JPH11350197A - Composite plating method - Google Patents

Composite plating method

Info

Publication number
JPH11350197A
JPH11350197A JP15503198A JP15503198A JPH11350197A JP H11350197 A JPH11350197 A JP H11350197A JP 15503198 A JP15503198 A JP 15503198A JP 15503198 A JP15503198 A JP 15503198A JP H11350197 A JPH11350197 A JP H11350197A
Authority
JP
Japan
Prior art keywords
composite plating
plating solution
cylindrical electrode
cylinder block
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15503198A
Other languages
Japanese (ja)
Inventor
Osamu Ishigami
修 石上
Takushi Kondo
拓士 近藤
Makoto Nagata
信 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP15503198A priority Critical patent/JPH11350197A/en
Publication of JPH11350197A publication Critical patent/JPH11350197A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite plating method which deposits a metallic matrix at a regulated thickness and uniformly codeposits ceramic particles on the metallic matrix. SOLUTION: This composite plating method consists in arranging a cylindrical electrode 10 apart a spacing within the hollow part of a cylinder block 2, supplying a composite plating liquid, which is prepd. by mixing ceramic particles 52 with a plating liquid, into the inner holes of the cylindrical electrode 10, injecting the supplied composite plating liquid through the through-holes 13 formed at the peripheral wall of the cylindrical electrode 10, applying the plating liquid to the inside wall 2b of the hollow part and recovering the composite plating liquid applied to the inside surface 2b from the outer side of the cylindrical electrode 10. In such a case, the injection rates from the through-holes 13 are kept nearly the same.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はワークの中空部内面
に複合メッキ皮膜を施す複合メッキ方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite plating method for forming a composite plating film on the inner surface of a hollow portion of a work.

【0002】[0002]

【従来の技術】内燃機関用のシリンダブロックには、例
えばピストンリングの摺動面となるシリンダ内面をシリ
ンダブロックと一体に鋳造成形し、このシリンダ内面に
Ni/SiC複合メッキ皮膜を施したものがある。Ni
/SiC複合メッキ皮膜は、金属相であるNiマトリク
ス中に炭化ケイ素(SiC)粒子を共析したもので、シ
リンダ内面の耐摩耗性を高めたものである。
2. Description of the Related Art A cylinder block for an internal combustion engine is, for example, one in which a cylinder inner surface serving as a sliding surface of a piston ring is cast and formed integrally with the cylinder block, and a Ni / SiC composite plating film is applied to the cylinder inner surface. is there. Ni
The / SiC composite plating film is obtained by co-depositing silicon carbide (SiC) particles in a Ni matrix, which is a metal phase, and has improved wear resistance on the inner surface of the cylinder.

【0003】一方、特開平7−118891号公報「表
面処理装置」に高速メッキ処理方法が開示されている。
この高速メッキ処理方法によれば、シリンダ内面に沿っ
て複合メッキ液を強制的に流動させて、シリンダ内面に
高速に複合メッキ皮膜を施すことができる。次図に同公
報の装置によるNi/SiC複合メッキ皮膜処理を示
す。
On the other hand, a high-speed plating method is disclosed in Japanese Unexamined Patent Publication No. Hei 7-118891, "Surface treatment apparatus".
According to this high-speed plating method, the composite plating solution can be forcibly flowed along the inner surface of the cylinder, and the composite plating film can be applied to the inner surface of the cylinder at high speed. The following figure shows the Ni / SiC composite plating film treatment by the apparatus of the publication.

【0004】図9は従来のNi/SiC複合メッキ処理
の説明図である。シリンダブロック100の開孔101
内に隙間Sを開けて筒形の電極102を配置することに
より、開孔101と電極102との間に環状通路104
を形成する。この環状通路104に複合メッキ液を矢印
の如く流し、次に電極102の頂部を廻って電極10
2の内側へ矢印の如く折り返した流れとする。この複
合メッキ液の、の流れを継続しながら、電極102
とシリンダブロック100とに通電して、複合メッキ皮
膜105のNiマトリクス106中にSiC粒子107
…(…は複数(個)を示す。以下同様。)を共析させ
る。
FIG. 9 is an explanatory view of a conventional Ni / SiC composite plating process. Opening 101 of cylinder block 100
By disposing a cylindrical electrode 102 with a gap S in the inside, an annular passage 104 is formed between the opening 101 and the electrode 102.
To form A composite plating solution is flowed through the annular passage 104 as shown by the arrow, and then around the top of the electrode 102, the electrode 10
The flow is turned inward as shown by the arrow in FIG. While continuing the flow of the composite plating solution, the electrode 102
And the cylinder block 100, the SiC particles 107 in the Ni matrix 106 of the composite plating film 105.
... (... indicates a plurality (number). The same shall apply hereinafter).

【0005】[0005]

【発明が解決しようとする課題】しかし、図9に示した
複合メッキ皮膜105には次図に示す不具合がある。図
10は図9の10部拡大図である。複合メッキ液が環状
通路104に沿って矢印方向に流れるので、下流側のN
iマトリクス106中に多量のSiC粒子107…が共
析する。従って、複合メッキ液が上方向(下流側)に流
れるに従って、複合メッキ液中のSiC粒子107…が
減少してしまい、SiC粒子107…の共析量は下流側
に向って徐々に減少する。このため、複合メッキ皮膜の
耐摩耗性が下流側で小さくなるという問題がある。
However, the composite plating film 105 shown in FIG. 9 has a problem shown in the following figure. FIG. 10 is an enlarged view of part 10 of FIG. Since the composite plating solution flows in the direction of the arrow along the annular passage 104, the N
A large amount of SiC particles 107 are eutectoid in the i matrix 106. Therefore, as the composite plating solution flows upward (downstream side), the SiC particles 107 in the composite plating solution decrease, and the eutectoid amount of the SiC particles 107 gradually decreases toward the downstream side. For this reason, there is a problem that the wear resistance of the composite plating film decreases on the downstream side.

【0006】図11は従来のNi/SiC複合メッキ液
の流速の説明図である。複合メッキ液109が環状通路
104に沿って白抜き矢印の如く流れる。このとき、開
孔101表面側の複合メッキ液109は、白抜き矢印
の如く開孔101表面の抵抗で流速が小さくなる。この
ため、複合メッキ液109中のNiイオン108…が流
速の大きい中央側に集り、開孔101表面側のNiイオ
ン濃度が規定濃度より低くなる。この結果、複合メッキ
皮膜105のNiマトリクス106を規定厚さに析出さ
せることができない虞れがある。
FIG. 11 is an illustration of the flow rate of a conventional Ni / SiC composite plating solution. The composite plating solution 109 flows along the annular passage 104 as shown by a white arrow. At this time, the flow rate of the composite plating solution 109 on the surface side of the opening 101 becomes small due to the resistance of the surface of the opening 101 as shown by the white arrow. Therefore, the Ni ions 108 in the composite plating solution 109 are collected at the central side where the flow velocity is large, and the Ni ion concentration on the surface side of the opening 101 becomes lower than the specified concentration. As a result, there is a possibility that the Ni matrix 106 of the composite plating film 105 cannot be deposited to a specified thickness.

