JPH11352123A - Judgement method of cause of generation of defect on alc - Google Patents

Judgement method of cause of generation of defect on alc

Info

Publication number
JPH11352123A
JPH11352123A JP17225098A JP17225098A JPH11352123A JP H11352123 A JPH11352123 A JP H11352123A JP 17225098 A JP17225098 A JP 17225098A JP 17225098 A JP17225098 A JP 17225098A JP H11352123 A JPH11352123 A JP H11352123A
Authority
JP
Japan
Prior art keywords
alc
green body
microcracks
curing
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17225098A
Other languages
Japanese (ja)
Inventor
Masami Uehara
正巳 上原
Yutaka Furukawa
豊 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP17225098A priority Critical patent/JPH11352123A/en
Publication of JPH11352123A publication Critical patent/JPH11352123A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To judge the cause of generation of a defect part by observing the defect part generated after autoclave curing of light-weight gas concrete (ALC), its broken face and a broken face obtained by breaking a normal part, and comparing the number of microcracks in both broken faces. SOLUTION: Whether an overload is added to a defect part in its green body stage or not can be judged by comparing a number of microcracks in a specific field of view of a broken face of the defect part and that of a broken face obtained by breaking a normal part adjacent to the defect part. Whereby the cause of the generation of the defect part generated after the curing autoclave of ALC can be judged. Any conventional means can be used in the observation of the microcracks, but an optical observation means such as a scanning electron microscope or the like can be preferably used. In a case when the shearing strain is added to the first and second stages, the cleavage strength after the curing is almost same degree as the non-load, and the impairing of the strength can not be found. On the other hand, when the shearing strain is added to the third stage, the cleavage strength after the curing is considerably impaired.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、建築物の外壁など
に使用する蒸気養生した軽量気泡コンクリート(以下
「ALC」という)にオートクレーブ養生以降に発生す
る欠け、割れなどの欠陥部の発生原因を判定する方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the occurrence of defects such as chips and cracks occurring after autoclave curing in steam-cured lightweight cellular concrete (hereinafter referred to as "ALC") used for the outer walls of buildings. It relates to a determination method.

【0002】[0002]

【従来の技術】ALCの製造過程でALCに発生する欠
陥部の発生時期を特定する方法として本出願人は特願平
9−87564号を提案した。この特定方法は、ALC
の破断面を製造過程終了後に光学的顕微鏡などにより観
察して、破断面のマトリックス部に曲面状態が検出さ
れた場合にはグリーンスラリーの鋳込み時以降グリーン
ボディの膨張終了までの段階、マトリックス部にトバ
モライトの板状結晶状態が検出された場合にはグリーン
ボディの膨張終了以後オートクレーブ養生前までの段
階、マトリックス部に微細な結晶による緻密な組織状
態が検出された場合にはオートクレーブ養生以降の段階
のいずれかに分類して特定し、これを参考に欠陥部の対
策が講じられてきた。
2. Description of the Related Art The applicant of the present invention has proposed Japanese Patent Application No. Hei 9-87564 as a method for specifying the time of occurrence of a defective portion that occurs in an ALC during the manufacturing process of the ALC. This identification method is called ALC
Observe the fracture surface of the fracture surface by an optical microscope etc. after the end of the manufacturing process, and if a curved surface state is detected in the matrix part of the fracture surface, the stage from the time of casting the green slurry to the end of the expansion of the green body, the matrix part When the plate-like crystal state of tobermorite is detected, the stage from the end of the expansion of the green body to before the autoclave curing, and the stage after the autoclave curing when the dense microcrystalline state is detected in the matrix part. Classification and identification have been made, and measures have been taken for defective parts with reference to this.

【0003】しかしながらグリーンボデイの段階におい
て該グリーンボディに過負荷が加わった場合、欠陥部の
発生には至らないが内部に微小破壊を起こして図4に示
されるようなマトリックス部や図5に示されるような気
泡部にマイクロクラックが発生することが考えられ、こ
のマイクロクラックがオートクレーブ養生後に強度の低
下を引き起こしオートクレーブ養生後の欠け、割れなど
の欠陥部に繋がる可能性は大きいと思われる。
However, when an overload is applied to the green body at the stage of the green body, a defective portion is not generated, but a minute destruction occurs inside the green body, and a matrix portion as shown in FIG. It is conceivable that microcracks are generated in such air bubbles, and that the microcracks cause a decrease in strength after autoclaving and lead to defects such as chips and cracks after autoclaving.

