separation transformer according to claim 1, wherein the magnetic shielding portion is formed of a ring-shaped synthetic resin.
【請求項4】 前記磁気遮蔽部が、周方向にリング状に
断続的に配置される複数の電気導体によって形成されて
いる、請求項1の分離トランス。
4. The separation transformer according to claim 1, wherein the magnetic shield is formed by a plurality of electric conductors intermittently arranged in a ring shape in a circumferential direction.
JP10156325A 1998-06-04 1998-06-04 Isolation transformer Pending JPH11354348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10156325A JPH11354348A (en) 1998-06-04 1998-06-04 Isolation transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10156325A JPH11354348A (en) 1998-06-04 1998-06-04 Isolation transformer

Publications (1)

Publication Number Publication Date
JPH11354348A true JPH11354348A (en) 1999-12-24

Family

ID=15625328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10156325A Pending JPH11354348A (en) 1998-06-04 1998-06-04 Isolation transformer

Country Status (1)

Country Link
JP (1) JPH11354348A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6388548B1 (en) * 1999-04-28 2002-05-14 Tokin Corp. Non-contact transformer and vehicular signal relay apparatus using it
US6489874B2 (en) 2000-07-25 2002-12-03 Matsushita Electric Works, Ltd. Non-contact electric power transmission apparatus
JP2004510325A (en) * 2000-09-20 2004-04-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Inductive transformer
WO2010078444A2 (en) * 2009-01-01 2010-07-08 Palm, Inc. Shield for use with a computing device that receives an inductive signal transmission
US7800475B2 (en) 2007-03-16 2010-09-21 Fuji Xerox Co., Ltd. Non-contact signal transmission apparatus
GB2502315A (en) * 2012-05-24 2013-11-27 Technetix Bv Transformer beads with flux-interrupting grooves
JP2013239692A (en) * 2012-04-17 2013-11-28 Nitto Denko Corp Method for forming magnetic field space
JP2014517529A (en) * 2011-06-01 2014-07-17 アナロジック コーポレイション Shield power transmission equipment
WO2014111973A1 (en) 2013-01-16 2014-07-24 三重電子株式会社 Machining device
US8850045B2 (en) 2008-09-26 2014-09-30 Qualcomm Incorporated System and method for linking and sharing resources amongst devices
US8868939B2 (en) 2008-09-26 2014-10-21 Qualcomm Incorporated Portable power supply device with outlet connector
US8954001B2 (en) 2009-07-21 2015-02-10 Qualcomm Incorporated Power bridge circuit for bi-directional wireless power transmission
US9083686B2 (en) 2008-11-12 2015-07-14 Qualcomm Incorporated Protocol for program during startup sequence
US9097544B2 (en) 2009-08-27 2015-08-04 Qualcomm Incorporated Location tracking for mobile computing device
US9191781B2 (en) 2010-08-31 2015-11-17 Qualcomm Incorporated Use of wireless access point ID for position determination
US9201457B1 (en) 2001-05-18 2015-12-01 Qualcomm Incorporated Synchronizing and recharging a connector-less portable computer system
JP2016100872A (en) * 2014-11-26 2016-05-30 パナソニックIpマネジメント株式会社 Signal coupler
US9395827B2 (en) 2009-07-21 2016-07-19 Qualcomm Incorporated System for detecting orientation of magnetically coupled devices
US11456115B2 (en) 2016-05-11 2022-09-27 Ntn Corporation Electric transmission device in relatively rotating parts