【0007】そこで、本発明の目的は、金属マトリクス
を規定厚さに析出させることができ、さらに金属マトリ
ックスにセラミックス粒子を均一に共析させることがで
きる複合メッキ方法を提供することにある。
Accordingly, an object of the present invention is to provide a composite plating method capable of depositing a metal matrix to a specified thickness, and furthermore capable of uniformly depositing ceramic particles on the metal matrix.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明の請求項1は、ワークの中空部内に筒形電極を
隙間を開けて配置し、筒形電極の内側にメッキ液にセラ
ミックス粒子を混合した複合メッキ液を供給し、供給し
た複合メッキ液を筒形電極の周壁に形成した複数の貫通
孔を通じて噴射させて中空部の内面に当て、内面に当っ
た複合メッキ液を筒形電極の外側から回収する複合メッ
キ方法であって、前記複数の貫通孔からの噴射速度をほ
ぼ同一にしたことを特徴とする。
In order to achieve the above-mentioned object, a first aspect of the present invention is to dispose a cylindrical electrode in a hollow portion of a work with a gap therebetween, and to form a plating solution inside a cylindrical electrode with a plating solution. A composite plating solution mixed with particles is supplied, and the supplied composite plating solution is jetted through a plurality of through-holes formed in the peripheral wall of the cylindrical electrode and applied to the inner surface of the hollow portion, and the composite plating solution hitting the inner surface is formed into a cylindrical shape. A composite plating method for recovering from the outside of an electrode, characterized in that jetting speeds from the plurality of through holes are substantially the same.

【0009】複数の貫通孔から複合メッキ液を噴射して
中空部の内面にほぼ直角に当てることにより、中空部の
内面に当った複合メッキ液は乱流になる。加えて、噴射
孔からの複合メッキ液の噴射速度をほぼ同一にすること
により、中空部への複合メッキ液の衝突条件を平均にす
る。このため、金属イオンやセラミックス粒子を複合メ
ッキ液中に均一に分散することができる。この結果、内
面近傍において複合メッキ液中の金属イオン濃度を規定
濃度に保つことができる。また、内面近傍において複合
メッキ液中のセラミックス粒子を均一に分散させること
ができる。
By jetting the composite plating solution from the plurality of through holes and applying the composite plating solution substantially perpendicularly to the inner surface of the hollow portion, the composite plating solution hitting the inner surface of the hollow portion becomes turbulent. In addition, by making the injection speed of the composite plating solution from the injection holes substantially the same, the collision conditions of the composite plating solution with the hollow portion are averaged. For this reason, metal ions and ceramic particles can be uniformly dispersed in the composite plating solution. As a result, the metal ion concentration in the composite plating solution can be maintained at a specified concentration near the inner surface. Further, the ceramic particles in the composite plating solution can be uniformly dispersed near the inner surface.

【0010】請求項2は、複数の貫通孔を通じて複合メ
ッキ液を噴射させるときに筒形電極を回転させることを
特徴とする。筒形電極を回転させることにより、複数の
貫通孔から噴射した複合メッキ液を中空部の内面全域に
より均一に当てることができる。このため、内面全域に
金属相マトリックスをより均一な厚さに析出させること
ができ、さらに金属相マトリックス中にセラミックス粒
子を均一に共析させることができる。
A second aspect of the present invention is characterized in that the cylindrical electrode is rotated when the composite plating solution is jetted through the plurality of through holes. By rotating the cylindrical electrode, the composite plating solution sprayed from the plurality of through holes can be more uniformly applied to the entire inner surface of the hollow portion. For this reason, the metal phase matrix can be deposited to a more uniform thickness over the entire inner surface, and the ceramic particles can be uniformly co-deposited in the metal phase matrix.

【0011】[0011]

【発明の実施の形態】本発明の実施の形態を添付図に基
づいて以下に説明する。なお、図面は符号の向きに見る
ものとする。図1は本発明に係る複合メッキ装置を示す
全体図である。複合メッキ装置1は、内燃機関用のシリ
ンダブロック(ワーク)2を載せるために本体4に取付
けたワーク載置台6と、このワーク載置台6に載せたシ
リンダブロック2の中空部2a内に配置した筒形電極1
0と、この筒形電極10を筒形電極10の軸線10aの
廻りに回転させる回転機構20と、筒形電極10の内側
孔(内側)11に複合メッキ液29を供給するメッキ液
循環機構30と、シリンダブロック2と筒形電極10と
を通電する通電機構45とからなる。なお、筒形電極1
0については図3(a),(b)及び図4で詳しく説明
する。2bは中空部2aの内面、2cは冷却水の通路と
なるウォータジャケット、2dはクランク室、3は内面
2bと筒形電極10とで形成した隙間S1の環状通路で
ある。
Embodiments of the present invention will be described below with reference to the accompanying drawings. The drawings should be viewed in the direction of reference numerals. FIG. 1 is an overall view showing a composite plating apparatus according to the present invention. The composite plating apparatus 1 is arranged in a work mounting table 6 mounted on a main body 4 for mounting a cylinder block (work) 2 for an internal combustion engine, and in a hollow portion 2a of the cylinder block 2 mounted on the work mounting table 6. Cylindrical electrode 1
0, a rotation mechanism 20 for rotating the cylindrical electrode 10 around the axis 10 a of the cylindrical electrode 10, and a plating solution circulation mechanism 30 for supplying a composite plating solution 29 to the inner hole (inside) 11 of the cylindrical electrode 10. And an energizing mechanism 45 for energizing the cylinder block 2 and the cylindrical electrode 10. In addition, the cylindrical electrode 1
0 will be described in detail with reference to FIGS. 2b is an inner surface of the hollow portion 2a, 2c is a water jacket serving as a cooling water passage, 2d is a crank chamber, and 3 is an annular passage of a gap S1 formed by the inner surface 2b and the cylindrical electrode 10.