【0004】この場合該欠陥部の破断面は前記したの
段階のようにマトリックス部に微細な結晶による緻密な
組織状態で観察されるためオートクレーブ養生以降の工
程で欠陥部が発生したと判定される。しかしこの欠陥部
の原因はグリーンボディの段階の過負荷にあり、欠陥部
の発生原因が正確に把握できず、有効な対策が講じられ
難いという問題があった。したがってオートクレーブ養
生以降の段階に発生した欠陥部の発生原因を判定する方
法の確立が必要であるが、これまではかかる欠陥部の発
生原因の判定方法は特に無く、この判定方法が求められ
ていた。
In this case, since the fractured surface of the defect is observed in a dense structure state of fine crystals in the matrix portion as in the above-described stage, it is determined that the defect has occurred in the process after the autoclave curing. . However, the cause of this defective portion is the overload in the green body stage, and the cause of the occurrence of the defective portion cannot be accurately grasped, and there has been a problem that it is difficult to take effective measures. Therefore, it is necessary to establish a method for determining the cause of the occurrence of a defective portion occurring after the autoclave curing, but there is no particular method for determining the cause of the occurrence of such a defective portion, and this determination method has been required. .

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、AL
Cのオートクレーブ養生以降の段階で発生する欠陥部に
対する対策が有効に講じられるように、オートクレーブ
養生以降に発生する欠陥部の発生原因を判定する方法を
提供することである。
SUMMARY OF THE INVENTION The object of the present invention is to
It is an object of the present invention to provide a method for determining the cause of a defective portion occurring after autoclaving so that measures against defective portions occurring after the autoclaving of C can be effectively taken.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め本発明に係るALCに発生する欠陥部の発生原因の判
定方法は、ALCに発生する欠陥部であって、該ALC
のオートクレーブ養生以降に発生した欠陥部と破断面と
正常部を破損させた破断面を観察して、両破断面におけ
るマイクロクラックの発生個数を比較して実施すること
を特徴とするものである。
According to the present invention, there is provided a method for judging the cause of a defect occurring in an ALC according to the present invention.
In this method, the defect portion, the fracture surface generated after the autoclaving, and the fracture surface that damaged the normal portion are observed, and the number of micro cracks generated in both fracture surfaces is compared.

【0007】[0007]

【発明の実施の形態】ALCを構成する主要鉱物である
トバモライトは、カルシウムに富むケイ酸カルシウム水
和物(以下「C−S−H」という)と原料珪石から溶解
した珪酸イオンとがオートクレーブ養生中で水和反応す
ることにより生成する。また、珪酸イオンは水に溶解
し、溶解した状態ではC−S−Hと反応してトバモライ
トが生成するため、トバモライトの結晶成長は水の存在
下において起こる。トバモライトの結晶は板状結晶であ
り、その大きさは数μmから大きなものでは数十μmに
まで成長する。したがって、結晶成長が可能となるある
程度の空間が必要である。
BEST MODE FOR CARRYING OUT THE INVENTION Tobermorite, which is a main mineral constituting ALC, is composed of calcium-rich calcium silicate hydrate (hereinafter referred to as "CSH") and silicate ions dissolved from raw silica, which are autoclaved. It is produced by a hydration reaction in water. In addition, silicate ions are dissolved in water, and in the dissolved state, they react with CSH to generate tobermorite, so that crystal growth of tobermorite occurs in the presence of water. The crystal of tobermorite is a plate-like crystal, and the size of the crystal grows from several μm to several tens μm when it is large. Therefore, a certain space for crystal growth is required.

