JPH11353940A - Thick film conductive material and negative characteristic thermistor - Google Patents

Thick film conductive material and negative characteristic thermistor

Info

Publication number
JPH11353940A
JPH11353940A JP15772698A JP15772698A JPH11353940A JP H11353940 A JPH11353940 A JP H11353940A JP 15772698 A JP15772698 A JP 15772698A JP 15772698 A JP15772698 A JP 15772698A JP H11353940 A JPH11353940 A JP H11353940A
Authority
JP
Japan
Prior art keywords
characteristic thermistor
negative characteristic
negative
rare earth
earth transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15772698A
Other languages
Japanese (ja)
Inventor
Kingo Omura
金吾 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP15772698A priority Critical patent/JPH11353940A/en
Publication of JPH11353940A publication Critical patent/JPH11353940A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase adhesion between a negative characteristic thermistor made of LaCoO3 -based rare earth transition element oxide and an outer electrode, and to provide a negative characteristic thermistor with high reliability by including LaCoO3 -based rare earth transition element oxide in metal powder. SOLUTION: A negative characteristic thermistor 1 consists of a negative characteristic thermistor element 2, outer electrodes 3, 4 formed on the surface, in this case on both surfaces of the negative characteristic thermistor element 2, lead wires 6, 7 fixed to the outer electrodes 3, 4 with solder 5 so as to electrically connect, and outer jacket resin 8. The negative characteristic thermistor element 2 is formed by forming a plate-shaped molding with ceramic material mainly comprising LaCoO3 -based rare earth transition element oxide followed by then baking. The outer electrodes 3, 4 are formed by adding 0.1 wt.% LaCoO3 -based rare earth transition element oxide powder to 100 wt.% metal powder comprising Ag, Ag-Pd, or Ag-Pt, and treating in a specified process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、厚膜導電材料、
および、この厚膜導電材料を用いたLaCoO3系希土
類遷移元素酸化物からなる突入電流抑制用負特性サーミ
スタに関するものである。
TECHNICAL FIELD The present invention relates to a thick film conductive material,
Also, the present invention relates to a rush current suppressing negative characteristic thermistor made of a LaCoO 3 -based rare earth transition element oxide using this thick film conductive material.

【0002】[0002]

【従来の技術】LaCoO3系希土類遷移元素酸化物
は、従来のマンガンスピネル系負特性サーミスタ材料に
比べ、B定数が大きく、高温時のサーミスタ素子の抵抗
値をより低減できる。したがって、電流を印加したと
き、負特性サーミスタ素子の自己発熱が抑えられ、定格
電流値を大きくすることができる。このことから、La
CoO3系希土類遷移元素酸化物は、突入電流抑制用負
特性サーミスタ素子の材料に適している。
2. Description of the Related Art LaCoO 3 -based rare earth transition element oxides have a larger B constant than conventional manganese spinel-based negative characteristic thermistor materials and can further reduce the resistance value of the thermistor element at high temperatures. Therefore, when a current is applied, the self-heating of the negative characteristic thermistor element is suppressed, and the rated current value can be increased. From this, La
The CoO 3 -based rare earth transition element oxide is suitable for a material of a negative characteristic thermistor element for suppressing an inrush current.

