JPH11351922A - Flow rate measuring method of gas - Google Patents

Flow rate measuring method of gas

Info

Publication number
JPH11351922A
JPH11351922A JP10160546A JP16054698A JPH11351922A JP H11351922 A JPH11351922 A JP H11351922A JP 10160546 A JP10160546 A JP 10160546A JP 16054698 A JP16054698 A JP 16054698A JP H11351922 A JPH11351922 A JP H11351922A
Authority
JP
Japan
Prior art keywords
pressure
gas
flow rate
measured
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10160546A
Other languages
Japanese (ja)
Inventor
Hiroshi Kusumoto
寛史 楠元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10160546A priority Critical patent/JPH11351922A/en
Publication of JPH11351922A publication Critical patent/JPH11351922A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To conserve a gas and time while guaranteeing a demand accuracy with an inexpensive measuring device when measuring the flow rate of the gas constantly flowing into a closed container. SOLUTION: A capacity C of a container, a set flow rate F of a gas, an allowable measuring error R of a measured flow rate of the gas and a changing speed L of a pressure attributed to a slight leakage of the gas from the container are defined. With a resolving power P of a pressure measuring means and a time interval T for observation, points on a lattice give the time and the pressure for the observation and a rise in pressure to be measured is indicated by an inclination between the maximum measured rise in pressure 27 and the minimum measured rise in pressure 26. With a due consideration given to this condition and other conditions of a measurable minimum pressure Pmin and a measurable maximum pressure Pmax of the pressure measuring means and a waiting time S for starting measurement, a pressure 22 of starting the observation of the pressure rise and a pressure 24 of ending it are derived by an expression allowed for a measuring accuracy. Thus, a rising rate of the pressure in the closed container can be measured in a shorter time considering a measuring accuracy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は気体の流量計測方法
に関する。
The present invention relates to a method for measuring a gas flow rate.

【0002】[0002]

【従来の技術】気体の流量を制御する装置において、流
量をフィードバック制御するために流量を計測する機構
が備わっているものがある。しかし、その気体の流量制
御装置の制御が正常か否かを検査するためには、その計
測機構とは別の手段により測定しなければならない。図
3は気体の流量制御機構を備えた装置の構成例を示すブ
ロック図である。流量制御部11によって流量を制御さ
れた気体が密閉容器12に流れ込む場合、この密閉容器
の圧力の上昇速度を圧力測定部13によって計測し、そ
の計測値を中央処理部14に取り込む。気体の流量は圧
力の変化速度に他ならないので、計測に要した時間と上
昇した圧力から気体の流量を中央処理部14で計算する
ことで求めることができる。具体的には、パラメータ記
憶部15に記憶された容量Cの密閉容器12に気体を一
定流量で供給し、計測を開始した圧力p1から計測を終
了した圧力p2まで到達するのに要する時間dとして、
2. Description of the Related Art Some apparatuses for controlling the flow rate of a gas have a mechanism for measuring the flow rate in order to feedback-control the flow rate. However, in order to check whether or not the control of the gas flow control device is normal, the measurement must be performed by means different from the measurement mechanism. FIG. 3 is a block diagram showing a configuration example of an apparatus provided with a gas flow control mechanism. When the gas whose flow rate is controlled by the flow control unit 11 flows into the closed container 12, the rate of increase in the pressure of the closed container is measured by the pressure measuring unit 13, and the measured value is taken into the central processing unit 14. Since the flow rate of the gas is nothing but the rate of change of the pressure, it can be obtained by calculating the flow rate of the gas in the central processing unit 14 from the time required for measurement and the increased pressure. Specifically, the time required to supply gas at a constant flow rate to the closed container 12 having the capacity C stored in the parameter storage unit 15 and to reach from the pressure p 1 at which measurement was started to the pressure p 2 at which measurement was completed. As d

【0003】[0003]