【0008】ALCの製造工程は、グリーンスラリーの
型枠への注入、アルミニウム粉の発泡によるグリーンス
ラリーの膨張、グリーンスラリーの凝結によるグリーン
ボディへの移行とこのグリーンボディの硬化、硬化した
グリーンボディの成形、オートクレーブ養生、最終加
工、製品検査に大別される。ここで前記したグリーンス
ラリーとは、粉体原料と発泡剤であるアルミニウム粉
と、水とを撹拌して作製したスラリーである。そして粉
体原料の生石灰およびセメン卜が水和反応することより
グリーンスラリーは凝結してグリーンボディへと移行
し、さらにピアノ線による成形が可能な程度まで硬化さ
せて半可塑体とする。
The manufacturing process of ALC is performed by injecting a green slurry into a mold, expanding a green slurry by foaming aluminum powder, transferring the green slurry to a green body by setting the green slurry, curing the green body, and curing the green body. It is roughly divided into molding, autoclave curing, final processing, and product inspection. Here, the above-mentioned green slurry is a slurry produced by stirring powder raw material, aluminum powder as a foaming agent, and water. The green slurries condense and migrate to the green body due to the hydration reaction of the powdered raw lime and the cement, and are further cured to the extent that molding with a piano wire is possible to obtain a semi-plastic material.

【0009】ALCの製造過程でALCに発生した欠
け、割れなどの欠陥部のうち、破断面のマトリックス部
(アルミニウム粉の発泡による気泡でない実の部分)
は、水分はあるものの、オートクレーブ養生によるトバ
モライト結晶の成長に必要な充分な空間がないため板状
結晶は成長せず、微小のトバモライト結晶が多数生成
し、非常に緻密な組織状態が形成する。このような非常
に緻密な組織状態がみられた場合、その欠陥部の発生時
期はオートクレーブ養生以降と特定される。
[0009] Among the defects such as chips and cracks generated in the ALC during the production process of the ALC, the matrix portion of the fractured surface (actual portion which is not a bubble due to foaming of aluminum powder)
Although there is water, plate-like crystals do not grow because there is not enough space necessary for the growth of tobermorite crystals by autoclaving, and a large number of fine tobermorite crystals are formed to form a very dense structure. When such a very fine structure is observed, the time of occurrence of the defective portion is specified to be after the autoclave curing.

【0010】本発明に係る判定方法は、発生時期がオー
トクレーブ養生以降と特定されるALCの欠陥部の破断
面と正常部を破損させた破断面のマイクロクラックの発
生個数を比較して行うことを特徴とするものである。
[0010] The determination method according to the present invention is performed by comparing the number of generated microcracks in the fractured surface of the defective portion of the ALC identified as having occurred after the autoclave curing with the fractured surface in which the normal portion has been damaged. It is a feature.

【0011】さてマイクロクラックは、前記の卜バモラ
イトの成長に必要な水および空間が存在するため、マイ
クロクラック面にはトバモライト結晶の板状結晶がみら
れる。しかしアルミニウム粉の発泡による気泡、空隙、
残留珪石などの抜け跡とは違い、その形態は主に線状
(唇状)であり、トバモライト結晶の板状結晶がマイク
ロクラック面に対して垂直に成長しており、かつ基底部
からのトバモライト結晶の板状結晶の上方への成長が殆
どみられないのが特徴であって、短いものでは数十μ
m、長いものでは気泡内にまで伸展する数百μmのもの
もある。このマイクロクラックは、グリーンボディの段
階で過負荷が加わらなくても熱歪などの原因により発生
する場合があるので、正常部との比較が必要となる。
Since microcracks have water and space necessary for the growth of tobermorite, plate crystals of tobermorite crystals are found on the microcrack surfaces. However, air bubbles, voids,
Unlike traces such as residual silica, the morphology is mainly linear (lip-like), plate-like tobermorite crystals grow perpendicular to the microcrack plane, and tobermorite from the base. The feature is that almost no growth of the plate-like crystal of the crystal is observed.
m, and some long ones extend several hundred μm into the bubbles. This microcrack may occur due to thermal distortion or the like even if no overload is applied at the stage of the green body, so that it is necessary to compare the microcrack with a normal part.