【0003】しかしながら、LaCoO3系希土類遷移
元素酸化物からなる負特性サーミスタ素子に外部電極を
形成する際、通常のガラスフリットを含むAg、Ag−
Pdなどの厚膜電極ペーストを用いると、負特性サーミ
スタ素子と外部電極との界面が非オーミックとなり、負
特性サーミスタ素子の抵抗値が不安定となる。したがっ
て、LaCoO3系希土類遷移元素酸化物からなる負特
性サーミスタ素子は、ガラスフリットを含まない厚膜電
極ペーストを用いて外部電極を形成していた。
However, when an external electrode is formed on a negative temperature coefficient thermistor element made of LaCoO 3 -based rare earth transition element oxide, Ag, Ag-containing ordinary glass frit is used.
When a thick film electrode paste such as Pd is used, the interface between the negative characteristic thermistor element and the external electrode becomes non-ohmic, and the resistance value of the negative characteristic thermistor element becomes unstable. Therefore, in the negative characteristic thermistor element made of LaCoO 3 -based rare earth transition element oxide, an external electrode is formed using a thick film electrode paste containing no glass frit.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
LaCoO3系希土類遷移元素酸化物を主成分とする負
特性サーミスタは、外部電極形成にフリットレスペース
トを用いているため、通常の厚膜電極に比べて、負特性
サーミスタ素子と外部電極との密着強度が低い。負特性
サーミスタ素子と外部電極との密着強度を高めるために
は、通常の厚膜電極のようなベルト炉での1時間程度の
焼成では足りず、バッチ炉を用いて900〜1000℃
で5時間以上焼成する必要がある。よって、外部電極形
成にかかるコストが高いという問題点があった。
However, the negative characteristic thermistor containing the LaCoO 3 -based rare earth transition element oxide as a main component uses a fritless paste for forming an external electrode, so that it can be used as a normal thick film electrode. In comparison, the adhesive strength between the negative characteristic thermistor element and the external electrode is low. In order to increase the adhesion strength between the negative characteristic thermistor element and the external electrode, firing in a belt furnace such as a normal thick film electrode for about 1 hour is not enough, and using a batch furnace at 900 to 1000 ° C.
For more than 5 hours. Therefore, there is a problem that the cost for forming the external electrodes is high.

【0005】さらに、外部電極を形成した負特性サーミ
スタ素子にリード線を半田付けして得られた負特性サー
ミスタを100℃以上の高温下で継続して使用すると、
Snなどの半田成分が外部電極へ拡散したり、半田によ
る外部電極のAg喰われが発生し、電極強度が低下し、
負特性サーミスタの抵抗値が高くなるという問題もあっ
た。
Further, when a negative characteristic thermistor obtained by soldering a lead wire to a negative characteristic thermistor element having an external electrode formed thereon is continuously used at a high temperature of 100 ° C. or more,
The solder component such as Sn diffuses to the external electrode, or the Ag of the external electrode is eroded by the solder, and the electrode strength is reduced.
There is also a problem that the resistance value of the negative characteristic thermistor increases.

【0006】この発明の目的は、LaCoO3系希土類
遷移元素酸化物からなる負特性サーミスタ素子と外部電
極との密着強度を高め、かつ信頼性の優れた負特性サー
ミスタ素子を得るための厚膜導電材料を提供することで
ある。さらに、この厚膜導電材料からなる外部電極を有
する負特性サーミスタを提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a thick-film conductive element for improving the adhesion strength between a negative-characteristic thermistor element made of a LaCoO 3 -based rare-earth transition element oxide and an external electrode and obtaining a highly reliable negative-characteristic thermistor element. Is to provide the material. Another object of the present invention is to provide a negative temperature coefficient thermistor having an external electrode made of the thick film conductive material.

【0007】[0007]

【課題を解決するための手段】この発明の厚膜導電材料
は、金属粉にLaCoO3系希土類遷移元素酸化物が含
有されていることを特徴とする。
A thick film conductive material according to the present invention is characterized in that a metal powder contains a LaCoO 3 -based rare earth transition element oxide.

【0008】前記金属粉は、Ag、Ag−PdまたはA
g−Ptを主成分とすることが好ましい。
The metal powder is Ag, Ag-Pd or A
It is preferable that g-Pt is a main component.

【0009】この発明の厚膜導電材料は、前記金属粉に
対してLaCoO3系希土類遷移元素酸化物が1.0w
t%以下(ただし、0wt%は含まず)であることが好
ましい。
The thick film conductive material according to the present invention is characterized in that the LaCoO 3 -based rare earth transition element oxide is 1.0 w
It is preferably at most t% (but not including 0 wt%).

【0010】この発明の負特性サーミスタは、LaCo
3系希土類遷移元素酸化物からなる負特性サーミスタ
素子と、この負特性サーミスタ素子の表面に形成された
外部電極とからなり、前記外部電極は上述の厚膜導電材
料からなることを特徴とする。
The negative characteristic thermistor of the present invention is a LaCo thermistor.
A negative characteristic thermistor element made of an O 3 -based rare earth transition element oxide, and an external electrode formed on the surface of the negative characteristic thermistor element, wherein the external electrode is made of the above-mentioned thick film conductive material. .