【数9】f=C(p2−p1)/d によって計測流量fを求める。従来は計測を開始する圧
力p1と計測を終了する圧力p2を経験的に適当な値に設
定していた。
The measured flow rate f is determined by f = C (p 2 −p 1 ) / d. Conventionally, the pressure p 1 for starting the measurement and the pressure p 2 for ending the measurement have been set to appropriate values empirically.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、実際の
圧力を読み取る装置の測定精度や計測できる圧力の範囲
には制限があり、また、時間を計測する装置の測定精度
にも限界がある。特に計測装置を安価に構築するために
は、測定精度があまりよくないものを使用しなければな
らない。そのため、圧力上昇の計測を開始する圧力と終
了する圧力を適当に定めていると、測定精度が悪く、正
しい流量を計測できない恐れがある。一方、測定精度を
よくするためには計測時間を十分長く取る必要がある。
これは、計測時間が無駄なだけでなく、気体を無駄に浪
費することになりかねない。
However, there are limitations on the measurement accuracy of the device for reading the actual pressure and the range of the pressure that can be measured, and also on the accuracy of the device for measuring time. In particular, in order to construct a measuring device at low cost, it is necessary to use a device having a measurement accuracy that is not very good. For this reason, if the pressure at which the measurement of the pressure rise is started and the pressure at which the measurement is completed are appropriately determined, the measurement accuracy is poor, and the flow rate may not be measured correctly. On the other hand, in order to improve the measurement accuracy, it is necessary to take a sufficiently long measurement time.
This not only wastes the measurement time but also wastes gas.

【0005】本発明の方法は、安価な流量計測装置で気
体や時間を浪費することなく要求する精度を保証するこ
とを目的とする。
The object of the present invention is to guarantee the required accuracy without wasting gas or time with an inexpensive flow meter.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決し目的を達成するため、計測を開始する圧力と終了す
る圧力とを測定精度を加味した計算式により算出するこ
とを特徴とする。
According to the present invention, in order to solve the above-mentioned problems and achieve the object, a pressure at which measurement is started and a pressure at which measurement is completed are calculated by a calculation formula taking into account measurement accuracy. .

【0007】本発明によれば、安価な計測装置を用いて
短時間で使用する気体の量を少なくしつつ、要求した測
定精度で、気体の流量を計測できるという作用を有す
る。
According to the present invention, the gas flow rate can be measured with the required measurement accuracy while reducing the amount of gas used in a short time by using an inexpensive measuring device.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態につい
て図1及び図2を用いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0009】本実施の形態においては、密閉容器の容量
C、圧力計測手段の計測可能な最小圧力Pmin、圧力計
測手段の計測可能な最大圧力Pmax、圧力計測手段の測
定できる最小の圧力の幅P、圧力計測手段を観測する最
小の時間間隔T、気体の設定流量F、気体の計測流量と
実際の流量との許容計測誤差R(ただしR>0)、密閉
容器からの気体の微少な漏れによる圧力の変化速度L、
気体を流し始めてから圧力の上昇を観測し始めるまで少
なくとも待たなければならない時間Sとする。
In the present embodiment, the capacity C of the closed container, the minimum pressure P min measurable by the pressure measuring means, the maximum pressure P max measurable by the pressure measuring means, and the minimum pressure measurable by the pressure measuring means are determined. Width P, minimum time interval T for observing the pressure measuring means, set flow rate F of gas, allowable measurement error R between the measured flow rate of gas and the actual flow rate (R> 0), and minute amount of gas from the closed container. The rate of change of pressure L due to leakage,
It is assumed that the time S must wait at least from the start of gas flow to the start of observing a rise in pressure.

【0010】密閉容器に一定流量の気体を導入したと
き、横軸に時間、縦軸に圧力をとると図1の実際の計測
圧力上昇25のようなグラフで表される。ここで、21
は計測開始時刻、22は計測開始圧力、23は計測終了
時刻、24は計測終了圧力、26は最小の計測圧力上
昇、27は最大の計測圧力上昇を示す。
When a constant flow rate of gas is introduced into a closed container, the time is plotted on the horizontal axis and the pressure is plotted on the vertical axis, and this is represented by a graph such as the actual measured pressure rise 25 in FIG. Where 21
Indicates a measurement start time, 22 indicates a measurement start pressure, 23 indicates a measurement end time, 24 indicates a measurement end pressure, 26 indicates a minimum measured pressure rise, and 27 indicates a maximum measured pressure rise.

