JPH11351814A - Stabilized interference measuring instrument - Google Patents

Stabilized interference measuring instrument

Info

Publication number
JPH11351814A
JPH11351814A JP10194909A JP19490998A JPH11351814A JP H11351814 A JPH11351814 A JP H11351814A JP 10194909 A JP10194909 A JP 10194909A JP 19490998 A JP19490998 A JP 19490998A JP H11351814 A JPH11351814 A JP H11351814A
Authority
JP
Japan
Prior art keywords
interferometer
phase
frequency
light
interference fringes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10194909A
Other languages
Japanese (ja)
Inventor
Toshihiko Yoshino
俊彦 芳野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP10194909A priority Critical patent/JPH11351814A/en
Publication of JPH11351814A publication Critical patent/JPH11351814A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an interference fringe analyzing device which is simple and stable. SOLUTION: This device has 2-frequency light 4, a 2-beam interferometer 11, a phase meter 18, and a servo signal 22. A specimen 26 is installed at a measurement part 27. The optical path difference of an interferometer is made not to be so large between a control part 10 and a measurement part 27. A two-frequency beam is split by a beam splitter 5b, and only one frequency component of the two-frequency beam is extracted by a 0 deg. or 90 deg. -azimuth polarizer 28, reflected by a mirror 29 and then expanded in beam width by a beam expander 30, and made incident on the measurement part 27 of the interferometer. In this way, interference fringes 31 of a Fizeau interferometer by normal single frequency light are obtained representing the unevenness distribution of the measured body 26. The interference fringes are detected by a CCD camera 33 through a beam splitter 32, processed by using a PC(personal computer) 25 with an image memory, and displayed as interference fringes 35 on a TV 34.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は、物体の表面形状、厚
さ、屈折率分布などを干渉計を用いて非接触で精密に測
定する装置に関するものである。 【0002】 【従来の技術】従来より、物体の表面形状、厚さあるい
は屈折率の2次元分布を精密に計測する手段として干渉
計が用いられている。通常、干渉計では、光線を被測定
物体に照射し、その反射光または透過光を参照光と干渉
させ、発生した干渉縞には物体の位相情報が含まれてい
るので、それを干渉縞の様子から肉眼観測やCCDカメ
ラとパソコンによる信号処理によって数値的に求める。
パソコンによる自動縞解析には、光路差をπ/2づつ階
段的にシフトして、対応した変化した干渉縞を用いる位
相シフト干渉法がよく使われている。 【0003】 【発明が解決しようとする課題】しかし、従来の干渉測
定法では干渉計を高性能の除振台の上に載せても、空気
ゆらぎや振動などの外乱が存在すると、測定時間中で干
渉縞が変動し、それが縞解析を不可能にしたり、測定精
度を著しく低下させるという問題があった。また、精度
の良い測定を行うためには、光源の周波数の安定性が必
要で、そのために高価な周波数安定化光源を必要とする
欠点があった。 【0004】本発明は、従来の干渉計の欠点である外乱
に対する不安定性を除去し、光源としても高価な周波数
安定化光源を必要としない新しいタイプの干渉計に関す
るものである。 【0005】従来、干渉縞を安定化させる手法として、
干渉縞強度を検出し、それが一定値になるようにサーボ
をかける方式が知られているが、この方式ではフリンジ
強度の対位相スロープ感度(正弦関数)にヌル点がある
ので任意のフリンジ位置での安定化はできないので位相
