JPH1135314A - Production of inorganic porous body with large pore diameter - Google Patents

Production of inorganic porous body with large pore diameter

Info

Publication number
JPH1135314A
JPH1135314A JP19363397A JP19363397A JPH1135314A JP H1135314 A JPH1135314 A JP H1135314A JP 19363397 A JP19363397 A JP 19363397A JP 19363397 A JP19363397 A JP 19363397A JP H1135314 A JPH1135314 A JP H1135314A
Authority
JP
Japan
Prior art keywords
inorganic
salt
inorg
porous body
inorganic salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19363397A
Other languages
Japanese (ja)
Inventor
Kazuo Okuyama
和雄 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP19363397A priority Critical patent/JPH1135314A/en
Publication of JPH1135314A publication Critical patent/JPH1135314A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5007Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with salts or salty compositions, e.g. for salt glazing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a porous body having large pore diameters and sharp distribution of pore diameters without changing the outer shape from an inorg. porous body having small pore diameters and wide distribution of pore diameters by impregnating the inorg. porous body with an inorg. salt soln., drying, calcining and removing the inorg. salt component. SOLUTION: An inorg. porous body, preferably a silica gel, is impregnated with an aq. soln. of inorg. salts (e.g. ammonium molybdate). The inorg. salts are one or more kinds selected from inorg. salts the oxides of which to be produced by calcining preferably have a melting point of 400 to 800 deg.C and/or one or more kinds selected from molybdates, molybdenum oxide, mixtures of molybdates or molybdenum oxide and phosphates, phosphates, alkali metal chlorides, alkali metal sulfates and mixtures of these with alkaline earth metal salts. Then the body is dried and calcined preferably at a temp. higher than the melting point of the oxides of the inorg. salts to be produced and lower than the temp. which is higher by 200 deg.C than the melting point, and then the inorg. salt component is removed preferably by using water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、孔径が大きく、孔
径分布のシャープな構造を有する無機大孔径多孔体の製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an inorganic porous material having a large pore size and a sharp pore size distribution.

【0002】[0002]

【従来の技術】無機多孔体は、従来触媒担体、吸着剤、
濾過材等の用途に供されている。このような分野で無機
多孔体が利用される理由は、無機物質の剛性、耐熱性、
耐薬品性に優れていることであると考えられる。一方、
用途に応じて無機多孔体の孔の特性に対する要求は多様
かつ精密となってきている。特にクロマト担体、触媒担
体、分子ふるい、機能性基固定母体、多孔成形用材料等
では、より均一なマクロ孔(なお、本発明においてマク
ロ孔とは1000Å以上の孔径を有する大孔径孔を意味
する。)が有利とされ、さらにより空孔率の大きな材料
が強く望まれている。
2. Description of the Related Art Inorganic porous materials are conventionally used as catalyst carriers, adsorbents,
It is used for applications such as filtration media. The reason why inorganic porous materials are used in such fields is that the rigidity of inorganic materials, heat resistance,
It is considered to be excellent in chemical resistance. on the other hand,
There are various and precise requirements for the properties of the pores of the inorganic porous material depending on the application. In particular, in a chromatographic carrier, a catalyst carrier, a molecular sieve, a functional group-fixed matrix, a material for porous molding, etc., more uniform macropores (the macropores in the present invention mean large pores having a pore diameter of 1000 mm or more). ) Is advantageous, and materials with even higher porosity are strongly desired.

【0003】従来、無機多孔体として、シリカゲルや多
孔性ガラス等がある。シリカゲルは通常珪酸ソーダと硫
酸または塩酸との反応により、シリカヒドロゲルとし、
水洗、乾燥、さらに必要ならば焼成して製造される。こ
のようにして得られるシリカゲルは孔径分布が広かった
り、あるいは孔径が小さい(数百Å)といった特性を有
する。シリカゲルの製造方法に関する提案としては、例
えば特開昭58−104017号公報、特開昭47−5
817号公報がある。
Conventionally, inorganic porous materials include silica gel and porous glass. Silica gel is usually made into a silica hydrogel by the reaction of sodium silicate and sulfuric acid or hydrochloric acid,
It is manufactured by washing with water, drying and, if necessary, baking. The silica gel thus obtained has a characteristic such that the pore size distribution is wide or the pore size is small (several hundred square meters). Proposals concerning a method for producing silica gel include, for example, JP-A-58-104017 and JP-A-47-5.
No. 817 publication.