【0011】しかし、図1のグラフに示すように実際の
圧力は最小Pの大きさまでしか認識できず、また、時間
Tおきにしか圧力を監視できない。そのため、実際には
図1のように横軸方向の幅T、縦軸方向の幅Pの格子上
の点が観測される時間および圧力となる。このとき、計
測を開始してから終了するまでの横軸方向の格子の数を
m、縦軸方向の格子の数をnとして、実際の流量に対し
て許される計測流量の計測誤差のRを考慮すると、最大
の計測圧力上昇27のようなグラフになる場合に対し
て、
However, as shown in the graph of FIG. 1, the actual pressure can be recognized only up to the minimum value P, and the pressure can be monitored only every time T. Therefore, actually, the time and pressure at which a point on the grid having a width T in the horizontal axis direction and a width P in the vertical axis direction as shown in FIG. 1 are observed. At this time, the number of grids in the horizontal axis direction from the start of measurement to the end thereof is m, the number of grids in the vertical axis direction is n, and the measurement error R of the measured flow rate allowed for the actual flow rate is Considering the case where the graph looks like the maximum measured pressure rise 27,

【0012】[0012]

【数10】 (1+R)F≧C{(n+1)P/(m−1)T−L} を満足しなければならない。また、最小の計測圧力上昇
26のグラフになる場合に対して、
(1 + R) F ≧ C {(n + 1) P / (m-1) TL} must be satisfied. Also, for the case where the graph of the minimum measured pressure rise 26 becomes,

【0013】[0013]

【数11】 (1−R)F≦C{(n−1)P/(m+1)T−L} を満足しなければならない。(数10)を変形して、(1−R) F ≦ C {(n−1) P / (m + 1) T−L} must be satisfied. By transforming (Equation 10),

【0014】[0014]

【数12】m≧{(n+1)P/T}/{(1+R)F
/C+L}+1 (数12)を変形して、
## EQU12 ## m ≧ {(n + 1) P / T} / {(1 + R) F
/ C + L} +1 (Equation 12)

【0015】[0015]

【数13】m≦{(n−1)P/T}/{(1−R)F
/C+L}−1 (数12)及び(数13)からmを消去し、左辺がnの
みの不等式に変形すると、
[Mathematical formula-see original document] m≤ {(n-1) P / T} / {(1-R) F
/ C + L} -1 When m is deleted from (Equation 12) and (Equation 13), and the left side is transformed into an inequality having only n,

【0016】[0016]

【数14】n≧{(CL/F+1)2−R2}FT/RC
P+(CL/F+1)/R となる。今、計測を開始する圧力p1、計測を終了する
圧力p2のとき、
[Equation 14] n ≧ {(CL / F + 1) 2 −R 2 } FT / RC
P + (CL / F + 1) / R Now, the pressure p 1 to start the measurement, when the pressure p 2 to stop measuring,

【0017】[0017]

【数15】p2−p1=nP であるから、(数14)より、p1及びp2に関して、Since p 2 −p 1 = nP, from (Equation 14), regarding p 1 and p 2 ,

【0018】[0018]

【数16】p2−p1≧{(CL/F+1)2−R2}FT
/RC+(CL/F+1)P/R なる条件式が導出される。
## EQU16 ## p 2 −p 1 ≧ {(CL / F + 1) 2 −R 2 } FT
The following conditional expression is derived: / RC + (CL / F + 1) P / R

【0019】一方、気体の導入し始めの流量が安定しな
いためなどの理由で初期の圧力上昇が線形でない可能性
のある時間S部分は観測の対象とすべきではない。その
ため、
On the other hand, the time S portion in which the initial pressure rise may not be linear due to, for example, an unstable flow rate at the beginning of gas introduction should not be an object of observation. for that reason,

【0020】[0020]

【数17】p1≧(P/C+L)/S なる条件式が導かれる。さらに、圧力観測手段の計測可
能な圧力の範囲から、
Equation 17 p 1 ≧ (P / C + L) / S made conditional expression is derived. Furthermore, from the range of pressure that can be measured by the pressure observation means,

【0021】[0021]

【数18】p1≧Pmin [Equation 18] p 1 ≧ P min

【0022】[0022]

【数19】p2≦Pmax なる条件式が成立する。これら(数16)から(数1
9)の条件式から、
## EQU19 ## The conditional expression p 2 ≤P max holds. From these (Equation 16), (Equation 1)
From the conditional expression of 9),

【0023】[0023]

【数20】Pmin≧(F/C+L)S のとき[Equation 20] When P min ≧ (F / C + L) S

【0024】[0024]