シフト法は適用できず、また、光源の強度変化の影響も
受けるなどの問題があった。 【0006】 【問題を解決するための手段】本発明は、外乱や光源の
周波数変動によって生じた干渉計の位相変動をヘテロダ
イン法で検出し、それをエラー信号とするサーボ系を用
いて干渉計の位相変動を光線の周波数または干渉計のミ
ラー位置で補償することで干渉計の任意の位相での安定
化を可能にする。この方式によれば、サーボの設定位相
信号をπ/2づつ階段的に変化させることで位相シフト
が可能となるので、従来の干渉計測に比べて格段の対外
乱安定性が得られ、また光源への要求性能が下げられ
る。 【0007】 【作用】レーザ光線をアイソレータに通した後、音響光
学周波数シフターを通すことによって、直交(0°方
位、90°方位)直線偏光した2周波f,fを発生
させる。 【0008】本発明による干渉計測の例として、対向し
て配置した2枚のミラー(前面ミラー、後面ミラー)か
らなるフィゾー干渉計を用いて鏡面物体の表面の凹凸分
布の測定を行う場合について考える。試料物体は、後面
ミラー上に固定する。フィゾー干渉計では、干渉計に高
コヒーレンス光を入射すると、前面ミラーからの部分反
射光と試料表面の反射光が干渉する結果、試料の表面凹
凸による位相分布に応じた干渉縞を発生する。 【0009】フィゾー干渉計の一部(例えば試料の置か
れていない片端部)を制御部として用い、その光路中に
1/4波長板を挿入する。この制御干渉部に、直交(0
°方位、90°方位)した直線偏光の2周波f,f
を入射し、反射光を0°または90°方位の偏光子およ
びピンホールを通すと、差周波Δf=f〜f、位相
δ=4πLf/Cのビート信号が発生する。ここに、
Lは2枚のミラー反射光の光路長差、fはレーザ光の
中心周波数、Cは真空中光速である。 【0010】当該干渉計が振動や空気ゆらぎなどの外乱
または光源の周波数の変動を受けると、干渉縞が変動す
る。この干渉縞の変動に対応して上記のビート信号の位
相δが変動する。従って、ビート信号の位相変動を抑制
すれば、干渉縞が安定化され、外乱や光源の周波数変動
があっても静止した干渉縞が観測できるようになる。 【0011】当該ビート信号の位相δは、f、Lに依
存するので、レーザ周波数またはミラー間隔の調整によ
ってδを制御できる。そこで、δを位相計を用いて検出
し、位相計出力(電圧)を差動アンプで参照電圧V
比較し、その隔差を増幅し、それをエラー信号としてサ
ーボ系を用いてδの可変機構にフイードバックすること
で、δの変動を抑制され、干渉計の安定化が図られる。
また、参照電圧Vを位相計の位相/電圧変換比に合わ
せた量だけ階段的にシフトさせれば、縞解析に必要な位
相シフト干渉縞が得られる。 【0012】当該干渉計システムにおいて、δを変化さ
せるのに波長可変レーザが利用できる。例えば半導体レ
ーザの電流による発振周波数シフトが利用できる。半導
体レーザの発振周波数は駆動電流に対して線形に変化す
る。当該干渉計において、光源として半導体レーザを用
い、上記差動アンプ出力を半導体レーザの駆動電流に帰
還すると、外乱やレーザ周波数の変動による位相変化が
半導体レーザの駆動電流変化で補償され、干渉計が安定
化される。この場合、干渉計における制御部と計測部が
ほぼ同じ光路長差を持つようにすると達成される安定度
が高まる。 【0013】当該干渉計システムにおいて、δを変化さ
せるのにアクチュエータ(PZT、超磁歪素子など)に
よるミラー移動を利用することもできる。この場合に
は、光源としては単色光源であれば何でもよく一般のレ
ーザ光源(例えばヘリウムネオンレーザなど)でよい。
上記差動アンプの出力をPZTを駆動する電圧や超磁歪
素子を駆動する電流に帰還することで、干渉縞の安定化
が図れる。 【0014】当該安定化干渉計において、差動アンプの
参照電圧を、位相計の位相/電圧変換比に合わせた量だ
け階段的にシフトとさせると、干渉計が安定化を保ちつ
つそのバイアス位相がπ/2ピッチで階段的に変化した
干渉縞が4つ得られる。これをCCDで読み取り、位相
シフト干渉縞解析のアルゴリズムに従えば、被検物体の
2次元的な凹凸分布が測定できる。 【0015】当該安定化干渉計において、静止した干渉
縞を、チルトを与えてフィIゾー干渉計ので発生する空
間キャリアフリンジを使用するフーリエ変換法のアルゴ
リズムに従っても、物体の2次元的な凹凸分布が測定で
きる。 【0016】当該干渉計で、被検物体として透明物体の
厚さや屈折率の2次元分布を測定したい場合には、計測
部にそれを挿入する。 【0017】 【実施例】以下、本発明の実施の形態例を図に基づいて
説明する。図1は、本発明の実施例を示すための全体の
構成図である。半導体レーザ光源1からの平行光線を、
アイソレータ2を通した後、音響光学周波数シフター3
を通すことによって、直交(0°方位、90°方位)直
線偏光の2周波f,f光線4を発生させる。 【0018】2周波光線4の一部をビームスプリタ5a
によって取り出し、それを45°方位の偏光子6を通
し、検出器7で検出すると、周波数Δf=f〜f
ビート信号8を発生する。 【0019】2周波光線4をミラー9および10からな
るフィゾー干渉計11の一部(片端部)に入射する。こ
れを制御部12とし、光線が通過する部分に1/4波長
板13を挿入する。干渉計の出射光線は前面半透ミラー
9からの部分反射光と、裏面ミラー10からの反射光か
らなるが、裏面反射光は前面反射光に対して位相がδ=
(4π/C)Lfだけ遅れており、また1/4波長板
13の作用によって偏光面が90゜回転している。そこ
で、制御干渉計の出力光を、ビームスプリタ5bを通し
た後ピンホール14を通して干渉縞の一点の強度を取り
出し、0°または90°方位の検光子15を通し、検出
器16で検出すると、ビート信号17が発生し、その位
相には、制御干渉計の位相δが含まれている。 【0020】2つのビート信号8,17を位相計18に
入力すると、位相差δ=(4π/C)Lfに比例した
電圧信号V19を出力する。この電圧信号19を差動ア
ンプ20に導き、参照電圧V21との差電圧22を増