【0012】ワーク載置台6は、ワーク受け面6aに絶
縁部材7を備え、かつ複合メッキ液の回収孔6bを備え
た部材である。絶縁部材7は、例えばセラッミックや合
成樹脂で形成した板材である。絶縁部材7を備えた理由
は、シリンダブロック2をワーク載置台6から絶縁させ
てシリンダブロック2のみに通電させることにより、シ
リンダブロック2の内面2bに複合メッキ皮膜を効率よ
く施すためである。ワーク載置台6に回収孔6bを備え
た理由は、シリンダブロック2の内面2bに当った複合
メッキ液29を回収孔6bから回収して、複合メッキ液
29をスムーズに循環させることにより、シリンダブロ
ック2の内面2bにに複合メッキ皮膜を効率よく施すた
めである。
The work mounting table 6 is a member having an insulating member 7 on a work receiving surface 6a and a recovery hole 6b for a composite plating solution. The insulating member 7 is a plate material formed of, for example, ceramic or synthetic resin. The reason why the insulating member 7 is provided is to insulate the cylinder block 2 from the work mounting table 6 and apply electricity only to the cylinder block 2, thereby efficiently applying a composite plating film to the inner surface 2 b of the cylinder block 2. The reason why the work mounting table 6 is provided with the recovery hole 6b is that the composite plating solution 29 hitting the inner surface 2b of the cylinder block 2 is recovered from the recovery hole 6b, and the composite plating solution 29 is smoothly circulated. This is because the composite plating film is efficiently applied to the inner surface 2b of the substrate 2.

【0013】次に、回転機構20について説明する。回
転機構20は、4気筒エンジン用のシリンダブロックに
適用させて4本の筒形電極10…を回転させる機構であ
るが、ここでは1本の筒形電極10を回転させる内容に
ついて説明する。回転機構20は、本体4に取付けたモ
ータ21と、このモータ21につないだ駆動シャフト2
2と、この駆動シャフト22に取付けた駆動ギヤ23
と、駆動ギヤ23に噛み合ったギヤ24と、このギヤ2
4を略中央に取付け且つ上端に筒形電極10のねじ部1
4を取付けた支持軸25とからなる。なお、4本の筒形
電極10…を回転させる機構については図2で詳しく説
明する。
Next, the rotation mechanism 20 will be described. The rotating mechanism 20 is a mechanism that is applied to a cylinder block for a four-cylinder engine and rotates four cylindrical electrodes 10. Here, the description will be made on the content of rotating one cylindrical electrode 10. The rotation mechanism 20 includes a motor 21 attached to the main body 4 and a drive shaft 2 connected to the motor 21.
2 and a drive gear 23 attached to the drive shaft 22
, A gear 24 meshed with the drive gear 23, and the gear 2
4 is attached substantially at the center and the threaded portion 1 of the cylindrical electrode 10 is provided at the upper end.
4 to which a support shaft 25 is attached. The mechanism for rotating the four cylindrical electrodes 10 will be described in detail with reference to FIG.

【0014】メッキ液循環機構30は、複合メッキ液2
9を蓄えるタンク31と、このタンク31から供給ポー
ト32まで延ばした第1供給路33と、この第1供給路
33の途中に設けたポンプ34と、供給ポート32の出
側に形成したチャンバ35と、このチャンバ35に入側
36aが通じるように支持軸25に開けた第2供給路3
6と、この第2供給路36の出側に通じた筒形電極10
の内側孔11と、この内側孔11に貫通孔13…で通じ
た環状通路3と、この環状通路3にワーク載置台6の回
収孔6bで通じた回収ポート37と、この回収ポート3
7からタンク31まで延ばした回収路38と、この回収
路38の途中に設けたコントロールバルブ39と、タン
ク31に取付けた攪拌機40とからなる。
[0014] The plating solution circulation mechanism 30
9, a first supply path 33 extending from the tank 31 to the supply port 32, a pump 34 provided in the middle of the first supply path 33, and a chamber 35 formed on the outlet side of the supply port 32. And a second supply passage 3 opened in the support shaft 25 so that the entrance side 36a communicates with the chamber 35.
6 and a cylindrical electrode 10 communicating with the outlet side of the second supply path 36.
, An annular passage 3 communicating with the inner hole 11 through a through-hole 13, a collecting port 37 communicating with the annular passage 3 through a collecting hole 6 b of the work mounting table 6, and a collecting port 3.
It comprises a recovery path 38 extending from 7 to the tank 31, a control valve 39 provided in the middle of the recovery path 38, and a stirrer 40 attached to the tank 31.

【0015】コントロールバルブ39は、クランク室2
d内の複合メッキ液29の液面高さ29aを調整するバ
ルブである。攪拌機40は、タンク31の複合メッキ液
29を翼部41で攪拌するものである。通電機構45
は、支持軸25の下端部に通電用のロータリコネクタ4
6を取付け、このロータリコネクタ46に陽極47を接
続し、シリンダブロック2に陰極48を接続したもので
ある。
The control valve 39 is connected to the crank chamber 2
This is a valve for adjusting the liquid level 29a of the composite plating solution 29 in d. The stirrer 40 stirs the composite plating solution 29 in the tank 31 with the wing 41. Power supply mechanism 45
Is connected to the lower end of the support shaft 25 by a rotary connector 4 for energization.
6, an anode 47 is connected to the rotary connector 46, and a cathode 48 is connected to the cylinder block 2.

【0016】図2は図1の2−2線断面図である。回転
機構20の駆動ギヤ23は、内側のギヤ24,24に噛
み合い、内側ギヤ24,24はそれぞれ第1、第2伝達
ギヤ26,27に噛み合い、第1、第2伝達ギヤ26,
27は外側のギヤ24,24に噛み合っている。このた
め、モータ21の回転力は、先ず矢印,の如く駆動
ギヤ23から内側のギヤ24,24に伝わり、次に内側
のギヤ24,24から矢印,の如く第1、第2伝達
ギヤ26,27に伝わり、次いで第1、第2伝達ギヤ2
6,27から矢印,の如くから外側のギヤ24,2
4に伝わる。この結果、ギヤ24…を取付けた回転軸2
5…がそれぞれ白抜き矢印の如く回転して、回転軸25
…に取付けた筒形電極10…(図1参照)が回転軸25
…と同様にそれぞれ白抜き矢印の如く回転する。
FIG. 2 is a sectional view taken along line 2-2 of FIG. The drive gear 23 of the rotating mechanism 20 meshes with the inner gears 24, 24, and the inner gears 24, 24 mesh with the first and second transmission gears 26, 27, respectively, and the first and second transmission gears 26, 27 respectively.
27 meshes with the outer gears 24,24. Therefore, the rotational force of the motor 21 is first transmitted from the drive gear 23 to the inner gears 24, 24 as shown by arrows, and then from the inner gears 24, 24 to the first and second transmission gears 26, 24 as shown by arrows. 27, and then the first and second transmission gears 2
Outer gears 24,2 from arrows like 6,27
Transfer to 4. As a result, the rotating shaft 2 with the gears 24.
5 rotate as indicated by the outline arrows, respectively,
The cylindrical electrode 10 (see FIG. 1) attached to the rotating shaft 25
Each of them rotates like the white arrow.

