JPH11352055A - Optical liquid refractive index measuring apparatus - Google Patents

Optical liquid refractive index measuring apparatus

Info

Publication number
JPH11352055A
JPH11352055A JP10458199A JP10458199A JPH11352055A JP H11352055 A JPH11352055 A JP H11352055A JP 10458199 A JP10458199 A JP 10458199A JP 10458199 A JP10458199 A JP 10458199A JP H11352055 A JPH11352055 A JP H11352055A
Authority
JP
Japan
Prior art keywords
light
refractive index
liquid
incident
optical member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10458199A
Other languages
Japanese (ja)
Inventor
Ichiro Takatsu
一郎 高津
Jiro Toyama
二郎 外山
Takahisa Saeki
考央 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP10458199A priority Critical patent/JPH11352055A/en
Publication of JPH11352055A publication Critical patent/JPH11352055A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a small-sized optical liquid refractive index measuring apparatus, high in resolving power and which is not affected by the fluctuations of a light source. SOLUTION: This optical liquid refractive index measuring apparatus uses a transparent crystal optical member 12. For example, the transparent crystal optical member 12 comprises a lithium niobate single crystal and has a bottom surface 12c coming into contact with the surface of a liquid 1 to be measured with a refractive index n1 , the incident surface 12a forming a predetermined angle with respect to the bottom surface 12c and the emitting surface 12b provided on a side opposed to the incident surface 12a, so as to form a predetermined angle with respect to the bottom surface 12c. Furthermore, the crystal optical member 12 has a double refractive index forming a discontinuous interface, with respect to the refractive index at the boundary surface of the bottom surface 12c and the liquid 1 to be measured. When light is made incident on the incident surface 12a of the transparent crystal optical member 12 from a light source 14, it passes through the transparent crystal optical member 12 to be reflected by the boundary surface of the bottom surface 12c and the liquid 1 to be measured to be separated into a vertical polarized component light 1s and a horizontal polarized component light 1p , and these lights are emitted from the emitting surface 12b. Light detection parts 22, 24 detect these polarized lights, and these signals are processed by a signal processor 26 to calculate the refractive index n1 of the liquid 1 to be measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液体の屈折率を測
定する光学式液体屈折率測定装置に関する。より特定的
には、本発明は、偏光を用いて被測定液体の屈折率を測
定する場合、簡単な構成で、測定感度(精度)を向上さ
せ得る、光学式液体屈折率測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical liquid refractive index measuring device for measuring the refractive index of a liquid. More specifically, the present invention relates to an optical liquid refractive index measuring device that can improve measurement sensitivity (accuracy) with a simple configuration when measuring the refractive index of a liquid to be measured using polarized light.

【0002】[0002]

【従来の技術】液体製造工程におけるプロセス管理や、
燃料成分に応じた自動車など車両における燃料制御、石
油精製工程における品質管理などの分野において、液体
の品質管理の1方法として、液体の屈折率を測定するこ
とが多い。このような液体の屈折率の測定においては、
屈折率測定の対象となる液体を試料としてサンプリング
することなく、実時間で、瞬時または短時間で、連続的
かつ自動的に行われることが望ましい。
2. Description of the Related Art Process management in a liquid manufacturing process,
BACKGROUND ART In the fields of fuel control in vehicles such as automobiles according to fuel components and quality control in a petroleum refining process, the refractive index of a liquid is often measured as one method of quality control of the liquid. In measuring the refractive index of such a liquid,
It is desirable that the measurement be performed continuously and automatically in real time, instantaneously or in a short time without sampling the liquid to be measured for the refractive index as a sample.

【0003】液体の屈折率の測定はこれまで、アッベ屈
折率計のように液体と固体との境界面を顕微鏡で観測
し、全反射条件を求めて行う方法が知られている。しか
しながら、そのような顕微鏡を用いた液体の屈折率の測
定方法は、実時間測定ではないし、瞬時測定でもなく、
自動的な測定でもない。したがって、このような顕微鏡
を用いた測定方法は工程内の連続的な液体の屈折率の測
定には適していない。
[0003] A method of measuring the refractive index of a liquid by observing the interface between the liquid and the solid with a microscope and obtaining the total reflection condition as in an Abbe refractometer has been known. However, the method of measuring the refractive index of a liquid using such a microscope is not a real-time measurement, not an instantaneous measurement,
It is not an automatic measurement. Therefore, such a measurement method using a microscope is not suitable for continuous measurement of the refractive index of a liquid in a process.

【0004】そこで、液体をサンプリングすることな
く、実時間で、瞬時または短時間で、連続的かつ自動的
に液体の屈折率を測定する方法が種々提案されている。
Therefore, various methods have been proposed for continuously and automatically measuring the refractive index of a liquid in real time, instantaneously or in a short time without sampling the liquid.

【0005】そのような方法の1つとして、屈折率を測
定する液体の屈折率より高い屈折率を持つ光学ガラス製
の光ガイド(光導波路:光ファイバ)を液中に浸漬し、
光ガイドに半導体レーザまたは光ダイオードの光を導入
し、光ガイド内を伝搬する導波光の強度が光ガイドと液
体の境界面の屈折率差で変化することを利用した液体の
屈折率測定方法が種々提案されている。
As one of such methods, a light guide (optical waveguide: optical fiber) made of an optical glass having a refractive index higher than that of a liquid whose refractive index is to be measured is immersed in the liquid.
A method of measuring the refractive index of a liquid using a method in which light from a semiconductor laser or a photodiode is introduced into a light guide and the intensity of guided light propagating in the light guide changes due to a refractive index difference between an optical guide and a liquid. Various proposals have been made.

【0006】しかしながら、このような方法で実用化さ
れているものは少ない。その理由は下記のごとく種々考
えられる。第1の理由は、半導体レーザ、光ダイオード
などの光学素子の特性が長期的な動作において不安定な
ため、長期的に安定した液体の屈折率の測定が困難であ
ることである。第2の理由としては、半導体レーザ、光
ダイオードなどの半導体素子は温度変化によって特性が
大きく変化する。したがって、導波光強度だけでは必要
な温度範囲で希望する測定精度が確保できない。この問
題を解決する方法としては、半導体レーザの周囲の温度
を測定して温度変化に起因する半導体レーザの出力(利
得)を調整する方法も考えられるが、測定装置の価格が
高くなるほか、装置寸法が大きくなる。温度補償をしな
い場合は、安定に測定できる周囲温度条件が制約され、
製造工程の測定においてプラントの現場で液体の屈折率
を測定するような用途には不向きとなる。第3の理由と
しては、光ガイドと屈折率を測定すべき液体との屈折率
差が小さいため、必要とされる屈折率測定範囲で十分な
分解能が得られ難いといった問題があることである。
However, few such methods have been put to practical use. The reasons can be considered variously as described below. The first reason is that it is difficult to measure the refractive index of a liquid that is stable over a long period of time because characteristics of optical elements such as a semiconductor laser and a photodiode are unstable during long-term operation. The second reason is that the characteristics of semiconductor elements such as semiconductor lasers and photodiodes greatly change due to temperature changes. Therefore, a desired measurement accuracy cannot be ensured in a required temperature range only by the guided light intensity. As a method of solving this problem, a method of measuring the temperature around the semiconductor laser and adjusting the output (gain) of the semiconductor laser due to the temperature change can be considered. The dimensions increase. Without temperature compensation, the ambient temperature conditions under which stable measurement can be performed are restricted.
It is not suitable for use in measuring the refractive index of a liquid at a plant site in the measurement of a manufacturing process. The third reason is that there is a problem that it is difficult to obtain a sufficient resolution in a required refractive index measurement range because the difference in refractive index between the light guide and the liquid whose refractive index is to be measured is small.

【0007】上述した問題を克服し、特に、光源の出力
の強さの変化に影響されないようにすることを意図し
て、偏光を用いて屈折率を測定する技術が、たとえば、
特開平1−250039号公報に開示されている。特開
平1−250039号公報の図1を参照してその技術を
述べる。プリズム3の底部を屈折率を測定する対象の液
体4の境界面に置き、光源1からプリズム3の入射面に
光を入射させ、プリズム3の底面と液体4との境界面に
おいて入射光が反射してプリズム3の出射面から出射し
た光を検光子6で受光する。検光子6からの光は水平偏
光成分光8と垂直偏光成分光9となってそれぞれ光検出
器10、11に入射し、光検知器10、11においてそ
れぞれ垂直偏光成分光9と水平偏光成分光8とが別個独
立して検知される。演算回路においてこれら2つの偏光
成分の強度の比などから液体の屈折率を算出する。この
ように、特開平1−250039号公報の開示されてい
る技術は、プリズム3と液体4との境界面からの反射光
を検光子6によって垂直偏光成分光9と水平偏光成分光
8とに分離し、それらの強度比から被測定液体の屈折率
を求めるので、測定用光源1の変動の影響を受けない安
定な屈折率測定が可能である。
Techniques for measuring the index of refraction using polarized light with the aim of overcoming the above-mentioned problems, and in particular to be insensitive to changes in the intensity of the output of the light source, include, for example,
It is disclosed in Japanese Patent Application Laid-Open No. 1-250039. The technique will be described with reference to FIG. 1 of JP-A-1-250039. The bottom of the prism 3 is placed on the boundary surface of the liquid 4 whose refractive index is to be measured, and light is incident on the incident surface of the prism 3 from the light source 1, and the incident light is reflected on the boundary surface between the bottom surface of the prism 3 and the liquid 4. The light emitted from the exit surface of the prism 3 is received by the analyzer 6. The light from the analyzer 6 becomes the horizontal polarization component light 8 and the vertical polarization component light 9 and is incident on the photodetectors 10 and 11, respectively. 8 are detected separately and independently. The arithmetic circuit calculates the refractive index of the liquid from the ratio of the intensities of these two polarization components. As described above, according to the technique disclosed in Japanese Patent Application Laid-Open No. 1-250039, the reflected light from the boundary surface between the prism 3 and the liquid 4 is converted into the vertically polarized light component 9 and the horizontally polarized light component 8 by the analyzer 6. Since the liquids are separated and the refractive index of the liquid to be measured is obtained from their intensity ratio, stable refractive index measurement not affected by the fluctuation of the measurement light source 1 can be performed.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、特開平
1−250039号公報に開示されている技術は、プリ
ズム3と検光子6との2つの光学素子を用いて、プリズ
ム3の底面と液体4との境界面で入射光を反射させ、さ
らにその反射光を検光子6において垂直偏光成分光9と
水平偏光成分光8とに分離しているので、液体屈折率測
定装置の構造が複雑になり、組み立て工程も複雑にな
る。特開平1−250039号公報に開示されている液
体屈折率測定装置は高価格になり、規模も大きくなり、
用途が限定されるという問題がある。
However, the technique disclosed in Japanese Patent Application Laid-Open No. 1-250039 is based on the fact that the prism 4 and the analyzer 6 are used to form the bottom surface of the prism 3 and the liquid 4 using two optical elements. Since the incident light is reflected at the boundary surface of and the reflected light is separated into the vertically polarized light component 9 and the horizontally polarized light component 8 in the analyzer 6, the structure of the liquid refractive index measuring device becomes complicated, The assembly process is also complicated. The liquid refractive index measurement device disclosed in Japanese Patent Application Laid-Open No. 1-250039 is expensive, has a large scale,
There is a problem that applications are limited.

【0009】また、特開平1−250039号公報に開
示された技術は、検光子6の特性に影響され、屈折率測
定誤差が生ずる可能性がある。
The technique disclosed in Japanese Patent Application Laid-Open No. 1-250039 is affected by the characteristics of the analyzer 6 and may cause a refractive index measurement error.

【0010】さらに、特開平1−250039号公報に
開示された技術では、垂直偏光成分光と水平偏光成分光
との分離が十分でなく、十分高い分解能が得られない場
合があり、被測定液体の屈折率の測定精度が高くできな
い場合がある。
Further, in the technique disclosed in Japanese Patent Application Laid-Open No. 1-250039, the vertical polarization component light and the horizontal polarization component light may not be sufficiently separated, and a sufficiently high resolution may not be obtained. Measurement accuracy of the refractive index cannot be increased.

【0011】本発明の目的は、低価格であり、装置構成
が大規模化せず、組み立てが複雑にならず、液体をサン
プリングすることなく、実時間で、瞬時または短時間
で、連続的かつ自動的に液体の屈折率を測定可能な、光
学式液体屈折率測定装置を提供することにある。また本
発明の他の目的は、室温(または常温)の環境におい
て、高い分解能を示し、かつ、測定精度を高めることが
可能な光学式液体屈折率測定装置を提供することにあ
る。さらに本発明の目的は、光源の変動の影響を受けな
い光学式液体屈折率測定装置を提供することにある。
It is an object of the present invention to provide a low-cost, non-scalable device configuration, no complicated assembly, no liquid sampling, real-time, instantaneous or short-time, continuous and An object of the present invention is to provide an optical liquid refractive index measuring device capable of automatically measuring the refractive index of a liquid. It is another object of the present invention to provide an optical liquid refractive index measuring device which can exhibit high resolution in a room temperature (or normal temperature) environment and can increase measurement accuracy. It is a further object of the present invention to provide an optical liquid refractive index measuring device which is not affected by fluctuations of the light source.

【0012】また本発明の目的は、簡単な構成の光学式
液体屈折率測定装置を提供することにある。
Another object of the present invention is to provide an optical liquid refractive index measuring device having a simple structure.

【0013】さらに本発明の目的は、測定レンジを複数
選択可能な光学式液体屈折率測定装置を提供することに
ある。
It is a further object of the present invention to provide an optical liquid refractive index measuring device capable of selecting a plurality of measuring ranges.

【0014】[0014]

【課題を解決するための手段】本発明の第1の観点によ
れば、所定の屈折率を有する被測定液体の表面と接触す
る底面(12c)と、該底面と所定の角度をなす入射面
(12a)と、前記底面と所定の角度をなし前記入射面
と対向する側に設けられた出射面(12b)とを有し、
前記底面(12c)と前記被測定液体との境界面におい
て屈折率について不連続界面をなす複屈折率を有する結
晶光学部材(12)と、該結晶光学部材の前記入射面に
所定の角度で光を入射させる入射光提供手段(14,1
6)と、前記入射光提供手段から前記結晶光学部材の入
射面(12a)に入射され、前記結晶光学部材(12)
の内部を伝搬し、前記結晶光学部材の底面(12c)と
前記被測定液体との境界面において反射し、第1の偏光
成分と第2の偏光成分とに分離され、前記結晶光学部材
の出射面(12b)から出射した第1の偏光成分と第2
の偏光成分とを検出する第1および第2の偏光成分検出
手段(22、24)と、該第1および第2の偏光成分検
出手段で検出した信号を演算して前記被測定液体の屈折
率を算出する屈折率算出手段(26)とを有する、光学
式液体屈折率測定装置が提供される。
According to a first aspect of the present invention, a bottom surface (12c) in contact with a surface of a liquid to be measured having a predetermined refractive index, and an incident surface forming a predetermined angle with the bottom surface. (12a), and an emission surface (12b) that forms a predetermined angle with the bottom surface and is provided on a side facing the incident surface,
A crystal optical member (12) having a birefringence that forms a discontinuous interface with respect to a refractive index at a boundary surface between the bottom surface (12c) and the liquid to be measured, and light at a predetermined angle on the incident surface of the crystal optical member. Incident light providing means (14, 1)
6) the incident light from the incident light providing means is incident on the incident surface (12a) of the crystal optical member, and the crystal optical member (12)
And reflected at the boundary surface between the bottom surface (12c) of the crystal optical member and the liquid to be measured, separated into a first polarization component and a second polarization component, and emitted from the crystal optical member. The first polarized light component emitted from the surface (12b) and the second polarized light component
First and second polarization component detection means (22, 24) for detecting the polarization component of the liquid, and the signals detected by the first and second polarization component detection means for calculating the refractive index of the liquid to be measured. And a refractive index calculating means (26) for calculating the refractive index of the liquid.

【0015】好適には、前記入射光線提供手段からの光
が前記結晶光学部材の入射面(12a)に直交状態で入
射し、前記結晶光学部材の出射面(12b)は、前記被
測定液体の表面と接触し屈折率の不連続界面をなす前記
結晶光学部材の底面の該不連続界面から反射した2つの
反射偏光成分のうち少なくとも一方の反射偏光成分光と
直交する。
Preferably, the light from the incident light beam providing means is incident on the incident surface (12a) of the crystal optical member in an orthogonal state, and the light exit surface (12b) of the crystal optical member is incident on the liquid to be measured. At least one of the two reflected polarized light components reflected from the discontinuous interface on the bottom surface of the crystal optical member which is in contact with the surface and forms a discontinuous interface of the refractive index is orthogonal to the reflected polarized component light.

【0016】また好適には、前記第1の偏光成分は垂直
偏光成分光(ls )であり、前記第2の偏光成分は前記
第1の偏光成分光と直交する水平偏光成分光(lp )で
ある。
Preferably, the first polarized light component is a vertically polarized light component (l s ), and the second polarized light component is a horizontal polarized light component (l p) orthogonal to the first polarized light component. ).

【0017】好適には、前記入射光線と前記反射偏光光
線とを含む面と、前記結晶光学部材の光軸とが平行であ
る。
Preferably, a plane including the incident light beam and the reflected polarized light beam is parallel to an optical axis of the crystal optical member.

【0018】好適には、複屈折率を有する前記結晶光学
部材が一軸結晶の単結晶基板である。また好適には、前
記結晶光学部材はニオブ酸リチウム単結晶である。
Preferably, the crystal optical member having a birefringence is a uniaxial single crystal substrate. Preferably, the crystal optical member is a lithium niobate single crystal.

【0019】好適には、前記光源より発せられる光が全
偏光成分を含む。
Preferably, the light emitted from the light source contains a total polarization component.

【0020】前記入射光提供手段(14,16)は、全
偏光成分を含む光を放射する光源(14)と、該光源か
らの光を前記結晶光学部材の入射面(12a)に所定の
角度で入射させる導波回路(16)とを有しうる。
The incident light providing means (14, 16) includes a light source (14) for emitting light containing all polarized light components, and a light from the light source which is incident on the incident surface (12a) of the crystal optical member at a predetermined angle. And a waveguide circuit (16) for incidence.

【0021】前記第1の偏光成分検出手段(18,2
2)は、前記結晶光学部材の出射面(12b)から出射
する第1の反射偏光成分を案内する第1の導波回路(1
8)と、該第1の導波回路からの光を受け入れて該受光
強度に応じた電気信号を発する第1の受光手段(22)
とを有し、前記第2の偏光成分検出手段(20,24)
は、前記結晶光学部材の出射面(12b)から出射する
第2の反射偏光成分を案内する第2の導波回路(20)
と、該第2の導波回路からの光を受け入れて該受光強度
に応じた電気信号を発する第2の受光手段(24)とを
有する。
The first polarized light component detecting means (18, 2)
2) a first waveguide circuit (1) for guiding a first reflected polarization component emitted from the emission surface (12b) of the crystal optical member;
8) and a first light receiving means (22) for receiving light from the first waveguide circuit and emitting an electric signal corresponding to the received light intensity.
And the second polarization component detecting means (20, 24).
A second waveguide circuit (20) for guiding a second reflected polarization component emitted from the emission surface (12b) of said crystal optical member.
And a second light receiving means (24) for receiving light from the second waveguide circuit and emitting an electric signal according to the received light intensity.

【0022】好適には、前記第1の導波回路はマルチモ
ード光ファイバを有し、前記第2の導波回路はマルチモ
ード光ファイバを有する。
Preferably, the first waveguide has a multi-mode optical fiber, and the second waveguide has a multi-mode optical fiber.

【0023】前記屈折率算出手段は、前記第1の受光手
段の検出信号と前記第2の受光手段の検出信号との強度
比率、または、検出信号全体の強度と前記第1の受光手
段の検出信号の強度との比率または検出信号全体の強度
と前記第2の受光手段の検出信号の強度との比率から、
前記被測定液体の屈折率を算出する。
[0023] The refractive index calculating means may include an intensity ratio between a detection signal of the first light receiving means and a detection signal of the second light receiving means, or an intensity of the whole detection signal and a detection of the first light receiving means. From the ratio of the intensity of the signal or the ratio of the intensity of the entire detection signal and the intensity of the detection signal of the second light receiving means,
The refractive index of the liquid to be measured is calculated.

【0024】前記屈折率算出手段は、前記第1の受光手
段の検出信号と前記第2の受光手段の検出信号との和と
しての検出信号全体の強度と前記第1の受光手段の検出
信号の強度との比率または前記検出信号全体の強度と前
記第2の受光手段の検出信号の強度との比率から、前記
被測定液体の屈折率を算出する。
[0024] The refractive index calculating means may calculate the intensity of the entire detection signal as the sum of the detection signal of the first light receiving means and the detection signal of the second light receiving means, and the detection signal of the first light receiving means. The refractive index of the liquid to be measured is calculated from the ratio of the intensity or the ratio of the intensity of the entire detection signal to the intensity of the detection signal of the second light receiving unit.