幅し、ドラーバー23を介して、半導体レーザ1の駆動
電流24に帰還する。このサーボ機構によってδ=一定
となる。この結果、制御干渉計12の安定化、従って制
御干渉計と機械的に一体化しているフィゾー干渉計全体
11の外乱および光源の周波数変動に対する安定化が達
成される。 【0021】このようにして安定化された干渉縞は、位
相領域での安定化であるので、光強度の変動には影響さ
れず、またさらに、任意の位相値で安定化できる利点が
ある。 【0022】被検物体26は計測部27に設置する。制
御部10と計測部27での干渉計の光路差は余り大きく
しないようにする。2周波光線を、ビームスプリタ5b
で分離し、0°または90°方位の偏光子28で2周波
の中の1周波数成分だけを取り出し、ミラー29で反射
した後、ビームエスパンダ30でビーム幅を拡大し、干
渉計の計測部27に入射する。これにより、通常の1周
波数光によるフィゾー干渉計の干渉縞31が得られ、縞
は被測定物体26の凹凸分布を表す。この干渉縞を、ビ
ームスプリタ32を通して、CCDカメラ33で検出
し、画像メモリつきPC(パソコン)25を使って処理
し、TV34に干渉縞35として表示する。 【0023】図2は、フリンジの安定化を見るための図
である。干渉計全体に振動を与えると、フードバック機
構をオフ時では、干渉縞は静止したパターンにはなら
ず、長時間平均すると干渉縞は消滅する(図2a)。し
かし、フードバック機構をオンにすると干渉縞が安定化
され静止する(図2b)。 【0024】このようにして安定化された静止干渉縞
は、いろいろな方法で縞解析ができる。フーリエ変換法
を用いるには、,」干渉計のミラーを若干傾けてキャリ
アーフリンジを発生させ、それをパソコンで演算処理す
る。 【0025】位相シフト法を用いる場合には、差動アン
プ20の参照電圧V21をパソコン25を用いて、V
=Vo+(π/2)iα(ここにi=0,1,2,
3、αは差動アンプの位相・電圧変換係数、Vは初期
電圧)の関係になるようにVを階段的に変化すると、
フィゾー干渉計ではπ/2ピッチの位相シフトが行え
る。 【0026】図3は、安定化位相シフトの実験例であ
る。外乱(機械振動)が存在する場合の特性を示す図で
ある。フードバック制御を施さない場合(オフ)状態で
は、激しい位相変動が存在するが、フイードバック回路
をオフにすると位相が安定化し、またπ/2=90°の
シフトが階段的に与えられていることが分かる。 【0027】図4は、位相シフトの効果を見るための図
である。干渉縞がπ/2の位相ピッチでシフトしてい
る。4つの異なる干渉縞I,I,I,IをCC
Dで読み取り、フレームに取り込みPC処理で、通常の
位相シフト干渉法のアルゴリズムから、被検物体の表面
形状(反射物体の場合)37や厚さ分布(透過物体の場
合)を2次元的に測定する。 【0028】図5は、本発明の別の実施例を示すための
全体の構成図である。光源として、一般のレーザを用
い、位相の制御のためにアクチュエータを用いている。
差動アンプ出力22を干渉計のミラー10をマウントし
たアクチュエータ36の駆動電気信号に帰還する。アク
チュエータとしては、超磁歪素子(電流駆動)や電歪素
子(電圧駆動)を用いる。他の装置部分は、図1の半導
体レーザ電流帰還の場合と同様である。 【0029】本発明に関わる干渉計は、2光束干渉計で
あればなんでもよく、トワイマングリーン干渉計、マッ
ハツエンダー干渉計でもよいことは明らかである。。 【0030】本発明に関わる干渉計における光線の周波
数制御の手段として、半導体レーザの電流変調以外に、
共振器内での電気光学結晶による位相変調、共振器ミラ
ーのアクチュエータによる移動、共振器内の波長分散素
子の制御などによる同調レーザ一般、あるいは共振器外
での電気光学素子による周波数変調など種々の周波数変
調手段が使用できることは明らかである。 【0031】 【発明の効果】本発明によると、簡単な構成によって、
空気ゆらぎや機械的な振動の多い環境下またさらに光源
の周波数に変動がある場合も、干渉縞の自動解析が高精
度、高安定に実現できる。これは、従来の干渉計測技術
では実現されていないことであり、新しい計測技術とし
て広い応用範囲をもつ。 【0032】
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for non-contact and accurate measurement of the surface shape, thickness, refractive index distribution, etc. of an object using an interferometer. is there. 2. Description of the Related Art Conventionally, an interferometer has been used as a means for precisely measuring the two-dimensional distribution of the surface shape, thickness or refractive index of an object. Normally, in an interferometer, a light beam is irradiated on an object to be measured, and the reflected light or transmitted light interferes with a reference light, and the generated interference fringes include phase information of the object. It is numerically obtained from the situation by visual observation or signal processing by a CCD camera and a personal computer.