【0004】また、多孔性ガラスは特定組成のホウケイ
酸ガラスを溶融、成形後、一定の温度範囲内で熱処理し
て相分離を生ぜしめ、その後酸処理、水洗して溶出相を
除去し、さらに乾燥して製造される。このような多孔性
ガラスは、代表的には96%の無水珪酸の他に、無水ホ
ウ酸及び酸化ナトリウムを構成成分として含んでいるた
め、酸等の耐薬品性に限界があるだけでなく、一般に細
孔容積が小さい。このような多孔性ガラス製造法は、例
えば米国特許2,106,744号(1934)や4,
657,875号(1987)に記載されている。
[0004] Further, the porous glass is obtained by melting a borosilicate glass having a specific composition, molding, and then heat-treating the borosilicate glass within a certain temperature range to cause phase separation, followed by acid treatment and washing with water to remove the eluted phase. It is manufactured by drying. Such a porous glass typically contains boric anhydride and sodium oxide as constituents in addition to 96% of silicic anhydride, and thus has a limitation in chemical resistance of acids and the like. Generally, the pore volume is small. Such a porous glass manufacturing method is described in, for example, U.S. Pat. No. 2,106,744 (1934) and 4,
657,875 (1987).

【0005】[0005]

【発明が解決しようとする課題】本発明は、比較的孔径
の小さな無機多孔体をベースとして、さらに孔径が大き
く、孔径分布がシャープな構造を有する無機大孔径多孔
体を得ることができる無機大孔径多孔体の製造方法を提
案することを課題とし、さらには、剛性及び耐薬品性が
すぐれた無機大孔径多孔体を得ることができる無機大孔
径多孔体の製造方法を提案することを課題とする。
DISCLOSURE OF THE INVENTION The present invention is based on an inorganic porous material having a relatively small pore size and an inorganic large porous material having a structure with a larger pore size and a sharp pore size distribution. It is an object of the present invention to propose a method for producing a porous large-diameter porous body, and further to propose a method for producing an inorganic large-porous porous body capable of obtaining an inorganic large-porous porous body having excellent rigidity and chemical resistance. I do.

【0006】[0006]

【課題を解決するための手段】本発明者は上記の問題点
を解決するために鋭意研究の結果、本発明をなすに至っ
た。即ち、本発明は下記の通りである。 1.無機多孔体に、無機塩の水溶液を含浸し、乾燥後焼
成し、その後無機塩成分を除去する無機大孔径多孔体の
製造方法。 2.無機多孔体がシリカゲルであり、無機塩が焼成によ
り生成する無機塩の酸化物の融点が400℃から800
℃である1種の無機塩または2種以上の無機塩の混合物
であり、焼成の際の温度が焼成により生成する無機塩の
酸化物の融点以上で該融点より200℃高い温度以下で
ある1.に記載の無機大孔径多孔体の製造方法。 3.無機塩が、モリブデン酸塩系、酸化モリブデン系、
モリブデン酸塩あるいは酸化モリブデンとリン酸塩混合
物系、リン酸塩系、アルカリ金属塩化物系、アルカリ金
属硫酸塩系、及びこれらとアルカリ土類金属塩との混合
物系、からなる群から選ばれた少なくとも1種である
1.または2.に記載の無機大孔径多孔体の製造方法。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, have accomplished the present invention. That is, the present invention is as follows. 1. A method for producing an inorganic large pore porous body, wherein an inorganic porous body is impregnated with an aqueous solution of an inorganic salt, dried and fired, and then an inorganic salt component is removed. 2. The inorganic porous material is silica gel, and the melting point of the oxide of the inorganic salt generated by firing the inorganic salt is from 400 ° C to 800 ° C.
C. is a kind of one kind of inorganic salt or a mixture of two or more kinds of inorganic salts, and the temperature at the time of firing is not lower than the melting point of the oxide of the inorganic salt generated by firing and not higher than 200 ° C. higher than the melting point. . 3. The method for producing an inorganic large-pore-diameter porous body according to 1.). 3. Inorganic salts are molybdate-based, molybdenum oxide-based,
Selected from the group consisting of molybdate or molybdenum oxide and phosphate mixtures, phosphates, alkali metal chlorides, alkali metal sulfates, and mixtures of these with alkaline earth metal salts At least one kind Or 2. 3. The method for producing an inorganic large-pore-diameter porous body according to 1.).

【0007】以下本発明につき詳述する。本発明の特徴
の一つは既存の無機多孔体を出発物質に用いることであ
る。無機多孔体としては特に限定されないが、例えば、
シリカ、アルミナ、シリカーアルミナ、チタニア、ジル
コニアもしくはこれらの二以上の混合物による無機多孔
体が例示される。この中でシリカ多孔体は、シリカゲル
に代表されるように最も汎用的に使用されているもので
あり、シリカの高い耐酸性のため好ましい。無機多孔体
の形状に特に限定はないが、シリカゲルのような粒子状
やペレット状、各種成形体が使用できる。以後、シリカ
を例にとって説明する。
Hereinafter, the present invention will be described in detail. One of the features of the present invention is to use an existing inorganic porous material as a starting material. The inorganic porous body is not particularly limited, for example,
Examples of the inorganic porous material include silica, alumina, silica-alumina, titania, zirconia, and a mixture of two or more thereof. Among them, the porous silica material is most commonly used as represented by silica gel, and is preferable because of the high acid resistance of silica. The shape of the inorganic porous body is not particularly limited, but particles such as silica gel, pellets, and various molded bodies can be used. Hereinafter, a description will be given using silica as an example.