【0025】本発明の第2の観点によれば、入射面(3
2a)、屈折率不連続界面(32c)、全反射面(32
b)を有し、前記屈折率不連続界面(32c)が被測定
液体(1)と接触し、該被測定液体(1)の接触界面で
の屈折率の不連続界面をなし、該不連続界面での反射光
を前記入射面(32a)方向へ向けて反射するような角
度で前記全反射面(32c)を設けた、複屈折率を有す
る結晶光学部材(32)と、該結晶光学部材の前記入射
面に所定の角度で光を入射させる入射光提供手段(3
4,36)と、前記入射光提供手段から前記結晶光学部
材の入射面(32a)に入射され、前記結晶光学部材
(32)の内部を透過し、前記結晶光学部材の前記屈折
率不連続界面(32c)と前記被測定液体(1)との境
界面において反射して第1の偏光成分と第2の偏光成分
とに分離され、さらに、前記全反射面(32b)におい
て反射されて前記結晶光学部材の前記入射面(32a)
から出射した第1の偏光成分と第2の偏光成分とを検出
する第1および第2の偏光成分検出手段(38:44,
40:42)と、該第1および第2の偏光成分検出手段
で検出した信号を演算して前記被測定液体の屈折率を算
出する屈折率算出手段(46)と、を具備する光学式液
体屈折率測定装置が提供される。
According to a second aspect of the present invention, the entrance surface (3
2a), a discontinuous refractive index interface (32c), a total reflection surface (32
b) wherein the discontinuous refractive index interface (32c) is in contact with the liquid to be measured (1) and forms a discontinuous interface of the refractive index at the contact interface of the liquid to be measured (1); A crystal optical member (32) having a birefringence index, wherein the total reflection surface (32c) is provided at an angle such that light reflected at the interface is reflected toward the incident surface (32a); Incident light providing means (3) for causing light to enter the incident surface at a predetermined angle.
4, 36), from the incident light providing means, is incident on the incident surface (32a) of the crystal optical member, passes through the inside of the crystal optical member (32), and has the discontinuous refractive index interface of the crystal optical member. The crystal is reflected at the boundary between the liquid crystal (32c) and the liquid to be measured (1), is separated into a first polarized light component and a second polarized light component, and is further reflected at the total reflection surface (32b). The incident surface (32a) of the optical member
First and second polarization component detecting means (38:44, detecting the first polarization component and the second polarization component emitted from the
40:42) and a refractive index calculating means (46) for calculating a refractive index of the liquid to be measured by calculating signals detected by the first and second polarized light component detecting means. A refractive index measurement device is provided.

【0026】好適には、前記透明結晶光学部材(32)
の前記被測定液体(1)と接触し屈折率の不連続界面を
なす前記屈折率不連続界面(32c)と、該不連続界面
からの2つの反射光を前記透明結晶光学部材内へ全反射
する前記全反射面(32b)とのなす角度が直角であ
る。
Preferably, the transparent crystal optical member (32)
The refractive index discontinuous interface (32c) which is in contact with the liquid to be measured (1) to form a discontinuous refractive index interface; and two reflected lights from the discontinuous interface are totally reflected into the transparent crystal optical member. The angle formed with the total reflection surface (32b) is a right angle.

【0027】また好適には、前記光源(34)からの光
線の光軸と、前記透明結晶光学部材(32)光学軸とが
平行である。
Preferably, the optical axis of the light beam from the light source (34) is parallel to the optical axis of the transparent crystal optical member (32).

【0028】また、前記光源(34)からの光線の光軸
と、前記光源からの光線が入射する前記透明結晶光学部
材(32)の入射面(32a)とのなす角度が直角であ
る。
The angle between the optical axis of the light beam from the light source (34) and the incident surface (32a) of the transparent crystal optical member (32) on which the light beam from the light source is incident is a right angle.

【0029】好適には、前記光源(34)からの光が前
記透明結晶光学部材(32)に入射する前記入射面(3
2a)と、前記透明結晶光学部材(32)から出射する
前記2種の反射光(lp 、lS )の出射面とが一致し、
前記入射面(32a)への入射光線(li )の光軸と、
前記2種の反射光(lp 、lS )の光軸とがほぼ平行し
ている。
Preferably, the light from the light source (34) is incident on the transparent crystal optical member (32).
And 2a), said transparent crystal the two reflected light emitted from the optical member (32) (l p, and the exit surface of the l S) match,
And the optical axis of the incident light to the incident surface (32a) (l i),
The optical axes of the two types of reflected light (l p , l s ) are substantially parallel.

【0030】前記入射光提供手段(34,36)および
前記第1および第2の偏光成分検出手段(38:44,
40:42)が、第1〜第3の光ファイバを有し、これ
らの光ファイバが前記結晶光学部材(32)の前記入射
面(32a)を指向している。
The incident light providing means (34, 36) and the first and second polarization component detecting means (38:44,
40:42) have first to third optical fibers, and these optical fibers are directed to the incident surface (32a) of the crystal optical member (32).

【0031】本発明の第3の観点によれば、入射面(3
2a)、該入射面に隣接し前記入射面と所定の角度をな
す出射面(52d)と、前記入射面と前記出射面に臨み
それぞれ前記入射面と所定の角度をなす隣接したと第1
および第2の屈折率不連続界面(52b,52c)を有
し、前記第1および第2の屈折率不連続界面が被測定液
体(1)と接触して該被測定液体(1)の接触界面での
屈折率の不連続界面をなし、該不連続界面での反射光を
前記出射面(52d)へ向けて反射する、複屈折率を有
する結晶光学部材(52)と、該結晶光学部材の前記第
1および第2の屈折率不連続界面に光を入射させる第1
および第2の入射光提供手段(54:64、55:6
5)と、前記第1および第2の入射光提供手段から前記
結晶光学部材の入射面(52a)に入射され、前記結晶
光学部材(52)の内部を透過し、前記結晶光学部材の
前記第1および第2の屈折率不連続界面(52b,52
c)と前記被測定液体(1)との境界面において反射し
て第1の偏光成分と第2の偏光成分とに分離され、前記
出射面(52d)から出射した第1の偏光成分と第2の
偏光成分とを検出する第1および第2の偏光成分検出手
段(56:58,57:59)と、該第1および第2の
偏光成分検出手段で検出した信号を演算して前記被測定
液体の屈折率を算出する屈折率算出手段(60)と、前
記第1および第2の入射光提供手段(54:64、5
5:65)のいずれか一方を動作させ、それによる前記
屈折率算出手段(60)における結果を送出する測定系
統選択手段(62)とを具備する光学式液体屈折率測定
装置が提供される。
According to a third aspect of the present invention, the plane of incidence (3
2a) an exit surface (52d) adjacent to the incident surface and forming a predetermined angle with the incident surface, and a first surface facing the incident surface and the output surface and forming a predetermined angle with the incident surface, respectively.
And a second discontinuous refractive index interface (52b, 52c), wherein the first and second discontinuous refractive index interfaces contact the liquid to be measured (1) and come into contact with the liquid to be measured (1). A crystal optical member (52) having a birefringence and forming a discontinuous interface with a refractive index at the interface and reflecting light reflected at the discontinuous interface toward the exit surface (52d); A first step of causing light to enter the first and second discontinuous refractive index interfaces of
And second incident light providing means (54:64, 55: 6
5) the incident light from the first and second incident light providing means is incident on the incident surface (52a) of the crystal optical member, and passes through the inside of the crystal optical member (52); The first and second discontinuous refractive index interfaces (52b, 52b)
c) is reflected at a boundary surface between the liquid to be measured (1) and separated into a first polarized light component and a second polarized light component, and the first polarized light component and the second polarized light component exiting from the exit surface (52d). First and second polarization component detection means (56:58, 57:59) for detecting the two polarization components, and the signals detected by the first and second polarization component detection means are calculated. A refractive index calculating means (60) for calculating a refractive index of the measurement liquid; and the first and second incident light providing means (54:64, 5).
5:65), and an optical liquid refractive index measuring device comprising a measuring system selecting means (62) for transmitting a result in the refractive index calculating means (60) based on the operation.

【0032】好適には、前記結晶光学部材(52)の光
学軸と、前記第1および第2の入射光提供手段(54:
64、55:65)から射出される光の光軸とが平行で
ある。
Preferably, the optical axis of said crystal optical member (52) and said first and second incident light providing means (54:
64, 55:65) are parallel to the optical axis of the light emitted from the light source.

【0033】好適には、前記結晶光学部材(52)の前
記入射面(52a)と、前記第1および第2の入射光提
供手段(54:64、55:65)から射出される光の
光軸とが直交する。
Preferably, light of the light emitted from the incident surface (52a) of the crystal optical member (52) and the first and second incident light providing means (54:64, 55:65). The axis is orthogonal.

【0034】また好適には、前記第1および第2の入射
光提供手段(54:64、55:65)が全偏光成分を
含む光を射出する。
Preferably, the first and second incident light providing means (54:64, 55:65) emit light containing all polarization components.

【0035】[0035]

【発明の実施の形態】本発明の光学式液体屈折率測定装
置について添付図面を参照して実施の形態を述べる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an optical liquid refractive index measuring apparatus according to the present invention will be described with reference to the accompanying drawings.

【0036】第1実施の形態 図1は本発明の第1実施の形態としての光学式液体屈折
率測定装置の構成図である。図2は図1に図解した光学
式液体屈折率測定装置のうち、透明結晶部材を中心とす
る拡大図である。図1および図2に図解した被測定液体
1の屈折率を測定する光学式液体屈折率測定装置10
は、結晶光学部材12、光源14、光源14からの光
(入射光線l i )を透明結晶部材12の入射面12aに
入射させる入射光用光ファイバ16を有する。また光学
式液体屈折率測定装置10は、被測定液体1と結晶光学
部材12との境界面で反射し、結晶光学部材12の出射
面12bから出射する垂直偏光成分光ls を案内する垂
直偏光成分用光ファイバ18と、垂直偏光成分用光ファ
イバ18からの光を検出する垂直偏光成分用光検知部2
2を有する。さらに光学式液体屈折率測定装置10は、
結晶光学部材12の出射面12bから出射する水平偏光
成分光lp を案内する水平偏光成分用光ファイバ20
と、水平偏光成分用光ファイバ20からの水平偏光成分
光lp を検出する水平偏光成分用光検知部24を有す
る。さらに光学式液体屈折率測定装置10は垂直偏光成
分用光検知部22および水平偏光成分用光検知部24に
おける検出信号を入力して屈折率計算のための信号処理
を行う屈折率算出手段としての信号処理装置26を有す
る。
[0036]First embodiment FIG. 1 shows an optical liquid refraction according to a first embodiment of the present invention.
It is a lineblock diagram of a rate measuring device. FIG. 2 shows the optics illustrated in FIG.
Of liquid crystal refractometers, focusing on transparent crystal members
FIG. Liquid to be measured illustrated in FIGS. 1 and 2
Optical liquid refractive index measuring device 10 for measuring the refractive index of 1
Is the crystal optical member 12, the light source 14, and the light from the light source 14.
(Incident ray l i) On the incident surface 12a of the transparent crystal member 12.
It has an optical fiber 16 for incident light to be incident. Also optical
The liquid refractometer 10 comprises a liquid 1 to be measured and crystal optics.
The light is reflected at the interface with the member 12 and emitted from the crystal optical member 12.
Vertically polarized light component l emitted from the surface 12bsA guide to guide
The optical fiber 18 for the vertical polarization component and the optical fiber 18 for the vertical polarization component
Vertical polarization component light detector 2 for detecting light from
2 Further, the optical liquid refractive index measuring device 10
Horizontally polarized light emitted from the emission surface 12b of the crystal optical member 12.
Component light lpFiber 20 for horizontal polarization component for guiding
And the horizontal polarization component from the horizontal polarization component optical fiber 20
LightpHas a horizontal polarization component light detection unit 24 for detecting
You. Further, the optical liquid refractive index measuring device 10 has a vertical polarization component.
For the divided light detection unit 22 and the horizontal polarization component light detection unit 24
Processing for inputting the detection signal in the refraction index calculation
Signal processing device 26 as a refractive index calculating means for performing
You.

【0037】結晶光学部材12の条件について述べる。 (1)結晶光学部材12の第1の条件は、光源14から
の入射光線li の波長に対して透明性を有することであ
る。したがって、結晶光学部材12は、透明結晶光学部
材12とも呼ぶべきである。以下、透明結晶光学部材1
2と呼ぶ。 (2)透明結晶光学部材12の第2の条件は複屈折特性
を有するものである。複屈折性とは、光学的異方性をも
つ媒質に光が入射したとき、2つの屈折光が現れる現象
をいう。本実施の形態においては、透明結晶光学部材1
2の底面と被測定液体1との境界面で反射した光を垂直
偏光成分光ls と水平偏光成分光lp との2つの屈折光
として透明結晶光学部材12の出射面12bより出射さ
せる。 (3)透明結晶光学部材12の第3の条件は、透明結晶
光学部材12の屈折率n0 が被測定液体1の屈折率n1
より高いことである。この屈折率の差(n0 −n1 )は
大きいほど高い精度で屈折率n1 を測定可能になる。そ
の理由は後述する屈折率の計算式から明らかとなる。
The conditions for the crystal optical member 12 will be described. (1) The first condition of the crystal optical member 12 is that it has transparency with respect to the wavelength of the incident light beam l i from the light source 14. Therefore, the crystal optical member 12 should be referred to as a transparent crystal optical member 12. Hereinafter, the transparent crystal optical member 1
Call it 2. (2) The second condition of the transparent crystal optical member 12 is to have birefringence characteristics. The birefringence refers to a phenomenon in which two refracted lights appear when light enters a medium having optical anisotropy. In the present embodiment, the transparent crystal optical member 1
2 the bottom and is emitted from the two exit surface 12b of the transparent crystal optical element 12 as refracted light of the vertically polarized component light l s and horizontal polarization components l p light reflected at the boundary surface between the liquid to be measured 1. (3) The third condition of the transparent crystal optical element 12, the refractive index n 1 of the refractive index n 0 is the measured liquid 1 of the transparent crystal optical element 12
It is higher. The greater the difference (n 0 −n 1 ) in the refractive index, the more accurately the refractive index n 1 can be measured. The reason will become clear from the refractive index calculation formula described later.

【0038】そのような条件を満足する透明結晶部材1
2の例としては、ニオブ酸リチウム単結晶が望ましい。
ニオブ酸リチウム単結晶は一軸結晶の光学的異方性を持
つ単結晶であり、上述した3条件を満足する。基板ニオ
ブ酸リチウム単結晶の屈折率n0 は、2.252である
(使用する光の波長が85nmの場合)。このように、
被測定液体1の屈折率n1 (1.3〜1.5程度)との
差が大きいニオブ酸リチウム単結晶ような高屈折率材料
を用いることにより、屈折率測定範囲の拡大が可能とな
る。
Transparent crystal member 1 satisfying such conditions
As a second example, a lithium niobate single crystal is desirable.
The lithium niobate single crystal is a single crystal having optical anisotropy of a uniaxial crystal, and satisfies the above three conditions. The refractive index n 0 of the substrate lithium niobate single crystal is 2.252 (when the wavelength of the used light is 85 nm). in this way,
By using a high refractive index material such as a single crystal of lithium niobate having a large difference from the refractive index n 1 (about 1.3 to 1.5) of the liquid 1 to be measured, it is possible to expand the refractive index measurement range. .

【0039】本実施の形態における透明結晶部材12と
しては、ニオブ酸リチウム単結晶に限らず、上述した条
件を満足する他の光学部材を用いることができる。たと
えば、そのような他の光学部材としては、正方晶系、三
方晶系、六方晶系に属する一軸結晶で、例えば、リン酸
アンモニウム(ADP)リン酸カリウム(KDP)、タ
ンタル酸リチウム、酸化亜鉛、水晶が該当する。しかし
ながら、下記の実施の形態としては、透明結晶部材12
の好適例としてニオブ酸リチウム単結晶を用いた場合に
ついて述べる。
The transparent crystal member 12 in the present embodiment is not limited to the lithium niobate single crystal, and other optical members satisfying the above conditions can be used. For example, such other optical members include uniaxial crystals belonging to tetragonal system, trigonal system, and hexagonal system, such as ammonium phosphate (ADP), potassium phosphate (KDP), lithium tantalate, and zinc oxide. , Quartz. However, in the following embodiment, the transparent crystal member 12
The case where a lithium niobate single crystal is used as a preferred example will be described.

【0040】次いで、図2を参照して透明結晶光学部材
12の形状について述べる。ニオブ酸リチウム単結晶を
用いた透明結晶光学部材12は下記のごとく加工され
る。 (a)透明結晶光学部材12の入射面12aに入射する
光線と入射面12aとが直交するように透明結晶光学部
材12の入射面12aを加工する。本実施の形態におい
ては、被測定液体1と接触する透明結晶光学部材12の
底面12cに対し、光源14から発せられ、入射光用光
ファイバ16を介して透明結晶光学部材12の入射面1
2aに入射する光線と入射面12aとが直交するように
透明結晶光学部材12の入射面12aと底面12cとの
角度を規定している。 (b)透明結晶光学部材12の出射面12bは、被測定
液体1と透明結晶光学部材12の底面12cとの境界面
の不連続屈折率部において反射する光源14からの入射
光線li の光軸と出射面12bと直交するように、底面
12cと出射面12bとの角度を規定している。 (c)以上に加えて、光源14からの光線li と透明結
晶光学部材12の出射面12bから出射する反射光線と
を含む面と、透明結晶光学部材12に用いているニオブ
酸リチウム単結晶の光軸とが平行になるように、透明結
晶光学部材12(ニオブ酸リチウム単結晶)の結晶方向
と透明結晶光学部材12の各面12a,12b,12c
との角度を規定する。 (d)好ましくは、透明結晶光学部材12(ニオブ酸リ
チウム単結晶)の光軸と、光源14からの入射光線li
の光軸とを一致させる。
Next, the shape of the transparent crystal optical member 12 will be described with reference to FIG. The transparent crystal optical member 12 using the lithium niobate single crystal is processed as follows. (A) The incident surface 12a of the transparent crystal optical member 12 is processed so that the light incident on the incident surface 12a of the transparent crystal optical member 12 is orthogonal to the incident surface 12a. In the present embodiment, the incident surface 1 of the transparent crystal optical member 12 emitted from the light source 14 via the incident light optical fiber 16 is applied to the bottom surface 12c of the transparent crystal optical member 12 that comes into contact with the liquid 1 to be measured.
The angle between the incident surface 12a and the bottom surface 12c of the transparent crystal optical member 12 is defined so that the light incident on the light incident surface 2a is orthogonal to the incident surface 12a. (B) The exit surface 12b of the transparent crystal optical member 12 is the light of the incident light beam l i from the light source 14 reflected at the discontinuous refractive index portion at the boundary between the liquid 1 to be measured and the bottom surface 12c of the transparent crystal optical member 12. The angle between the bottom surface 12c and the emission surface 12b is defined so as to be orthogonal to the axis and the emission surface 12b. (C) In addition to the above, light l i a transparent crystal and the plane containing the reflected ray emitted from the exit surface 12b of the optical member 12, single crystal of lithium niobate is used in the transparent crystal optical element 12 from the light source 14 The crystal direction of the transparent crystal optical member 12 (lithium niobate single crystal) and each surface 12a, 12b, 12c of the transparent crystal optical member 12 are set so that the optical axis of
Is defined. (D) Preferably, the optical axis of the transparent crystal optical member 12 (lithium niobate single crystal) and the incident light beam l i from the light source 14
And the optical axis of.

【0041】以上のように透明結晶光学部材(ニオブ酸
リチウム単結晶)12を加工すると、透明結晶光学部材
12の出射面12bからの反射光線は、光源14から発
した入射光線li の光軸を含み、被測定液体1と透明結
晶光学部材12の底面12cとの境界面に直交する面に
対して直交する方向に振動面を持つ垂直偏光成分光l s
と、上記境界面に直交する面に対し平行な方向に振動方
向を持つ水平偏光成分光lp とに容易かつ確実に分離で
きる。垂直偏光成分光ls と水平偏光成分光l p とは互
いに異なる光路を経由して進行する(伝搬する)。
As described above, the transparent crystal optical member (niobate)
When the lithium single crystal (12) is processed, a transparent crystal optical member
The light reflected from the output surface 12b of the light source 12 is emitted from the light source 14.
Incident light liAnd the transparent axis with the liquid 1 to be measured
Surface perpendicular to the boundary surface with the bottom surface 12c of the crystal optical member 12
Vertically polarized light component l having a vibration plane in a direction orthogonal to the direction s
And the vibration direction in the direction parallel to the plane
Horizontal polarized component light lpEasy and reliable separation
Wear. Vertically polarized light component lsAnd the horizontal polarization component light l pIs
Travels (propagates) via different optical paths.