【数21】p1=Pmin [Equation 21] p 1 = P min

【0025】[0025]

【数22】Pmin<(F/C+L)S のときWhen P min <(F / C + L) S

【0026】[0026]

【数23】p1=(F/C+L)S なる圧力p1を計測開始圧力として、The pressure p 1 where p 1 = (F / C + L) S is defined as the measurement start pressure,

【0027】[0027]

【数24】Pmax≦{(CL/F+1)2−R2}FT/RC
+(CL/F+1)P/R+p1 のとき
P max ≦ {(CL / F + 1) 2 −R 2 } FT / RC
+ (CL / F + 1) P / R + p 1

【0028】[0028]

【数25】p2=Pmaxmax>{(CL/F+1)2−R2}FT/RC+(CL/F
+1)P/R+p1 のとき
P 2 = P max P max > {(CL / F + 1) 2 −R 2 } FT / RC + (CL / F
+1) For P / R + p 1

【0029】[0029]

【数26】p2={(CL/F+1)2−R2}FT/RC+
(CL/F+1)P/R+p1 なる圧力p2を計測終了圧力とする。
P 2 = {(CL / F + 1) 2 −R 2 } FT / RC +
And (CL / F + 1) P / R + p 1 becomes the pressure p 2 measured pressure at the end.

【0030】以上の測定精度を加味した数式により圧力
上昇の観測を開始する圧力と終了する圧力を導出するこ
とで、測定精度を考慮しつつ短い時間で密閉容器内の圧
力上昇速度を測定することができる。
By deriving the pressure at which the observation of the pressure rise is started and the pressure at which the pressure rise is observed using a mathematical expression taking into account the above measurement accuracy, the pressure rise speed in the closed vessel can be measured in a short time while considering the measurement accuracy. Can be.

【0031】図2は本実施の形態における気体の流量計
測方法を実施した半導体製造装置の反応室の構成図を示
す。図2に示す反応室32に反応ガスを導入するための
ガスライン30を有しており、流量を一定に制御するた
めにガスライン30上にマスフローコントローラ31が
接続されている。本実施の形態ではマスフローコントロ
ーラが正常に動作しているかどうかを確認するために、
実際にはどれだけの流量で制御しているかを計測するこ
とに用いることができる。
FIG. 2 shows a configuration diagram of a reaction chamber of a semiconductor manufacturing apparatus in which the gas flow rate measuring method according to the present embodiment is performed. A gas line 30 for introducing a reaction gas into the reaction chamber 32 shown in FIG. 2 is provided, and a mass flow controller 31 is connected to the gas line 30 to control the flow rate to be constant. In this embodiment, in order to confirm whether the mass flow controller is operating normally,
In practice, it can be used to measure how much flow is being controlled.

【0032】まず、マスフローコントローラ31の設定
流量から計測開始圧力p1と計測終了圧力p2とを中央処
理部34により算出する。ただし、反応室32の容量
C、圧力計測手段である真空計33の計測可能な最小圧
力Pmin、真空計33の計測可能な最大圧力Pmax、真空
計33の分解能P、真空計33の取り込み値を観測する
マスフローコントローラ31の計測時間間隔T、マスフ
ローコントローラ31の設定流量F、気体の計測流量の
許容計測誤差R、反応室からの気体の微少な漏れによる
圧力の変化速度L、および、気体を流し始めてから圧力
の上昇を観測し始めるまでに流量が安定するまでの時間
や反応室32の排気を停止するまでの時間のために少な
くとも待たなければならない時間Sは予めパラメータ記
憶部35に記憶されている。
First, the central processing unit 34 calculates a measurement start pressure p 1 and a measurement end pressure p 2 from the flow rate set by the mass flow controller 31. However, the capacity C of the reaction chamber 32, the minimum pressure P min that can be measured by the vacuum gauge 33 as the pressure measuring means, the maximum pressure P max that can be measured by the vacuum gauge 33, the resolution P of the vacuum gauge 33, and the intake of the vacuum gauge 33 The measurement time interval T of the mass flow controller 31 for observing the value, the set flow rate F of the mass flow controller 31, the allowable measurement error R of the measured flow rate of the gas, the rate of change L of the pressure due to the slight leakage of the gas from the reaction chamber, and the gas The time S required to wait at least for the time required for the flow rate to stabilize from the start of flowing the gas to the start of observing the rise in pressure and for the time required for stopping the evacuation of the reaction chamber 32 is stored in the parameter storage unit 35 in advance. Have been.