【0017】図3(a),(b)は本発明に係る筒形電
極の説明図であり、(a)は断面図、(b)は(a)の
b矢視図である。(a)において、筒形電極10は、例
えばチタン(Ti)基材に白金(Pt)をクラッド被覆
した電極やTi基材に酸化イリジウム(IrO2)をク
ラッド被覆した電極であって、軸線10aに沿って開け
た内側孔11と、シリンダブロック2の内面2b(図1
に示す。)に対向する筒状の周壁12と、この周壁12
に螺旋状に配置した複数の貫通孔13…と、上端部に形
成した蓋部14と、下端部に形成したねじ部15とから
なる。(b)において、筒形電極10は、周壁12の高
さH((a)参照)、周長Lに設定し、周壁12に貫通
孔13…を一定の角度θ(24°)で配置したものであ
る。なお、貫通孔13…の配列については図4で詳しく
説明する。
FIGS. 3A and 3B are explanatory views of a cylindrical electrode according to the present invention, wherein FIG. 3A is a sectional view, and FIG. In (a), the cylindrical electrode 10 is, for example, an electrode in which a titanium (Ti) base material is clad with platinum (Pt) or an electrode in which a Ti base material is clad with iridium oxide (IrO 2 ). 1 and the inner surface 2b of the cylinder block 2 (FIG. 1).
Shown in ) And a cylindrical peripheral wall 12 facing the peripheral wall 12.
, A plurality of through holes 13 spirally arranged, a lid portion 14 formed at an upper end portion, and a screw portion 15 formed at a lower end portion. In (b), the cylindrical electrode 10 is set to a height H (see (a)) and a circumferential length L of the peripheral wall 12, and the through holes 13 are arranged in the peripheral wall 12 at a constant angle θ (24 °). Things. The arrangement of the through holes 13 will be described in detail with reference to FIG.

【0018】図4は本発明に係る筒形電極の展開図であ
る。貫通孔13…は、周壁12に千鳥状に且つ傾斜角θ
の螺旋に沿ってピッチPで配列したものである。貫通孔
13…を螺旋状に配置した理由は、周壁12に対向する
シリンダブロック2の内面2b(図1に示す。)により
均一に複合メッキ液29を当てるためである。また、貫
通孔13…を略千鳥配置とした理由は、碁盤目配置と比
較して貫通孔13と貫通孔13との間隔を小さくして、
貫通孔13…を周壁12に密に配置するためである。
FIG. 4 is a developed view of the cylindrical electrode according to the present invention. The through holes 13 are staggered in the peripheral wall 12 and have an inclination angle θ.
Are arranged at a pitch P along the spiral. The reason why the through holes 13 are spirally arranged is to uniformly apply the composite plating solution 29 to the inner surface 2b (shown in FIG. 1) of the cylinder block 2 facing the peripheral wall 12. Moreover, the reason why the through holes 13 are arranged in a staggered manner is that the distance between the through holes 13 is smaller than that in the grid pattern,
This is because the through holes 13 are densely arranged in the peripheral wall 12.

【0019】次に、複合メッキ方法を図5〜図7に基づ
いて説明する。図5は本発明に係る複合メッキ方法の第
1説明図であり、複合メッキ方法の原理図を示す。先
ず、シリンダブロック2をワーク載置台6の絶縁部材7
に載せて筒形電極10に隙間S1を開けて被せる。次
に、モータ21を駆動して、モータ21の回転力を駆動
ギヤ23→ギヤ24→支持軸25に伝えて筒形電極10
を軸線10aの廻りに回転させる。次いで、撹拌機40
の翼部41を回転してタンク31の複合メッキ液29を
撹拌する。この状態で、ポンプ34を駆動してタンク3
1内の複合メッキ液29を矢印a1〜a3の如く、第1
供給路33→供給ポート32→チャンバ35→第2供給
路36を通じて筒形電極10の内側孔11に供給する。
Next, the composite plating method will be described with reference to FIGS. FIG. 5 is a first explanatory view of the composite plating method according to the present invention, and shows a principle diagram of the composite plating method. First, the cylinder block 2 is connected to the insulating member 7 of the work table 6.
To cover the cylindrical electrode 10 with a gap S1 opened. Next, the motor 21 is driven, and the rotational force of the motor 21 is transmitted to the driving gear 23 → the gear 24 → the support shaft 25 so that the cylindrical electrode 10
Is rotated about the axis 10a. Next, the stirrer 40
Is rotated to agitate the composite plating solution 29 in the tank 31. In this state, the pump 34 is driven to drive the tank 3
1 as indicated by arrows a1 to a3.
The gas is supplied to the inner hole 11 of the cylindrical electrode 10 through the supply path 33 → the supply port 32 → the chamber 35 → the second supply path 36.

【0020】内側孔11の複合メッキ液29は貫通孔1
3…を通じて矢印b…の如く筒形電極10の外側に噴射
してシリンダブロック2の内面2bに直角に当る。そし
て、シリンダブロック2の内面2bに当った複合メッキ
液29を矢印c1,c2の如く環状通路3→回収ポート
37→回収路38を通じてタンク31に回収する。複合
メッキ液29を循環させた状態で通電機構45を操作し
て筒形電極10とシリンダブロック2とを通電する。
The composite plating solution 29 in the inner hole 11 is
3, and is ejected to the outside of the cylindrical electrode 10 as shown by an arrow b and strikes the inner surface 2 b of the cylinder block 2 at right angles. Then, the composite plating solution 29 that has hit the inner surface 2b of the cylinder block 2 is recovered in the tank 31 through the annular passage 3 → the recovery port 37 → the recovery path 38 as shown by arrows c1 and c2. With the composite plating solution 29 circulated, the energizing mechanism 45 is operated to energize the cylindrical electrode 10 and the cylinder block 2.