【0042】(f)また、光源14からの光線の透明結
晶光学部材12の入射面12aへの入射角度φ0 、すな
わち、透明結晶光学部材12の入射面12aと光源14
からの光線のなす角度は、被測定液体1の屈折率n1
対する測定感度をなるべく大きくとるため、臨界角以下
でかつ臨界角近傍の角度とすることが好ましい。
(F) The incident angle φ 0 of the light beam from the light source 14 to the incident surface 12 a of the transparent crystal optical member 12, that is, the incident surface 12 a of the transparent crystal optical member 12 and the light source 14
It is preferable that the angle formed by the light beam from the light source is not more than the critical angle and is close to the critical angle in order to maximize the measurement sensitivity to the refractive index n 1 of the liquid 1 to be measured.

【0043】(g)透明結晶光学部材12の入射面12
aには、透明結晶光学部材12からの入射光線li が被
測定液体1と透明結晶光学部材12の底面12cとが接
触する境界面に対してその入射角度が臨界角以下となる
ように光源14を位置決め固定する。この場合、光源1
4を必ずしも透明結晶光学部材12に直接固定する必要
はなく、図解のごとく、入射光用光ファイバ16を光源
14と透明結晶光学部材12の入射面12aとの間に介
在させて固定し、光源14から透明結晶光学部材12の
入射面12aへの入射光線li が上記条件を満足するよ
うに光源14からの入射光線li を透明結晶光学部材1
2の入射面12aに導くことで十分である。
(G) Incident surface 12 of transparent crystal optical member 12
The a, so that the incident angle with respect to the boundary surface of the incident light l i from the transparent crystal optical element 12 are in contact with the bottom surface 12c of the liquid to be measured 1 and the transparent crystal optical element 12 is less than the critical angle light source 14 is positioned and fixed. In this case, the light source 1
It is not necessary to fix the optical fiber 4 directly to the transparent crystal optical member 12. As shown in the figure, the incident light optical fiber 16 is interposed and fixed between the light source 14 and the incident surface 12 a of the transparent crystal optical member 12. 14 transparent crystal optical element of the incident light l i of the incident light l i of the entrance surface 12a of the transparent crystal optical element 12 from the light source 14 so as to satisfy the above conditions 1
It is sufficient to guide the light to the second incident surface 12a.

【0044】ニオブ酸リチウム単結晶などの複屈折性の
結晶を用いた透明結晶光学部材12によって入射光線l
i から上述した垂直偏光成分光ls と、垂直偏光成分光
sと直交関係にある水平偏光成分光lp とを分離する
ためには、光源14からの光線は、図2に概略的に図解
したように、垂直偏光成分光ls と水平偏光成分光l p
とを含む全方向の光成分を有するものである必要があ
る。もちろん、そのための光源14としては通常の発光
ダイオード、半導体レーザなどを用いることができる。
Birefringence such as lithium niobate single crystal
The incident light beam l
iFrom the vertical polarization component light lsAnd the vertically polarized component light
lsHorizontal polarization component light l orthogonal topAnd separate
In order for the light rays from the light source 14 to be schematically illustrated in FIG.
As described above, the vertically polarized component light lsAnd the horizontal polarization component light l p
It must have a light component in all directions including
You. Of course, the normal light emission
A diode, a semiconductor laser, or the like can be used.

【0045】このような構成と条件にすることにより、
被測定液体1と透明結晶光学部材12の底面12cとの
接触面(境界面)からの反射光はニオブ酸リチウム単結
晶で構成された透明結晶光学部材12の持つ複屈折性に
より、底面12cから垂直偏光成分光ls と水平偏光成
分光lp とに分離され、出射面12bからそれぞれが異
なる光路を経て出射される。
By adopting such a configuration and conditions,
The reflected light from the contact surface (boundary surface) between the liquid 1 to be measured and the bottom surface 12c of the transparent crystal optical member 12 is transmitted from the bottom surface 12c due to the birefringence of the transparent crystal optical member 12 made of lithium niobate single crystal. is separated into the vertically polarized component light l s and horizontal polarization component light l p, respectively from the emission surface 12b is emitted via different optical paths.

【0046】透明結晶光学部材12の出射面12bには
垂直偏光成分光ls の光路と水平偏光成分光lp の光路
に沿って、それぞれ、垂直偏光成分光の導波路としての
垂直偏光成分用光ファイバ18と、水平偏光成分光導波
路としての水平偏光成分用光ファイバ20を設けて、垂
直偏光成分用光検知部22と水平偏光成分用光検知部2
4に導く。垂直偏光成分用光検知部22および水平偏光
成分用光検知部24としては、通常の受光素子、たとえ
ば、フォトダイオードなどを用いることができる。
[0046] The exit surface 12b of the transparent crystal optical element 12 along the optical path of the horizontally polarized component light l p of the vertical polarization component light l s, respectively, for vertically polarized light component as a waveguide in the vertical polarization components An optical fiber 18 and a horizontal polarization component optical fiber 20 as a horizontal polarization component optical waveguide are provided, and a vertical polarization component light detection unit 22 and a horizontal polarization component light detection unit 2 are provided.
Lead to 4. As the light detection unit 22 for the vertical polarization component and the light detection unit 24 for the horizontal polarization component, a normal light receiving element, for example, a photodiode can be used.

【0047】光源14から透明結晶光学部材12の入射
面12aに光線を導く導波路として入射光用光ファイバ
16を用い、透明結晶部材12の出射面12bからの垂
直偏光成分光および水平偏光成分光の導波路として垂直
偏光成分用光ファイバ18および水平偏光成分用光ファ
イバ20を用いることは、光線の収束を図り、外部外乱
光を排除する観点から好ましい。また屈曲自在の入射光
用光ファイバ16を用いれば、後述する光源14の位置
と透明結晶部材12の入射面12aとの位置設定の条件
が緩和され、光源14を任意の位置に設置することが可
能となる。同様に、垂直偏光成分用光ファイバ18およ
び水平偏光成分用光ファイバ20を用いると、透明結晶
部材12の出射面12bと垂直偏光成分用光検知部22
および水平偏光成分用光検知部24との位置関係の条件
が緩和される。入射光用光ファイバ16は光源14から
の通常光を導波するので特に規定はないが、垂直偏光成
分用光ファイバ18および水平偏光成分用光ファイバ2
0は偏光光を導波するのでマルチモード光ファイバが好
ましい。
The optical fiber 16 for incident light is used as a waveguide for guiding a light beam from the light source 14 to the incident surface 12a of the transparent crystal optical member 12, and the vertical polarization component light and the horizontal polarization component light from the output surface 12b of the transparent crystal member 12 are used. It is preferable to use the optical fiber 18 for vertical polarization component and the optical fiber 20 for horizontal polarization component as the waveguide from the viewpoint of converging light rays and eliminating external disturbance light. In addition, if the bendable optical fiber 16 for incident light is used, the condition for setting the position of the light source 14 and the position of the incident surface 12a of the transparent crystal member 12, which will be described later, is relaxed, and the light source 14 can be installed at an arbitrary position. It becomes possible. Similarly, when the vertical polarization component optical fiber 18 and the horizontal polarization component optical fiber 20 are used, the emission surface 12b of the transparent crystal member 12 and the vertical polarization component light detection unit 22 are used.
And the condition of the positional relationship with the horizontal polarization component light detection unit 24 is relaxed. The incident light optical fiber 16 guides the ordinary light from the light source 14 and is not particularly limited. However, the vertical polarization component optical fiber 18 and the horizontal polarization component optical fiber 2 are not specified.
Since 0 guides polarized light, a multimode optical fiber is preferable.

【0048】以下、図1に図解した光学式液体屈折率測
定装置の動作について述べる。 1.ニオブ酸リチウム単結晶の透明結晶光学部材12の
底面12cを被測定液体1に接触させる。
Hereinafter, the operation of the optical liquid refractive index measuring apparatus illustrated in FIG. 1 will be described. 1. The bottom surface 12c of the transparent crystal optical member 12 made of lithium niobate single crystal is brought into contact with the liquid 1 to be measured.

【0049】2.この状態で光源14からの光線を入射
光用光ファイバ16を介して透明結晶光学部材12の入
射面12aに、入射面12aと直交状態で入射させる。
透明結晶光学部材12の入射面12aから底面12cと
被測定液体1との境界面にいたる透明結晶光学部材12
の内部の経路において、光源14からの光線の入射光軸
と一軸結晶である透明結晶光学部材(ニオブ酸リチウム
単結晶)12の光軸とが一致する場合、等方性媒体内を
伝搬するのと同じ原理に従って入射面12aに入射した
光線は、底面12cと被測定液体1との境界面に向かっ
て伝搬する(進行する)。
2. In this state, the light from the light source 14 is made incident on the incident surface 12a of the transparent crystal optical member 12 via the incident light optical fiber 16 in a state orthogonal to the incident surface 12a.
The transparent crystal optical member 12 ranging from the incident surface 12a of the transparent crystal optical member 12 to the boundary surface between the bottom surface 12c and the liquid 1 to be measured.
When the incident optical axis of the light beam from the light source 14 coincides with the optical axis of the transparent crystal optical member (lithium niobate single crystal) 12 which is a uniaxial crystal, the light propagates in the isotropic medium. The light ray incident on the incident surface 12a propagates (progresses) toward the boundary surface between the bottom surface 12c and the liquid 1 to be measured according to the same principle as described above.

【0050】3.次いで、被測定液体1と透明結晶光学
部材12の底面12cとの境界面において、透明結晶光
学部材(ニオブ酸リチウム単結晶)12の屈折率n
0 と,被測定液体1の屈折率n1 との屈折率差(n0
1 )に応じて入射光線の一部が反射光となって透明結
晶光学部材12の出射面12bに向かって反射する。反
射光成分のうち入射光線の光軸を含み、被測定液体1と
透明結晶光学部材12の底面12cとの境界面と直交す
る面Vに対し直交する振動方向を持つものを垂直偏光成
分光ls と呼び、面Vと平行な振動方向を持つものを水
平偏光成分光lp と呼ぶ。垂直偏光成分光ls は常光と
して、透明結晶光学部材12の底面12cから垂直方向
に延びる面Vに関して、入射角度の角度と等しい角度で
反射する。水平偏光成分光lp は、ニオブ酸リチウム単
結晶12の持つ複屈折性により、異常光として、垂直偏
光成分光ls とは異なる角度で反射する。
3. Next, at the interface between the liquid 1 to be measured and the bottom surface 12c of the transparent crystal optical member 12, the refractive index n of the transparent crystal optical member (lithium niobate single crystal) 12
0, the refractive index difference between the refractive index n 1 of the liquid to be measured 1 (n 0 -
In accordance with n 1 ), a part of the incident light becomes reflected light and is reflected toward the emission surface 12 b of the transparent crystal optical member 12. Among the reflected light components, those which include the optical axis of the incident light beam and have a vibration direction orthogonal to a plane V orthogonal to the boundary surface between the liquid 1 to be measured and the bottom surface 12c of the transparent crystal optical member 12 are defined as vertical polarization component light l. is referred to as s, those with a vibration direction parallel to the plane V is referred to as a horizontal polarization component light l p. The vertical polarization component light l s ordinary, in relationship to the plane V extending from the bottom surface 12c of the transparent crystal optical element 12 in the vertical direction, is reflected at an angle equal to the angle of incidence angles. Horizontally polarized component light l p is the birefringence possessed by the lithium niobate single crystal 12, as the extraordinary light is reflected at a different angle than the vertical polarization component light l s.

【0051】このときの水平偏光成分光lp の反射光が
ニオブ酸リチウム単結晶を用いた透明結晶光学部材12
の光軸、すなわち光源14からの入射光線li となす角
度φは、垂直偏光成分光ls の反射光lrs と水平偏光
成分光lp の反射光lrp とニオブ酸リチウム単結晶の
光軸となす角度をθ、常光屈折率をno 、異常光屈折率
をne とすると、たとえば、末田正、「光エレクトロニ
クス、昭晃堂、昭和63年、第140頁に掲載されてい
るように、次式により表される。
The transparent crystalline optical member reflected light using a lithium niobate single crystal of the horizontally polarized component light l p of this time 12
Of the optical axis, i.e. the angle φ formed by the incident light l i from the light source 14, the light of the reflected light lr p and lithium niobate single crystal of the reflected light lr s and horizontal polarization component light l p of the vertical polarization component light l s the angle between the axis theta, ordinary refractive index n o, the extraordinary refractive index When n e, for example, Sueda positive, "optoelectronics, Shokodo, 1988, as listed in the 140th page Is represented by the following equation.

【0052】[0052]

【数1】 tanφ=(no /ne 2 tanθ …(1)[Number 1] tanφ = (n o / n e ) 2 tanθ ... (1)

【0053】以上のように、2つの反射光偏光成分(垂
直偏光成分光ls と水平偏光成分光lp )は互いに異な
る光路を経て、透明結晶光学部材(ニオブ酸リチウム単
結晶)12の出射面12bから出射する。
[0053] As described above, the two reflected light polarization component (vertical polarization component light l s and horizontal polarization components l p) is via different optical paths from each other, transparent crystal optical element (lithium niobate single crystal) 12 emission of The light exits from the surface 12b.

【0054】垂直偏光成分用光検知部22は垂直偏光成
分用光ファイバ18を経由して入射する垂直偏光成分光
s を受光する。水平偏光成分用光検知部24は水平偏
光成分用光ファイバ20を経由した入射する水平偏光成
分光lp を受光する。このように、垂直偏光成分光ls
と水平偏光成分光lp とは、垂直偏光成分用光検知部2
2と水平偏光成分用光検知部24において別個独立に検
出される。垂直偏光成分用光検知部22における検出値
および水平偏光成分用光検知部24における検出値は、
図1に図解した屈折率算出手段としての信号処理装置2
6に入力される。
[0054] vertical polarization component optical detection unit 22 receives the vertical polarization component light l s incident via the vertical polarization component optical fiber 18. Horizontal polarization component optical detection unit 24 receives the horizontally polarized component light l p incident via the horizontal polarization component optical fiber 20. Thus, the vertically polarized component light l s
And the horizontal polarization component light lp are converted to a vertical polarization component light detector 2
2 and the horizontal polarization component light detection unit 24 are separately and independently detected. The detection value of the vertical polarization component light detection unit 22 and the detection value of the horizontal polarization component light detection unit 24 are:
Signal processing device 2 as refractive index calculating means illustrated in FIG.
6 is input.

【0055】信号処理装置26は、被測定液体1の屈折
率n1 を算出するため、下記の演算を行う。屈折率n1
の計算方法にはいくつかの方法がある。第1の演算方法
は、垂直偏光成分用光検知部22の検出値と水平偏光成
分用光検知部24の検出値との比率を計算する方法であ
る。第2の演算方法は、全反射光量に対する垂直偏光成
分光の比率、または、全反射光量に対する水平偏光成分
光の比率を計算する方法である。以下、その詳細を述べ
る。
The signal processing device 26 performs the following calculation to calculate the refractive index n 1 of the liquid 1 to be measured. Refractive index n 1
There are several methods for calculating. The first calculation method is a method of calculating the ratio between the detection value of the vertical polarization component light detection unit 22 and the detection value of the horizontal polarization component light detection unit 24. The second calculation method is a method of calculating the ratio of the vertical polarization component light to the total reflection light amount or the ratio of the horizontal polarization component light to the total reflection light amount. The details are described below.

【0056】垂直偏光成分のフレネル反射係数rs およ
び水平偏光成分のフレネル反射係数rp はそれぞれ下記
式で表される。
[0056] Each of the Fresnel reflection coefficient r p of Fresnel reflection coefficients r s and the horizontal polarization component of the vertical polarization component is represented by the following formula.

【0057】[0057]

【数2】 (Equation 2)

【0058】ただし、n0 は透明結晶部材12の屈折率
であり、n1 は被測定液体1の屈折率であり、φ0 は透
明結晶部材12への光線の入射角であり、φ1 は透明結
晶部材12における透過光屈折角である。
Where n 0 is the refractive index of the transparent crystal member 12, n 1 is the refractive index of the liquid 1 to be measured, φ 0 is the angle of incidence of light rays on the transparent crystal member 12, and φ 1 is This is a transmitted light refraction angle in the transparent crystal member 12.

【0059】[0059]

【数3】 (Equation 3)

【0060】式2および式3において、入射角度φ1
下記式4に示したスネルの法則によって表すことができ
る。
In Expressions 2 and 3, the incident angle φ 1 can be expressed by Snell's law shown in Expression 4 below.

【0061】[0061]

【数4】 n0 sinφ0 =n1 sinφ1 …(4)## EQU4 ## n 0 sin φ 0 = n 1 sin φ 1 (4)

【0062】なお、ニオブ酸リチウム単結晶を用いた透
明結晶光学部材12の屈折率n0 は既知であり、一定で
ある。また、実際の測定時には、透明結晶光学部材12
への入射角度度φ0 も一定である。入射角度φ1 は測定
できる。
The refractive index n 0 of the transparent crystal optical member 12 using a lithium niobate single crystal is known and constant. At the time of actual measurement, the transparent crystal optical member 12
The incident angle of phi 0 to which also constant. The incident angle phi 1 can be measured.

【0063】光強度は電界強度の2乗に比例するため、
垂直偏光成分光ls のエネルギ反射率Rs と、水平偏光
成分光lp のエネルギ反射率Rp はそれぞれ、下記式で
表すことができる。
Since the light intensity is proportional to the square of the electric field intensity,
Respectively energy reflectivity R s of the vertical polarization component light l s, is the energy reflectance R p of horizontally polarized component light l p, it can be expressed by the following equation.

【0064】[0064]

【数5】 Rs =rs 2 …(5) Rp =rp 2 …(6) ただし、rs は式2に示した垂直偏光成分光ls のフル
ネル反射係数であり、rp は式3に示した水平偏光成分
光lp のフルネル反射係数である。
Equation 5] R s = r s 2 ... ( 5) R p = r p 2 ... (6) However, r s is the Fresnel reflection coefficient of the vertically polarized component light l s shown in Formula 2, r p is a Fresnel reflection coefficient of the horizontally polarized component light l p shown in formula 3.

【0065】式5および式6に示した関係は、被測定液
体1の屈折率n1 に応じた値となる。したがって、透明
結晶部材12の底面12cと被測定液体1との境界面に
おける反射光について、透明結晶部材12の出射面12
bから出る垂直偏光成分光l s または水平偏光成分光l
p のいずれかを測定すれば、被測定液体1の屈折率n 1
を求めることができる。信号処理装置26は上述した屈
折率n1 のための演算を行う。
The relationship shown in Equations 5 and 6 indicates that the measured liquid
Refractive index n of body 11Will be a value corresponding to. Therefore, transparent
At the boundary between the bottom surface 12c of the crystal member 12 and the liquid 1 to be measured.
With respect to the reflected light, the emission surface 12 of the transparent crystal member 12
Vertically polarized light component l emitted from b sOr horizontal polarized light component l
pIs measured, the refractive index n of the liquid 1 to be measured 1
Can be requested. The signal processing device 26 is
Folding ratio n1Perform the calculation for

【0066】さらに、垂直偏光成分光ls と水平偏光成
分光lp との強度比、あるいは、全反射光量(垂直偏光
成分光ls +水平偏光成分光lp )に対する垂直偏光成
分光ls の比率=ls /(ls +lp )、換言すれば、
垂直偏光成分光ls のエネルギ反射率Rs と水平偏光成
分光lp のエネルギ反射率Rp との和に対する垂直偏光
成分光ls のエネルギ反射率Rs の比率=Rs /(Rs
+Rp )を求めて、垂直偏光成分用光検知部22におけ
る検出信号を規格化すれば(正規化すれば)、参照用光
学系を用いることなく光源14の光の変動または変化の
影響等を相殺することができる。
[0066] Furthermore, the intensity ratio of the vertical polarization component light l s and horizontal polarization component light l p, or the total amount of reflected light (vertical polarized component light l s + horizontally polarized component light l p) vertical polarization component to the light l s Ratio = l s / (l s + l p ), in other words,
The ratio of the energy reflectance R s of the vertical polarization component light l s to the sum of the energy reflectance R p of the energy reflectance R s and horizontal polarization component light l p of the vertical polarization component light l s = R s / (R s
+ R p ) and normalizing (normalizing) the detection signal in the vertical polarization component light detection unit 22, the influence of the fluctuation or change of the light of the light source 14 can be obtained without using the reference optical system. Can be offset.

【0067】もちろん、上述した垂直偏光成分光ls
ついての光強度比率、ls /(ls+lp )、または、
エネルギ比率=Rs /(Rs +Rp )に代えて、水平偏
光成分光lp についての光強度比率、lp /(ls +l
p )、または、エネルギ比率=Rp /(Rs +Rp )を
用いてもよい。
[0067] Of course, the light intensity ratio of the vertical polarization component light l s described above, l s / (l s + l p), or,
Instead = R s / energy ratio (R s + R p), the light intensity ratio of the horizontal polarization component light l p, l p / (l s + l
p ) or energy ratio = R p / (R s + R p ).