【0011】この発明の負特性サーミスタは、例えば、
前記負特性サーミスタ素子の外部電極にリード線が取付
けられ、負特性サーミスタ素子が外装樹脂で絶縁被覆さ
れていることが好ましい。
[0011] The negative characteristic thermistor of the present invention is, for example,
It is preferable that a lead wire is attached to an external electrode of the negative characteristic thermistor element, and the negative characteristic thermistor element is coated with an insulating resin.

【0012】この発明に係る厚膜導電材料を用いて負特
性サーミスタ素子の外部電極とすることにより、負特性
サーミスタ素子と外部電極との密着強度を高めることが
できる。
By using the thick-film conductive material according to the present invention as the external electrode of the negative-characteristic thermistor element, the adhesion strength between the negative-characteristic thermistor element and the external electrode can be increased.

【0013】[0013]

【発明の実施の形態】この発明における一つの実施の形
態として、図1に示す負特性サーミスタ1を参考に説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to a negative characteristic thermistor 1 shown in FIG.

【0014】負特性サーミスタ1は、負特性サーミスタ
素子2と、負特性サーミスタ素子2の表面、この場合は
両主面に形成された外部電極3,4と、外部電極3、4
に電気的に接続するように半田5で取付けられたリード
線6、7と、外装樹脂8とからなる。
The negative-characteristic thermistor 1 includes a negative-characteristic thermistor element 2, external electrodes 3 and 4 formed on the surface of the negative-characteristic thermistor element 2, in this case, both main surfaces, and external electrodes 3 and 4.
And lead wires 6 and 7 attached with solder 5 so as to be electrically connected to the package.

【0015】負特性サーミスタ素子2は、LaCoO3
系希土類遷移元素酸化物を主成分とするセラミック原料
を用いて板状の成形体を形成し、焼成したものであり、
直径7mm、厚み1.5mmの円板状である。
The negative characteristic thermistor element 2 is made of LaCoO 3
A plate-shaped molded body is formed by using a ceramic raw material mainly composed of a system rare earth transition element oxide, and is fired.
It is a disk with a diameter of 7 mm and a thickness of 1.5 mm.

【0016】外部電極3、4は、Ag、Ag−Pdまた
はAg−Ptなどからなる金属粒子粉100wt%中
に、LaCoO3系希土類遷移元素酸化物の粉末を0.
1wt%添加して調合し、さらにワニスを添加して混練
し、粘度を調節した厚膜電極ペーストを、負特性サーミ
スタ素子2の対向する両主面に塗布し、900℃〜95
0℃で1時間焼付けることにより形成される。
The external electrodes 3 and 4 contain a LaCoO 3 -based rare-earth transition element oxide powder in 100 wt% of metal particle powder made of Ag, Ag-Pd or Ag-Pt.
1 wt% is added, and the mixture is kneaded with a varnish. The thick-film electrode paste whose viscosity has been adjusted is applied to both opposing main surfaces of the negative characteristic thermistor element 2, and the temperature is 900 ° C. to 95 ° C.
It is formed by baking at 0 ° C. for 1 hour.

【0017】さらに、負特性サーミスタ素子2の両主面
の電極3、4に、Sn−Ag(=96.5:3.5)な
どの高温半田5でリード線6、7を取付け、シリコーン
樹脂などの外装樹脂8で外装被覆を行い、負特性サーミ
スタ1を得た。
Further, lead wires 6 and 7 are attached to electrodes 3 and 4 on both main surfaces of the negative characteristic thermistor element 2 with high-temperature solder 5 such as Sn-Ag (= 96.5: 3.5). The exterior was covered with an exterior resin 8 such as the above to obtain the negative characteristic thermistor 1.

【0018】この負特性サーミスタ1の負特性サーミス
タ素子2と外部電極3、4との密着強度と、高温下にお
ける使用時の経時的な抵抗値変化を調べた。同様に、L
aCoO3系希土類遷移元素酸化物を含まないAg、A
g−PdまたはAg−Ptなどからなるフリットレス厚
膜電極ペーストを負特性サーミスタ素子2の対向する両
主面に塗布し、900℃〜950℃で5時間焼付けて電
極形成した従来例の負特性サーミスタについても、密着
強度と抵抗値変化を調べ、比較した。
The adhesion strength between the negative-characteristic thermistor element 2 of the negative-characteristic thermistor 1 and the external electrodes 3 and 4 and the change of the resistance value with time during use at a high temperature were examined. Similarly, L
Ag, A not containing a CoO 3 -based rare earth transition element oxide
A fritless thick film electrode paste made of g-Pd or Ag-Pt or the like is applied to both opposing main surfaces of the negative characteristic thermistor element 2 and baked at 900 ° C. to 950 ° C. for 5 hours to form a negative electrode of a conventional example. For the thermistor, the adhesion strength and the change in resistance value were examined and compared.