【0012】すなわち、欠陥部の破断面および欠陥部に
隣接する正常部を破損させた破断面での一定の視野にお
けるマイクロクラックの発生個数を比較することによっ
てその欠陥部にグリーンボディの段階で過負荷が加わっ
たか否かが判定(グリーンボディの段階で過負荷が加わ
っていれば、マイクロクラックの発生が増加していると
考えられる)できる。このことを利用し、ALCのオー
トクレーブ養生以降に発生する欠陥部の発生原因が判定
することができ、この結果対策が有効に講じられる。な
お前記マイクロクラックの観察には公知の手段を用いる
ことができるが走査電子顕微鏡などの光学的観察手段を
用いることが好ましく、またマイクロクラックを観察す
る面は、凍結乾燥により欠陥部の破断面あるいは正常部
を破損させた破断面の内側から人工的に作製した凍結破
断面とすることが望ましい。
That is, by comparing the number of micro-cracks occurring in a fixed field of view in the fractured surface of the defective portion and the fractured surface in which the normal portion adjacent to the defective portion has been damaged, the defective portion is overwhelmed at the green body stage. It can be determined whether or not a load is applied (if overload is applied at the stage of the green body, it is considered that the occurrence of microcracks is increasing). By utilizing this fact, it is possible to determine the cause of the occurrence of the defective portion which occurs after the autoclave curing of the ALC, and as a result, a countermeasure is effectively taken. It should be noted that known means can be used to observe the microcracks, but it is preferable to use an optical observation means such as a scanning electron microscope. It is desirable to use a frozen fractured surface artificially produced from the inside of the fractured surface where the normal part was damaged.

【0013】[0013]

【実施例】以下本発明の実施例を説明する。本発明の実
施例においては、グリーンボディの作製、グリーン
ボディへのせん断歪の負荷、せん断歪を負荷したグリ
ーンボディのオートクレーブ養生、グリーンボディの
段階でせん断歪を負荷した半可塑体の割裂強度試験、
走査電子顕微鏡(以下「SEM」という)によるマイク
ロクラックの観察の工程からなる試験を実施した。以下
に各工程の詳細を示す。
Embodiments of the present invention will be described below. In Examples of the present invention, production of a green body, application of shear strain to the green body, autoclave curing of the green body subjected to the shear strain, splitting strength test of the semi-plastic subjected to the shear strain in the green body stage ,
A test including a process of observing microcracks by a scanning electron microscope (hereinafter, referred to as “SEM”) was performed. The details of each step are shown below.

【0014】グリーンボディの作製 一般的なALCの原料を配合してグリーンスラリーを作
製し、グリーンスラリーを専用の鉄製型枠に支持された
プラスチック容器(10×10×20cm)中に注入
し、鉄製型枠とともに温度制御可能な恒温恒湿器中に静
置し、4.5時間前養生し、グリーンボディを得た。こ
の際に該恒温恒湿器の温度については、予め実操業のグ
リーンスラリー、グリーンボディの温度を経時的に測定
し、その温度に合わせて注入後4.5時間まで制御し、
一方湿度は飽和湿度とした。
Preparation of Green Body A general ALC raw material is blended to prepare a green slurry, and the green slurry is poured into a plastic container (10 × 10 × 20 cm) supported by a dedicated iron formwork. The green body was obtained by allowing the mold to stand together with the mold in a thermostatic oven capable of controlling the temperature for 4.5 hours. At this time, as for the temperature of the thermo-hygrostat, the temperatures of the green slurry and the green body in the actual operation are measured with time in advance, and the temperature is controlled up to 4.5 hours after the injection according to the temperature.
On the other hand, the humidity was set to the saturation humidity.