【0021】図6は本発明に係る複合メッキ方法の第2
説明図であり、筒形電極10の貫通孔13…から複合メ
ッキ液29を噴射させた状態を示す。貫通孔13…から
複合メッキ液29を噴射して矢印b…の如くシリンダブ
ロック2の内面2bにほぼ直角に当てることにより、内
面2bに当った複合メッキ液29は乱流になる。加え
て、噴射孔13…からの複合メッキ液29の噴射速度を
ほぼ同一にすることにより、内面2bへの複合メッキ液
29の衝突条件を平均にする。このため、金属イオン5
1a…やセラミック粒子52…を複合メッキ液29中に
均一に分散することができる。
FIG. 6 shows a second example of the composite plating method according to the present invention.
It is an explanatory view, and shows a state in which a composite plating solution 29 is sprayed from the through holes 13 of the cylindrical electrode 10. By jetting the composite plating solution 29 from the through holes 13 and hitting the inner surface 2b of the cylinder block 2 almost at right angles as indicated by arrows b, the composite plating solution 29 hitting the inner surface 2b becomes turbulent. In addition, by making the injection speed of the composite plating solution 29 from the injection holes 13 approximately the same, the collision conditions of the composite plating solution 29 on the inner surface 2b are averaged. Therefore, metal ions 5
And the ceramic particles 52 can be uniformly dispersed in the composite plating solution 29.

【0022】この結果、内面2b近傍において複合メッ
キ液29中の金属イオン濃度を規定濃度に保つことがで
きるので、複合メッキ皮膜50の金属マトリックス51
を規定厚さTに析出させることができる。また、内面2
b近傍において複合メッキ液29中のセラミック粒子5
2…を均一に分散させることができるので、セラミック
粒子52…を金属マトリックス51中に均一に共析させ
ることができる。
As a result, the metal ion concentration in the composite plating solution 29 can be maintained at a specified concentration in the vicinity of the inner surface 2b, so that the metal matrix 51 of the composite plating film 50 can be maintained.
Can be deposited to a specified thickness T. Also, inner surface 2
b, the ceramic particles 5 in the composite plating solution 29
2 can be uniformly dispersed, so that the ceramic particles 52 can be co-deposited uniformly in the metal matrix 51.

【0023】さらに、筒形電極10を回転させることに
より、貫通孔13…から噴射した複合メッキ液29をシ
リンダブロック2の内面2b全域に均一に当てることが
できる。このため、内面2b全域に金属マトリックス5
1を均一の厚さに析出させることができ、さらに金属マ
トリックス51中にセラミックス粒子52…を均一に共
析させることができる。
Furthermore, by rotating the cylindrical electrode 10, the composite plating solution 29 sprayed from the through holes 13 can be uniformly applied to the entire inner surface 2b of the cylinder block 2. Therefore, the metal matrix 5 is formed over the entire inner surface 2b.
1 can be deposited to a uniform thickness, and the ceramic particles 52 can be co-deposited uniformly in the metal matrix 51.

【0024】図7は本発明に係る複合メッキ方法の第3
説明図であり、シリンダブロック2の断面図の右側に筒
形電極を展開した状態を示す。なお、便宜上貫通孔13
…にa〜jを付して説明する。貫通孔13a〜13jか
ら複合メッキ液29(図5参照)を噴射させながら筒形
電極10を回転させる。この結果、先ず、貫通孔13a
から噴射した複合メッキ液29を矢印の如くシリンダ
ブロック2の内面2bの位置P1に当て、貫通孔13b
から噴射した複合メッキ液29を位置P1の僅か上方に
ズラして当てる。次に、貫通孔13cから噴射した複合
メッキ液29を矢印の如く位置P2に当て、貫通孔1
3dから噴射した複合メッキ液29を位置P2の僅か上
方に当て、さらに貫通孔13eから噴射した複合メッキ
液29を矢印の如く位置P3に当てる。
FIG. 7 shows a third example of the composite plating method according to the present invention.
It is explanatory drawing and shows the state which expanded the cylindrical electrode on the right side of the sectional view of the cylinder block 2. FIG. For convenience, the through hole 13
Are described by adding a to j. The cylindrical electrode 10 is rotated while spraying the composite plating solution 29 (see FIG. 5) from the through holes 13a to 13j. As a result, first, the through hole 13a
Of the composite plating solution 29 sprayed from the inner surface 2b of the cylinder block 2 as shown by an arrow,
The composite plating solution 29 sprayed from above is shifted slightly above the position P1 and applied. Next, the composite plating solution 29 sprayed from the through hole 13c is applied to the position P2 as shown by the arrow,
The composite plating solution 29 jetted from 3d is applied slightly above the position P2, and the composite plating solution 29 jetted from the through hole 13e is applied to the position P3 as shown by an arrow.

【0025】さらに、貫通孔13fから噴射した複合メ
ッキ液29を矢印の如くシリンダブロック2の内面2
bの位置P4に当て、貫通孔13g,13hから噴射し
た複合メッキ液29を順次位置P4の僅か上方にズラし
て当てる。次に、貫通孔13jから噴射した複合メッキ
液29を矢印の如く位置P5に当てる。
Further, the composite plating solution 29 sprayed from the through hole 13f is applied to the inner surface 2 of the cylinder block 2 as shown by the arrow.
The composite plating solution 29 sprayed from the through holes 13g and 13h is sequentially shifted slightly above the position P4 and applied to the position P4 of b. Next, the composite plating solution 29 sprayed from the through holes 13j is applied to the position P5 as shown by the arrow.

【0026】このため、シリンダブロック2の内面2b
の位置P1〜位置P6のエリアEに複合メッキ液29を
均一に当てることができる。この結果、複合メッキ液2
9中の金属イオン濃度を規定濃度に保って金属マトリッ
クス51を規定厚さに析出させることができ、さらに複
合メッキ液29中のセラミックス粒子52…を均一に保
ってセラミックス粒子52…を金属マトリクス51中に
均一に共析させることができる。
For this reason, the inner surface 2b of the cylinder block 2
The composite plating solution 29 can be uniformly applied to the area E of the positions P1 to P6. As a result, the composite plating solution 2
9, the metal matrix 51 can be deposited to a specified thickness while maintaining the metal ion concentration in the specified concentration, and the ceramic particles 52... It can be uniformly eutectoid therein.