【0068】垂直偏光成分光ls について、または水平
偏光成分光lp についてのいずれの場合も、信号処理装
置26として、マイクロコンピュータなどの演算処理機
能を有する手段を用いれば、その比率計算および屈折率
1 の計算は容易かつ高精度に行うことができる。
[0068] For vertical polarization component light l s, or in any case in the horizontal polarization component light l p, as a signal processing unit 26, by using the means having an arithmetic processing function, such as a microcomputer, the ratio calculation and refractive The calculation of the rate n 1 can be performed easily and with high accuracy.

【0069】以上のように、本発明の実施の形態として
の光学式液体屈折率測定装置は、透明結晶光学部材12
の底面12cを被測定液体1に接触する状態にしておけ
ばよいので、液体をサンプリングすることなく実時間で
測定ができる。また、信号処理装置26を用いて、瞬時
または短時間で、連続的かつ自動的に液体の屈折率を測
定できる。
As described above, the optical liquid refractive index measuring apparatus according to the embodiment of the present invention includes the transparent crystal optical member 12.
The bottom surface 12c of the liquid crystal may be kept in contact with the liquid 1 to be measured, so that measurement can be performed in real time without sampling the liquid. In addition, by using the signal processing device 26, the refractive index of the liquid can be measured continuously and automatically instantaneously or in a short time.

【0070】本発明の第1実施の形態としての光学式液
体屈折率測定装置は、室温(または常温)の環境におい
て、高い分解能を示し、かつ、測定精度を高めることが
可能である。
The optical liquid refractive index measuring apparatus according to the first embodiment of the present invention can exhibit high resolution and improve measurement accuracy in a room temperature (or normal temperature) environment.

【0071】第1実施例 以下、本発明の光学式液体屈折率測定装置の第1実施の
形態に基づく実施例について述べる。実施例として、被
測定液体1として、屈折率n1 を1.360〜1.48
0の範囲で変化させたとき、下記条件のもとで、上述し
た本発明の実施の形態の光学式液体屈折率測定装置を用
いて、被測定液体1の屈折率n1 の測定を行った。
First Example Hereinafter, an example based on the first embodiment of the optical liquid refractive index measuring device of the present invention will be described. As an example, as the liquid 1 to be measured, the refractive index n 1 is 1.360 to 1.48.
When was varied in the range of 0, under the following conditions using an optical liquid refractive index measurement apparatus according to an embodiment of the present invention described above, it was measured refractive index n 1 of the liquid to be measured 1 .

【0072】測定条件 a.光源14として波長857nmの発光ダイオード
(LED)を用いた。 b.透明結晶光学部材12として屈折率n0 =2.25
2のニオブ酸リチウム単結晶を用いた。 c.光源14からニオブ酸リチウム単結晶12の入射面
12aに入射する光線の光軸をz軸、入射角を臨界角近
傍の37.45°としてニオブ酸リチウム単結晶12の
入射面12a、出射面12b・底面(被測定液体1との
接触面)12cおよびニオブ酸リチウム単結晶の結晶軸
の角度条件を決定した。 d.光源14から入射面12aに入射させる光線を導く
ため導波路として入射光用光ファイバ16を用いて透明
結晶部材12の入射面12aの近傍までた光線を導い
た。入射光用光ファイバ16にはマルチモード光ファイ
バを用いた。 e.この構成および条件において、透明結晶光学部材1
2の入射面12aの入射光用光ファイバ16の端面から
ニオブ酸リチウム単結晶12の反射光出射面までの光路
長を約20mmとした。 f.出射面側には垂直偏光成分光ls および水平偏光成
分光lp のそれぞれの光路上に、それぞれ、マルチモー
ド光ファイバの垂直偏光成分用光ファイバ18と水平偏
光成分用光ファイバ20を固定し、出射面からの測定光
をそれぞれの垂直偏光成分用光検知部22および水平偏
光成分用光検知部24に導いた。
Measurement conditions a. As the light source 14, a light-emitting diode (LED) having a wavelength of 857 nm was used. b. The transparent crystal optical member 12 has a refractive index n 0 = 2.25.
2 lithium niobate single crystal was used. c. The incident surface 12a and the exit surface 12b of the lithium niobate single crystal 12 are set such that the optical axis of the light beam incident on the incident surface 12a of the lithium niobate single crystal 12 from the light source 14 is the z-axis and the incident angle is 37.45 ° near the critical angle. The angle conditions of the bottom surface (contact surface with the liquid 1 to be measured) 12c and the crystal axis of the lithium niobate single crystal were determined. d. In order to guide a light beam to be incident on the incident surface 12a from the light source 14, an optical fiber 16 for an incident light was used as a waveguide to guide the light beam to the vicinity of the incident surface 12a of the transparent crystal member 12. A multi-mode optical fiber was used as the optical fiber 16 for incident light. e. Under this configuration and conditions, the transparent crystal optical member 1
The optical path length from the end face of the incident light optical fiber 16 of the second incident face 12a to the reflected light emitting face of the lithium niobate single crystal 12 was about 20 mm. f. Each of the optical path of the emission surface side vertical polarization component light l s and the horizontal polarization component light l p, respectively, the vertical polarization component optical fiber 18 and the horizontal polarization component optical fiber 20 is fixed in the multi-mode optical fiber The measurement light from the emission surface was guided to the vertical polarization component light detection unit 22 and the horizontal polarization component light detection unit 24, respectively.

【0073】測定結果 以上の条件に基づいて測定を行ったところ、被測定液体
1とニオブ酸リチウム単結晶12の底面12cとの接液
面からの反射光のうち垂直偏光成分光ls と水平偏光成
分光lp とがニオブ酸リチウム単結晶12の出射面12
bで水平距離にして約0.7mmの距離を隔てた異なる
光路で出射されることを確認した。このように、本実施
例によれば、ニオブ酸リチウム単結晶12を用いると、
垂直偏光成分光ls と水平偏光成分光lp との分離が十
分に行われることを確認した。このことは分解能の高さ
を意味している。
[0073] Measurements on the basis of a measurement result above conditions, the vertical polarization component light l s and horizontal of the reflected light from the wetted surface and the bottom surface 12c of the liquid to be measured 1 and the lithium niobate single crystal 12 exit surface 12 of the polarized component light l p and the lithium niobate single crystal 12
It was confirmed that the light was emitted from different optical paths separated by a distance of about 0.7 mm in the horizontal distance at b. Thus, according to the present embodiment, when the lithium niobate single crystal 12 is used,
It was confirmed that the separation of the vertical polarization component light l s and horizontal polarization components l p is sufficiently performed. This means high resolution.

【0074】信号処理装置26で得られた結果を図3〜
図7に図解する。図3は入射角度φ0 =37.45°の
ときの被測定液体1の屈折率n1 の変化と、垂直偏光成
分光ls のエネルギ反射率Rs との関係を示すグラフで
ある。図4は被測定液体1の屈折率n1 の変化と、垂直
偏光成分光ls のエネルギ反射率Rs と水平偏光成分光
p のエネルギ反射率Rp との比:Rs /Rp との関係
を示すグラフである。図5は被測定液体1の屈折率n1
の変化と、Rs /(Rs +Rp )との関係を示すグラフ
である。
The results obtained by the signal processing device 26 are shown in FIGS.
This is illustrated in FIG. Figure 3 is a graph showing the relationship between the change of the refractive index n 1 of the incident angle φ 0 = 37.45 ° liquid to be measured 1 time of the energy reflectance R s of the vertical polarization component light l s. Figure 4 is a variation of the refractive index n 1 of the liquid to be measured 1, the ratio of the energy reflectance R p of the energy reflectance R s and horizontal polarization component light l p of the vertical polarization component light l s: R s / R p 6 is a graph showing a relationship with the graph. FIG. 5 shows the refractive index n 1 of the liquid 1 to be measured.
And a change in a graph showing the relationship between the R s / (R s + R p).

【0075】これらのグラフから明らかなように、被測
定液体1を種々変化させ、種々の屈折率n1 (1.38
〜1.47)に対して、式1および式2から求めた理論
値と良い一致を示した。測定の結果、理論値からの屈折
率のズレは0.005以下、精度0.4%で再現性良く
被測定液体1(試料液)の屈折率n1 の測定できた。
As is clear from these graphs, the liquid 1 to be measured is variously changed to obtain various refractive indices n 1 (1.38).
~ 1.47), a good agreement with the theoretical values obtained from Equations 1 and 2 was obtained. As a result of the measurement, the deviation of the refractive index from the theoretical value was 0.005 or less, the accuracy was 0.4%, and the refractive index n 1 of the liquid 1 to be measured (sample liquid) could be measured with good reproducibility.

【0076】光線の変動の実験 ついで、光源14からの入射光線li の変動について実
験した。図6は光源14に印加する電圧を変化させる、
または、光源14から出た光線を減衰させて、ニオブ酸
リチウム単結晶12の入射面12aに入射する光線li
の強度を変化させたとき、種々の被測定液体の種々の屈
折率n1 に対するRs /(Rs +Rp )の変化を示すグ
ラフである。図6に図解した実施例は、光源14に用い
た発光ダイオード(LED)出力を100%から20%
まで変化(減衰)させたときのRs /(Rs +Rp )測
定結果である。図6のグラフから明らかなように、屈折
率n1 に対する出力特性は光源強度変動の影響とほとん
ど受けないことが確認できた。
Experiment of fluctuation of light ray Next, an experiment of fluctuation of the incident light l i from the light source 14 was performed. FIG. 6 changes the voltage applied to the light source 14,
Alternatively, the light beam emitted from the light source 14 is attenuated, and the light beam l i incident on the incident surface 12a of the lithium niobate single crystal 12 is obtained.
6 is a graph showing a change in R s / (R s + R p ) with respect to various refractive indices n 1 of various liquids to be measured when the intensity of the sample is changed. The embodiment illustrated in FIG. 6 reduces the light emitting diode (LED) output used for light source 14 from 100% to 20%.
It is an R s / (R s + R p ) measurement result when changed (attenuated) up to. As apparent from the graph of FIG. 6, the output characteristics with respect to the refractive index n 1 was confirmed that hardly receives the influence of light source intensity fluctuations.

【0077】図7は図6に図解したように、光源14か
らの光線の強度を変化させたときの、Rs /(Rs +R
p )の変化を示すグラフである。ただし、被測定液体1
の屈折率n1 =1.466の被測定液体1について測定
した結果である。屈折率換算で誤差0.47%(屈折率
1.466の場合)であり、光源14の強度が20%程
度まで大きく変動したとしても、出力100%時の測定
精度をほぼ維持できていることが確認できた。
FIG. 7 shows R s / (R s + R) when the intensity of the light beam from the light source 14 is changed as illustrated in FIG.
It is a graph which shows the change of p ). However, the liquid to be measured 1
Is a result of measurement on the liquid to be measured 1 having a refractive index n 1 of 1.466. The error is 0.47% in the case of a refractive index conversion (in the case of a refractive index of 1.466). Even if the intensity of the light source 14 fluctuates greatly to about 20%, the measurement accuracy at the output of 100% can be almost maintained. Was confirmed.

【0078】以上のように、本発明の光学式液体屈折率
測定装置は光源14の強度変動に依存しない安定した屈
折率の測定が可能であることが実証された。したがっ
て、本発明の光学式液体屈折率測定装置を、製造プラン
トの現場など温度が大きく変化し、光源14などへの電
源の変動するように過酷な測定現場に設置しても、被測
定液体1の屈折率n1 を正確に、長期間安定して使用で
きることができる。また本発明の光学式液体屈折率測定
装置は、特開平1−250039号公報に例示される光
学式液体屈折率測定装置のように、プリズム3の他、検
光子6をも必要としないため装置が小型化でき、低価格
で製造できるので、製造プラントの測定現場などに設置
するとき有利である。
As described above, it has been proved that the optical liquid refractive index measuring device of the present invention can measure the refractive index stably without depending on the intensity fluctuation of the light source 14. Therefore, even if the optical liquid refractive index measuring apparatus of the present invention is installed in a severe measurement site such as a site of a manufacturing plant where the temperature greatly changes and the power supply to the light source 14 and the like fluctuates, the liquid to be measured 1 exactly the refractive index n 1 of the can be used stably for a long time. Further, the optical liquid refractive index measuring device of the present invention does not require the analyzer 3 in addition to the prism 3, unlike the optical liquid refractive index measuring device exemplified in Japanese Patent Application Laid-Open No. 1-250039. Can be miniaturized and can be manufactured at a low price, which is advantageous when installed at a measurement site of a manufacturing plant.

【0079】さらに本発明の第1実施の形態において
は、入射光用光ファイバ16、垂直偏光成分用光ファイ
バ18および水平偏光成分用光ファイバ20を用いて光
線の導波を行っているので、外乱光の影響を受けにくい
ほか、光源14と透明結晶光学部材12の入射面12a
との位置(角度関係)、透明結晶光学部材12の出射面
12bと垂直偏光成分用光検知部22、水平偏光成分用
光検知部24との位置関係を任意にでき、光学式液体屈
折率測定装置の装置の寸法を一層小型にできるという利
点を有している。
Further, in the first embodiment of the present invention, light is guided using the optical fiber 16 for incident light, the optical fiber 18 for vertical polarization component, and the optical fiber 20 for horizontal polarization component. In addition to being hardly affected by disturbance light, the light source 14 and the incident surface 12a of the transparent crystal optical member 12
(Angle relationship), and the positional relationship between the outgoing surface 12b of the transparent crystal optical member 12, the vertical polarization component light detection unit 22, and the horizontal polarization component light detection unit 24 can be arbitrarily determined. This has the advantage that the dimensions of the device can be made smaller.

【0080】以上、透明結晶光学部材12としてニオブ
酸リチウム単結晶を用い、光源14として発光ダイオー
ドを用いた場合を例示したが、本発明の光学式液体屈折
率測定装置の実施に際しては上述した部材の適用には限
定されない。たとえば、透明結晶光学部材12として
は、上述した条件を満足するニオブ酸リチウム単結晶以
外の他の光学素子を用いることができる。さらに光源1
4としては発光ダイオードに限らず、半導体レーザを用
いることができる。
The case where a single crystal of lithium niobate is used as the transparent crystal optical member 12 and a light emitting diode is used as the light source 14 has been described above. It is not limited to the application of. For example, as the transparent crystal optical member 12, an optical element other than the lithium niobate single crystal satisfying the above conditions can be used. Further light source 1
As 4, a semiconductor laser can be used instead of a light emitting diode.

【0081】以上の第1実施の形態としては、透明結晶
光学部材12の不連続屈折率部から反射する2つの偏光
成分を、垂直偏光成分光lp と、この垂直偏光成分光l
p と直交関係にある水平偏光成分光ls である場合につ
いて述べたが、透明結晶光学部材12としてニオブ酸リ
チウム単結晶を用いず、また、上述した光学条件を修正
した状態において、必ずしも、2つの反射偏光成分が完
全に直交していなくてもよい。もちろん、垂直偏光成分
光lp と水平偏光成分光ls とのように完全に直交して
いる2つの偏光成分の場合はその分離も容易であり、間
隔も十分離れるので2つの偏光成分の検出が正確にな
り、被測定液体1の屈折率n1 の測定精度は上がる。
In the first embodiment described above, two polarized light components reflected from the discontinuous refractive index portion of the transparent crystal optical member 12 are divided into a vertical polarized light component l p and a vertical polarized light component l.
it has dealt with the case where an orthogonal relationship between p is the horizontal polarization component light l s, without using the lithium niobate single crystal as the transparent crystal optical element 12, and in a state that fixes the above optical conditions, necessarily, 2 The two reflected polarization components need not be completely orthogonal. Of course, it is easy to their separation in the case of completely orthogonal to the two polarization components are as a vertical polarization component light l p and the horizontal polarization component light l s, detection of the two polarization components the spacing be separated sufficiently Becomes accurate, and the measurement accuracy of the refractive index n 1 of the liquid 1 to be measured increases.

【0082】第2実施の形態 図8および図9を参照して本発明の光学式液体屈折率測
定装置の第2実施の形態を述べる。なお、下記に述べる
事項以外の事項について、第1実施の形態と共通する技
術は上述した第1実施の形態と同様である。
Second Embodiment An optical liquid refractive index measuring apparatus according to a second embodiment of the present invention will be described with reference to FIGS. Note that, with respect to matters other than the matters described below, the technology common to the first embodiment is the same as that of the above-described first embodiment.

【0083】図1〜図2を参照して述べた第1実施の形
態の光学式液体屈折率測定装置10は、光ガイドとして
複屈折性を有する透明結晶光学部材12を用いてその複
屈折性により反射光が光ガイド(透明結晶光学部材1
2)内で垂直偏光成分ls と水平偏光成分lp とに分離
されて出射することを利用している。第2実施の形態
は、さらに光ガイドの形状に改善を施して光ガイド部を
含む屈折率検出部の小型化および製作容易化を図ったも
のである。
The optical liquid refractive index measuring apparatus 10 according to the first embodiment described with reference to FIGS. 1 and 2 uses a birefringent transparent crystal optical member 12 as a light guide and uses the birefringence. Reflected light by the light guide (the transparent crystal optical member 1)
It utilizes the fact that 2) within which is separated into the vertical polarization component l s and horizontal polarization component l p emitted. In the second embodiment, the shape of the light guide is further improved to reduce the size and manufacture of the refractive index detector including the light guide.

【0084】図8に図解した光学式液体屈折率測定装置
30は、屈折率n1 の被測定液体1と接触し被測定液体
1とのこの界面で屈折率の不連続界面をなす複屈折率を
有する屈折率n0 の透明結晶光学部材(結晶光学部材)
32と、光源34と、光源34からの光を透明結晶光学
部材32に導く入射光用光ファイバ(光源側ファイバ)
36と、垂直偏光成分用光検知部42と、透明結晶光学
部材32から出射した垂直偏光成分ls を垂直偏光成分
用光検知部42に導く垂直偏光成分(ls )受光用ファ
イバ40と、水平偏光成分用光検知部44と、透明結晶
光学部材32から出射した水平偏光成分lp を水平偏光
成分用光検知部44に導く水平偏光成分(lp )受光用
ファイバ38と、垂直偏光成分用光検知部42および水
平偏光成分用光検知部44で検出した信号に基づいて被
測定液体1の屈折率n1 を算出する信号処理装置(屈折
率算出手段)46を有する。
The optical liquid refractive index measuring device 30 illustrated in FIG. 8 is in contact with the liquid to be measured 1 having a refractive index of n 1 and forms a discontinuous refractive index interface with the liquid to be measured 1 at this interface. Crystal optical member having a refractive index of n 0 (crystal optical member)
32, a light source 34, and an optical fiber for incident light (light source side fiber) for guiding the light from the light source 34 to the transparent crystal optical member 32
36, the vertical polarization component optical detection unit 42, the vertical polarization component (l s) a light receiving fiber 40 for guiding the emitted from the transparent crystal optical element 32 vertical polarization component l s vertically polarized component light detection unit 42, a horizontal polarization component optical detection unit 44, the horizontal polarization component (l p) the light-receiving fiber 38 for guiding the horizontal polarization component l p emitted from the transparent crystal optical member 32 in a horizontal polarization component optical detection unit 44, the vertical polarization component A signal processing device (refractive index calculating means) 46 for calculating the refractive index n 1 of the liquid 1 to be measured based on the signals detected by the light detecting section for use 42 and the light detecting section for horizontal polarization component 44.

【0085】第1実施の形態と比較すると、透明結晶光
学部材32の断面形状が透明結晶光学部材12の断面形
状とは異なる。全偏光光を射出する光源34と光源14
と同じもの、たとえばマルチモード光ファイバの入射光
用光ファイバ36は入射光用光ファイバ16と同じも
の、たとえばマルチモード光ファイバの水平偏光成分受
光用ファイバ38は水平偏光成分用光ファイバ20と同
じもの、垂直偏光成分受光用ファイバ40は垂直偏光成
分用光ファイバ18と同じものを用いることができる。
しかしながら、透明結晶光学部材32と透明結晶光学部
材12との相違に基づき、透明結晶光学部材32への測
定用入射光線li の入射角度は異なり、透明結晶光学部
材32からの垂直偏光成分lS および水平偏光成分lp
の出射角度も異なる。これらの相違については後述す
る。たとえばフォトダイオードによる垂直偏光成分用光
検知部42は垂直偏光成分用光ファイバ18と同じも
の、水平偏光成分用光検知部44は水平偏光成分用光検
知部24と同じものを用いることができる。信号処理装
置46は信号処理装置26と同じものを用いることがで
きる。
As compared with the first embodiment, the cross-sectional shape of the transparent crystal optical member 32 is different from that of the transparent crystal optical member 12. Light source 34 and light source 14 that emit all polarized light
For example, the incident light optical fiber 36 of the multi-mode optical fiber is the same as the incident light optical fiber 16, for example, the horizontal polarization component receiving fiber 38 of the multi-mode optical fiber is the same as the horizontal polarization component optical fiber 20. The vertical polarization component receiving fiber 40 may be the same as the vertical polarization component optical fiber 18.
However, based on the difference between the transparent crystal optical member 32 and the transparent crystal optical member 12, the angle of incidence of the measurement incident light beam l i on the transparent crystal optical member 32 is different, and the vertical polarization component l S from the transparent crystal optical member 32 is different. And the horizontal polarization component l p
Are also different. These differences will be described later. For example, the vertical polarization component photodetector 42 using a photodiode can be the same as the vertical polarization component optical fiber 18, and the horizontal polarization component photodetector 44 can be the same as the horizontal polarization component photodetector 24. The same signal processing device 46 as the signal processing device 26 can be used.