For automatic fringe analysis by a personal computer, a phase shift interferometry in which an optical path difference is shifted stepwise by π / 2 and a corresponding changed interference fringe is used is often used. [0003] However, in the conventional interference measurement method, even if the interferometer is mounted on a high-performance anti-vibration table, if disturbance such as air turbulence or vibration is present, the measurement will not be performed during the measurement time. In this case, the interference fringes fluctuate, which makes it impossible to analyze the fringes or significantly lowers the measurement accuracy. In addition, in order to perform accurate measurement, the frequency of the light source must be stable, and there is a disadvantage that an expensive frequency stabilized light source is required. [0004] The present invention relates to a new type of interferometer which eliminates the instability due to disturbance, which is a drawback of the conventional interferometer, and does not require an expensive frequency stabilized light source as a light source. Conventionally, as a method of stabilizing interference fringes,
A method is known in which the interference fringe intensity is detected and a servo is applied so that the interference fringe intensity becomes a constant value. However, in this method, there is a null point in the fringe intensity versus phase slope sensitivity (sine function). Therefore, there is a problem that the phase shift method cannot be applied and the light source is affected by a change in the intensity of the light source. SUMMARY OF THE INVENTION The present invention provides an interferometer using a servo system which detects a phase fluctuation of an interferometer caused by a disturbance or a frequency fluctuation of a light source by a heterodyne method and uses it as an error signal. Is compensated by the frequency of the light beam or the mirror position of the interferometer, thereby enabling the interferometer to be stabilized at an arbitrary phase. According to this method, the phase shift can be performed by changing the servo setting phase signal stepwise by π / 2, so that remarkable disturbance stability can be obtained compared to the conventional interference measurement, and the light source Performance required for After passing a laser beam through an isolator, it passes through an acousto-optic frequency shifter to generate orthogonally (0 ° azimuth, 90 ° azimuth) linearly polarized two frequencies f 1 and f 2 . As an example of the interference measurement according to the present invention, a case will be considered in which a Fizeau interferometer including two mirrors (a front mirror and a rear mirror) arranged opposite to each other is used to measure the unevenness distribution on the surface of a mirror-like object. . The sample object is fixed on a rear mirror. In the Fizeau interferometer, when high coherence light is incident on the interferometer, interference occurs between the partially reflected light from the front mirror and the reflected light on the sample surface, and as a result, interference fringes are generated according to the phase distribution due to the surface unevenness of the sample. A part of the Fizeau interferometer (for example, one end where no sample is placed) is used as a control unit, and a quarter-wave plate is inserted into the optical path. An orthogonal (0
Azimuth, 90 ° azimuth) linearly polarized two frequencies f 1 , f 2
Is incident, and the reflected light passes through a polarizer and a pinhole having an azimuth of 0 ° or 90 °, a beat signal having a difference frequency Δf = f 1 to f 2 and a phase δ = 4πLf 0 / C is generated. here,
L is the optical path length difference between the two mirrors reflecting light, f 0 is the center frequency of the laser beam, C is the speed of light in vacuum. When the interferometer receives a disturbance such as vibration or air fluctuation or a change in the frequency of the light source, the interference fringes change. The phase δ of the beat signal fluctuates according to the fluctuation of the interference fringes. Therefore, if the phase fluctuation of the beat signal is suppressed, the interference fringes are stabilized, and the stationary interference fringes can be observed even when there is disturbance or frequency fluctuation of the light source. Since the phase δ of the beat signal depends on f 0 and L, δ can be controlled by adjusting the laser frequency or the mirror interval. Therefore, detected using a phase meter [delta], phase meter output (voltage) as compared to the reference voltage V R in a differential amplifier, and amplifies the astigmatic difference, variable [delta] using the servo system it as an error signal By feeding back to the mechanism, the fluctuation of δ is suppressed, and the interferometer is stabilized.