【0019】その結果、この発明の負特性サーミスタ素
子2と電極3、4との密着強度は、従来例に比べ、φ3
mmあたり19.6Nから39.2Nへと向上した。これ
は、外部電極3、4を焼付ける際、負特性サーミスタ素
子2と外部電極3、4に含まれるそれぞれのLaCoO
3系希土類遷移元素酸化物粒子が結合することによるも
のと考えられる。なお、厚膜電極ペースト中のLaCo
3系希土類遷移元素酸化物の含有量については、電極
としての役割が果たせるように調整すればよく、半田濡
れ性、電極強度、負特性サーミスタの抵抗値への影響を
考慮すれば、1.0wt%以下が好ましい。
As a result, the adhesion strength between the negative characteristic thermistor element 2 of the present invention and the electrodes 3 and 4 is smaller than that of the conventional example by φ3.
It improved from 19.6N to 39.2N per mm. This is because when the external electrodes 3 and 4 are baked, the negative characteristic thermistor element 2 and each of the LaCoO 2
3 rare earth transition element oxide particles is considered to be due to binding. Note that LaCo in the thick film electrode paste was used.
The content of the O 3 -based rare-earth transition element oxide may be adjusted so as to serve as an electrode. Considering the effects on solder wettability, electrode strength, and resistance of the negative characteristic thermistor, 1. 0 wt% or less is preferable.

【0020】また、負特性サーミスタ1を100℃以上
の高温下で継続して使用した場合の経時的な抵抗値変化
は、従来例に比べ、20%から2%へと大幅に抑制され
た。これは、外部電極3、4中のCoが半田に含まれる
Snの外部電極3、4への拡散や、半田による外部電極
3、4のAg喰われの発生を防止し、電極強度を低下さ
せないからである。
Further, when the negative temperature coefficient thermistor 1 is continuously used at a high temperature of 100 ° C. or more, the change in the resistance value with time is greatly suppressed from 20% to 2% as compared with the conventional example. This prevents Sn in the external electrodes 3 and 4 from diffusing Sn contained in the solder into the external electrodes 3 and 4 and prevents the occurrence of Ag erosion of the external electrodes 3 and 4 due to the solder, and does not lower the electrode strength. Because.

【0021】[0021]

【発明の効果】以上述べたように、この発明によれば、
厚膜導電材料中に負特性サーミスタ素子の主成分である
LaCoO3系希土類遷移元素酸化物を添加すること
で、負特性サーミスタ素子と外部電極との密着強度を高
めた負特性サーミスタを得ることができる。また、高温
下でも電極強度が低下せず、負特性サーミスタの抵抗値
変化を抑制できる。よって、負特性サーミスタの信頼性
が向上する。
As described above, according to the present invention,
By adding a LaCoO 3 -based rare earth transition element oxide, which is a main component of the negative characteristic thermistor element, to the thick film conductive material, it is possible to obtain a negative characteristic thermistor having an increased adhesion strength between the negative characteristic thermistor element and the external electrode. it can. Further, even at high temperatures, the electrode strength does not decrease, and a change in the resistance value of the negative characteristic thermistor can be suppressed. Therefore, the reliability of the negative characteristic thermistor is improved.

【0022】さらに、より短時間での電極焼成が可能と
なり、負特性サーミスタの低コスト化が可能となる。
Furthermore, the electrode can be fired in a shorter time, and the cost of the negative characteristic thermistor can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係る一つの実施の形態の負特性サー
ミスタの部分切欠断面図である。
FIG. 1 is a partially cutaway sectional view of a negative characteristic thermistor according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 負特性サーミスタ 2 負特性サーミスタ素子 3、4 外部電極 5 半田 6、7 リード線 8 外装樹脂 DESCRIPTION OF SYMBOLS 1 Negative characteristic thermistor 2 Negative characteristic thermistor element 3, 4 External electrode 5 Solder 6, 7 Lead wire 8 Outer resin