【0008】本発明に使用される無機塩は(1)無機多
孔体材料であるシリカと親和性が大きくなじみやすい化
合物であり、加えて(2)焼結時に400℃から800
℃の間に融点を示す化合物が好ましい。融点が下限以上
で大きな孔が得やすく、融点が上限以下で形成したマク
ロ孔が維持される傾向にある。シリカのシンタリングが
進む温度以上で焼結操作を行うわけであるが、前述
(1)と(2)の条件は焼結温度と密接に関係してい
る。なぜならば、焼結温度において添加無機塩が溶融し
て液状になっていること、さらに、無機塩の液相とシリ
カの固体との界面において相互作用が働くことにより、
本発明の構造が形成されると考えられるからである。前
記(1)(2)の条件を満たす無機塩であれば全て使用
可能であるが、特に好ましい具体例をあげると、モリブ
デン酸塩系、酸化モリブデン系、モリブデン酸塩あるい
は酸化モリブデンとリン酸塩混合物系、リン酸塩系、塩
化ナトリウム、塩化カリウム等のアルカリ金属塩化物
系、硫酸カリウム等のアルカリ金属硫酸塩系、及びこれ
らと塩化カルシウム等のアルカリ土類金属塩との混合物
系、からなる群から選ばれた少なくとも1種であること
が有効である。酸化モリブデン系に関しては、酸化モリ
ブデンの水に対する溶解性が小さいためにそのままでは
使用が困難であり、焼結時に酸化されて酸化モリブデン
に変化し、なおかつ水に対する溶解性が大きいモリブデ
ン酸アンモニウム塩の形で使用するのが好ましい。ま
た、モリブデンとリンとナトリウムの各元素を含む塩が
好ましい。
The inorganic salt used in the present invention is (1) a compound having a high affinity for silica, which is an inorganic porous material, and is easily compatible with the inorganic salt.
Compounds that exhibit a melting point between ° C. are preferred. Large pores tend to be obtained when the melting point is lower than the lower limit, and macropores formed when the melting point is lower than the upper limit tend to be maintained. The sintering operation is performed at a temperature higher than the temperature at which the sintering of silica proceeds. The conditions (1) and (2) are closely related to the sintering temperature. Because, at the sintering temperature, the added inorganic salt is melted to be in a liquid state, and furthermore, the interaction works at the interface between the liquid phase of the inorganic salt and the solid of silica,
This is because it is considered that the structure of the present invention is formed. Any inorganic salt that satisfies the above conditions (1) and (2) can be used, but particularly preferred specific examples are molybdate, molybdenum oxide, molybdate or molybdenum oxide and phosphate. It is composed of a mixture system, a phosphate system, an alkali metal chloride system such as sodium chloride and potassium chloride, an alkali metal sulfate system such as potassium sulfate, and a mixture system thereof with an alkaline earth metal salt such as calcium chloride. It is effective that it is at least one selected from the group. As for molybdenum oxide, it is difficult to use molybdenum oxide as it is because its solubility in water is small, and it is oxidized during sintering and changes to molybdenum oxide, and the form of ammonium molybdate which is highly soluble in water is also used. It is preferable to use them. Further, a salt containing each element of molybdenum, phosphorus and sodium is preferable.

【0009】シリカ無機大孔径多孔体を製造する第一段
階は無機塩の水溶液を調整することである。溶媒として
水を用いているが、環境安全性から水を選択したもので
あり、その他の溶剤、例えば、アルコール類、ジメチル
ホルムアミド等の極性溶媒でも無機塩を溶解するもので
あれば使用できる。溶液の濃度は0.1重量%〜80重
量%、好ましくは5重量%〜80重量%である。下限よ
り大きい濃度であれば、シリカ多孔体へ1回の含浸・乾
燥だけで、シリカ多孔体中に無機塩が含まれやすく、相
分離が進みやすくなる。従って、含浸・乾燥工程を繰り
返す必要が少なくなり効率的である。
[0009] The first step in producing a silica inorganic large pore porous material is to prepare an aqueous solution of an inorganic salt. Although water is used as the solvent, water is selected from the viewpoint of environmental safety. Other solvents, for example, polar solvents such as alcohols and dimethylformamide can also be used as long as they can dissolve the inorganic salt. The concentration of the solution is between 0.1% and 80% by weight, preferably between 5% and 80% by weight. When the concentration is higher than the lower limit, the inorganic salt is easily contained in the porous silica body by one impregnation / drying of the porous silica body, and the phase separation is facilitated. Therefore, the necessity of repeating the impregnation and drying steps is reduced, which is efficient.