【0027】図8は本発明に係る複合メッキと従来の複
合メッキとを対比したグラスである。横軸はシリンダブ
ロック2の内面2bのシリンダヘッド側端部P7〜クラ
ンク室側端部P8間のメッキ処理位置を示し、縦軸は複
合メッキ皮膜50中のセラミックス粒子(Si34
子)52…(図6参照)の共析量を示す。太い実線は本
発明に係るの複合メッキ装置1(図1に示す)で複合メ
ッキ皮膜50を施した実施例のグラフで、細い実線は図
9に示す従来の装置で複合メッキ皮膜50を施した比較
例のグラフである。なお、複合メッキ液29は、金属イ
オンとしてNiイオンやPイオンを含み、かつセラミッ
クス粒子として窒化ケイ素(Si34)粒子を懸濁させ
たメッキ液を使用した。
FIG. 8 shows a glass in which the composite plating according to the present invention is compared with the conventional composite plating. The horizontal axis shows the plating position between the cylinder head side end P7 and the crankcase side end P8 of the inner surface 2b of the cylinder block 2, and the vertical axis shows the ceramic particles (Si 3 N 4 particles) 52 in the composite plating film 50. .. (See FIG. 6). The bold solid line is a graph of an example in which the composite plating film 50 is applied by the composite plating apparatus 1 (shown in FIG. 1) according to the present invention, and the thin solid line is that in which the composite plating film 50 is applied by the conventional apparatus shown in FIG. It is a graph of a comparative example. As the composite plating solution 29, a plating solution containing Ni ions and P ions as metal ions and suspending silicon nitride (Si 3 N 4 ) particles as ceramic particles was used.

【0028】実施例によれば、シリンダブロック2の内
面2bのシリンダヘッド側端部P7からクランク室側端
部P8まで、セラミックス粒子(Si34粒子)52…
の共析量が一定に保たれていることがわかる。一方、比
較例によれば、シリンダブロック2の内面2bのシリン
ダヘッド側端部P7からクランク室側端部P8に近づく
に従って、セラミックス粒子(Si34粒子)52…の
共析量が漸次減少することがわかる。
According to the embodiment, the ceramic particles (Si 3 N 4 particles) 52... From the end P 7 on the cylinder head side to the end P 8 on the crank chamber side of the inner surface 2 b of the cylinder block 2.
It can be seen that the amount of eutectoid was kept constant. On the other hand, according to the comparative example, the eutectoid amount of ceramic particles (Si 3 N 4 particles) 52 gradually decreases from the cylinder head side end P7 of the inner surface 2b of the cylinder block 2 to the crank chamber side end P8. You can see that

【0029】また、実施例によれば、複合メッキ皮膜5
0の金属マトリックス(Ni―9Pマトリックス)51
(図6に示す。)を規定厚さTに析出させることがで
き、一方、比較例によれば、複合メッキ皮膜50の金属
マトリックス(Ni―9Pマトリックス)51を規定厚
さTに析出させることができないことが判明した。従っ
て、実施例によれば、シリンダブロック2の内面2bの
耐摩耗性を均一に高めることができる。
According to the embodiment, the composite plating film 5
0 metal matrix (Ni-9P matrix) 51
(Shown in FIG. 6) can be deposited to a specified thickness T. On the other hand, according to the comparative example, the metal matrix (Ni-9P matrix) 51 of the composite plating film 50 is deposited to a specified thickness T. Turned out to be impossible. Therefore, according to the embodiment, the wear resistance of the inner surface 2b of the cylinder block 2 can be uniformly increased.

【0030】なお、複合メッキ液29は、金属イオンと
してNiイオンを含み、かつセラミックス粒子として炭
化ケイ素(SiC)粒子を懸濁させたメッキ液を使用し
ても同様の効果を得た。
The same effect was obtained by using a plating solution containing Ni ions as metal ions and suspending silicon carbide (SiC) particles as ceramic particles.

【0031】[0031]

【実施例】以下に、本発明に係る実験例を表1、表2を
参照の上説明する。しかし、本発明はこれらの実験例に
限るものではない。
EXAMPLES Examples of the present invention will be described below with reference to Tables 1 and 2. However, the present invention is not limited to these experimental examples.

【0032】[0032]

【表1】 [Table 1]

【0033】実験No.1;複合メッキ液29(図1参
照)は、硫酸ニッケル(NiSO4)45〜70g/l
(リットル)、硫酸ナトリウム(Na2SO4)250g
/l、ホウ酸40g/l、亜リン酸40g/lを加えた
pH=2.5のものに、窒化ケイ素(Si34)粒子4
5g/lを懸濁させたものである。筒形電極10(図1
参照)は、周壁12に孔径2.0mmの貫通孔13…を
169個開けてたものである。
Experiment No. 1: the composite plating solution 29 (see FIG. 1) is nickel sulfate (NiSO 4 ) 45 to 70 g / l
(Liter), 250 g of sodium sulfate (Na 2 SO 4 )
/ L, boric acid 40 g / l and phosphorous acid 40 g / l, pH = 2.5, and silicon nitride (Si 3 N 4 ) particles 4
It is a suspension of 5 g / l. A cylindrical electrode 10 (FIG. 1)
) Has 169 through holes 13 with a hole diameter of 2.0 mm in the peripheral wall 12.

【0034】筒形電極を5rpmで回転させながら複合
メッキ液29を流量30 l/分で循環させ、電流密度
を10A/dm2〜12.5A/dm2の範囲に設定して
筒形電極10とシリンダブロック2とを72分間通電し
た。その結果、複合メッキ皮膜を規定厚さ100μmと
することができ、この複合メッキ皮膜のNi―9Pマト
リックスにSi34粒子を均一に共析させることができ
た。従って、シリンダブロック2の内面2bの耐摩耗性
を均一に高めることができる。
While rotating the cylindrical electrode at 5 rpm, the composite plating solution 29 is circulated at a flow rate of 30 l / min, and the current density is set in the range of 10 A / dm 2 to 12.5 A / dm 2 to form the cylindrical electrode 10. And the cylinder block 2 were energized for 72 minutes. As a result, the composite plating film could have a specified thickness of 100 μm, and Si 3 N 4 particles could be co-deposited uniformly in the Ni-9P matrix of the composite plating film. Therefore, the wear resistance of the inner surface 2b of the cylinder block 2 can be uniformly increased.