Further, if the reference voltage V R only stepwise shift the combined amount of the phase / voltage conversion ratio of the phase meter, the phase shift interference fringe is obtained needed for fringe analysis. In the interferometer system, a tunable laser can be used to change δ. For example, an oscillation frequency shift due to the current of a semiconductor laser can be used. The oscillation frequency of the semiconductor laser changes linearly with the drive current. In the interferometer, when a semiconductor laser is used as a light source and the output of the differential amplifier is fed back to the drive current of the semiconductor laser, a phase change due to disturbance or a change in laser frequency is compensated for by a change in the drive current of the semiconductor laser. Be stabilized. In this case, when the control unit and the measurement unit in the interferometer have substantially the same optical path length difference, the stability achieved is increased. In the interferometer system, a mirror movement by an actuator (PZT, giant magnetostrictive element, etc.) can be used to change δ. In this case, any light source may be used as long as it is a monochromatic light source, and a general laser light source (for example, a helium neon laser) may be used.
By feeding back the output of the differential amplifier to a voltage for driving the PZT or a current for driving the giant magnetostrictive element, interference fringes can be stabilized. In the stabilized interferometer, when the reference voltage of the differential amplifier is shifted stepwise by an amount corresponding to the phase / voltage conversion ratio of the phase meter, the bias phase of the interferometer is maintained while the interferometer is stabilized. Are obtained, four interference fringes having a stepwise change at π / 2 pitch are obtained. By reading this with a CCD and following the algorithm of phase shift interference fringe analysis, the two-dimensional unevenness distribution of the test object can be measured. In the stabilized interferometer, the two-dimensional unevenness distribution of the object can be obtained by applying the tilt to the stationary interference fringes according to the algorithm of the Fourier transform method using a spatial carrier fringe generated by the Fizeau interferometer by giving a tilt. Can be measured. When it is desired to measure the two-dimensional distribution of the thickness and the refractive index of the transparent object as the object to be measured by the interferometer, the two are inserted into the measuring section. Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an overall configuration diagram showing an embodiment of the present invention. The parallel light from the semiconductor laser light source 1 is
After passing through the isolator 2, the acousto-optic frequency shifter 3
, Two orthogonally polarized (0 ° azimuth, 90 ° azimuth) linearly polarized light having two frequencies f 1 and f 2 are generated. A part of the two-frequency light beam 4 is converted into a beam splitter 5a.
When it is passed through a polarizer 6 having a 45 ° azimuth and detected by a detector 7, a beat signal 8 having a frequency Δf = f 1 to f 2 is generated. The two-frequency light beam 4 enters a part (one end) of a Fizeau interferometer 11 composed of mirrors 9 and 10. This is used as the control unit 12, and a quarter-wave plate 13 is inserted into a portion where the light beam passes. The light emitted from the interferometer is composed of partially reflected light from the front semi-transmissive mirror 9 and reflected light from the back mirror 10. The back reflected light has a phase of δ =
It is delayed by (4π / C) Lf 0 , and the polarization plane is rotated by 90 ° by the action of the 1 / wavelength plate 13. Then, after the output light of the control interferometer passes through the beam splitter 5b, the intensity of one point of the interference fringes is taken out through the pinhole 14, passed through the analyzer 15 of 0 ° or 90 ° azimuth, and detected by the detector 16. A beat signal 17 is generated, and its phase includes the phase δ of the control interferometer. When the two beat signals 8 and 17 are input to the phase meter 18, a voltage signal V19 proportional to the phase difference δ = (4π / C) Lf 0 is output. This voltage signal 19 is led to a differential amplifier 20 to amplify a difference voltage 22 from a reference voltage V R 21 and to feed back to a drive current 24 of the semiconductor laser 1 via a drawbar 23. This servo mechanism makes δ = constant. As a result, the stabilization of the control interferometer 12, and hence the stability of the entire Fizeau interferometer 11, which is mechanically integrated with the control interferometer, against disturbances and fluctuations in the frequency of the light source is achieved. Since the interference fringes stabilized in this way are stabilized in the phase region, they have the advantage that they are not affected by fluctuations in light intensity and can be further stabilized at an arbitrary phase value. The test object 26 is set on the measuring section 27. The optical path difference between the interferometer between the control unit 10 and the measurement unit 27 should not be too large. Beam splitter 5b