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6388548B1 (en) * 1999-04-28 2002-05-14 Tokin Corp. Non-contact transformer and vehicular signal relay apparatus using it
US6489874B2 (en) 2000-07-25 2002-12-03 Matsushita Electric Works, Ltd. Non-contact electric power transmission apparatus
JP2004510325A (en) * 2000-09-20 2004-04-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Inductive transformer
US9201457B1 (en) 2001-05-18 2015-12-01 Qualcomm Incorporated Synchronizing and recharging a connector-less portable computer system
US7800475B2 (en) 2007-03-16 2010-09-21 Fuji Xerox Co., Ltd. Non-contact signal transmission apparatus
US8868939B2 (en) 2008-09-26 2014-10-21 Qualcomm Incorporated Portable power supply device with outlet connector
US8850045B2 (en) 2008-09-26 2014-09-30 Qualcomm Incorporated System and method for linking and sharing resources amongst devices
US9083686B2 (en) 2008-11-12 2015-07-14 Qualcomm Incorporated Protocol for program during startup sequence
WO2010078444A2 (en) * 2009-01-01 2010-07-08 Palm, Inc. Shield for use with a computing device that receives an inductive signal transmission
WO2010078444A3 (en) * 2009-01-01 2010-10-21 Palm, Inc. Shield for use with a computing device that receives an inductive signal transmission
US9395827B2 (en) 2009-07-21 2016-07-19 Qualcomm Incorporated System for detecting orientation of magnetically coupled devices
US8954001B2 (en) 2009-07-21 2015-02-10 Qualcomm Incorporated Power bridge circuit for bi-directional wireless power transmission
US9097544B2 (en) 2009-08-27 2015-08-04 Qualcomm Incorporated Location tracking for mobile computing device
US9191781B2 (en) 2010-08-31 2015-11-17 Qualcomm Incorporated Use of wireless access point ID for position determination
JP2014517529A (en) * 2011-06-01 2014-07-17 アナロジック コーポレイション Shield power transmission equipment
JP2016013056A (en) * 2012-04-17 2016-01-21 日東電工株式会社 Method for forming magnetic field space
WO2014080648A1 (en) * 2012-04-17 2014-05-30 日東電工株式会社 Method for forming magnetic-field space
JP2013239692A (en) * 2012-04-17 2013-11-28 Nitto Denko Corp Method for forming magnetic field space
JP2017163841A (en) * 2012-04-17 2017-09-14 日東電工株式会社 Wireless power supply system, power-supplying device, and power-receiving device
US9892847B2 (en) 2012-04-17 2018-02-13 Nitto Denko Corporation Method for forming magnetic field space
GB2502315B (en) * 2012-05-24 2015-11-18 Technetix Bv Transformer beads
GB2502315A (en) * 2012-05-24 2013-11-27 Technetix Bv Transformer beads with flux-interrupting grooves
WO2014111973A1 (en) 2013-01-16 2014-07-24 三重電子株式会社 Machining device
EP2946859A4 (en) * 2013-01-16 2016-09-14 Mie Electronics Co Ltd Machining device
US10105836B2 (en) 2013-01-16 2018-10-23 Mie Electronics Co., Ltd. Processing apparatus
JP2016100872A (en) * 2014-11-26 2016-05-30 パナソニックIpマネジメント株式会社 Signal coupler
US11456115B2 (en) 2016-05-11 2022-09-27 Ntn Corporation Electric transmission device in relatively rotating parts

Similar Documents

Publication Publication Date Title
JPH11354348A (en) Isolation transformer
US5656983A (en) Inductive coupler for transferring electrical power
KR101035764B1 (en) Core back of an electrical machine and method for making the same
KR100807424B1 (en) Ferrite core, transformer using the same and bobbin used for the transformer
US20190019613A1 (en) Hollow toroidal magnetic power unit
US10410778B2 (en) Magnetic circuit component
JP2006191788A (en) Stator structure for electric machine, and manufacturing method therefor, and dc motor
EP2472531B1 (en) Inductor core
GB2256094A (en) Moulded stator assembly for an electric motor
JP2019146424A (en) Stator of rotary electric machine
US5635890A (en) Choke coil
JP2006515152A (en) Electrical machine stator
JP3585769B2 (en) Zero-phase current transformer
JP2003134701A (en) Stator of ac motor and manufacturing method therefor
JPH1022149A (en) Zero-phase current transformer
JPH0898440A (en) Stator for rotating field type motor
US6954129B2 (en) Wire core inductive devices having a flux coupling structure and methods of making the same
US5994992A (en) Choke coil
JP2004201429A (en) Stator of motor
KR100235202B1 (en) A toroidal transformer
JP3409009B2 (en) Switching transformer
JPS603564Y2 (en) ferrite magnetic core
KR20230081670A (en) An inductor and a method of providing an inductor
KR20230000068U (en) Zero current transformer
JPS5919408Y2 (en) Split type zero phase current transformer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050518