【0035】[0035]

【表2】 [Table 2]

【0036】実験No.2;複合メッキ液29は、硫酸
ニッケル(NiSO4)400g/l、ホウ酸35g/
l、サッカリンナトリウム2.5g/lを加えたpH=
2.5のものに、炭化ケイ素(SiC)粒子60gを懸
濁させたものである。筒形電極10は、実験No.1と
同様に、周壁12に孔径2.0mmの貫通孔13…を1
69個開けてたものである。筒形電極を5rpmで回転
させながら複合メッキ液29を流量30 l/分で循環
させ、電流密度を64A/dm2に設定して筒形電極1
0とシリンダブロック2とを7分間通電した。その結
果、実験No.1と同様に、複合メッキ皮膜を規定厚さ
100μmとすることができ、この複合メッキ皮膜のN
iマトリックスにSiC粒子を均一に共析させることが
できた。従って、シリンダブロック2の内面2bの耐摩
耗性を均一に高めることができる。
Experiment No. 2: The composite plating solution 29 is composed of nickel sulfate (NiSO 4 ) 400 g / l and boric acid 35 g /
l, pH with addition of 2.5 g / l of saccharin sodium =
2.5 is obtained by suspending 60 g of silicon carbide (SiC) particles. The cylindrical electrode 10 was used in Experiment No. 1, a through hole 13 having a hole diameter of 2.0 mm is formed in the peripheral wall 12.
69 were opened. While rotating the cylindrical electrode at 5 rpm, the composite plating solution 29 was circulated at a flow rate of 30 l / min, the current density was set to 64 A / dm 2 , and the cylindrical electrode 1
0 and the cylinder block 2 were energized for 7 minutes. As a result, Experiment No. 1, the composite plating film can have a specified thickness of 100 μm.
The SiC particles could be co-deposited uniformly in the i matrix. Therefore, the wear resistance of the inner surface 2b of the cylinder block 2 can be uniformly increased.

【0037】前記実験No.1では、金属イオン(Ni
イオン、Pイオン)51aやセラミックス粒子(Si3
4粒子)52を含んだ複合メッキ液29を使用して金
属マトリックス(Ni―9Pマトリックス)にSi34
粒子を共析させる内容について説明し、また、実験N
o.2では、金属イオン(Niイオン)51aやセラミ
ックス粒子(SiC粒子)52を含んだ複合メッキ液2
9を使用して金属マトリックス(Niマトリックス)5
1にセラミックス粒子(SiC粒子)52を共析させる
内容について説明したが、その他の金属イオンやセラミ
ックス粒子を含んだ複合メッキ液を使用してもよい。前
記実験例では、シリンダブロック2の内面2bに複合メ
ッキ皮膜を施す内容について説明したが、その他のワー
クの中空部内面に複合メッキ皮膜を施すことも可能であ
る。前記実験例では、4本の筒形電極10…を使用して
4気筒エンジンのシリンダブロック2に複合メッキ皮膜
を施す内容について説明したが、筒形電極10…の本数
を変えて、例えば6気筒エンジンのシリンダブロック等
に適用することも可能である。
In the above Experiment No. 1, the metal ion (Ni
Ions, P ions) 51a and ceramic particles (Si 3
The metal matrix (Ni-9P matrix) is made of Si 3 N 4 using a composite plating solution 29 containing N 4 particles) 52.
The content of eutectoid particles was explained, and experiment N
o. 2, a composite plating solution 2 containing metal ions (Ni ions) 51a and ceramic particles (SiC particles) 52
9 using a metal matrix (Ni matrix) 5
Although the content of co-depositing the ceramic particles (SiC particles) 52 in the embodiment 1 has been described, a composite plating solution containing other metal ions or ceramic particles may be used. In the above-described experimental example, the content of applying the composite plating film to the inner surface 2b of the cylinder block 2 has been described. However, it is also possible to apply the composite plating film to the inner surface of the hollow portion of another work. In the above-described experimental example, the description has been given of the case where the composite plating film is applied to the cylinder block 2 of the four-cylinder engine using the four cylindrical electrodes 10. However, the number of the cylindrical electrodes 10 is changed to, for example, six cylinders. It is also possible to apply to a cylinder block or the like of an engine.

【0038】前記実験例では、筒形電極10の内側孔1
1を蓋部14で塞いだ内容について説明したが、内側孔
11を筒形電極の底部で塞いでもよい。このとき、複合
メッキ液を底部と反対側の頂部側から内側孔11に供給
する。前記実験例では、ワーク載置台6のワーク受け面
6aに絶縁部材7を取付けた内容について説明したが、
その他にセラミックスコーティングや樹脂コーティング
などの絶縁コーティングを施しても同様の効果を得るこ
とができる。
In the above experimental example, the inner hole 1 of the cylindrical electrode 10 was
Although the description has been given of the content in which 1 is closed by the lid 14, the inner hole 11 may be closed by the bottom of the cylindrical electrode. At this time, the composite plating solution is supplied to the inside hole 11 from the top side opposite to the bottom. In the above-described experimental example, the content in which the insulating member 7 is attached to the work receiving surface 6a of the work mounting table 6 has been described.
In addition, the same effect can be obtained by applying an insulating coating such as a ceramic coating or a resin coating.

【0039】[0039]

【発明の効果】本発明は上記構成により次の効果を発揮
する。請求項1は、複数の貫通孔から複合メッキ液を噴
射して中空部の内面にほぼ直角に当てることにより、中
空部の内面に当った複合メッキ液は乱流になる。加え
て、噴射孔からの複合メッキ液の噴射速度をほぼ同一に
することにより、中空部への複合メッキ液の衝突条件を
平均にする。このため、金属イオンやセラミックス粒子
を複合メッキ液中に均一に分散することができる。
According to the present invention, the following effects are exhibited by the above configuration. According to the first aspect of the present invention, the composite plating solution hitting the inner surface of the hollow portion becomes turbulent by spraying the composite plating solution from the plurality of through holes and applying the composite plating solution substantially perpendicularly to the inner surface of the hollow portion. In addition, by making the injection speed of the composite plating solution from the injection holes substantially the same, the collision conditions of the composite plating solution with the hollow portion are averaged. For this reason, metal ions and ceramic particles can be uniformly dispersed in the composite plating solution.

【0040】この結果、内面近傍において複合メッキ液
中の金属イオン濃度を規定濃度に保つことができるの
で、複合メッキ皮膜の金属相マトリックスを規定厚さに
析出させることができる。また、内面近傍において複合
メッキ液中のセラミックス粒子を均一に分散させること
ができるので、セラミックス粒子を金属相マトリクス中
に均一に共析させることができる。
As a result, the metal ion concentration in the composite plating solution can be maintained at a specified concentration near the inner surface, so that the metal phase matrix of the composite plating film can be deposited to a specified thickness. Further, since the ceramic particles in the composite plating solution can be uniformly dispersed in the vicinity of the inner surface, the ceramic particles can be co-deposited uniformly in the metal phase matrix.