, And only one frequency component of the two frequencies is taken out by a polarizer 28 having a azimuth of 0 ° or 90 °, reflected by a mirror 29, and then expanded in a beam width by a beam espander 30. 27. As a result, an interference fringe 31 of the Fizeau interferometer using ordinary one-frequency light is obtained, and the fringe represents the unevenness distribution of the measured object 26. The interference fringes are detected by a CCD camera 33 through a beam splitter 32, processed using a PC (personal computer) 25 with an image memory, and displayed on a TV 34 as interference fringes 35. FIG. 2 is a diagram for stabilizing the fringe. When vibration is applied to the entire interferometer, the interference fringes do not become a stationary pattern when the hood back mechanism is turned off, and disappear after a long period of averaging (FIG. 2A). However, when the hood-back mechanism is turned on, the interference fringes are stabilized and stand still (FIG. 2b). The stabilized interference fringes stabilized in this way can be analyzed by various methods. To use the Fourier transform method, the mirror of the interferometer is slightly tilted to generate a carrier fringe, which is processed by a personal computer. When the phase shift method is used, the reference voltage V R 21 of the differential amplifier 20 is applied to the V
R = Vo + (π / 2) iα (where i = 0, 1, 2,
3, alpha phase-voltage conversion coefficient of the differential amplifier, the V 0 changes the V R stepwise so that the relationship between the initial voltage),
In the Fizeau interferometer, a phase shift of π / 2 pitch can be performed. FIG. 3 is an experimental example of a stabilized phase shift. FIG. 4 is a diagram illustrating characteristics when a disturbance (mechanical vibration) exists. When the feedback control is not performed (off), there is a sharp phase fluctuation. However, when the feedback circuit is turned off, the phase is stabilized, and a shift of π / 2 = 90 ° is given stepwise. I understand. FIG. 4 is a diagram for checking the effect of the phase shift. The interference fringes are shifted at a phase pitch of π / 2. Four different interference fringes I 1 , I 2 , I 3 , I 4 are converted to CC
Reads in D, captures it in the frame, and two-dimensionally measures the surface shape (in the case of a reflective object) 37 and thickness distribution (in the case of a transmissive object) of the object to be inspected by PC processing using a normal phase shift interferometry algorithm. I do. FIG. 5 is an overall configuration diagram showing another embodiment of the present invention. A general laser is used as a light source, and an actuator is used for phase control.
The differential amplifier output 22 is fed back to the drive electric signal of the actuator 36 on which the mirror 10 of the interferometer is mounted. As the actuator, a giant magnetostrictive element (current drive) or an electrostrictive element (voltage drive) is used. The other device parts are the same as in the case of the semiconductor laser current feedback of FIG. It is obvious that the interferometer according to the present invention may be any two-beam interferometer, such as a Twyman-Green interferometer or a Mach-Zehnder interferometer. . As means for controlling the frequency of the light beam in the interferometer according to the present invention, in addition to the current modulation of the semiconductor laser,
Various types of phase modulation, such as phase modulation by an electro-optic crystal inside a resonator, movement of a resonator mirror by an actuator, tuning of a tunable laser by controlling a wavelength dispersion element inside a resonator, and frequency modulation by an electro-optic element outside a resonator. Obviously, frequency modulation means can be used. According to the present invention, with a simple configuration,
Automatic analysis of interference fringes can be performed with high accuracy and high stability even in an environment with a lot of air fluctuations and mechanical vibrations, and even when the frequency of the light source fluctuates. This is not realized by the conventional interference measurement technology, and has a wide application range as a new measurement technology. [0032]

【図面の簡単な説明】 【図1】本発明に関わる干渉計の実施例を説明するため
の全体図である。 【図2】本発明に関わる位相シフトと安定化の実施例を
示す図である。 【図3】本発明に関わる位相シフトと安定化の実施例を
示す図である。 【図4】本発明に関わる干渉縞の位相シフト波の実施例
を説明するための図である。 【図5】本発明に関わる干渉計の実施例を説明するため
の全体図である。 【符号の説明】 1 光源 19 出力
電圧 2 アイソレータ 20 差動
アンプ 3 周波数シフタ 21 参照
電圧 4 直交直線偏光2周波光 22 出力 5a ビームスプリッタ 23 ドラ
ーバ 5b ビームスプリッタ 24 帰還