【0015】グリーンボディへのせん断歪の負荷 4.5時間の前養後、恒温恒湿器から鉄製型枠とともに
グリーンボディを取出し、プラスチック容器を剥がし
て、グリーンボディを10cmの立方体とした(アルミ
ニウム粉による発泡方向[高さ方向]を削った)。つぎ
にオートグラフに固定した専用のせん断治具に10cm
の立方体としたグリーンボディの半分を固定し、残りの
半分をオートグラフに載荷して、せん断歪を破壊点付近
まで無負荷を含め4段階に分けてグリーンボディに負荷
した。オートグラフによるせん断歪の負荷速度は0.5
mm/minとし、載荷方向はグリーンボディの発泡方
向に鉛直方向(すなわち平行する方向)および前記発泡
方向と垂直方向(すなわち直交する方向)との二方向と
した。
Load of Shear Strain on Green Body After pre-cultivation for 4.5 hours, the green body was taken out together with the iron mold from the thermo-hygrostat, and the plastic container was peeled off to make the green body a 10 cm cube (aluminum) The direction of foaming [height direction] was reduced. Next, a special shearing jig fixed to the autograph is 10cm.
The half of the green body which was made into a cube was fixed, and the other half was loaded on the autograph, and the shear strain was applied to the green body in four stages including no load until near the breaking point. Loading rate of shear strain by autograph is 0.5
mm / min, and the loading direction was two directions: a direction perpendicular to the foaming direction of the green body (that is, a direction parallel to the green body) and a direction perpendicular to the foaming direction (that is, a direction perpendicular to the green body).

【0016】せん断歪を負荷したグリーンボディのオ
ートクレーブ養生 せん断歪を負荷したグリーンボディを操業のオートクレ
ーブで養生し、半可塑体を調製した。
Autoclave curing of green body loaded with shear strain The green body loaded with shear strain was cured in an operating autoclave to prepare a semi-plastic.

【0017】グリーンボディの段階でせん断歪を負荷
した半可塑体の割裂強度試験 グリーンボディの段階でせん断歪を加えた半可塑体を7
0℃に設定した乾燥機に入れて24時間乾燥させた。乾
燥後、専用の治具を用いて該オートグラフにより割裂強
度試験を行い、オートクレーブ養生後の強度の低下を確
認した。割裂強度試験の載荷方向は、半可塑体の段階で
のせん断歪負荷方向と同様とし、せん断面の上辺と下辺
を丸鋼で挟持して載荷し、破壊強度を測定した。
Cleavage strength test of semi-plastic with shear strain applied in green body stage Semi-plastic with shear strain applied in green body stage
It was placed in a dryer set to 0 ° C. and dried for 24 hours. After drying, a split strength test was performed by the autograph using a special jig, and a decrease in strength after autoclaving was confirmed. The loading direction of the split strength test was the same as the shear strain loading direction at the stage of the semi-plastic, and the upper and lower sides of the shear surface were sandwiched and loaded with round steel, and the breaking strength was measured.

【0018】SEMによるマイクロクラックの観察 SEM観察用の切片試料としては、先ず半可塑体の段階
で載荷した側のALCの載荷面側から角柱を切り出し、
これに水を含浸させて約−50℃で数時間凍結後に割裂
破断面内側から凍結破断面を作り、これを真空乾燥して
SEM観察用の切片試料とした。マイクロクラックの観
察は、100倍画像(約1.17mm)を1視野と
し、1切片試料について無作為に6視野を選び、100
倍画像内を倍率1500倍以上で観察しマイクロクラッ
クの発生個数を調べた。なおSEMによるマイクロクラ
ックの観察は無負荷を含めた4段階ともに3試料とし、
グリーンボディの段階で破断に至った試料はSEM観察
対象外とした。
Observation of Microcracks by SEM As a section sample for SEM observation, first, a prism was cut out from the loading surface side of the ALC on the side loaded at the semi-plastic stage.
This was impregnated with water and frozen at about −50 ° C. for several hours to form a frozen fractured surface from the inside of the fractured fractured surface, which was vacuum-dried to obtain a section sample for SEM observation. Observation of microcracks was performed using a 100-fold image (approximately 1.17 mm 2 ) as one visual field, and 6 visual fields were selected at random for one section sample.
The inside of the magnified image was observed at a magnification of 1500 times or more, and the number of generated microcracks was examined. Observation of microcracks by SEM was performed in three samples for all four stages including no load.
Samples that broke at the stage of the green body were excluded from SEM observation.