【0010】次に無機塩水溶液をシリカ多孔体に含浸す
る。無機塩水溶液量(体積)は用いたシリカ多孔体の孔
量(体積)の50〜100%、好ましくは60〜90%
である。下限より多いとシリカ多孔体の孔に全体的に無
機塩水溶液が入りやすくなり、斑がおきにくくなる。一
方、100%以下であれば、シリカ多孔体の外部に無機
塩水溶液が存在しにくくなり、溶けている無機塩が有効
に使用され、シリカ多孔体が粒子の場合は合一の原因と
なりにくい。シリカ多孔体を大気圧下あるいは減圧下で
無機塩水溶液と接触させる。シリカ多孔体が粉体の場合
は無機塩水溶液と接触させた状態で混合する。混合の仕
方に制限はないが、エバポレーターをもちいたり、各種
ミキサーを用いたりすることができる。混合時間は、無
機塩水溶液がシリカ多孔体中に入り込むまでであり、例
えば0.5〜1時間である。シリカ多孔体が成形体の場
合、成形体表面に無機塩水溶液を接触させることでも含
浸ができる。
Next, an aqueous solution of an inorganic salt is impregnated into the porous silica. The amount (volume) of the aqueous solution of the inorganic salt is 50 to 100%, preferably 60 to 90% of the pore amount (volume) of the silica porous material used.
It is. If the amount is less than the lower limit, the aqueous solution of the inorganic salt easily enters the pores of the porous silica material as a whole, and it is difficult for spots to occur. On the other hand, when the content is 100% or less, the inorganic salt aqueous solution hardly exists outside the porous silica material, the dissolved inorganic salt is effectively used, and when the silica porous material is particles, it is hard to cause coalescence. The porous silica is brought into contact with an aqueous solution of an inorganic salt under atmospheric pressure or reduced pressure. When the porous silica is a powder, the powder is mixed in a state of contact with an aqueous solution of an inorganic salt. The method of mixing is not limited, but an evaporator can be used or various mixers can be used. The mixing time is until the inorganic salt aqueous solution enters the porous silica material, and is, for example, 0.5 to 1 hour. When the porous silica body is a molded body, impregnation can be performed by bringing an inorganic salt aqueous solution into contact with the surface of the molded body.

【0011】次に無機塩水溶液を含んだシリカ多孔体を
乾燥する。乾燥方法に特に制限はなく、常圧下あるいは
減圧下で、常温あるいは加熱しながら乾燥する。これに
より、シリカ多孔体の孔に無機塩が入った状態になる
が、無機塩の孔にたいする体積率は10〜100%、好
ましくは30〜100%、より好ましくは50〜100
%である。10%より低いと焼成により孔径が大きくな
りにくく、100%より大きいと粒子の場合合一の原因
となる可能性がある。シリカ多孔体への無機塩水溶液の
含浸・乾燥工程を何回か繰り返して、孔にたいする無機
塩の体積率を増やすことができる。乾燥時の残存水分率
に特に制限はないが好ましくは0.1〜10重量%であ
る。次の焼成行程で残存している水分が除去されるが、
水分が10重量%より多く残っていると焼成時急激な蒸
発が生じてシリカ多孔体の構造を壊す可能性がある。
Next, the porous silica body containing the inorganic salt aqueous solution is dried. The drying method is not particularly limited, and drying is performed under normal pressure or reduced pressure at normal temperature or while heating. As a result, the inorganic salt enters the pores of the porous silica material, and the volume ratio of the inorganic salt to the pores is 10 to 100%, preferably 30 to 100%, more preferably 50 to 100%.
%. If it is lower than 10%, the pore size is unlikely to be increased by sintering, and if it is higher than 100%, it may cause coalescence in the case of particles. The step of impregnating and drying the aqueous solution of the inorganic salt on the porous silica can be repeated several times to increase the volume ratio of the inorganic salt to the pores. The residual moisture content during drying is not particularly limited, but is preferably 0.1 to 10% by weight. The remaining baking process removes the remaining water,
If more than 10% by weight of water remains, there is a possibility that rapid evaporation occurs during firing and the structure of the porous silica material is broken.