信号 6 偏光子 25 パソ
コン 7 光検出器 26 被検
物体 8 ビート信号 27 干渉
計計測部 9 半透明ミラー 28 偏光
子 10 ミラー 29 ミラ
ー 11 干渉計 30 ビー
ムエクパンダ 12 干渉計制御部 31 干渉
縞 13 1/4波長板 32 ビー
ムスプリタ 14 ピンホール 33 CC
Dカメラ 15 偏光子 34 TV 16 光検出器 35 干渉
縞 17 ビート信号 36 アク
チュエータ 18 位相計 37 表面
形状
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an overall view for explaining an embodiment of an interferometer according to the present invention. FIG. 2 is a diagram showing an embodiment of phase shift and stabilization according to the present invention. FIG. 3 is a diagram showing an embodiment of phase shift and stabilization according to the present invention. FIG. 4 is a diagram for explaining an embodiment of a phase shift wave of an interference fringe according to the present invention. FIG. 5 is an overall view for explaining an embodiment of an interferometer according to the present invention. [Description of Signs] 1 light source 19 output voltage 2 isolator 20 differential amplifier 3 frequency shifter 21 reference voltage 4 orthogonal linearly polarized light 2 frequency light 22 output 5a beam splitter 23 drava 5b beam splitter 24 feedback signal 6 polarizer 25 personal computer 7 light detection Instrument 26 Test object 8 Beat signal 27 Interferometer measuring unit 9 Translucent mirror 28 Polarizer 10 Mirror 29 Mirror 11 Interferometer 30 Beam expander 12 Interferometer controller 31 Interference fringe 13 Quarter wave plate 32 Beam splitter 14 pin Hall 33 CC
D camera 15 Polarizer 34 TV 16 Photodetector 35 Interference fringe 17 Beat signal 36 Actuator 18 Phase meter 37 Surface shape

Claims (1)

【特許請求の範囲】 【請求項1】2周波光ヘテロダイン干渉によって干渉計
の光路差の検出を行い、サーボ機構を用いた位相制御に
よって干渉縞の位相を任意の可変位相値に安定化せし
め、縞解析を行わせることを特徴とする装置。 【請求項2】 【請求項1】に関わる干渉計において、光源として半導
体レーザを用い、機械的に互いに固定した制御部と計測
部からなる2光束干渉計を構成し、干渉計の制御部では
光路に1/4波長板を挿入し、音響光学素子等で発生さ
せた直交直線偏光の2周波数光を入射せしめ、偏光子を
用いて制御部干渉計の光路差に対応した位相を含む光ヘ
テロダイン信号を発生させ、当該位相を位相計で検出
し、位相計出力を差動アンプで参照電圧と比較・増幅
し、半導体レーザの駆動電流にフードバックし、レーザ
周波数を制御することで干渉計を安定化せしめ、干渉計
の計測部では2周波数光の1つの光による被検物体の干
渉縞を発生させ、制御部の作用により干渉縞を外乱や光
源の周波数変動に対して安定化させることを特徴とした
干渉計。 【請求項3】 【請求項1】に関わる干渉計において、光源として一般
のレーザを用い、機械的に互いに固定した制御部と計測
部からなる2光束干渉計を構成し、干渉計の制御部では
光路に1/4波長板を挿入し、音響光学素子等で発生さ
せた直交直線偏光の2周波数光を入射せしめ、偏光子を
用いて制御部干渉計の光路差に対応した位相を含む光ヘ
テロダイン信号を発生させ、当該位相を位相計で検出
し、位相計出力を差動アンプで参照電圧と比較・増幅
し、干渉計を構成するミラーをマウントしたアクチュエ
ータの駆動信号にフードバックし、ミラー位置を制御す
ることで干渉計を安定化せしめ、干渉計の計測部では2
周波数光の1つの光による被検物体の干渉縞を発生さ
せ、制御部の作用により干渉縞を外乱や光源の周波数変
動に対して安定化させろことを特徴とした干渉計 【請求項4】 【請求項2】およびに 【請求項3】に関わる干渉計において、差動アンプの参
照電圧を階段的にシフトすることで、バイアス位相がπ
/2のピッチで階段的にシフトした干渉縞を発生させ、
当該干渉縞を用いて縞解析を行うことを特徴とする位相
シフト干渉計。
Claims: 1. An optical path difference of an interferometer is detected by two-frequency optical heterodyne interference, and the phase of an interference fringe is stabilized at an arbitrary variable phase value by phase control using a servo mechanism. An apparatus characterized by performing fringe analysis. 2. The interferometer according to claim 1, wherein a semiconductor laser is used as a light source, and a two-beam interferometer comprising a control unit and a measurement unit mechanically fixed to each other is configured. A 1/4 wavelength plate is inserted in the optical path, two-frequency light of orthogonal linearly polarized light generated by an acousto-optic element or the like is incident, and an optical heterodyne including a phase corresponding to the optical path difference of the control unit interferometer using a polarizer. A signal is generated, the phase is detected by a phase meter, the output of the phase meter is compared and amplified with a reference voltage by a differential amplifier, fed back to the drive current of the semiconductor laser, and the interferometer is controlled by controlling the laser frequency. In the interferometer, the measurement unit of the interferometer generates interference fringes of the object to be measured by one of the two-frequency light, and stabilizes the interference fringes against disturbance and frequency fluctuation of the light source by the operation of the control unit. Interferometer with features. 3. The interferometer according to claim 1, wherein a general laser is used as a light source, and a two-beam interferometer comprising a control unit and a measurement unit mechanically fixed to each other is formed, and the control unit of the interferometer is used. In this method, a quarter-wave plate is inserted in the optical path, two-frequency light of orthogonal linearly polarized light generated by an acousto-optic element or the like is incident, and light including a phase corresponding to the optical path difference of the control unit interferometer using a polarizer. Generates a heterodyne signal, detects the phase with a phase meter, compares and amplifies the output of the phase meter with a reference voltage with a differential amplifier, feeds back to the drive signal of the actuator mounted with the mirror that constitutes the interferometer, and The interferometer is stabilized by controlling the position.