【0033】次に、マスフローコントローラ31を設定
流量Fでコントロールし、同時に反応室32の排気を排
気バルブ36を閉じて停止する。続いて、真空計33を
監視し、計測開始圧力から計測終了圧力に到達するまで
の時間dを計測する。そして、
Next, the mass flow controller 31 is controlled at the set flow rate F, and at the same time, the exhaust of the reaction chamber 32 is stopped by closing the exhaust valve 36. Subsequently, the vacuum gauge 33 is monitored, and a time d from when the measurement start pressure is reached to the measurement end pressure is measured. And

【0034】[0034]

【数27】f=C(p2−p1)/d によって計測流量fを中央処理部34により算出する。The measured flow rate f is calculated by the central processing unit 34 according to f = C (p 2 −p 1 ) / d.

【0035】[0035]

【発明の効果】以上のように本発明方法によれば、安価
な計測装置を用いて短時間で使用する気体の量を少なく
しつつ、要求した測定精度で気体の流量を測定できる。
As described above, according to the method of the present invention, the flow rate of gas can be measured with the required measurement accuracy while reducing the amount of gas used in a short time by using an inexpensive measuring device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】気体の流量制御機構を備えた装置の測定精度を
考慮して一定流量の気体を容器に導入したときの容器内
の圧力の変化を表すグラフ
FIG. 1 is a graph showing a change in pressure in a container when a constant flow rate of gas is introduced into the container in consideration of measurement accuracy of an apparatus having a gas flow control mechanism.

【図2】本発明の実施の形態における気体の流量計測方
法を実施した半導体製造装置の反応室の構成図
FIG. 2 is a configuration diagram of a reaction chamber of a semiconductor manufacturing apparatus in which a gas flow rate measuring method according to an embodiment of the present invention is performed.

【図3】気体の流量制御機構を備えた装置の構成例を示
すブロック図
FIG. 3 is a block diagram showing a configuration example of an apparatus having a gas flow control mechanism;

【符号の説明】[Explanation of symbols]

11 流量制御部 12 密閉容器 13 圧力測定部 14,34 中央処理部 15,35 パラメータ記憶部 21 計測開始時刻 22 計測開始圧力 23 計測終了時刻 24 計測終了圧力 25 実際の計測圧力上昇 26 最小の計測圧力上昇 27 最大の計測圧力上昇 31 マスフローコントローラ 32 反応室 33 真空計 36 排気バルブ Reference Signs List 11 flow rate control unit 12 sealed container 13 pressure measurement unit 14, 34 central processing unit 15, 35 parameter storage unit 21 measurement start time 22 measurement start pressure 23 measurement end time 24 measurement end pressure 25 actual measured pressure rise 26 minimum measured pressure Rise 27 Maximum measurement pressure rise 31 Mass flow controller 32 Reaction chamber 33 Vacuum gauge 36 Exhaust valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 密閉容器に計測対象の気体を一定流量で
供給し、一定時間おきに前記密閉容器内の圧力を計測
し、前記密閉容器の容量C、圧力計測手段の計測可能な
最小圧力Pmin、圧力計測手段の計測可能な最大圧力P
max、圧力計測手段の測定できる最小の圧力の幅P、圧
力計測手段を観測する最小の時間間隔T、気体の設定流
量F、気体の計測流量の許容計測誤差R、前記密閉容器
からの気体の微少な漏れによる単位時間当りに変化する
圧力L、気体を流し始めてから圧力の上昇を観測し始め
るまで少なくとも待たなければならない時間Sの値を記
憶し、 【数1】Pmin≧(F/C+L)S のとき 【数2】p1=Pmin 【数3】Pmin<(F/C+L)S のとき 【数4】p1=(F/C+L)S なる圧力p1から、 【数5】Pmax≦{(CL/F+1)2−R2}FT/RC+
(CL/F+1)P/R+p1 のとき 【数6】p2=Pmaxmax>{(CL/F+1)2−R2}FT/RC+(CL/F
+1)P/R+p1 のとき 【数7】p2={(CL/F+1)2−R2}FT/RC+(C
L/F+1)P/R+p1 なる圧力p2まで到達するのに要する時間dとして、 【数8】f=C(p2−p1)/d によって気体流量制御手段の実際の流量fを求めること
を特徴とする気体の流量計測方法。
1. A gas to be measured is supplied to a closed vessel at a constant flow rate, the pressure in the closed vessel is measured at regular intervals, and the capacity C of the closed vessel and the minimum pressure P that can be measured by a pressure measuring means. min , the maximum pressure P measurable by the pressure measuring means
max , the minimum pressure width P that can be measured by the pressure measuring means, the minimum time interval T for observing the pressure measuring means, the set flow rate F of the gas, the allowable measurement error R of the measured flow rate of the gas, The value of the pressure L that changes per unit time due to a minute leak and the value of the time S that must wait at least from the start of flowing gas to the start of observing a rise in pressure are stored, and P min ≧ (F / C + L) ) In the case of S ## EQU2 ## p 1 = P min In the case of P min <(F / C + L) S ## EQU4 ## From the pressure p 1 where p 1 = (F / C + L) S, P max ≦ {(CL / F + 1) 2 -R 2 } FT / RC +
(CL / F + 1) P / R + [6] When p 1 p 2 = P max P max> {(CL / F + 1) 2 -R 2} FT / RC + (CL / F
+1) P / R + p 1 p 2 = {(CL / F + 1) 2 −R 2 } FT / RC + (C
As L / F + 1) P / R + p time required to reach 1 comprising a pressure p 2 d, determine the actual flow rate f of the gas flow rate control means by Equation 8] f = C (p 2 -p 1 ) / d A method for measuring a gas flow rate, characterized in that:
JP10160546A 1998-06-09 1998-06-09 Flow rate measuring method of gas Pending JPH11351922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10160546A JPH11351922A (en) 1998-06-09 1998-06-09 Flow rate measuring method of gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10160546A JPH11351922A (en) 1998-06-09 1998-06-09 Flow rate measuring method of gas