【0019】図1および図2にオートクレーブ養生後の
割裂強度試験の結果を示した。図1よりせん断歪を第1
段階、第2段階まで加えた場合ではオートクレーブ養生
後の割裂強度は無負荷と同程度であり、強度の低下はみ
られていない。一方第3段階までせん断歪を加えるとオ
ートクレーブ養生後の割裂強度は無負荷に比べ著しく低
下し、グリーンボディの段階で破断に至るものもあった
(オートクレーブ養生後の割裂強度が0の試料)。
FIGS. 1 and 2 show the results of a split strength test after curing in an autoclave. According to FIG.
In the case of adding up to the second stage and the second stage, the splitting strength after the autoclave curing was almost the same as that of no load, and no decrease in the strength was observed. On the other hand, when the shear strain was applied to the third stage, the splitting strength after the autoclave curing was remarkably reduced as compared with no load, and in some cases, the splitting occurred at the green body stage (a sample having a splitting strength after the autoclave curing of 0).

【0020】図3にSEMによるマイクロクラックの観
察結果を示した。図3よりグリーンボディの段階で負荷
するせん断歪が大きくなるとマイクロクラックの発生個
数も増加する傾向にあり、オートクレーブ養生後の割裂
強度の低下がみられた第3段階では顕著に増加した。し
たがって、マイクロクラックの発生個数を測定して正常
部を破損させた破断面におけるマイクロクラックの個数
と比較すれば過負荷の有無が判明し、これを参考にして
対策を講ずることができる。
FIG. 3 shows the result of observation of microcracks by SEM. As shown in FIG. 3, when the shear strain applied in the green body stage increases, the number of generated microcracks also tends to increase, and in the third stage in which the splitting strength after autoclave curing was reduced was significantly increased. Therefore, if the number of generated microcracks is measured and compared with the number of microcracks in the fractured surface where the normal part is damaged, the presence or absence of overload is found, and countermeasures can be taken with reference to this.

【0021】[0021]

【発明の効果】以上述べた通り本発明に係るALCに発
生する欠陥部の発生原因の判定方法を用いることによっ
て、オートクレーブ養生以降に発生する欠け、割れなど
の欠陥部の対策が有効に講じられ、ALCの歩留まりを
向上させることができる。
As described above, by using the method for judging the cause of the occurrence of a defective portion generated in an ALC according to the present invention, measures for a defective portion such as a chip or a crack generated after autoclave curing can be effectively taken. , ALC yield can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】オートクレーブ養生後の割裂強度試験の結果
(グリーンボディの段階でのせん断歪の負荷方向:発泡
方向に垂直方向の場合)を示すグラフである。
FIG. 1 is a graph showing the results of a split strength test after curing in an autoclave (loading direction of shear strain at the stage of a green body: perpendicular to the foaming direction).

【図2】オートクレーブ養生後の割裂強度試験の結果
(グリーンボディの段階でのせん断歪の負荷方向:発泡
方向に鉛直方向の場合)を示すグラフである。
FIG. 2 is a graph showing the results of a splitting strength test after curing in an autoclave (loading direction of shear strain at the stage of green body: vertical direction in foaming direction).

【図3】走査電子顕微鏡によるマイクロクラックの観察
結果を示すグラフである。
FIG. 3 is a graph showing observation results of microcracks by a scanning electron microscope.

【図4】マイクロクラックが発生したマトリックス部の
粒子構造を走査電子顕微鏡(1000倍)により示す写
真である。
FIG. 4 is a photograph showing the particle structure of a matrix portion where a microcrack has occurred, using a scanning electron microscope (× 1000).

【図5】マイクロクラックが発生した気泡部の粒子構造
を走査電子顕微鏡(1000倍)により示す写真であ
る。
FIG. 5 is a photograph showing a particle structure of a bubble portion where a microcrack has occurred, by a scanning electron microscope (× 1000).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ALCに発生する欠陥部であって、該A
LCのオートクレーブ養生以降に発生した欠陥部と破断
面と正常部を破損させた破断面を観察して、両破断面に
おけるマイクロクラックの発生個数を比較して実施する
ことを特徴とするALCに発生する欠陥部の発生原因の
判定方法。
1. A defect which occurs in ALC,
Observing the defect, fractured surface, and the fractured surface that damaged the normal part that occurred after the LC autoclave curing, and comparing the number of microcracks that occurred in both fractured surfaces, the ALC was generated. For determining the cause of the occurrence of defective parts.
JP17225098A 1998-06-04 1998-06-04 Judgement method of cause of generation of defect on alc Pending JPH11352123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17225098A JPH11352123A (en) 1998-06-04 1998-06-04 Judgement method of cause of generation of defect on alc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17225098A JPH11352123A (en) 1998-06-04 1998-06-04 Judgement method of cause of generation of defect on alc