【0086】透明結晶光学部材32について述べる。透
明結晶光学部材32は、透明結晶光学部材12と同様、
透明結晶部材として複屈折性を有し、かつ、被測定液体
1の屈折率n1 よりも高い屈折率n0 を有するものとし
て、第1実施の形態と同様、ニオブ酸リチウム単結晶を
用いた。すなわち、n1 <n0 である。
The transparent crystal optical member 32 will be described. The transparent crystal optical member 32 is, like the transparent crystal optical member 12,
As in the first embodiment, a single crystal of lithium niobate was used as the transparent crystal member having birefringence and having a refractive index n 0 higher than the refractive index n 1 of the liquid 1 to be measured. . That is, n 1 <n 0 .

【0087】透明結晶光学部材32としては、ニオブ酸
リチウム単結晶のような一軸結晶の単結晶基板を用いる
ことが望ましいが、光源34から放出される入射光線l
i の波長に対して透明で、かつ複屈折性を有する高屈折
率材料であれば、ニオブ酸リチウム単結晶以外のどのよ
うな素材を用いても本発明と同様の効果を得ることがで
きる。そのような素材としては、正方晶系、三方晶系、
六方晶系に属する一軸結晶で、例えば、リン酸アンモニ
ウム(ADP)リン酸カリウム(KDP)、タンタル酸
リチウム、酸化亜鉛、水晶が該当する。
As the transparent crystal optical member 32, it is desirable to use a single crystal substrate of a uniaxial crystal such as a lithium niobate single crystal.
The same effects as those of the present invention can be obtained by using any material other than the lithium niobate single crystal as long as it is a high refractive index material that is transparent to the wavelength i and has birefringence. Such materials include tetragonal, trigonal,
A uniaxial crystal belonging to a hexagonal system, for example, ammonium phosphate (ADP), potassium phosphate (KDP), lithium tantalate, zinc oxide, and quartz.

【0088】透明結晶光学部材32は、入射面(出射
面)32a、全反射面(全反射ミラー面)32bおよび
接液面(屈折率不連続界面)32cを有する。全反射面
(全反射ミラー面)32bを形成するため、全反射面
(全反射ミラー面)32bには反射膜33が被着されて
いる。反射膜33としては、アルミニウムなどの金属膜
あるいは誘電体膜を用いる。なお、反射膜33として、
アルミニウムなどの金属膜や誘電体膜などを用いず、空
気と透明結晶光学部材32の界面からなる全反射ミラー
としてもよい。
The transparent crystal optical member 32 has an entrance surface (exit surface) 32a, a total reflection surface (total reflection mirror surface) 32b, and a liquid contact surface (refractive index discontinuous interface) 32c. To form the total reflection surface (total reflection mirror surface) 32b, a reflection film 33 is applied to the total reflection surface (total reflection mirror surface) 32b. As the reflection film 33, a metal film such as aluminum or a dielectric film is used. In addition, as the reflection film 33,
A total reflection mirror composed of an interface between air and the transparent crystal optical member 32 may be used without using a metal film such as aluminum or a dielectric film.

【0089】上述した素材で製造される透明結晶光学部
材32を、図8および図9に断面を示した直角三角形に
加工する。接液面(屈折率不連続界面)32cと入射面
(出射面)32aとのなす角度φ a を接液面32cに対
する光線の入射角φinと等しく、入射面と透明結晶光学
部材32の光学軸とのなす角度が直角となるように加工
する。光源34から透明結晶光学部材32に向かった放
出された測定用入射光線liの入射角φinは、被測定液
体1の屈折率に対する測定感度をなるべく大きくとるた
め、臨界角以下でかつ臨界角近傍の角度とすることが好
ましい。
Transparent crystal optical part manufactured from the above-mentioned material
The material 32 is formed into a right-angled triangle whose cross section is shown in FIGS.
Process. Liquid contact surface (discontinuous refractive index interface) 32c and incident surface
(Outgoing surface) Angle φ with 32a aTo the liquid contact surface 32c.
Incident angle φinEqual to, incident surface and transparent crystal optics
Processing so that the angle between the optical axis of the member 32 and the optical axis becomes a right angle
I do. The light emitted from the light source 34 toward the transparent crystal optical member 32
The emitted measuring light beam liIncident angle φinIs the liquid to be measured
To increase the measurement sensitivity for the refractive index of the body 1 as much as possible
For this reason, it is preferable that the angle be equal to or less than the critical angle,
Good.

【0090】光源34からの光は測定用入射光線li
して入射光用光ファイバ(光源側ファイバ)36によっ
て透明結晶光学部材32の入射面32aに入射され、透
明結晶光学部材32内を伝搬し接液面(屈折率不連続界
面)32cに至り、接液面(屈折率不連続界面)32c
で反射する。このとき、透明結晶光学部材32の複屈折
により垂直偏光成分lS と水平偏光成分lp とに分離さ
れる。これらの垂直偏光成分lS および水平偏光成分l
p は全反射面(全反射ミラー面)32bに進み、全反射
面(全反射ミラー面)32bで反射して、入射面(出射
面)32aから出射する。
The light from the light source 34 is incident on the incident surface 32a of the transparent crystal optical member 32 by the incident light optical fiber (light source side fiber) 36 as the measuring incident light beam l i , and propagates through the transparent crystal optical member 32. The liquid-contacting surface (discontinuous refractive index interface) 32c is reached.
Reflected by At this time, due to the birefringence of the transparent crystal optical member 32, it is separated into a vertical polarization component l S and a horizontal polarization component l p . These vertical polarization component l S and horizontal polarization component l
p travels to the total reflection surface (total reflection mirror surface) 32b, is reflected by the total reflection surface (total reflection mirror surface) 32b, and exits from the incident surface (output surface) 32a.

【0091】信号処理装置(屈折率算出手段)46は、
信号処理装置(屈折率算出手段)26と同様、垂直偏光
成分用光検知部42および水平偏光成分用光検知部44
で検出した信号の比率を算出し、被測定液体1の屈折率
1 を算出する。
The signal processing device (refractive index calculating means) 46
Similarly to the signal processing device (refractive index calculating unit) 26, the vertical polarization component light detection unit 42 and the horizontal polarization component light detection unit 44
Is calculated, and the refractive index n 1 of the liquid 1 to be measured is calculated.

【0092】透明結晶光学部材32を上述した形状に加
工することで、透明結晶光学部材32の接液面(屈折率
不連続界面)32cからの反射光線である垂直偏光成分
Sおよび垂直偏光成分lS が測定用入射光線li とほ
ぼ平行に透明結晶光学部材32の入射面(出射面)32
aから出射する。その結果、入射光用光ファイバ36、
水平偏光成分受光用ファイバ38および垂直偏光成分受
光用ファイバ40を適切な間隔を置いて平行に並べ、光
軸調整した後、固定することができる。この時、測定用
入射光線li の光軸は透明結晶光学部材32の入射面
(出射面)32aに対し直角、すなわち透明結晶光学部
材32の光学軸と一致させ、さらに測定用入射光線li
と反射光線(水平偏光成分lp および垂直偏光成分
S )とを含む入射面(出射面)32aと光学軸とが平
行となるように調整する。
By processing the transparent crystal optical member 32 into the above-described shape, the vertical polarization component l S and the vertical polarization component, which are light rays reflected from the liquid contact surface (discontinuous refractive index interface) 32 c of the transparent crystal optical member 32, are obtained. The incident surface (exit surface) 32 of the transparent crystal optical member 32 is set so that l S is substantially parallel to the incident light beam l i for measurement.
Emitted from a. As a result, the incident light optical fiber 36,
The horizontal polarization component receiving fiber 38 and the vertical polarization component receiving fiber 40 can be arranged in parallel at appropriate intervals, adjusted in optical axis, and then fixed. At this time, the optical axis of the measuring incident light l i is perpendicular to the entrance surface (exit surface) 32a of the transparent crystal optical element 32, i.e. the transparent crystal is matched with the optical axis of the optical member 32, incident light l i for further measurements
The incident surface (outgoing surface) 32a including the reflected light (horizontal polarized light component l p and vertical polarized light component l s ) is adjusted to be parallel to the optical axis.

【0093】このように、屈折率不連続界面32cさら
に全反射ミラー面32bからの反射光、すなわち、垂直
偏光成分lS および水平偏光成分lp が測定用入射光線
iが入射する入射面32aと同じ面から、入射面(出
射面)32aと直交して出射する。測定用入射光線li
は入射面32aに90度で入射する。したがって、入射
光用光ファイバ36、水平偏光成分受光用ファイバ3
8、垂直偏光成分受光用ファイバ40を入射面(出射
面)32aに直交させて配置できる。光ファイバ36,
38,40を束ねて入射面(出射面)32aに直角に配
置することもできる。その結果、第1実施の形態の光学
式液体屈折率測定装置に比較して、光ファイバ36、3
8、40の接続スペースを低減することができる。
As described above, the reflected light from the refractive index discontinuous interface 32c and the total reflection mirror surface 32b, that is, the vertical polarization component l S and the horizontal polarization component l p are converted to the incident surface 32a on which the measuring incident light beam l i is incident. The light exits from the same plane perpendicular to the entrance plane (exit plane) 32a. Measurement incident light l i
Is incident on the incident surface 32a at 90 degrees. Therefore, the incident light optical fiber 36 and the horizontally polarized light receiving fiber 3
8. The vertically polarized light receiving fiber 40 can be arranged perpendicular to the incident surface (emission surface) 32a. Optical fiber 36,
38 and 40 may be bundled and arranged at right angles to the entrance surface (exit surface) 32a. As a result, compared to the optical liquid refractive index measuring device of the first embodiment, the optical fibers 36, 3
8, 40 connection space can be reduced.

【0094】特に、透明結晶光学部材32の屈折率不連
続界面32cと全反射ミラー面32bとのなす角度を直
角にしているので、屈折率不連続界面32cからの反射
光のうち常光成分、すなわち、垂直偏光成分lS の出射
光軸を測定用入射光線li の光軸と平行にすることがで
き、入射面(出射面)32aの出射側における、水平偏
光成分(lp )受光用ファイバ38と垂直偏光成分(l
S )受光用ファイバ40の位置合わせが容易になる。
In particular, since the angle formed between the discontinuous refractive index interface 32c of the transparent crystal optical member 32 and the total reflection mirror surface 32b is a right angle, the ordinary light component of the reflected light from the discontinuous refractive index interface 32c, ie, , can be the emission optical axis of the vertical polarization component l S parallel to the optical axis of the measuring incident light l i, at the output side of the entrance surface (exit surface) 32a, the horizontal polarization component (l p) the light-receiving fiber 38 and the vertical polarization component (l
S ) Positioning of the light receiving fiber 40 is facilitated.

【0095】第2実施の形態において、測定用入射光線
i の光軸を透明結晶光学部材32の光学軸と一致させ
る必要があるが、第1実施の形態においては図1および
図2に図解した透明結晶光学部材12の断面形状が二等
辺三角形であるため、透明結晶光学部材12の製作に際
しては、入射光用光ファイバ16、垂直偏光成分用光フ
ァイバ18、水平偏光成分用光ファイバ20との接続を
考慮して、透明結晶光学部材12の入射面12aを特定
するためのマーキングが必要であった。これに対し、第
2実施の形態においては、測定用入射光線li の屈折率
不連続界面32cに対する入射角度が45°であること
を除けば、透明結晶光学部材32の断面形状が非対称形
となるため、入射光用光ファイバ36、水平偏光成分受
光用ファイバ38および垂直偏光成分受光用ファイバ4
0の接続時において、透明結晶光学部材32の入射面
(出射面)32a、接液面32c、全反射ミラー面32
bを透明結晶光学部材32の断面形状から判定でき、第
1実施の形態のようにマーキングの必要がない。その結
果、光学式液体屈折率測定装置30の製造が容易にな
り、生産性が向上し、光学式液体屈折率測定装置30は
一層低価格で製造できる。
In the second embodiment, it is necessary to make the optical axis of the incident light beam for measurement l i coincide with the optical axis of the transparent crystal optical member 32, but in the first embodiment, it is illustrated in FIGS. Since the cross-sectional shape of the transparent crystal optical member 12 is an isosceles triangle, when the transparent crystal optical member 12 is manufactured, the optical fiber 16 for the incident light, the optical fiber 18 for the vertical polarization component, and the optical fiber 20 for the horizontal polarization component In consideration of the above connection, a marking for specifying the incident surface 12a of the transparent crystal optical member 12 is required. On the other hand, in the second embodiment, the cross-sectional shape of the transparent crystal optical member 32 is asymmetric except that the incident angle of the incident light beam for measurement l i with respect to the refractive index discontinuous interface 32c is 45 °. Therefore, the incident light optical fiber 36, the horizontally polarized light receiving fiber 38, and the vertically polarized light receiving fiber 4
0, the incident surface (outgoing surface) 32a, the liquid contact surface 32c, and the total reflection mirror surface 32 of the transparent crystal optical member 32
b can be determined from the cross-sectional shape of the transparent crystal optical member 32, and there is no need for marking as in the first embodiment. As a result, the manufacture of the optical liquid refractive index measuring device 30 is facilitated, the productivity is improved, and the optical liquid refractive index measuring device 30 can be manufactured at a lower price.

【0096】以上のように、第2実施の形態は第1実施
の形態に比べて、入射光用光ファイバ(光源側ファイ
バ)36、水平偏光成分(lp )受光用ファイバ38お
よび垂直偏光成分(lS )受光用ファイバ40の接続ス
ペース縮小、位置合わせの容易さ、量産性の向上などの
利点を有する。
[0096] As described above, the second embodiment is compared with the first embodiment, the incident Hikari Mitsumochi fiber (light source side fiber) 36, the horizontal polarization component (l p) the light-receiving fiber 38 and the vertical polarization component (L s ) There are advantages such as a reduced connection space for the light receiving fiber 40, ease of alignment, and improvement in mass productivity.

【0097】第2実施の形態の光学式液体屈折率測定装
置30の動作について述べる。 (1)屈折率n0 の透明結晶光学部材32の接液面(屈
折率不連続界面)32cを屈折率n1 の被測定液体1に
接触させ、接液面32cに向けて光線を入射させる。入
射光軸と透明結晶光学部材32の光学軸とが一致してい
るため、測定用入射光線li は等方性媒体内を伝搬する
のと同様にして接液面32cに向かって伝搬する。 (2)透明結晶光学部材32の接液面32cにおいて、
屈折率n0 の透明結晶光学部材32と屈折率n1 の被測
定液体1との屈折率差に応じて測定用入射光線li の一
部が透明結晶光学部材32内に反射される。この時、反
射光成分のうち測定用入射光線li の光軸を含み境界面
に垂直な面に対し垂直な振動方向を持つものを垂直偏光
成分lS 、平行な振動方向を持つ光の成分を水平偏光成
分lp とした場合、垂直偏光成分lS は常光として入射
角度と等しい角度で反射する。これに対し、水平偏光成
分lp は透明結晶光学部材32のもつ複屈折性により、
異常光として垂直偏光成分lS とは異なる角度で反射す
る。
The operation of the optical liquid refractive index measuring device 30 according to the second embodiment will be described. (1) A liquid contact surface (discontinuous refractive index interface) 32c of a transparent crystal optical member 32 having a refractive index n 0 is brought into contact with the liquid 1 to be measured having a refractive index n 1 , and a light beam is incident on the liquid contact surface 32c. . Since the incident optical axis coincides with the optical axis of the transparent crystal optical member 32, the incident light beam for measurement l i propagates toward the liquid contact surface 32c in the same manner as it propagates in the isotropic medium. (2) On the liquid contact surface 32c of the transparent crystal optical member 32,
Some of measuring incident light l i according to the refractive index difference between the transparent crystal optical element 32 having a refractive index n 0 and the measured liquid 1 of refractive index n 1 is reflected in the transparent crystal optical member 32. At this time, among the reflected light components, those having a vibration direction perpendicular to the plane perpendicular to the boundary surface, including the optical axis of the incident light beam for measurement l i , are defined as a vertical polarization component l s , a component of light having a parallel vibration direction. Is the horizontal polarization component l p , the vertical polarization component l S is reflected as ordinary light at an angle equal to the incident angle. In contrast, the birefringence horizontal polarization component l p with transparent crystal optical element 32,
The extraordinary light is reflected at an angle different from the vertical polarization component l S.

【0098】以上のように、二つの反射光偏光成分、す
なわち、水平偏光成分lp および垂直偏光成分lS は、
透明結晶光学部材32の接液面32cより互いに異なる
角度で反射され、全反射ミラー面32bへ向かいそこで
再び透明結晶光学部材32内に向かって反射されるが、
入射面(出射面)32aと全反射ミラー面32bとが直
交しているため、水平偏光成分lp および垂直偏光成分
S は光学軸と平行な方向に反射される。このため、透
明結晶光学部材32の接液面32cで生じた複屈折効果
は起こらず、両偏光とも常光として入射面(出射面)3
2aへ向かい、入射面(出射面)32aより垂直に、す
なわち測定用入射光線li と平行に出射する。なお、正
確には、測定用入射光線li と平行に出射するのは垂直
偏光成分lSである。水平偏光成分lp は垂直偏光成分
S とは若干異なる角度で反射するため、入射面(出射
面)32aからの出射時、空気層との屈折率差の影響を
受け、測定用入射光線li 側にわずかに屈折して出射す
る。しかしながら、その角度差は3〜5度程度と小さ
く、水平偏光成分受光用ファイバ38として使用するマ
ルチモード光ファイバの開口度を考慮すれば、ほぼ無視
することができ、入射光用光ファイバ36、水平偏光成
分受光用ファイバ38および垂直偏光成分受光用ファイ
バ40を平行に並べることができる。
As described above, two reflected light polarization components, that is, a horizontal polarization component l p and a vertical polarization component l s ,
The light is reflected at different angles from the liquid contact surface 32c of the transparent crystal optical member 32, and is reflected toward the total reflection mirror surface 32b again into the transparent crystal optical member 32.
Since the entrance surface (exit surface) 32a is orthogonal to the total reflection mirror surface 32b, the horizontal polarization component I p and the vertical polarization component l S are reflected in a direction parallel to the optical axis. For this reason, the birefringence effect generated on the liquid contact surface 32c of the transparent crystal optical member 32 does not occur, and both polarized lights are incident light (emission surface) 3 as ordinary light.
The light exits from the incident surface (outgoing surface) 32a in a direction perpendicular to the incident surface (outgoing surface) 32a, that is, in parallel with the measuring incident light beam l i . To be precise, it is the vertical polarization component l S that is emitted in parallel with the incident light ray l i for measurement. The horizontal polarized light component l p is reflected at an angle slightly different from the vertical polarized light component l s , so that when it exits from the entrance surface (exit surface) 32a, it is affected by the refractive index difference from the air layer, and The light is refracted slightly to the i side and emitted. However, the angle difference is as small as about 3 to 5 degrees, and can be almost neglected in consideration of the aperture of the multi-mode optical fiber used as the horizontal polarization component receiving fiber 38. The horizontal polarization component receiving fiber 38 and the vertical polarization component receiving fiber 40 can be arranged in parallel.

【0099】水平偏光成分用光検知部42および垂直偏
光成分用光検知部44で検出した結果から信号処理装置
46を用いて被測定液体1の屈折率n1 を算出する方法
は、第1実施の形態における信号処理装置26における
処理と同様である。すなわち、信号処理装置46は、水
平偏光成分用光検知部42の検出信号と垂直偏光成分用
光検知部44の検出信号の強度比、あるいは、一方の、
好ましくは垂直偏光成分lS の全反射光量に対する比率
から被測定液体1の屈折率n1 を求める。
The method for calculating the refractive index n 1 of the liquid 1 to be measured by using the signal processing device 46 from the results detected by the horizontal polarization component light detector 42 and the vertical polarization component light detector 44 is described in the first embodiment. This is the same as the processing in the signal processing device 26 in the embodiment. That is, the signal processing device 46 controls the intensity ratio between the detection signal of the horizontal polarization component light detection unit 42 and the detection signal of the vertical polarization component light detection unit 44, or
Preferably, the refractive index n 1 of the liquid 1 to be measured is obtained from the ratio of the vertical polarization component l S to the total amount of reflected light.