【0012】次に焼成する。焼成温度は通常400〜1
000℃の間である。さらに好ましくは600〜800
℃の間である。しかしながら、所定の平均孔径と狭い孔
径分布を実現するためには、焼成温度は使用した無機塩
の融点以上であることが望ましく、かつ無機塩の融点よ
り200℃高い温度を越えないことが望ましい。焼成温
度が無機塩の融点より高いと平均孔径が大きくなりやす
いが、10〜20℃融点より低くともある程度効果が得
られる場合もある。焼成温度が塩の融点より200℃高
い温度以下で望ましい平均孔径が得やすい。なお、本発
明における融点とは、無機塩の焼成により生成する無機
塩の酸化物の融点をいう。焼成時間は焼成温度との関連
で設定する。高い温度の場合は短い時間で、また低い温
度の時は長い時間で焼成を行う。作業性等を考慮すると
所定温度で0.5〜5時間保持することが好ましい。さ
らに好ましくは1〜3時間である。ここで、例えばモリ
ブデン酸アンモニウム等の塩を用いた場合には、アンモ
ニアを除くために300〜400℃付近で仮焼した後上
記温度で焼成を行う。
Next, firing is performed. The firing temperature is usually 400 to 1
000 ° C. More preferably, 600 to 800
° C. However, in order to realize a predetermined average pore size and a narrow pore size distribution, it is desirable that the firing temperature be equal to or higher than the melting point of the inorganic salt used and not exceed 200 ° C. higher than the melting point of the inorganic salt. If the sintering temperature is higher than the melting point of the inorganic salt, the average pore size tends to increase, but if the sintering temperature is lower than the melting point of 10 to 20 ° C., the effect may be obtained to some extent. When the sintering temperature is 200 ° C. or lower, which is higher than the melting point of the salt, a desirable average pore diameter is easily obtained. In addition, the melting point in the present invention refers to a melting point of an oxide of an inorganic salt generated by firing the inorganic salt. The firing time is set in relation to the firing temperature. The baking is performed in a short time at a high temperature and for a long time at a low temperature. In consideration of workability and the like, it is preferable to hold at a predetermined temperature for 0.5 to 5 hours. More preferably, it is 1 to 3 hours. Here, for example, when a salt such as ammonium molybdate is used, calcining is performed at about 300 to 400 ° C. to remove ammonia, and then calcining is performed at the above temperature.

【0013】次に、得られた焼成物から無機塩を洗浄に
より除去する。洗浄液としてはシリカを溶解せず、無機
塩を溶解するものであればいずれでも使用できる。塩酸
や硫酸などの鉱酸酸性溶液もあるが、特に、水がコスト
面や環境面から好ましい。洗浄液量や洗浄温度に特に制
限はなく、シリカ多孔体中の無機塩が99重量%以上除
去される条件を設定する。得られた無機塩の溶液は必要
に応じて再使用したり、そのなかから無機塩を回収した
りすることが好ましい。
Next, inorganic salts are removed from the obtained fired product by washing. Any washing liquid can be used as long as it does not dissolve silica but dissolves an inorganic salt. Although there are acidic solutions of mineral acids such as hydrochloric acid and sulfuric acid, water is particularly preferable in terms of cost and environment. There is no particular limitation on the amount of the washing solution or the washing temperature, and conditions are set for removing 99% by weight or more of the inorganic salt in the porous silica material. It is preferable that the obtained solution of the inorganic salt is reused as necessary, or the inorganic salt is recovered from the solution.

【0014】本発明の製造法で形状を変えることなく内
部の孔径を大きくしたシリカ大孔径多孔体を得ることが
できる。得られたシリカ大孔径多孔体は、必要ならば水
洗、乾燥をした後利用に供せられる。乾燥方法は特に制
限はない。本製造法によるシリカ大孔径多孔体の孔径は
焼成条件を設定することで変化させることができ、一般
的には100〜2000nmの孔径をつくることができ
る。
According to the production method of the present invention, it is possible to obtain a porous silica material having a large internal pore diameter without changing its shape. The obtained porous silica material having a large pore diameter is used after being washed with water and dried if necessary. The drying method is not particularly limited. The pore diameter of the porous silica material having a large pore diameter according to the present production method can be changed by setting the firing conditions, and generally a pore diameter of 100 to 2000 nm can be produced.

【0015】[0015]

【発明の実施の形態】以下に実施例を上げさらに具体的
に説明する。なお、多孔体の孔量、平均孔径、孔径分布
は水銀圧入法により測定できる。本発明ではカンタクロ
ム社製ポアマスター60を使用した。また、粒子の体積
平均粒径は、ハネウエル社製マイクロトラックX−10
0で測定した。
Embodiments of the present invention will be described below in more detail with reference to examples. The pore volume, average pore size, and pore size distribution of the porous body can be measured by a mercury porosimetry. In the present invention, Poremaster 60 manufactured by Qantachrome was used. In addition, the volume average particle diameter of the particles is Microtrac X-10 manufactured by Honeywell.
It was measured at zero.