Publications (1)

Publication Number Publication Date
JPH11352123A true JPH11352123A (en) 1999-12-24

Family

ID=15938416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17225098A Pending JPH11352123A (en) 1998-06-04 1998-06-04 Judgement method of cause of generation of defect on alc

Country Status (1)

Country Link
JP (1) JPH11352123A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003035657A (en) * 2001-07-25 2003-02-07 Sumitomo Kinzoku Kozan Siporex Kk System for diagnosing degradation of lightweight cellular concrete panel
KR101105602B1 (en) 2009-06-22 2012-01-19 단국대학교 산학협력단 Apparatus and method for inspecting inferiorities of an Autoclaved Lightweight Concrete block

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003035657A (en) * 2001-07-25 2003-02-07 Sumitomo Kinzoku Kozan Siporex Kk System for diagnosing degradation of lightweight cellular concrete panel
KR101105602B1 (en) 2009-06-22 2012-01-19 단국대학교 산학협력단 Apparatus and method for inspecting inferiorities of an Autoclaved Lightweight Concrete block

Similar Documents

Publication Publication Date Title
Janeiro et al. Experimental study of the cracking behavior of specimens containing inclusions (under uniaxial compression)
RU2122531C1 (en) METHOD OF PREPARING CONCRETE HAVING COMPRESSION STRENGTH OF AT LEAST 400 MPa AND CRACKING ENERGY OF AT LEAST 1000 Y/m2, MIXTURE FOR PREPARING THEREOF, AND PRODUCTS MADE FROM SAID CONCRETE
Kim et al. Effects of polyvinyl alcohol on aggregate-paste bond strength and the interfacial transition zone
Peled et al. Processing effects in cementitious composites: extrusion and casting
Šavija et al. Autogeneous healing and chloride ingress in cracked concrete
Bisschop et al. Effect of aggregate size and paste volume on drying shrinkage microcracking in cement-based composites
Al-Kadhimi et al. An accelerated carbonation procedure for studies on concrete
JPH11352123A (en) Judgement method of cause of generation of defect on alc
JP2010516612A (en) Gypsum wallboard including sound absorbing tiles
Wang et al. Experimental study on behavior of mortar-aggregate interface after elevated temperatures
CN115824801A (en) Method for detecting mechanical property of autoclaved aerated concrete block masonry
JP4628584B2 (en) Lightweight cellular concrete
Varghese et al. Studies on behavior of fire affected fiber reinforced concrete
JPH10267920A (en) Specifying method of occurrence time of defective part which occurs in alc
Garrett et al. The fatigue hardening behaviour of cement-based materials
Kucharczyková et al. Pilot Study on Shrinkage and Fracture of Materials Based on the Alkali-Activated Slag: Influence of Curing Regime
Vu et al. Statistical Size Effects on Compressive Strength and Mechanical Behavior of Concrete
Ranachowski et al. Study of factors determinant of siliceous electrical porcelain resistance to structural degradation
EP4201913A1 (en) A cementitious product
Ranachowski et al. Influence of microstructure on the properties of siliceous electrical porcelain
Poullain et al. Variability Assessment of the Compressive and Tensile Strength of Fibred Earthen Composites
Lunardi et al. Synergistic effect of carbonation and dry–wet cycles on the adhesion, elastic modulus, and dimensional stability of rendering mortars–A multiscale approach
Brameshuber et al. Prefabricated thin layers of mortar for masonry
G Badagha et al. Sustainable experimental investigation of mortar adopting industrial waste considering environmental effect
Tasdemir et al. Influence of microsilica on the strain softening response of concrete