【0100】第2実施の形態を図1および図2に図解し
た第1実施の形態と比較する。入射光用光ファイバ1
6:入射光用光ファイバ36、垂直偏光成分用光ファイ
バ18:垂直偏光成分受光用ファイバ40、水平偏光成
分用光ファイバ20:水平偏光成分受光用ファイバ38
の位置合わせについては、図1と図2の状態では、透明
結晶光学部材12の二等辺三角形の異なる面12a、1
2bから出射する光線に対し接続ファイバの光軸調整を
しなければならないのに対し、図8、図9を参照して述
べた第2実施の形態においては、透明結晶光学部材32
の同一面(入射面(出射面)32a)から出射する平行
光線に対する光軸調整となるので、その位置合わせは非
常に容易となる。
The second embodiment will be compared with the first embodiment illustrated in FIGS. Optical fiber for incident light 1
6: Optical fiber 36 for incident light, optical fiber 18 for vertical polarization component 18: Fiber 40 for receiving vertical polarization component, optical fiber 20 for horizontal polarization component: Fiber 38 for receiving horizontal polarization component
1 and FIG. 2, the different surfaces 12a, 1a of the isosceles triangle of the transparent crystal optical member 12 are shown.
While the optical axis of the connecting fiber must be adjusted for the light beam emitted from 2b, the transparent crystal optical member 32 in the second embodiment described with reference to FIGS.
Since the optical axis is adjusted with respect to the parallel light beam emitted from the same surface (incident surface (outgoing surface) 32a), the alignment is very easy.

【0101】次に、ファイバの接続スペースについて考
察する。第1実施の形態においては、入射光、出射光の
光軸のなす角度は接液面に対する入射角の2倍の角度と
なり、入射光用光ファイバ16、垂直偏光成分用光ファ
イバ18、水平偏光成分用光ファイバ20も同様の角度
で接続することになる。これらの光ファイバを束ねた方
が取扱い易く実用的であるが、光ファイバはあまり小さ
な曲率で曲げることができないため、図1、図2に図解
した向きでこれらの光ファイバを固定し、さらにこの状
態で光ファイバを束ねるためには透明結晶光学部材12
の周囲にかなりのスペースが必要となる。
Next, the fiber connection space will be considered. In the first embodiment, the angle between the optical axes of the incident light and the outgoing light is twice as large as the incident angle with respect to the liquid contact surface, and the optical fiber 16 for the incident light, the optical fiber 18 for the vertical polarization component, the horizontal polarization The component optical fiber 20 is also connected at a similar angle. Bundling these optical fibers is easier and more practical, but since the optical fibers cannot be bent with a very small curvature, these optical fibers are fixed in the directions illustrated in FIGS. In order to bundle the optical fibers in the state, the transparent crystal optical member 12 is required.
Requires a lot of space around it.

【0102】さらに、測定用入射光線li の光軸を透明
結晶光学部材12,32の光学軸と一致させる必要があ
るが、透明結晶光学部材12の断面形状が二等辺三角形
となので、その加工に際しては入射面(出射面)32a
を特定するためのマーキングが必要であった。これに対
し、第2実施の形態においては、図8に示すように、透
明結晶光学部材32の断面形状は非対称の直角三角形で
あるため、光ファイバ接続時において、入射面(出射
面)32a、接液面32c、全反射ミラー面32bを透
明結晶光学部材32の形状から特定できマーキングの必
要がなくなる。ここで、測定用入射光線li の入射角度
が45度となる場合、透明結晶光学部材32の形状は直
角二等辺三角形となるが、この場合は、光学軸に対し線
対称形状となり、等辺部の面はいずれを接液面にしても
構わなくなるため、やはりマーキングの必要がない。
Furthermore, it is necessary to make the optical axis of the incident light beam for measurement l i coincide with the optical axis of the transparent crystal optical members 12 and 32. Since the cross-sectional shape of the transparent crystal optical member 12 is an isosceles triangle, At this time, the incident surface (emission surface) 32a
Marking was required to identify this. On the other hand, in the second embodiment, as shown in FIG. 8, since the cross-sectional shape of the transparent crystal optical member 32 is an asymmetric right-angled triangle, when the optical fiber is connected, the incident surface (emission surface) 32a, The liquid contact surface 32c and the total reflection mirror surface 32b can be specified from the shape of the transparent crystal optical member 32, and the need for marking is eliminated. Here, when the incident angle of the incident light beam for measurement l i is 45 degrees, the shape of the transparent crystal optical member 32 is a right-angled isosceles triangle. It is not necessary to mark any of the surfaces because any surface can be used as the liquid contact surface.

【0103】加えて、透明結晶光学部材32は直角三角
形なので、長方形基板からの切出しが可能となるため、
加工がし易く、ニオブ酸リチウム単結晶の母材からの材
料切り取り効率的となる。その結果、透明結晶光学部材
32の製作が容易となり、生産性が向上し、量産も可能
となる。
In addition, since the transparent crystal optical member 32 is a right triangle, it can be cut out from a rectangular substrate.
Processing is easy, and material cutting from the base material of the lithium niobate single crystal becomes efficient. As a result, the production of the transparent crystal optical member 32 is facilitated, productivity is improved, and mass production is possible.

【0104】第3実施の形態 図10を参照して本発明の第3実施の形態を述べる。第
3実施の形態は、光ガイド(透明結晶光学部材)の形状
を改良して屈折率測定範囲の拡大化を図った発明であ
る。すなわち、第3実施の形態は、透明結晶部材の測定
試料液体と接する屈折率不連続界面において、2つの光
線に対して入射角が異なるように透明結晶部材を加工
し、被測定液体屈折率の測定範囲を飛躍的に拡大する。
Third Embodiment A third embodiment of the present invention will be described with reference to FIG. The third embodiment is an invention in which the shape of a light guide (transparent crystal optical member) is improved to expand the refractive index measurement range. That is, in the third embodiment, the transparent crystal member is processed at the discontinuous refractive index interface of the transparent crystal member in contact with the measurement sample liquid so that the incident angles are different for the two light beams, and the refractive index of the liquid to be measured is changed. Dramatically expand the measurement range.

【0105】下記に述べる第3実施の形態について、第
1実施の形態および第2実施の形態と共通する部分は、
記載を省略しているから、第1実施の形態および第2実
施の形態と同様であるとする。
In the third embodiment described below, portions common to the first and second embodiments are as follows.
Since the description is omitted, it is assumed that it is the same as the first embodiment and the second embodiment.

【0106】図10に図解した光学式液体屈折率測定装
置50は、透明結晶部材52と、全偏光光を射出する第
1および第2の平行光線発生光源54,55と、マルチ
モード光ファイバなどの光ファイバ56,57と、フォ
トダイオードなどの第1および第2の光検知部58,5
9と、信号処理装置(屈折率算出手段)60と測定系統
選択装置62とを有する。
The optical liquid refractive index measuring device 50 illustrated in FIG. 10 includes a transparent crystal member 52, first and second parallel light generating light sources 54 and 55 for emitting all polarized light, and a multimode optical fiber. Optical fibers 56, 57, and first and second photodetectors 58, 5 such as photodiodes.
9, a signal processing device (refractive index calculating means) 60, and a measurement system selecting device 62.

【0107】透明結晶部材52は、屈折率n0 の複屈折
を有する結晶光学部材であり、入射面52aと、第1お
よび第2の接液面(屈折率不連続界面)52b,52c
と、出射面52dとを有する。第1および第2の接液面
52b,52cにおいて屈折率n1 の被測定液体1と接
触し、第1および第2の接液面52b,52cにおいて
屈折率の不連続性をなす。
The transparent crystal member 52 is a crystal optical member having a birefringence with a refractive index n 0 , and includes an incident surface 52a, first and second liquid contact surfaces (discontinuous refractive index interfaces) 52b, 52c.
And an emission surface 52d. The first and second liquid contact surfaces 52b and 52c come into contact with the liquid to be measured 1 having the refractive index n 1 , and the first and second liquid contact surfaces 52b and 52c form a discontinuity in the refractive index.

【0108】透明結晶部材52として複屈折性を有し、
かつ、屈折率n1 の被測定液体1よりも高い屈折率を有
するものとして、ニオブ酸リチウム単結晶を用いた。透
明結晶部材52としては、ニオブ酸リチウム単結晶よう
な一軸結晶の単結晶基板を用いることが望ましいが、測
定光源波長に対して透明で、かつ、複屈折性を有する高
屈折率材料であれば、ニオブ酸リチウム単結晶に限ら
ず、他の素材を用いることができる。他の素材として
は、たとえば、正方晶系、三方晶系、六方晶系に属する
一軸結晶で、例えば、リン酸アンモニウム(ADP)リ
ン酸カリウム(KDP)、タンタル酸リチウム、酸化亜
鉛、水晶が該当する。
The transparent crystal member 52 has birefringence,
In addition, a lithium niobate single crystal was used as a material having a higher refractive index than the liquid 1 to be measured having a refractive index n 1 . As the transparent crystal member 52, it is desirable to use a single-crystal substrate of a uniaxial crystal such as lithium niobate single crystal, but if it is a high refractive index material that is transparent to the wavelength of the measurement light source and has birefringence. However, the material is not limited to lithium niobate single crystal, and other materials can be used. Other materials include, for example, uniaxial crystals belonging to tetragonal, trigonal, and hexagonal systems, such as ammonium phosphate (ADP), potassium phosphate (KDP), lithium tantalate, zinc oxide, and quartz. I do.

【0109】ニオブ酸リチウム単結晶、または、その他
の素材からなる透明結晶部材を、図10のように、入射
面52a、第1および第2の接液面52b,52cおよ
び出射面52dを有する形状に加工する。すなわち、第
1および第2の平行光線発生光源54,55から発せら
れた光線の光軸と透明結晶部材52の入射面52aが直
交し、透明結晶部材52に用いる結晶の光学軸と第1お
よび第2の平行光線発生光源54,55から測定用入射
光線とが平行になるように、結晶を加工する。
As shown in FIG. 10, a lithium niobate single crystal or a transparent crystal member made of another material is formed into a shape having an entrance surface 52a, first and second liquid contact surfaces 52b and 52c, and an exit surface 52d. Process into In other words, the optical axis of the light beam emitted from the first and second parallel light source 54, 55 is orthogonal to the incident surface 52a of the transparent crystal member 52, and the optical axis of the crystal used for the transparent crystal member 52 and the first and second optical axes. The crystal is processed so that the incident light beams for measurement from the second parallel light source 54 and 55 are parallel.

【0110】図11は2つの偏光の強度比Rs/(Rs
+Rp)と試料屈折率の関係を示すグラフである。Rs
は垂直偏光成分光ls のエネルギ反射率を示し、Rp
水平偏光成分光l p のエネルギ反射率を示す。したがっ
て、Rs/(Rs+Rp)は全偏光のエネルギに対する
垂直偏光成分光の比率を示す。被測定液体接触面法線方
向と光線入射方向とがなす角度が変化すると試料屈折率
と偏光強度比の関係が連続的に変化する。よって2つの
光線が入射する被測定液体とを接触面と光線の結晶入射
面との角度φ1 , φ2 が異なるように、透明結晶部材5
2の第1および第2の接液面52b,52cを形成する
と、被測定液体1のと接する面に入射する光線の角度が
異なり、被測定液体1の屈折率測定レンジを拡大するこ
とができる。
FIG. 11 shows an intensity ratio Rs / (Rs) of two polarized lights.
+ Rp) is a graph showing the relationship between the sample refractive index. Rs
Is the vertical polarization component light lsThe energy reflectivity of RpIs
Horizontally polarized light component l pShows the energy reflectivity of Accordingly
Rs / (Rs + Rp) is
The ratio of the vertically polarized component light is shown. Measured liquid contact surface normal
When the angle between the beam direction and the light incident direction changes, the sample refractive index
And the relationship between the polarization intensity ratio changes continuously. So two
Contact the liquid to be measured with the light beam and the crystal of the light beam
Angle φ with surface1,φTwoSo that the transparent crystal member 5
The first and second liquid contact surfaces 52b and 52c are formed.
And the angle of the light beam incident on the surface in contact with the liquid 1 to be measured is
In contrast, it is necessary to expand the refractive index measurement range of the liquid 1 to be measured.
Can be.

【0111】第1および第2の接液面52b,52cは
鈍角をなしており、第1および第2の接液面(屈折率不
連続界面)52b,52cはともに、入射面52aと出
射面52dに面している。しかも、第1および第2の接
液面(屈折率不連続界面)52b,52cは、第1およ
び第2の平行光線発生光源54,55からの測定用入射
光線li を出射面52dに向けて反射させ、その反射光
(垂直偏光成分lS 、水平偏光成分lp )が光ファイバ
56,57に入射可能な角度にしてある。そのため、第
1および第2の接液面(屈折率不連続界面)52b,5
2cのなす鈍角は、180度に近い鈍角である。入射面
52aと第1および第2の接液面(屈折率不連続界面)
52b,52cとのなす角度については、実施例を後述
する。
The first and second liquid contact surfaces 52b and 52c form an obtuse angle, and the first and second liquid contact surfaces (discontinuous refractive index interfaces) 52b and 52c are both an incident surface 52a and an exit surface. It faces 52d. In addition, the first and second liquid contact surfaces (discontinuous interfaces of refractive index) 52b and 52c direct the measurement incident light beams l i from the first and second parallel light source 54 and 55 toward the emission surface 52d. The reflected light (vertical polarized light component l s , horizontal polarized light component l p ) is set at an angle at which it can enter the optical fibers 56 and 57. Therefore, the first and second liquid contact surfaces (discontinuous interfaces of refractive index) 52b, 5b
The obtuse angle made by 2c is an obtuse angle close to 180 degrees. Incident surface 52a and first and second liquid contact surfaces (discontinuous refractive index interface)
As for the angle formed by 52b and 52c, an embodiment will be described later.

【0112】第1および第2の平行光線発生光源54,
55は、それぞれ、透明結晶部材52の入射面52aを
通して第1および第2の接液面52b,52cに向けて
光線を射出するように、平行して配置されている。第1
および第2の平行光線発生光源54,55はともに、第
1実施の形態の光源14、または、第2実施の形態の光
源34と同様、全偏光光を放射する。
The first and second parallel light source 54,
Numerals 55 are arranged in parallel so that light beams are emitted toward the first and second liquid contact surfaces 52b and 52c through the incident surface 52a of the transparent crystal member 52, respectively. First
Both the light source 54 and the second parallel light source 54 and 55 emit all polarized light similarly to the light source 14 of the first embodiment or the light source 34 of the second embodiment.

【0113】第1平行光線発生光源54からの光が第1
接液面52bに入射されると、被測定液体1との界面で
ある第1接液面52bで反射されて2種の偏光光に分離
され、出射面52dから出射する。これら2種の偏光光
は垂直偏光成分lS と水平偏光成分lp であり、第1お
よび第2の光検知部58,59で受光される。同様に、
第2の平行光線発生光源55からの光が第2の接液面5
2cに入射されると、被測定液体1との界面である第2
の接液面52cで反射されて2種の偏光光に分離され、
出射面52dから出射する。これら2種の偏光光は垂直
偏光成分lS と水平偏光成分lp であり、第1および第
2の光検知部58,59で受光される。
The light from the first parallel ray generating light source 54
When the light enters the liquid contact surface 52b, it is reflected by the first liquid contact surface 52b, which is the interface with the liquid 1 to be measured, separated into two types of polarized light, and emitted from the light exit surface 52d. These two types of polarized light are a vertical polarized light component l S and a horizontal polarized light component l p , and are received by the first and second light detection units 58 and 59. Similarly,
The light from the second parallel ray generating light source 55 is applied to the second liquid contact surface 5.
2c, the second interface, which is the interface with the liquid 1 to be measured,
Is reflected on the liquid contact surface 52c of the light source and separated into two types of polarized light,
The light exits from the exit surface 52d. These two types of polarized light are a vertical polarized light component l S and a horizontal polarized light component l p , and are received by the first and second light detection units 58 and 59.

【0114】2本の光ファイバ56,57は、上記透明
結晶部材52の複屈折性により二分して進行する2つの
不連続界面52b,52cからの4つの反射光(2系統
の2種の反射光)が空間中2点に交差する位置にそれぞ
れ配置している。
The two optical fibers 56 and 57 form four reflected lights (two systems of two kinds of reflected light) from two discontinuous interfaces 52b and 52c which travel in two due to the birefringence of the transparent crystal member 52. Light) intersect two points in the space.

【0115】第1および第2の光検知部58,59は、
第1実施の形態における垂直偏光成分用光検知部22お
よび水平偏光成分用光検知部24、または、第2実施の
形態における垂直偏光成分用光検知部42および水平偏
光成分用光検知部44に相当するものである。
The first and second light detectors 58 and 59 are:
The vertical polarization component light detection unit 22 and the horizontal polarization component light detection unit 24 in the first embodiment, or the vertical polarization component light detection unit 42 and the horizontal polarization component light detection unit 44 in the second embodiment. It is equivalent.

【0116】上述したように、図10に図解の光学式液
体屈折率測定装置10は、(1)実線で示した、第1平
行光線発生光源54、第1接液面52b、出射面52
d、光ファイバ56,57、第1および第2の光検知部
58,59、信号処理装置60の経路で規定される第1
の測定系統と、(2)破線で示した、第2の平行光線発
生光源55、第2の接液面52c、出射面52d、光フ
ァイバ56,57、第1および第2の光検知部58,5
9、信号処理装置60の経路で規定される第2の測定系
統とを有する。ただし、光ファイバ56,57、第1お
よび第2の光検知部58,59および信号処理装置60
は両者の測定系統に属する。
As described above, the optical liquid refractive index measuring device 10 illustrated in FIG. 10 includes (1) the first parallel ray generating light source 54, the first liquid contact surface 52b, and the emission surface 52 indicated by solid lines.
d, optical fibers 56 and 57, first and second light detecting units 58 and 59, and a first
And a second parallel light source 55, a second liquid contact surface 52c, an emission surface 52d, optical fibers 56 and 57, and first and second light detectors 58 indicated by broken lines (2). , 5
9, a second measurement system defined by the path of the signal processing device 60. However, the optical fibers 56 and 57, the first and second light detection units 58 and 59, and the signal processing device 60
Belongs to both measurement systems.

【0117】信号処理装置60は、第1実施の形態の信
号処理装置26、または、第2実施の形態の信号処理装
置46に相当する装置である。信号処理装置60自体の
演算原理は、第1実施の形態の信号処理装置26と同様
である。ただし、信号処理装置60は、第1の測定系統
と第2の測定系統との両者における被測定液体1の屈折
率n1 を算出する。
The signal processing device 60 is a device corresponding to the signal processing device 26 of the first embodiment or the signal processing device 46 of the second embodiment. The operation principle of the signal processing device 60 itself is the same as that of the signal processing device 26 of the first embodiment. However, the signal processing device 60 calculates the refractive index n 1 of the liquid 1 to be measured in both the first measurement system and the second measurement system.

【0118】測定系統選択装置62は、信号処理装置6
0で算出した結果を参照して、第1および第2の測定系
統のうち、被測定液体1の屈折率測定レンジに適した一
方の測定系統を1つ選択する。
The measuring system selecting device 62 is a signal processing device 6
With reference to the result calculated at 0, one of the first and second measurement systems is selected as one of the measurement systems suitable for the refractive index measurement range of the liquid 1 to be measured.