【0016】塩の融点は、示差走査熱量計DSC210
(セイコー電子工業株式会社製)で測定した。測定条件
は空気中、昇温速度5℃/分、測定温度範囲は25〜8
00℃である。シリカ大孔径多孔体のシリカ組成は、I
CP(誘導結合プラズマ)発光分析装置IRIS−AP
(サーモジャレルアッシ社製)で分析した。具体的に
は、試料50mgを白金皿の精秤し、炭酸カリナトリウ
ム(和光純薬株式会社製、特級)3gと四ホウ酸ナトリ
ウム(和光純薬株式会社製特級)1gを加え、バーナー
で加熱して溶解させた。次に、6N塩酸(和光純薬株式
会社製)15ml加えた。ヒーター上で煮沸後、純水を
加えて250mlとした。その後、10倍希釈し、IC
P発光分析装置にて定量した。
The melting point of the salt is determined by a differential scanning calorimeter DSC 210
(Manufactured by Seiko Instruments Inc.). The measurement conditions are in air, the heating rate is 5 ° C./min, and the measurement temperature range is 25 to 8
00 ° C. The silica composition of the silica large pore porous material is I
CP (inductively coupled plasma) emission spectrometer IRIS-AP
(Manufactured by Thermojarrell Assy). Specifically, a 50 mg sample was precisely weighed on a platinum dish, 3 g of potassium sodium carbonate (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) and 1 g of sodium tetraborate (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) were added, and heated with a burner. And dissolved. Next, 15 ml of 6N hydrochloric acid (manufactured by Wako Pure Chemical Industries, Ltd.) was added. After boiling on a heater, pure water was added to 250 ml. Then, dilute 10-fold,
Quantification was performed using a P emission analyzer.

【0017】[0017]

【実施例1】無機多孔体に体積平均粒径45.8μm、
孔量0.750mL/g、平均孔径10nm、シリカ組
成98.1%のシリカゲル5D(商品名。富士シリシア
化学株式会社製)を用いた。純水26gに硝酸(和光純
薬製、特級)1.6g、リン酸一ナトリウム(大平化学
工業製、工業用)4.3g、そしてモリブデン酸アンモ
ニウム(日本無機化学工業製、工業用)8.6gを加え
均一溶液とした。なお、この混合無機塩の融点は650
℃であった。500mLのナス型フラスコにシリカゲル
5Dを20gとり、これに、上記無機塩水溶液14.8
mL(シリカの孔体積にたいして98.6%)加え、ロ
ータリーエバポレーターを用いて30分間回転混合し
た。その後、減圧乾燥機中で減圧下70℃で5時間乾燥
した。このシリカゲルに上記無機塩水溶液11mL加
え、同じ条件で回転混合、乾燥をおこなった。さらに、
無機塩水溶液を9mL加え、3回目の回転混合・乾燥を
行った。得られた無機塩含浸シリカゲルの孔量は0.3
32mL/gであった。
Example 1 A volume average particle diameter of 45.8 μm was added to an inorganic porous material.
Silica gel 5D (trade name, manufactured by Fuji Silysia Chemical Ltd.) having a pore volume of 0.750 mL / g, an average pore diameter of 10 nm, and a silica composition of 98.1% was used. 7. 26 g of pure water, 1.6 g of nitric acid (manufactured by Wako Pure Chemical, special grade), 4.3 g of monosodium phosphate (manufactured by Ohira Chemical Industry, industrial use), and ammonium molybdate (manufactured by Nippon Inorganic Chemical Industry, industrial use) 6 g was added to make a homogeneous solution. The melting point of the mixed inorganic salt is 650.
° C. 20 g of silica gel 5D was placed in a 500 mL eggplant-shaped flask, and the above-mentioned inorganic salt aqueous solution 14.8 was added thereto.
mL (98.6% of the pore volume of silica) was added, and the mixture was rotated and mixed using a rotary evaporator for 30 minutes. Then, it dried at 70 degreeC under reduced pressure in a vacuum dryer for 5 hours. 11 mL of the above inorganic salt aqueous solution was added to the silica gel, and the mixture was rotated under the same conditions and dried. further,
9 mL of an inorganic salt aqueous solution was added, and the third rotation mixing and drying were performed. The resulting inorganic salt impregnated silica gel has a pore volume of 0.3
It was 32 mL / g.

【0018】無機塩含浸シリカゲル10mLを電気炉に
て350℃で1時間、その後650℃で1時間焼成し
た。このものを60℃の湯100mLに加え30分攪拌
しながら保持し、その後濾紙にて濾別し、過剰の水で洗
浄後、減圧乾燥した。得られたシリカ大孔径多孔粒子は
体積平均粒径45.8μm、孔量0.999mL/g、
平均孔径200nm、シリカ組成99.6%であった。
10 mL of silica gel impregnated with an inorganic salt was calcined in an electric furnace at 350 ° C. for 1 hour and then at 650 ° C. for 1 hour. This was added to 100 mL of hot water at 60 ° C., and the mixture was held with stirring for 30 minutes. Thereafter, the mixture was filtered with filter paper, washed with excess water, and dried under reduced pressure. The resulting silica large pore porous particles had a volume average particle size of 45.8 μm, a pore volume of 0.999 mL / g,
The average pore diameter was 200 nm, and the silica composition was 99.6%.