Publications (1)

Publication Number Publication Date
JPH11351922A true JPH11351922A (en) 1999-12-24

Family

ID=15717333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10160546A Pending JPH11351922A (en) 1998-06-09 1998-06-09 Flow rate measuring method of gas

Country Status (1)

Country Link
JP (1) JPH11351922A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102016944B1 (en) 2018-04-24 2019-09-03 한국에너지기술연구원 Apparatus and method for gas leakage measurement in a high pressure reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102016944B1 (en) 2018-04-24 2019-09-03 한국에너지기술연구원 Apparatus and method for gas leakage measurement in a high pressure reactor
US10852211B2 (en) 2018-04-24 2020-12-01 Korea Institute Of Energy Research Apparatus and method for gas leakage measurement in a high pressure reactor

Similar Documents

Publication Publication Date Title
US10222810B2 (en) Methods for monitoring a flow controller coupled to a process chamber
US7823436B2 (en) Method and apparatus for in situ testing of gas flow controllers
KR102062596B1 (en) Methods for in-situ calibration of a flow controller
JP4730064B2 (en) Gas leak detection device and fuel cell system
KR101976845B1 (en) Mass Flow Controller Monitoring
JP6729317B2 (en) Pump state estimation device and turbo molecular pump
JPH11351922A (en) Flow rate measuring method of gas
KR100277142B1 (en) Ozone flow rate control device
JPH08152131A (en) Combistion device
JP5032951B2 (en) Gas leak detection method
JP7273596B2 (en) Flow rate calculation device, flow rate calculation system, and flow rate calculation device program
US20200278226A1 (en) Flow rate calculation system, flow rate calculation system program, flow rate calculation method, and flow rate calculation device
JPH06186110A (en) Gas-pressure-abnormality monitoring apparatus
JPH09218071A (en) Piping capacity estimating unit and gas leakage detector
JPH055643A (en) Flow rate discriminating device
JP3997040B2 (en) Gas shut-off device
JP2003156200A (en) Capacity determining method of fluid supply means in fluid using apparatus
JP2020149773A (en) Fuel cell system
JP2005227078A (en) Method and apparatus for controlling cutoff valve system
JPH0517879A (en) Method for controlling discharge voltage of thin film forming device
JP2002310773A (en) Device and method for controlling injecting amount
JPS62103500A (en) Cavitation controller of centrifugal pump
JPS6316001B2 (en)