An interferometer characterized in that an interference fringe of an object to be measured is generated by one light of a frequency light, and the interference fringe is stabilized against disturbance or frequency fluctuation of a light source by an operation of a control unit. In the interferometer according to claims 2 and 3, the reference voltage of the differential amplifier is shifted stepwise so that the bias phase becomes π.
To generate interference fringes shifted stepwise at a pitch of
A phase shift interferometer that performs fringe analysis using the interference fringes.
JP10194909A 1998-06-08 1998-06-08 Stabilized interference measuring instrument Pending JPH11351814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10194909A JPH11351814A (en) 1998-06-08 1998-06-08 Stabilized interference measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10194909A JPH11351814A (en) 1998-06-08 1998-06-08 Stabilized interference measuring instrument

Publications (1)

Publication Number Publication Date
JPH11351814A true JPH11351814A (en) 1999-12-24

Family

ID=16332364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10194909A Pending JPH11351814A (en) 1998-06-08 1998-06-08 Stabilized interference measuring instrument

Country Status (1)

Country Link
JP (1) JPH11351814A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1294402C (en) * 2003-09-26 2007-01-10 富士能株式会社 Stabilizing method of ligt source output
CN100386596C (en) * 2006-06-07 2008-05-07 清华大学 Laser feed-back displacement sensor based on frequency locked double-frequency laser
JP2016524159A (en) * 2013-07-02 2016-08-12 コーニング インコーポレイテッド Inclined section measurement of striae-containing glass
CN111693133A (en) * 2020-06-24 2020-09-22 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) Optical path difference testing device and method for optical fiber hydrophone and computer equipment
KR20220129360A (en) * 2021-03-16 2022-09-23 국방과학연구소 Phase stabilization system and phase stabilization method using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1294402C (en) * 2003-09-26 2007-01-10 富士能株式会社 Stabilizing method of ligt source output
CN100386596C (en) * 2006-06-07 2008-05-07 清华大学 Laser feed-back displacement sensor based on frequency locked double-frequency laser
JP2016524159A (en) * 2013-07-02 2016-08-12 コーニング インコーポレイテッド Inclined section measurement of striae-containing glass
CN111693133A (en) * 2020-06-24 2020-09-22 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) Optical path difference testing device and method for optical fiber hydrophone and computer equipment
CN111693133B (en) * 2020-06-24 2022-04-15 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) Optical path difference testing device and method for optical fiber hydrophone and computer equipment
KR20220129360A (en) * 2021-03-16 2022-09-23 국방과학연구소 Phase stabilization system and phase stabilization method using the same

Similar Documents

Publication Publication Date Title
KR100322938B1 (en) Superheterodyne interferometry and method for compensating the refractive index of air using electronic frequency multiplication
JP3273501B2 (en) Apparatus and method for measuring variation in refractive index of gas in measurement path
JP4951189B2 (en) Frequency conversion phase shift interferometry
Wyant Dynamic interferometry
US5218424A (en) Flying height and topography measuring interferometer
US20030160968A1 (en) Phase-shifting interferometry method and system
WO2001088468A1 (en) Interferometric apparatus and method
US7920269B2 (en) System and method for measuring interferences
CA1240174A (en) Method of and device for real time measurement of the state of polarization of a quasi-monochromatic light beam
US6563593B2 (en) Dynamic angle measuring interferometer
JP2903486B2 (en) Dispersion interferometer
JPH11351814A (en) Stabilized interference measuring instrument
US6958817B1 (en) Method of interferometry with modulated optical path-length difference and interferometer
Aketagawa et al. Measurement of a free spectral range of a Fabry–Perot cavity using frequency modulation and null method under off-resonance conditions
TWI405959B (en) Method and apparatus for measuring physical parameters of an anisotropic material by phase-sensitive heterodyne interferometry
JP2828604B2 (en) Birefringence measurement device
Lee et al. Measurements of phase retardation and principal axis angle using an electro-optic modulated Mach–Zehnder interferometer
Gao et al. A 5MHz beat frequency He–Ne laser equipped with bireflectance cavity mirror
JP6652542B2 (en) Optical analysis device and optical analysis method
JP3340792B2 (en) Microstructure measuring device
Silver et al. Atomic-resolution measurements with a new tunable diode laser-based interferometer
JP2015215313A (en) Measurement device and method for manufacturing article
CN114459619B (en) Real-time online phase shift measurement device and method
JP2884156B1 (en) Interferometer
JP2529901B2 (en) Phase shift Fize-interferometer error correction method