【0019】[0019]

【実施例2】実施例1の無機塩含浸シリカゲル10mL
を電気炉にて350℃で1時間、その後700℃で1時
間焼成した。得られた焼成物を実施例1と同じ条件で洗
浄、乾燥をおこなった。得られたシリカ大孔径粒子は体
積提琴粒径45.8μm、孔量0.985mL/g、平
均孔径350nm、シリカ組成99.2%であった。
Example 2 10 mL of the silica gel impregnated with the inorganic salt of Example 1
Was fired in an electric furnace at 350 ° C. for 1 hour and then at 700 ° C. for 1 hour. The obtained fired product was washed and dried under the same conditions as in Example 1. The obtained large pore silica particles had a volumetric particle diameter of 45.8 μm, a pore volume of 0.985 mL / g, an average pore diameter of 350 nm, and a silica composition of 99.2%.

【0020】[0020]

【発明の効果】本発明の製造方法により、既存の孔径が
小さく、孔径分布の広い無機多孔体から、外形を変化さ
せず、孔径が大きく、孔径分布のシャープな多孔体を作
ることができる。これにより、より均一でマクロ孔が有
利とされるクロマト担体、触媒担体、機能性基固定母体
等への応用で性能が大きく向上する。
According to the manufacturing method of the present invention, a porous body having a large pore diameter and a sharp pore diameter distribution can be produced from an existing inorganic porous body having a small pore diameter and a wide pore diameter distribution without changing the outer shape. As a result, the performance is greatly improved in applications to a chromatographic carrier, a catalyst carrier, a functional group-fixed base, and the like, which are more uniform and macropores are advantageous.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で用いたシリカゲル、実施例1と2で得
られたシリカ大孔径多孔体の孔径分布の図である。
FIG. 1 is a diagram showing the pore size distribution of the silica gel used in the examples and the silica large pore porous materials obtained in Examples 1 and 2.

【符号の説明】[Explanation of symbols]

1・・・・・実施例の原料であるシリカゲル5Dの孔径
分布である。 2・・・・・実施例1で得られたシリカ大孔径多孔体の
孔径分布である。 3・・・・・実施例2で得られたシリカ大孔径多孔体の
孔径分布である。
1 is a pore size distribution of silica gel 5D which is a raw material of an example. 2 is a pore size distribution of the silica large pore porous body obtained in Example 1. 3 is a pore size distribution of the silica large pore porous material obtained in Example 2.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 無機多孔体に、無機塩の水溶液を含浸
し、乾燥後焼成し、その後無機塩成分を除去する無機大
孔径多孔体の製造方法。
1. A method for producing an inorganic large-pore porous body, wherein an inorganic porous body is impregnated with an aqueous solution of an inorganic salt, dried and fired, and then an inorganic salt component is removed.
【請求項2】 無機多孔体がシリカゲルであり、無機塩
が焼成により生成する無機塩の酸化物の融点が400℃
から800℃である1種の無機塩または2種以上の無機
塩の混合物であり、焼成の際の温度が焼成により生成す
る無機塩の酸化物の融点以上で該融点より200℃高い
温度以下である請求項1に記載の無機大孔径多孔体の製
造方法。
2. The inorganic porous material is silica gel, and the melting point of an oxide of the inorganic salt generated by firing the inorganic salt is 400 ° C.
From 800 ° C. to a mixture of one kind of inorganic salt or two or more kinds of inorganic salts, and the temperature at the time of firing is not lower than the melting point of the oxide of the inorganic salt generated by firing and not higher than 200 ° C. higher than the melting point. The method for producing an inorganic large-pore-sized porous body according to claim 1.
【請求項3】 無機塩が、モリブデン酸塩系、酸化モリ
ブデン系、モリブデン酸塩あるいは酸化モリブデンとリ
ン酸塩混合物系、リン酸塩系、アルカリ金属塩化物系、
アルカリ金属硫酸塩系、及びこれらとアルカリ土類金属
塩との混合物系、からなる群から選ばれた少なくとも1
種である請求項1または2に記載の無機大孔径多孔体の
製造方法。
3. An inorganic salt comprising a molybdate salt, a molybdenum oxide salt, a molybdate salt or a mixture of molybdenum oxide and a phosphate salt, a phosphate salt, an alkali metal chloride salt,
At least one selected from the group consisting of alkali metal sulfates, and mixtures thereof with alkaline earth metal salts;
The method for producing an inorganic large-pore-sized porous body according to claim 1 or 2, which is a seed.
JP19363397A 1997-07-18 1997-07-18 Production of inorganic porous body with large pore diameter Pending JPH1135314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19363397A JPH1135314A (en) 1997-07-18 1997-07-18 Production of inorganic porous body with large pore diameter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19363397A JPH1135314A (en) 1997-07-18 1997-07-18 Production of inorganic porous body with large pore diameter