【0041】請求項2は、筒形電極を回転させることに
より、複数の貫通孔から噴射した複合メッキ液を中空部
の内面全域に均一に当てることができる。このため、内
面全域に金属相マトリックスを均一の厚さに析出させる
ことができ、さらに金属相マトリックス中にセラミック
ス粒子を均一に共析させることができる。
According to the second aspect, by rotating the cylindrical electrode, the composite plating solution sprayed from the plurality of through holes can be uniformly applied to the entire inner surface of the hollow portion. For this reason, the metal phase matrix can be deposited to a uniform thickness over the entire inner surface, and the ceramic particles can be uniformly co-deposited in the metal phase matrix.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る複合メッキ装置を示す全体図FIG. 1 is an overall view showing a composite plating apparatus according to the present invention.

【図2】図1の2−2線断面図FIG. 2 is a sectional view taken along line 2-2 of FIG.

【図3】本発明に係る筒形電極の説明図FIG. 3 is an explanatory view of a cylindrical electrode according to the present invention.

【図4】本発明に係る筒形電極の展開図FIG. 4 is a development view of a cylindrical electrode according to the present invention.

【図5】本発明に係る複合メッキ方法の第1説明図FIG. 5 is a first explanatory view of a composite plating method according to the present invention.

【図6】本発明に係る複合メッキ方法の第2説明図FIG. 6 is a second explanatory view of the composite plating method according to the present invention.

【図7】本発明に係る複合メッキ方法の第3説明図FIG. 7 is a third explanatory view of the composite plating method according to the present invention.

【図8】本発明に係る複合メッキと従来の複合メッキと
を対比したグラス
FIG. 8 shows a glass in which the composite plating according to the present invention is compared with the conventional composite plating.

【図9】従来のNi/SiC複合メッキ処理の説明図FIG. 9 is an explanatory view of a conventional Ni / SiC composite plating process.

【図10】図9の10部拡大図FIG. 10 is an enlarged view of part 10 in FIG. 9;

【図11】従来のNi/SiC複合メッキ液の流速の説
明図
FIG. 11 is an explanatory diagram of a flow rate of a conventional Ni / SiC composite plating solution.

【符号の説明】[Explanation of symbols]

1…複合メッキ装置、2…シリンダブロック(ワー
ク)、2a…中空部、2b…内面、10…筒形電極、1
1…内側孔(内側)、12…周壁、13…貫通孔、29
…複合メッキ液、52…セラミック粒子(Si34
子、SiC粒子)、S1…隙間。
DESCRIPTION OF SYMBOLS 1 ... Composite plating apparatus, 2 ... Cylinder block (work), 2a ... Hollow part, 2b ... Inner surface, 10 ... Cylindrical electrode, 1
DESCRIPTION OF SYMBOLS 1 ... Inside hole (inside), 12 ... Peripheral wall, 13 ... Through-hole, 29
... composite plating solution, 52 ... ceramic particles (Si 3 N 4 particles, SiC particles), S1 ... gap.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ワークの中空部内に筒形電極を隙間を開
けて配置し、筒形電極の内側にメッキ液にセラミックス
粒子を混合した複合メッキ液を供給し、供給した複合メ
ッキ液を筒形電極の周壁に形成した複数の貫通孔を通じ
て噴射させて中空部の内面に当て、内面に当った複合メ
ッキ液を筒形電極の外側から回収する複合メッキ方法で
あって、前記複数の貫通孔からの噴射速度をほぼ同一に
したことを特徴とする複合メッキ方法。
1. A cylindrical electrode is disposed in a hollow portion of a workpiece with a gap therebetween, and a composite plating solution in which ceramic particles are mixed with a plating solution is supplied to the inside of the cylindrical electrode. A composite plating method of spraying through a plurality of through-holes formed in the peripheral wall of the electrode and hitting the inner surface of the hollow portion, and recovering the composite plating solution hitting the inner surface from the outside of the cylindrical electrode, comprising: A composite plating method characterized in that the injection speeds of the two are substantially the same.
【請求項2】 前記複数の貫通孔を通じて複合メッキ液
を噴射させるときに筒形電極を回転させることを特徴と
した請求項1記載の複合メッキ方法。
2. The composite plating method according to claim 1, wherein a cylindrical electrode is rotated when the composite plating solution is jetted through the plurality of through holes.
JP15503198A 1998-06-03 1998-06-03 Composite plating method Pending JPH11350197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15503198A JPH11350197A (en) 1998-06-03 1998-06-03 Composite plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15503198A JPH11350197A (en) 1998-06-03 1998-06-03 Composite plating method

Publications (1)

Publication Number Publication Date
JPH11350197A true JPH11350197A (en) 1999-12-21

Family

ID=15597169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15503198A Pending JPH11350197A (en) 1998-06-03 1998-06-03 Composite plating method

Country Status (1)

Country Link
JP (1) JPH11350197A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018006434A1 (en) * 2016-07-04 2018-01-11 江苏大学 Shot blasting and electrodeposition manufacturing method and apparatus for three-dimensional surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018006434A1 (en) * 2016-07-04 2018-01-11 江苏大学 Shot blasting and electrodeposition manufacturing method and apparatus for three-dimensional surface

Similar Documents

Publication Publication Date Title
EP1461478B1 (en) Composite plating film and a process for forming the same
US4954235A (en) Electroplating of fine particles with metal
US8075791B2 (en) Chemical treatment method
ZA200410368B (en) Process for electroplating metallic and metal matrix composite foils, coating and microcomponents
GB2063926A (en) Plasma coating
EP0641872A1 (en) Plating method, plating liquid and plated engine component
JP3351511B2 (en) Composite plating equipment
JPH11350197A (en) Composite plating method
US4822468A (en) Barrel plating apparatus
JP3830758B2 (en) Ni-Cu alloy composite plating solution
JP3830759B2 (en) Ni-Cu alloy composite plating film
JP2000008191A (en) Plating device
JPH09125294A (en) Surface-treating device
CN1960799A (en) Methods and systems for processing microfeature workpieces with flow agitators and/or multiple electrodes
JP2001158996A (en) Cylinder block for internal combustion engine
JP3489813B2 (en) Cylinder block for internal combustion engine
JP4323930B2 (en) Chemical treatment method
JP3516287B2 (en) Composite plating equipment
JP2002180284A (en) Ni-Cu ALLOY PLATED COAT
JP2001158992A (en) Piston engine
JP2002206198A (en) Ni-Cu ALLOY COMPOSITE PLATING SOLUTION
JP2001158989A (en) Plating liquid of plating device for cylinder block
JP3480681B2 (en) Plating solution circulation type plating equipment
JPH09310196A (en) Device for plating inside surface of cavity hole and method for plating inside surface of cavity hole
JP3516288B2 (en) Composite plating equipment