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属粉にLaCoO3系希土類遷移元素
酸化物が含有されていることを特徴とする厚膜導電材
料。
1. A thick-film conductive material characterized in that a metal powder contains a LaCoO 3 -based rare-earth transition element oxide.
【請求項2】 前記金属粉は、Ag、Ag−Pdまたは
Ag−Ptを主成分とすることを特徴とする請求項1記
載の厚膜導電材料。
2. The thick film conductive material according to claim 1, wherein the metal powder contains Ag, Ag-Pd or Ag-Pt as a main component.
【請求項3】 前記金属粉に対してLaCoO3系希土
類遷移元素酸化物が1.0wt%以下(ただし、0wt
%は含まず)であることを特徴とする請求項1および請
求項2記載の厚膜導電材料。
3. The method according to claim 1, wherein the LaCoO 3 -based rare earth transition element oxide is 1.0 wt% or less (0 wt% or less) based on the metal powder.
% Is not included). 3. The thick film conductive material according to claim 1, wherein:
【請求項4】 LaCoO3系希土類遷移元素酸化物か
らなる負特性サーミスタ素子と、この負特性サーミスタ
素子の表面に形成された外部電極とからなり、前記外部
電極は請求項1から請求項4のいずれかに記載の厚膜導
電材料からなることを特徴とする負特性サーミスタ。
4. A negative temperature coefficient thermistor element comprising a LaCoO 3 based rare earth transition element oxide, and an external electrode formed on the surface of the negative temperature coefficient thermistor element, wherein said external electrode is defined by any one of claims 1 to 4. A negative characteristic thermistor comprising the thick film conductive material according to any one of the above.
JP15772698A 1998-06-05 1998-06-05 Thick film conductive material and negative characteristic thermistor Pending JPH11353940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15772698A JPH11353940A (en) 1998-06-05 1998-06-05 Thick film conductive material and negative characteristic thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15772698A JPH11353940A (en) 1998-06-05 1998-06-05 Thick film conductive material and negative characteristic thermistor

Publications (1)

Publication Number Publication Date
JPH11353940A true JPH11353940A (en) 1999-12-24

Family

ID=15656031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15772698A Pending JPH11353940A (en) 1998-06-05 1998-06-05 Thick film conductive material and negative characteristic thermistor

Country Status (1)

Country Link
JP (1) JPH11353940A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105618733A (en) * 2016-01-05 2016-06-01 东莞珂洛赫慕电子材料科技有限公司 Nanometer rare earth thick-film electronic paste and preparing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105618733A (en) * 2016-01-05 2016-06-01 东莞珂洛赫慕电子材料科技有限公司 Nanometer rare earth thick-film electronic paste and preparing method thereof
CN105618733B (en) * 2016-01-05 2018-07-24 东莞珂洛赫慕电子材料科技有限公司 A kind of nano rare earth thick-film electronic slurry and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH0737706A (en) Semiconductor ceramic element
JPH0316251Y2 (en)
JPH1070012A (en) Manufacture of varistor
JP3391325B2 (en) Capacitors
KR100358302B1 (en) Negative Temperature Coefficient Thermistor
JPH11353940A (en) Thick film conductive material and negative characteristic thermistor
JPS6127003A (en) Conductive paste composition
JP3141719B2 (en) Semiconductor ceramic having negative resistance-temperature characteristics and semiconductor ceramic parts using the same
JP2000323304A (en) Negative temperature coefficient thermistor
JP3775003B2 (en) Conductive paste for semiconductor ceramic and semiconductor ceramic component
JPH07105719A (en) Conductive paste and resistor element
JPH0950904A (en) Electrically conductive paste and ntc thermistor using it
JP2985527B2 (en) Method of manufacturing voltage non-linear resistor
US3218594A (en) Electrical resistor
WO2020213320A1 (en) Laminated varistor
JPS5898902A (en) Method of producing thick film varistor
JPS6322444B2 (en)
JP3785961B2 (en) Ceramic electronic components
JP2584393B2 (en) Method for manufacturing electric component having external terminal
JPS60701A (en) Ormic electrode
JP2000091106A (en) Multilayer semiconductor ceramic electronic component and its manufacture
JP2000299206A (en) Thermistor element and thermistor using the same
JPS63187602A (en) Thermistor
JPS63236785A (en) Electrode formation for ceramic electronic parts
JPH10270214A (en) Laminated junction body of nonlinear resistor