【0119】光学式液体屈折率測定装置50の動作を述
べる。測定系統選択装置62はまず、第1の測定系統を
動作させる。具体的には、測定系統選択装置62は、第
1平行光線発生光源54を動作させ、信号処理装置60
に第1の測定系統が動作することを伝達する。第1光線
発生光源54から発せられた光線は、透明結晶部材52
の入射面52aに入射し、透明結晶部材52内を伝搬す
る。測定用入射光線の光軸と透明結晶部材52の光学軸
とは一致しているから、等方性媒体内を伝搬するのと同
様にして、透明結晶部材52の内部に入射した光線は第
1の接液面52bに向かって伝搬する。第1の接液面5
2bにおいて、屈折率n0 の透明結晶部材52と屈折率
1 の被測定液体1との屈折率差に応じて、入射光の一
部が第1の接液面52bにて反射される。この時、反射
光成分のうち、垂直偏光成分は常光として、入射角度と
等しい角度で反射し、水平偏光成分は透明結晶部材52
のもつ複屈折性により、異常光として、垂直偏光成分と
は異なる角度で反射する。これら垂直偏光成分lS およ
び水平偏光成分lp は、出射面52dから出射して光フ
ァイバ56,57に入射し、光ファイバ56,57内を
伝搬して第1および第2の光検知部58,59に到達
し、電気信号に変換される。信号処理装置60は、第1
および第2の光検知部58,59で検出した偏光成分強
度比より被測定液体1の屈折率を算出する。なお、信号
処理装置60における被測定液体1の屈折率n1 の算出
方法は、第1実施の形態の信号処理装置26の演算方法
に従う。
The operation of the optical liquid refractive index measuring device 50 will be described. First, the measurement system selection device 62 operates the first measurement system. Specifically, the measurement system selection device 62 operates the first parallel light ray generation light source 54 and
That the first measurement system operates. The light emitted from the first light source 54 is transmitted to the transparent crystal member 52.
And propagates in the transparent crystal member 52. Since the optical axis of the incident light beam for measurement and the optical axis of the transparent crystal member 52 coincide with each other, the light beam incident on the inside of the transparent crystal member 52 is the same as the light beam propagating in the isotropic medium. To the liquid contact surface 52b. First liquid contact surface 5
In 2b, a part of the incident light is reflected by the first liquid contact surface 52b according to the refractive index difference between the transparent crystal member 52 having the refractive index n 0 and the liquid 1 to be measured having the refractive index n 1 . At this time, among the reflected light components, the vertically polarized light component is reflected as ordinary light at an angle equal to the incident angle, and the horizontal polarized light component is reflected at the transparent crystal member 52.
Due to the birefringence of, it is reflected as extraordinary light at an angle different from the vertical polarization component. The vertical polarization component l S and the horizontal polarization component l p exit from the exit surface 52d, enter the optical fibers 56 and 57, propagate through the optical fibers 56 and 57, and travel through the first and second light detection units 58. , 59 and is converted into an electric signal. The signal processing device 60 includes a first
Then, the refractive index of the liquid 1 to be measured is calculated from the polarization component intensity ratio detected by the second light detection units 58 and 59. Note that the method of calculating the refractive index n 1 of the liquid 1 to be measured in the signal processing device 60 follows the calculation method of the signal processing device 26 of the first embodiment.

【0120】測定系統選択装置62は、信号処理装置6
0で演算した結果が、その設定測定レンジを超えている
場合、第2の測定系統に切り換える。具体的には、測定
系統選択装置62は、第1平行光線発生光源54を動作
させ、信号処理装置60に第1の測定系統が動作するこ
とを伝達する。第2光線発生光源56から発せられた光
線は、透明結晶部材52の入射面52aに入射し、透明
結晶部材52内を伝搬する。透明結晶部材52の内部に
入射した光線は第2の接液面52cに向かって伝搬す
る。第2の接液面52cにおいて、屈折率n0 の透明結
晶部材52と屈折率n1 の被測定液体1との屈折率差に
応じて、入射光の一部が第1の接液面52bにて反射さ
れる。この時、反射光成分は垂直偏光成分lS および水
平偏光成分lp として出射面52dから出射して光ファ
イバ56,57に入射し、光ファイバ56,57内を伝
搬して第1および第2の光検知部58,59に到達し、
電気信号に変換される。信号処理装置60は、上記同
様、被測定液体1の屈折率n1 の算出を行う。
The measuring system selecting device 62 is a signal processing device 6
If the result calculated with 0 exceeds the set measurement range, the system switches to the second measurement system. Specifically, the measurement system selection device 62 operates the first parallel light source 54 and notifies the signal processing device 60 that the first measurement system is operating. The light emitted from the second light source 56 enters the incident surface 52 a of the transparent crystal member 52 and propagates through the transparent crystal member 52. The light ray incident on the inside of the transparent crystal member 52 propagates toward the second liquid contact surface 52c. At the second liquid contact surface 52c, a part of the incident light is changed to the first liquid contact surface 52b according to the refractive index difference between the transparent crystal member 52 having the refractive index n 0 and the liquid 1 to be measured having the refractive index n 1. Reflected at. At this time, the reflected light component exits from the exit surface 52d as a vertical polarization component l S and a horizontal polarization component I p , enters the optical fibers 56 and 57, propagates through the optical fibers 56 and 57, and travels through the first and second components. Reach the light detection units 58 and 59 of
Converted to electrical signals. The signal processing device 60 calculates the refractive index n 1 of the liquid 1 to be measured in the same manner as described above.

【0121】このように、光学式液体屈折率測定装置5
0によれば、最適な測定レンジで被測定液体1の屈折率
1 を測定できる。
As described above, the optical liquid refractive index measuring device 5
According to 0, the refractive index n 1 of the liquid 1 to be measured can be measured in the optimum measurement range.

【0122】なお、上述した例示とは逆に、最初に第2
の測定系統による測定を行い、その結果では精度が低い
場合は、測定系統選択装置62は第1の測定系統に切り
換えて被測定液体1の屈折率n1 の測定を行う。
Note that, contrary to the above example, the second
When the accuracy is low as a result, the measurement system selection device 62 switches to the first measurement system and measures the refractive index n 1 of the liquid 1 to be measured.

【0123】また、測定系統選択装置62は無条件に、
第1の測定系統による測定、第2の測定系統による測定
を行い、精度の高い結果を最終結果として出力すること
もできる。
The measuring system selecting device 62 is unconditionally
Measurement by the first measurement system and measurement by the second measurement system are performed, and a highly accurate result can be output as a final result.

【0124】実施例2 透明結晶部材52において被測定液体1と第1および第
2の接液面(屈折率不連続界面)52b,52cが入射
面52aとのなす角をそれぞれ、φ1 =42.5°とφ
2 =35°にした場合、それぞれの角度により測定でき
る屈折率レンジが異なるため、それぞれを補う形で測定
レンジが拡大される。
Embodiment 2 In the transparent crystal member 52, the angle between the liquid 1 to be measured and the first and second liquid contact surfaces 52b and 52c with the incident surface 52a is φ 1 = 42. .5 ° and φ
When 2 = 35 °, the measurable refractive index range differs depending on each angle, so that the measurement range is expanded in a manner that complements each range.

【0125】実施例3 透明結晶部材52において被測定液体1と第1および第
2の接液面(屈折率不連続界面)52b,52cが入射
面52aとのなす角をそれぞれ、φ1 =42.5°とφ
2 =40°と、実施例2に比べ、2つの角度φ1 、φ2
の差を小さくした場合、試料液屈折率1に対する偏光強
度比の変化割合が大きい、いわゆる感度の高いレンジを
大きくすることができる。
Embodiment 3 In the transparent crystal member 52, the angle formed by the liquid 1 to be measured and the first and second liquid contact surfaces (discontinuity interfaces) 52b and 52c with the incident surface 52a is φ 1 = 42. .5 ° and φ
2 = 40 °, two angles φ 1 and φ 2 compared to the second embodiment.
When the difference is small, the range of change in the polarization intensity ratio with respect to the refractive index of the sample liquid 1 is large, that is, the range of high sensitivity can be increased.

【0126】このように、被測定液体1と接触する透明
結晶部材52の面を、第1および第2の接液面52b,
52cのように2つ設け、第1および第2の平行光線発
生光源54,55を設けることにより、測定レンジの異
なる測定系統を構成できる。
As described above, the surface of the transparent crystal member 52 that comes into contact with the liquid 1 to be measured is changed to the first and second liquid contact surfaces 52b and 52b.
By providing two light sources 52c and the first and second parallel light sources 54 and 55 as in the case of 52c, measurement systems having different measurement ranges can be configured.

【0127】さらに、接液面52b,52cと入射面5
2aとの角度を適切に設定することにより、被測定液体
1の屈折率の測定レンジを調整することができる。その
結果、1つの透明結晶部材52、共用する光ファイバ5
6,57、第1および第2の光検知部58,59および
信号処理装置60によって、それぞれの測定レンジに応
じた2種の測定が可能となる。
Further, the liquid contact surfaces 52b and 52c and the entrance surface 5
By appropriately setting the angle with 2a, the measurement range of the refractive index of the liquid 1 to be measured can be adjusted. As a result, one transparent crystal member 52 and the shared optical fiber 5
6, 57, the first and second light detectors 58, 59, and the signal processing device 60 enable two types of measurement according to the respective measurement ranges.

【0128】本発明の光学式液体屈折率測定装置の実施
に際しては、上述した例示的な実施の形態に限定され
ず、種々の変形態様をとることができる。
The implementation of the optical liquid refractive index measuring device of the present invention is not limited to the above-described exemplary embodiment, but can take various modifications.

【0129】[0129]

【発明の効果】本発明の第1の観点によれば、低価格で
あり、装置構成が大規模化せず、組み立てが複雑になら
ず、サンプリングなどを要せず、自動的かつ連続的に、
短時間で被測定液体の屈折率の測定が可能な光学式液体
屈折率測定装置を実現できた。また、本発明の第1の観
点によれば、受光した垂直偏光成分光と水平偏光成分光
とを用いて正規化することにより、参照光を用いること
なく、正確な屈折率の測定が可能になった。このこと
は、屈折率の測定精度の向上と、装置構成の一層の小型
化をもたらした。また本発明の第1の観点によれば、室
温(または常温)の環境において、高い分解能を示し、
かつ、被測定液体の屈折率の測定精度を高めることがで
きた。さらに本発明の第1の観点によれば、光源の変動
の影響を受けない光学式液体屈折率測定装置が提供でき
た。また本発明の第1の観点によれば、外乱光などの影
響を受けない光学式液体屈折率測定装置が提供できた。
According to the first aspect of the present invention, it is inexpensive, does not require a large-scale device configuration, does not require complicated assembling, does not require sampling, etc., and is automatic and continuous. ,
An optical liquid refractive index measuring device capable of measuring the refractive index of the liquid to be measured in a short time was realized. Further, according to the first aspect of the present invention, it is possible to accurately measure the refractive index without using the reference light by normalizing the received vertical polarization component light and the horizontal polarization component light. became. This has led to an improvement in the measurement accuracy of the refractive index and a further miniaturization of the device configuration. Further, according to the first aspect of the present invention, in a room temperature (or room temperature) environment, high resolution is exhibited,
In addition, the measurement accuracy of the refractive index of the liquid to be measured could be improved. Further, according to the first aspect of the present invention, it is possible to provide an optical liquid refractive index measuring device which is not affected by the fluctuation of the light source. Further, according to the first aspect of the present invention, an optical liquid refractive index measuring device which is not affected by disturbance light or the like can be provided.

【0130】本発明の第2の観点によれば、透明結晶部
材に、不連続界面での反射光を光線の入射面方向へ向け
て全反射するような角度で反射面を設けるているので、
不連続界面からの反射光が、光線の入射面と同じ面から
出射することになり、光ファイバの接続スペースを低減
することができる。また本発明の第2の観点によれば、
屈折率の不連続界面と、全反射面とのなす角度を直角に
することにより、反射光のうち、常光成分すなわち垂直
偏光成分の出射光軸を入射光線の光軸と平行にすること
ができ、出射側、受光側ファイバの位置合わせが容易に
なる。本発明の第2の観点において、入射光線の光軸を
透明結晶部材の光学軸と一致させる際、光線の屈折率不
連続界面に対する入射角度が45度以外であれば、透明
結晶部材形状は非対称形となるため、ファイバ接続時に
おいて、入射面、接液面、全反射面を部材形状から特定
でき、マーキングの必要がない。また、本発明の第2の
観点において、透明結晶部材形状を直角三角形とするこ
とができるので、長方形基板からの切出しが可能となる
ため、加工がし易く、母材からの材料取りも効率的とな
る。以上のことから、本発明の第2形態によれば、透明
結晶部材の製作が容易となり、生産性の向上し、量産も
可能となる。
According to the second aspect of the present invention, since the transparent crystal member is provided with the reflection surface at an angle such that the light reflected at the discontinuous interface is totally reflected toward the light incident surface,
The light reflected from the discontinuous interface is emitted from the same surface as the light incident surface, so that the connection space of the optical fiber can be reduced. According to a second aspect of the present invention,
By making the angle between the discontinuous interface of the refractive index and the total reflection surface a right angle, it is possible to make the output optical axis of the ordinary light component, that is, the vertical polarization component, of the reflected light parallel to the optical axis of the incident light beam. Alignment of the output side fiber and the light receiving side fiber becomes easy. In the second aspect of the present invention, when the optical axis of an incident light beam is made coincident with the optical axis of a transparent crystal member, the shape of the transparent crystal member is asymmetric if the incident angle of the light beam with respect to the refractive index discontinuity interface is other than 45 degrees. Since the shape is used, the incident surface, the liquid contact surface, and the total reflection surface can be specified from the member shape when connecting the fiber, and there is no need for marking. Further, according to the second aspect of the present invention, the transparent crystal member can be formed into a right-angled triangular shape, so that it can be cut out from a rectangular substrate, so that it is easy to process and the material can be efficiently removed from the base material. Becomes As described above, according to the second embodiment of the present invention, the production of the transparent crystal member is facilitated, the productivity is improved, and the mass production is possible.

【0131】本発明の第3の観点によれば、透明結晶部
材に2つの不連続界面を設け入射光源の選択による不連
続界面への入射角度選択を行うことで、屈折率測定範囲
が拡大できる。また本発明の第3の観点によれば、1つ
の透明結晶部材に2つの被測定液体接触面を設けること
により、透明結晶部材を2つ設けて屈折率測定範囲の拡
大化を図る場合より、コストの削減を図ることができ
る。さらに本発明の第3の観点によれば、2つの光源か
ら発せられるそれぞれ2つの垂直偏光成分及び水平偏光
成分の反射光線軸の交差位置に受光部を配することによ
り、部品点数の削減が図られコストが削減できる。
According to the third aspect of the present invention, the refractive index measurement range can be expanded by providing two discontinuous interfaces on the transparent crystal member and selecting an incident angle on the discontinuous interface by selecting an incident light source. . Further, according to the third aspect of the present invention, by providing two liquid contact surfaces to be measured on one transparent crystal member, it is possible to enlarge the refractive index measurement range by providing two transparent crystal members. Cost can be reduced. Further, according to the third aspect of the present invention, the number of parts can be reduced by arranging the light receiving section at the intersection of the reflected light axes of the two vertically polarized light components and two horizontally polarized light components emitted from the two light sources, respectively. Cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の1実施の形態としての光学式液
体屈折率測定装置の構成図である。
FIG. 1 is a configuration diagram of an optical liquid refractive index measuring device as one embodiment of the present invention.

【図2】図2は図1に図解した光学式液体屈折率測定装
置のうち、透明結晶部材を中心とする拡大図である。
FIG. 2 is an enlarged view centering on a transparent crystal member in the optical liquid refractive index measuring device illustrated in FIG.

【図3】図3は入射角度φ0 =37.45°のときの被
測定液体の屈折率n1 の変化と、垂直偏光成分光ls
エネルギ反射率Rs との関係を示すグラフである。
Figure 3 is a graph showing the relationship between the change of the refractive index n 1 of the liquid to be measured when the incident angle φ 0 = 37.45 °, the energy reflectance R s of the vertical polarization component light l s is there.

【図4】図4は被測定液体の屈折率n1 の変化と、垂直
偏光成分光ls のエネルギ反射率Rs と水平偏光成分光
p のエネルギ反射率Rp との比:Rs /Rp との関係
を示すグラフである。
Figure 4 is a variation of the refractive index n 1 of the liquid to be measured, the ratio of the energy reflectance R p of the energy reflectance R s and horizontal polarization component light l p of the vertical polarization component light l s: R s 4 is a graph showing a relationship with / R p .

【図5】図5は被測定液体1の屈折率n1 の変化と、R
s /(Rs +Rp )との関係を示すグラフである。
FIG. 5 is a graph showing changes in the refractive index n 1 of the liquid 1 to be measured and R
s / is a graph showing the relationship between the (R s + R p).

【図6】図6は本発明の実施例として、光源の光線の強
度を変化させたとき、種々の被測定液体の種々の屈折率
1 に対するRs /(Rs +Rp )の変化を示すグラフ
である。
FIG. 6 shows, as an embodiment of the present invention, changes in R s / (R s + R p ) with respect to various refractive indexes n 1 of various liquids to be measured when the light intensity of the light source is changed. It is a graph shown.

【図7】図7は本発明の実施例として、被測定液体1の
屈折率n1 =1.466のとき、光源の光線の強度を変
化させたときの、Rs /(Rs +Rp )の変化を示すグ
ラフである。
FIG. 7 shows, as an embodiment of the present invention, R s / (R s + R p ) when the light intensity of the light source is changed when the refractive index n 1 of the liquid 1 to be measured is 1.466. FIG.

【図8】図8は本発明の2実施の形態としての光学式液
体屈折率測定装置の構成図である。
FIG. 8 is a configuration diagram of an optical liquid refractive index measuring device according to a second embodiment of the present invention.

【図9】図9は図8に図解した光学式液体屈折率測定装
置のうち、透明結晶部材を中心とする拡大図である。
FIG. 9 is an enlarged view centering on a transparent crystal member in the optical liquid refractive index measuring device illustrated in FIG. 8;

【図10】図10は本発明の3実施の形態としての光学
式液体屈折率測定装置の構成図である。
FIG. 10 is a configuration diagram of an optical liquid refractive index measuring device according to a third embodiment of the present invention.

【図11】図11は本発明の3実施の形態における特性
図である。
FIG. 11 is a characteristic diagram according to the third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ・・被測定液体(屈折率n1 ) 10・・光学式液体屈折率測定装置 12・・透明結晶光学部材(結晶光学部材)(屈折率n
0 ) 14・・光源 16・・入射光用光ファイバ 18・・垂直偏光成分用光ファイバ 20・・水平偏光成分用光ファイバ 22・・垂直偏光成分用光検知部 24・・水平偏光成分用光検知部 26・・信号処理装置(屈折率算出手段) li ・・入射光線 φ0 ・・入射角度 φ1 ・・透過光屈折角度 ls ・・垂直偏光成分光 lp ・・水平偏光成分光 rs ・・垂直偏光成分光ls のフルネル反射係数 rp ・・水平偏光成分光lp のフルネル反射係数 Rs ・・垂直偏光成分光ls のエネルギ反射率 Rp ・・水平偏光成分光lp のエネルギ反射率 30・・光学式液体屈折率測定装置 32・・透明結晶光学部材(結晶光学部材)(屈折率n
0 ) 34・・光源 36・・入射光用光ファイバ 38・・垂直偏光成分用光ファイバ 40・・水平偏光成分用光ファイバ 42・・垂直偏光成分用光検知部 44・・水平偏光成分用光検知部 46・・信号処理装置(屈折率算出手段) 50・・光学式液体屈折率測定装置 52・・透明結晶光学部材(結晶光学部材)(屈折率n
0 ) 54、55・・平行光線発生光源 56,57・・光ファイバ 58,59・・光検知部 60・・信号処理装置(屈折率算出手段) 62・・測定系統選択装置
1 ··· Liquid to be measured (refractive index n 1 ) 10 ··· Optical liquid refractive index measuring device 12 ··· Transparent crystal optical member (crystal optical member) (refractive index n
0 ) 14. Light source 16. Optical fiber for incident light 18. Optical fiber for vertical polarization component 20. Optical fiber for horizontal polarization component 22. Photodetector for vertical polarization component 24. Light for horizontal polarization component Detector 26 Signal processing device (refractive index calculation means) l i ... Incident light φ 0 .incident angle φ 1 ... Transmitted light refraction angle l s ... Vertical polarization component light l p. r s · · energy reflectance of the vertical polarized component light l s of Fresnel reflection coefficient r p · · Fresnel reflection coefficient of the horizontally polarized component light l p R s · · vertical polarization component light l s R p · · horizontally polarized component light l p energy reflectance 30 ... optical liquid refractive index measuring apparatus 32 ... transparent crystal optical element (crystal optical member) (refractive index n
0 ) 34 light source 36 optical fiber for incident light 38 optical fiber for vertical polarization component 40 optical fiber for horizontal polarization component 42 photodetector for vertical polarization component 44 light for horizontal polarization component Detecting unit 46: Signal processing device (refractive index calculating means) 50: Optical liquid refractive index measuring device 52: Transparent crystal optical member (crystal optical member) (refractive index n
0 ) 54, 55 ··· parallel light source 56, 57 ··· optical fiber 58, 59 · · · photodetection unit 60 · · · signal processing device (refractive index calculating means) 62 · · · measurement system selection device

Claims (22)