Publications (1)

Publication Number Publication Date
JPH1135314A true JPH1135314A (en) 1999-02-09

Family

ID=16311197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19363397A Pending JPH1135314A (en) 1997-07-18 1997-07-18 Production of inorganic porous body with large pore diameter

Country Status (1)

Country Link
JP (1) JPH1135314A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236150A (en) * 2009-03-31 2010-10-21 Matsumoto Yushi Seiyaku Co Ltd Polyurethane-based elastic fiber and method for producing the same
JP2014019591A (en) * 2012-07-13 2014-02-03 Kawamura Institute Of Chemical Research Two-phase co-continuous silica structure and production method thereof
JP2015036347A (en) * 2013-08-12 2015-02-23 Dic株式会社 Method for collecting molybdenum trioxide
JP2016121042A (en) * 2014-12-25 2016-07-07 Dic株式会社 Two-phase continuous type silica-organic polymer composite structure and two-phase continuous type organic polymer structure and manufacturing method therefor
JP2016121043A (en) * 2014-12-25 2016-07-07 Dic株式会社 Two-phase continuous type silica-carbon composite structure, two-phase continuous type carbon structure and manufacturing method therefor
WO2022075399A1 (en) * 2020-10-09 2022-04-14 Dic株式会社 Two-phase bicontinuous silica structure and method for producing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236150A (en) * 2009-03-31 2010-10-21 Matsumoto Yushi Seiyaku Co Ltd Polyurethane-based elastic fiber and method for producing the same
JP2014019591A (en) * 2012-07-13 2014-02-03 Kawamura Institute Of Chemical Research Two-phase co-continuous silica structure and production method thereof
JP2015036347A (en) * 2013-08-12 2015-02-23 Dic株式会社 Method for collecting molybdenum trioxide
JP2016121042A (en) * 2014-12-25 2016-07-07 Dic株式会社 Two-phase continuous type silica-organic polymer composite structure and two-phase continuous type organic polymer structure and manufacturing method therefor
JP2016121043A (en) * 2014-12-25 2016-07-07 Dic株式会社 Two-phase continuous type silica-carbon composite structure, two-phase continuous type carbon structure and manufacturing method therefor
WO2022075399A1 (en) * 2020-10-09 2022-04-14 Dic株式会社 Two-phase bicontinuous silica structure and method for producing same
WO2022074808A1 (en) * 2020-10-09 2022-04-14 Dic株式会社 Two-phase co-continuous silica structure and manufacturing method therefor
JPWO2022075399A1 (en) * 2020-10-09 2022-04-14

Similar Documents

Publication Publication Date Title
KR100404401B1 (en) Gel Composition Containing Carbonaceous Compound
KR101911566B1 (en) High-purity silicon dioxide granules for quartz glass applications and method for producing said granules
KR100709075B1 (en) Method for preparing mesoporous silica and the mesoporous silica therefrom
US4058483A (en) Adsorbent material
Siddiqui et al. Synthesis, characterization and ion exchange properties of zirconium (IV) tungstoiodophosphate, a new cation exchanger
EP2731919A2 (en) Chemically durable porous glass with enhanced alkaline resistance
JPH1135314A (en) Production of inorganic porous body with large pore diameter
JPWO2002085785A1 (en) Manufacturing method of inorganic porous material
JPH0615427B2 (en) Inorganic porous body and method for producing the same
US6080485A (en) Yttrium oxide-aluminum oxide composite particles and method for the preparation thereof
Mellah et al. Adsorption of organic matter from a wet phosphoric acid using activated carbon: equilibrium study
CN117683376B (en) Method for preparing high pore volume carbon black material by using coal-based synthetic oil emulsified waste liquid
JP2011241132A (en) Manganese oxide composite covered with silicate inorganic polymer, and method for producing the same
JPS6267451A (en) Packing agent for chromatography
US4978641A (en) Porous glass and process for its production
KR20000049200A (en) Porous inorganic composition and method for separating metal element using the same
US3676366A (en) Process for the production of highly porous bead-form silica catalyst supports
KR20120117106A (en) Strength nanocarbon membrane virus filter manufacturing and analytical method
JPH11268909A (en) Water-dissolution resistant, spherical and inorganic porous material
JPH111318A (en) Production of zeolite granule with controlled pore size
Okuyama Formation of a strong, high-porosity spinodal silica and its impregnation with a perfluoro ionomer to obtain a high performance solid acid catalyst composite
JPS6252116A (en) Production of formed activated carbon
JP2002293657A (en) Method of manufacturing inorganic porous composite containing dispersed particle
Rafferty et al. An investigation of amorphous phase separation, leachability and surface area of an ionomer glass system and a sodium-boro-silicate glass system
JPH06171977A (en) Production of porous glass