【特許請求の範囲】[Claims] 【請求項1】所定の屈折率を有する被測定液体の表面と
接触する底面(12c)と、該底面と所定の角度をなす
入射面(12a)と、前記底面と所定の角度をなし前記
入射面と対向する側に設けられた出射面(12b)とを
有し、前記底面(12c)と前記被測定液体との境界面
において屈折率について不連続界面をなす複屈折率を有
する結晶光学部材(12)と、 該結晶光学部材の前記入射面に所定の角度で光を入射さ
せる入射光提供手段(14,16)と、 前記入射光提供手段から前記結晶光学部材の入射面(1
2a)に入射され、前記結晶光学部材(12)の内部を
伝搬し、前記結晶光学部材の底面(12c)と前記被測
定液体との境界面において反射し、第1の偏光成分と第
2の偏光成分とに分離され、前記結晶光学部材の出射面
(12b)から出射した第1の偏光成分と第2の偏光成
分とを検出する第1および第2の偏光成分検出手段(2
2、24)と、 該第1および第2の偏光成分検出手段で検出した信号を
演算して前記被測定液体の屈折率を算出する屈折率算出
手段(26)とを有する、光学式液体屈折率測定装置。
1. A bottom surface (12c) contacting a surface of a liquid to be measured having a predetermined refractive index, an incident surface (12a) forming a predetermined angle with the bottom surface, and a predetermined angle with the bottom surface. A crystal optical member having an emission surface (12b) provided on a side facing the surface, and having a birefringence having a discontinuous interface with respect to a refractive index at a boundary surface between the bottom surface (12c) and the liquid to be measured. (12), incident light providing means (14, 16) for causing light to enter the incident surface of the crystal optical member at a predetermined angle, and an incident surface (1) of the crystal optical member from the incident light providing means.
2a), propagates inside the crystal optical member (12), is reflected at the boundary between the bottom surface (12c) of the crystal optical member and the liquid to be measured, and has a first polarization component and a second polarization component. First and second polarized light component detection means (2) for detecting a first polarized light component and a second polarized light component which are separated into polarized light components and exit from the exit surface (12b) of the crystal optical member.
2, 24) and a refractive index calculating means (26) for calculating a refractive index of the liquid to be measured by calculating a signal detected by the first and second polarized light component detecting means. Rate measuring device.
【請求項2】前記入射光線提供手段からの光が前記結晶
光学部材の入射面(12a)に直交状態で入射し、 前記結晶光学部材の出射面(12b)は、前記被測定液
体の表面と接触し屈折率の不連続界面をなす前記結晶光
学部材の底面の該不連続界面から反射した2つの反射偏
光成分のうち少なくとも一方の反射偏光成分光と直交す
る請求項1記載の光学式液体屈折率測定装置。
2. The light from the incident light beam providing means is incident on the incident surface (12a) of the crystal optical member in an orthogonal state, and the light exit surface (12b) of the crystal optical member is in contact with the surface of the liquid to be measured. 2. The optical liquid refraction according to claim 1, wherein at least one of the two reflected polarized light components reflected from the discontinuous interface on the bottom surface of the crystal optical member that is in contact with the discontinuous interface of the refractive index is orthogonal to the reflected polarized light. Rate measuring device.
【請求項3】前記第1の偏光成分は垂直偏光成分光(l
s )であり、 前記第2の偏光成分は前記第1の偏光成分光と直交する
水平偏光成分光(lp)である請求項1記載の光学式液
体屈折率測定装置。
3. The first polarized light component is a vertically polarized light component (l).
a s), the second polarization component of the first polarization component light perpendicular to the horizontally polarized component light (l p) an optical liquid refractive index measuring apparatus according to claim 1, wherein.
【請求項4】前記入射光線と前記反射偏光光線とを含む
面と、前記結晶光学部材の光軸とが平行である、請求項
3記載の光学式液体屈折率測定装置。
4. The optical liquid refractometer according to claim 3, wherein a plane including the incident light beam and the reflected polarized light beam is parallel to an optical axis of the crystal optical member.
【請求項5】入射面(32a)、屈折率不連続界面(3
2c)、全反射面(32b)を有し、前記屈折率不連続
界面(32c)が被測定液体(1)と接触し、該被測定
液体(1)の接触界面での屈折率の不連続界面をなし、
該不連続界面での反射光を前記入射面(32a)方向へ
向けて反射するような角度で前記全反射面(32c)を
設けた、複屈折率を有する結晶光学部材(32)と、 該結晶光学部材の前記入射面に所定の角度で光を入射さ
せる入射光提供手段(34,36)と、 前記入射光提供手段から前記結晶光学部材の入射面(3
2a)に入射され、前記結晶光学部材(32)の内部を
透過し、前記結晶光学部材の前記屈折率不連続界面(3
2c)と前記被測定液体(1)との境界面において反射
して第1の偏光成分と第2の偏光成分とに分離され、さ
らに、前記全反射面(32b)において反射されて前記
結晶光学部材の前記入射面(32a)から出射した第1
の偏光成分と第2の偏光成分とを検出する第1および第
2の偏光成分検出手段(38:44,40:42)と、 該第1および第2の偏光成分検出手段で検出した信号を
演算して前記被測定液体の屈折率を算出する屈折率算出
手段(46)と、 を具備する光学式液体屈折率測定装置。
5. An incident surface (32a), a refractive index discontinuous interface (3).
2c), having a total reflection surface (32b), the discontinuous refractive index interface (32c) being in contact with the liquid to be measured (1), and having a discontinuous refractive index at the contact interface of the liquid to be measured (1). Make an interface,
A crystal optical member (32) having a birefringent index, wherein the total reflection surface (32c) is provided at an angle such that light reflected at the discontinuous interface is reflected toward the incident surface (32a); Incident light providing means (34, 36) for causing light to enter the incident surface of the crystal optical member at a predetermined angle; and an incident surface (3) of the crystal optical member from the incident light providing means.
2a), is transmitted through the inside of the crystal optical member (32), and is provided at the discontinuous refractive index interface (3) of the crystal optical member.
The liquid crystal is reflected at the boundary between the liquid crystal 2c) and the liquid to be measured (1), is separated into a first polarized light component and a second polarized light component, and is further reflected at the total reflection surface (32b) to produce the crystal optics. The first light emitted from the incident surface (32a) of the member
First and second polarization component detection means (38:44, 40:42) for detecting the polarization component and the second polarization component, and a signal detected by the first and second polarization component detection means. An optical liquid refractive index measuring device, comprising: a refractive index calculating means (46) for calculating the refractive index of the liquid to be measured.
【請求項6】前記透明結晶光学部材(32)の前記被測
定液体(1)と接触し屈折率の不連続界面をなす前記屈
折率不連続界面(32c)と、該不連続界面からの2つ
の反射光を前記透明結晶光学部材内へ全反射する前記全
反射面(32b)とのなす角度が直角である請求項5記
載の光学式液体屈折率測定装置。
6. A discontinuous refractive index interface (32c) of the transparent crystal optical member (32), which is in contact with the liquid to be measured (1) and forms a discontinuous refractive index interface, and 2 6. The optical liquid refractive index measuring device according to claim 5, wherein an angle formed between the two reflected lights and the total reflection surface (32b) for totally reflecting the reflected light into the transparent crystal optical member is a right angle.
【請求項7】前記光源(34)からの光線の光軸と、前
記透明結晶光学部材(32)光学軸とが平行である請求
項5または6記載の光学式液体屈折率測定装置。
7. An optical liquid refractive index measuring apparatus according to claim 5, wherein an optical axis of a light beam from said light source is parallel to an optical axis of said transparent crystal optical member.
【請求項8】前記光源(34)からの光線の光軸と、前
記光源からの光線が入射する前記透明結晶光学部材(3
2)の入射面(32a)とのなす角度が直角である請求
項5または6記載の光学式液体屈折率測定装置。
8. An optical axis of a light beam from said light source (34) and said transparent crystal optical member (3) on which a light beam from said light source is incident.
7. The optical liquid refractive index measuring device according to claim 5, wherein an angle between the incident surface and the incident surface is a right angle.
【請求項9】前記光源(34)からの光が前記透明結晶
光学部材(32)に入射する前記入射面(32a)と、
前記透明結晶光学部材(32)から出射する前記2種の
反射光(lp 、lS )の出射面とが一致し、 前記入射面(32a)への入射光線(li )の光軸と、
前記2種の反射光(l p 、lS )の光軸とがほぼ平行し
ている請求項8記載の光学式液体屈折率測定装置。
9. The light from said light source (34) is applied to said transparent crystal.
Said incident surface (32a) incident on the optical member (32);
The two types of light emitted from the transparent crystal optical member (32)
Reflected light (lp, LS) Coincides with the exit surface, and the incident light (l) on the entrance surface (32a)i) Optical axis,
The two types of reflected light (l p, LS) Is almost parallel to the optical axis
9. The optical liquid refractive index measuring device according to claim 8, wherein:
【請求項10】前記入射光提供手段(34,36)およ
び前記第1および第2の偏光成分検出手段(38:4
4,40:42)が、第1〜第3の光ファイバを有し、 これらの光ファイバが前記結晶光学部材(32)の前記
入射面(32a)を指向している請求項9記載の光学式
液体屈折率測定装置。
10. The incident light providing means (34, 36) and the first and second polarization component detecting means (38: 4).
4,40: 42) has first to third optical fibers, and these optical fibers are directed to the incident surface (32a) of the crystal optical member (32). Liquid refractive index measuring device.
【請求項11】入射面(52a)、該入射面に隣接し前
記入射面と所定の角度をなす出射面(52d)と、前記
入射面と前記出射面に臨みそれぞれ前記入射面と所定の
角度をなす隣接したと第1および第2の屈折率不連続界
面(52b,52c)を有し、前記第1および第2の屈
折率不連続界面が被測定液体(1)と接触して該被測定
液体(1)の接触界面での屈折率の不連続界面をなし、
該不連続界面での反射光を前記出射面(52d)へ向け
て反射する、複屈折率を有する結晶光学部材(52)
と、 該結晶光学部材の前記第1および第2の屈折率不連続界
面に光を入射させる第1および第2の入射光提供手段
(54:64、55:65)と、 前記第1および第2の入射光提供手段から前記結晶光学
部材の入射面(52a)に入射され、前記結晶光学部材
(52)の内部を透過し、前記結晶光学部材の前記第1
および第2の屈折率不連続界面(52b,52c)と前
記被測定液体(1)との境界面において反射して第1の
偏光成分と第2の偏光成分とに分離され、前記出射面
(52d)から出射した第1の偏光成分と第2の偏光成
分とを検出する第1および第2の偏光成分検出手段(5
6:58,57:59)と、 該第1および第2の偏光成分検出手段で検出した信号を
演算して前記被測定液体の屈折率を算出する屈折率算出
手段(60)と、 前記第1および第2の入射光提供手段(54:64、5
5:65)のいずれか一方を動作させ、それによる前記
屈折率算出手段(60)における結果を送出する測定系
統選択手段(62)とを具備する光学式液体屈折率測定
装置。
11. An entrance surface (52a), an exit surface (52d) adjacent to the entrance surface and forming a predetermined angle with the entrance surface, and a predetermined angle facing the entrance surface and the exit surface, respectively. The first and second discontinuous refractive index interfaces (52b, 52c) are adjacent to each other, and the first and second discontinuous refractive index interfaces come into contact with the liquid to be measured (1). Forming a discontinuous interface of the refractive index at the contact interface of the measurement liquid (1),
A crystal optical member (52) having a birefringent index for reflecting light reflected at the discontinuous interface toward the emission surface (52d);
First and second incident light providing means (54:64, 55:65) for making light incident on the first and second discontinuous refractive index interfaces of the crystal optical member; The incident light is provided to the incident surface (52a) of the crystal optical member, transmitted through the interior of the crystal optical member (52), and is transmitted through the first surface of the crystal optical member.
And at the boundary between the second discontinuous refractive index interface (52b, 52c) and the liquid to be measured (1), the light is separated into a first polarized light component and a second polarized light component, and the light exit surface ( 52d) first and second polarization component detection means (5) for detecting the first polarization component and the second polarization component emitted from
6:58, 57:59), a refractive index calculating means (60) for calculating a refractive index of the liquid to be measured by calculating signals detected by the first and second polarization component detecting means, First and second incident light providing means (54:64, 5
5:65), and a measuring system selecting means (62) for transmitting a result in the refractive index calculating means (60) based on the operated one.
【請求項12】前記結晶光学部材(52)の光学軸と、
前記第1および第2の入射光提供手段(54:64、5
5:65)から射出される光の光軸とが平行である請求
項11記載の光学式液体屈折率測定装置。
12. An optical axis of said crystal optical member (52),
The first and second incident light providing means (54:64, 5
The optical liquid refractometer according to claim 11, wherein the optical axis of the light emitted from (5:65) is parallel to the optical axis.
【請求項13】前記結晶光学部材(52)の前記入射面
(52a)と、前記第1および第2の入射光提供手段
(54:64、55:65)から射出される光の光軸と
が直交する、 請求項11記載の光学式液体屈折率測定装置。
13. The incident surface (52a) of the crystal optical member (52) and the optical axis of light emitted from the first and second incident light providing means (54:64, 55:65). The optical liquid refractive index measuring device according to claim 11, wherein?
【請求項14】前記第1および第2の入射光提供手段
(54:64、55:65)が全偏光成分を含む光を射
出する請求項11記載の光学式液体屈折率測定装置。
14. An optical liquid refractive index measuring device according to claim 11, wherein said first and second incident light providing means (54:64, 55:65) emit light containing all polarization components.
【請求項15】複屈折率を有する前記結晶光学部材が一
軸結晶の単結晶基板である、請求項1、5、11いずれ
か記載の光学式液体屈折率測定装置。
15. The optical liquid refractive index measuring device according to claim 1, wherein the crystal optical member having a birefringence is a uniaxial single crystal substrate.
【請求項16】前記結晶光学部材はニオブ酸リチウム単
結晶である、請求項1、5、11いずれか記載の光学式
液体屈折率測定装置。
16. An optical liquid refractive index measuring apparatus according to claim 1, wherein said crystal optical member is a lithium niobate single crystal.
【請求項17】前記光源より発せられる光が全偏光成分
を含む、請求項1、5、11いずれか記載の光学式液体
屈折率測定装置。
17. The optical liquid refractive index measuring device according to claim 1, wherein the light emitted from the light source includes a total polarization component.
【請求項18】前記入射光提供手段(14,16)は、
全偏光成分を含む光を放射する光源(14)と、該光源
からの光を前記結晶光学部材の入射面(12a)に所定
の角度で入射させる導波回路(16)とを有する、 請求項1または5記載の光学式液体屈折率測定装置。
18. The incident light providing means (14, 16) comprises:
The light source (14) that emits light including all polarization components, and a waveguide circuit (16) that causes light from the light source to enter the incident surface (12a) of the crystal optical member at a predetermined angle. 6. The optical liquid refractive index measuring device according to 1 or 5.
【請求項19】前記第1の偏光成分検出手段(18,2
2)は、前記結晶光学部材の出射面(12b)から出射
する第1の反射偏光成分を案内する第1の導波回路(1
8)と、該第1の導波回路からの光を受け入れて該受光
強度に応じた電気信号を発する第1の受光手段(22)
とを有し、 前記第2の偏光成分検出手段(20,24)は、前記結
晶光学部材の出射面(12b)から出射する第2の反射
偏光成分を案内する第2の導波回路(20)と、該第2
の導波回路からの光を受け入れて該受光強度に応じた電
気信号を発する第2の受光手段(24)とを有する請求
項1、5、11いずれか記載の光学式液体屈折率測定装
置。
19. The first polarized light component detecting means (18, 2)
2) a first waveguide circuit (1) for guiding a first reflected polarization component emitted from the emission surface (12b) of the crystal optical member;
8) and a first light receiving means (22) for receiving light from the first waveguide circuit and emitting an electric signal corresponding to the received light intensity.
The second polarized light component detecting means (20, 24) includes a second waveguide circuit (20) for guiding a second reflected polarized light component emitted from the emission surface (12b) of the crystal optical member. ) And the second
12. The optical liquid refractive index measuring device according to claim 1, further comprising a second light receiving means (24) for receiving light from said waveguide circuit and emitting an electric signal according to said light receiving intensity.
【請求項20】前記第1の導波回路はマルチモード光フ
ァイバを有し、 前記第2の導波回路はマルチモード光ファイバを有する
請求項19記載の光学式液体屈折率測定装置。
20. The optical liquid refractive index measuring device according to claim 19, wherein said first waveguide circuit has a multi-mode optical fiber, and said second waveguide circuit has a multi-mode optical fiber.
【請求項21】前記屈折率算出手段は、前記第1の受光
手段の検出信号と前記第2の受光手段の検出信号との強
度比率、または、検出信号全体の強度と前記第1の受光
手段の検出信号の強度との比率または検出信号全体の強
度と前記第2の受光手段の検出信号の強度との比率か
ら、前記被測定液体の屈折率を算出する請求項1、5、
11いずれか記載の光学式液体屈折率測定装置。
21. An apparatus according to claim 21, wherein said refractive index calculating means comprises: an intensity ratio between a detection signal of said first light receiving means and a detection signal of said second light receiving means, or an intensity of an entire detection signal and said first light receiving means. The refractive index of the liquid to be measured is calculated from the ratio of the intensity of the detection signal or the ratio of the intensity of the entire detection signal to the intensity of the detection signal of the second light receiving means.
12. The optical liquid refractive index measuring device according to any one of 11).
【請求項22】前記屈折率算出手段は、前記第1の受光
手段の検出信号と前記第2の受光手段の検出信号との和
としての検出信号全体の強度と前記第1の受光手段の検
出信号の強度との比率または前記検出信号全体の強度と
前記第2の受光手段の検出信号の強度との比率から、前
記被測定液体の屈折率を算出する請求項1、5、11い
ずれか記載の光学式液体屈折率測定装置。
22. An apparatus according to claim 19, wherein said refractive index calculating means detects an intensity of an entire detection signal as a sum of a detection signal of said first light receiving means and a detection signal of said second light receiving means, and detects said first light receiving means. The refractive index of the liquid to be measured is calculated from a ratio of a signal intensity or a ratio of an intensity of the entire detection signal to an intensity of a detection signal of the second light receiving unit. Optical liquid refractometer.
JP10458199A 1998-04-10 1999-04-12 Optical liquid refractive index measuring apparatus Pending JPH11352055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10458199A JPH11352055A (en) 1998-04-10 1999-04-12 Optical liquid refractive index measuring apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-99543 1998-04-10
JP9954398 1998-04-10
JP10458199A JPH11352055A (en) 1998-04-10 1999-04-12 Optical liquid refractive index measuring apparatus

Publications (1)

Publication Number Publication Date
JPH11352055A true JPH11352055A (en) 1999-12-24

Family

ID=26440675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10458199A Pending JPH11352055A (en) 1998-04-10 1999-04-12 Optical liquid refractive index measuring apparatus

Country Status (1)

Country Link
JP (1) JPH11352055A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054424A (en) * 2008-08-29 2010-03-11 Tsuden Co Ltd Liquid leakage sensor
CN110654367A (en) * 2018-06-29 2020-01-07 沃尔沃汽车公司 System and method for determining the moisture content in brake fluid
CN112567228A (en) * 2018-10-18 2021-03-26 聚合物表征股份有限公司 Deflection-type refractometer with extended measuring range

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054424A (en) * 2008-08-29 2010-03-11 Tsuden Co Ltd Liquid leakage sensor
CN110654367A (en) * 2018-06-29 2020-01-07 沃尔沃汽车公司 System and method for determining the moisture content in brake fluid
CN110654367B (en) * 2018-06-29 2022-04-05 沃尔沃汽车公司 System and method for determining the moisture content in brake fluid
US11433868B2 (en) 2018-06-29 2022-09-06 Volvo Car Corporation System and method for determining water content in brake fluid
CN112567228A (en) * 2018-10-18 2021-03-26 聚合物表征股份有限公司 Deflection-type refractometer with extended measuring range

Similar Documents

Publication Publication Date Title
JP2804073B2 (en) Apparatus and method for measuring the refractive index of a substance
Golnabi Design and operation of a fiber optic sensor for liquid level detection
US4703175A (en) Fiber-optic sensor with two different wavelengths of light traveling together through the sensor head
JP4108040B2 (en) Current measuring device
US5712705A (en) Arrangement for analysis of substances at the surface of an optical sensor
JPH0921698A (en) Optical sensor
US4818071A (en) Fiber optic doppler anemometer
US7773640B2 (en) Fiber laser device
US10145789B2 (en) Immersion refractometer
US6340448B1 (en) Surface plasmon sensor
JPH11352055A (en) Optical liquid refractive index measuring apparatus
Zhou et al. Fiber-optic refractometer based on a reflective aspheric prism rendering adjustable sensitivity
JPH0712826A (en) Interferometer, optical scanning tunnel microscope, and optical probe
JPH11352158A (en) Optical fiber measuring instrument
RU2744159C1 (en) Fiber-optical signaler of level and type of liquid
Tai et al. Sensitive handheld refractometer by using combination of a tapered fiber tip and a multimode fiber
US20180252635A1 (en) Light Guide Device, Measurement System, and Method for Producing a Light Guide Device
JP3390355B2 (en) Surface plasmon sensor
US11815404B2 (en) High accuracy frequency measurement of a photonic device using a light output scanning system and a reference wavelength cell
US20230408770A1 (en) Optical waveguide element and optical axis adjustment method
JP7336951B2 (en) Voltage measuring device and voltage measuring method
JP2003130734A (en) Temperature sensor and temperature measurement method
SU1404956A1 (en) Device for measuring instensity of variable electric fields
JPS6135492B2 (en)
KR860000389B1 (en) Electric field detection apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051026

A621 Written request for application examination

Effective date: 20051026

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070608

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070619

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016