JPH11349641A - Rubber-modified styrene resin composition - Google Patents

Rubber-modified styrene resin composition

Info

Publication number
JPH11349641A
JPH11349641A JP15735598A JP15735598A JPH11349641A JP H11349641 A JPH11349641 A JP H11349641A JP 15735598 A JP15735598 A JP 15735598A JP 15735598 A JP15735598 A JP 15735598A JP H11349641 A JPH11349641 A JP H11349641A
Authority
JP
Japan
Prior art keywords
styrene
weight
resin composition
rubber
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15735598A
Other languages
Japanese (ja)
Inventor
Manabu Tsuzuki
学 続
Hideki Watabe
秀樹 渡部
Masahiko Aoki
賢彦 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP15735598A priority Critical patent/JPH11349641A/en
Publication of JPH11349641A publication Critical patent/JPH11349641A/en
Pending legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a rubber-modified styrene resin composition which has well balanced mechanical properties such as flow properties, a heat resistance, a rigidity and a stretch and can be molded with a drastically shortened molding time. SOLUTION: A rubber-modified styrene resin composition comprises a continuous phase of a styrene polymer obtained by polymerizing styrene nomomers in the presence of a rubbery polymer wherein the 5 wt.% styrene solution viscosity, determined at 25 deg.C, is from 100 to 400 centipoise and a dispersed phase of soft component particles comprising a rubbery polymer including styrene polymers. Here, the weight average molecular weight of the styrene polymer forming the continuous phase is from 140,000 to 180,000, the content of the rubbery polymer forming the dispersed phase is from 4.0 to 9.0 wt.% and the content of a mineral oil in the resin composition is from 0.1 to 1.1 wt.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、流動性、耐熱性、
剛性、伸びの物性バランスに優れ、さらに成形時間を大
幅に短縮することができるゴム変性スチレン系樹脂組成
物に関する。
TECHNICAL FIELD The present invention relates to fluidity, heat resistance,
The present invention relates to a rubber-modified styrenic resin composition that has an excellent balance of physical properties such as rigidity and elongation and that can significantly reduce molding time.

【0002】[0002]

【従来の技術】ゴム変性スチレン系樹脂組成物は、剛
性、成形性、寸法安定性に優れ、かつ耐衝撃性にも優れ
ていることから、家電機器、OA機器をはじめ、玩具等
の各種成形品の材料として広範に利用されている。近
年、成形技術の進歩により、成形品形状が複雑化、大型
化、薄肉化する傾向があり、さらに、成形サイクルの短
縮による生産性向上のため、流動性、耐熱性、剛性のバ
ランスに優れたゴム変性スチレン系樹脂の開発が強く求
められている。流動性を改善する方法としては、例え
ば、特開昭60−192755号公報で提案されている
ように、ミネラルオイル等の可塑剤を添加する方法が一
般的に行われている。この可塑剤添加により流動性は向
上し、成形温度を低下させることができる。しかしなが
ら、耐熱性が低下するため、成形品の固化温度が低下し
固化時間が相対的に長くなり、生産性が逆に低下してし
まうという問題があった。また、特開平1−24744
6号公報、特開平9−111071号公報では、ゴム状
重合体含有量、連続相のスチレン系樹脂の分子量、可塑
剤含有量等を限定し、流動性および耐熱性のバランスに
優れた樹脂が提案されている。これらの方法では、流動
性と耐熱性のバランスがやや改善されるものの、固化時
間短縮のためには耐熱性が不十分であり、さらに引張降
伏応力が低く成形品の剛性が不十分となり、薄肉成形が
困難という欠点があった。また、特開平5−33942
0号公報、特開平6−157920号公報では、ヒドロ
キシ基含有芳香族系リン酸エステル、特定の官能基を有
する化合物、可塑化効果を有する有機化合物、油脂ゲル
化剤等の第3成分を配合することにより、耐熱性と流動
性のバランスを改善する技術が提案されている。しかし
ながら、これらの方法では流動性改善効果が充分でな
く、また使用する添加剤が比較的高価なため、樹脂の製
造コストが上昇し、産業的観点からは好ましくなかっ
た。
2. Description of the Related Art Rubber-modified styrenic resin compositions are excellent in rigidity, moldability, dimensional stability and impact resistance. It is widely used as a material for goods. In recent years, with the development of molding technology, the shape of molded products tends to be complicated, large, and thin, and furthermore, because of the improvement in productivity by shortening the molding cycle, it has an excellent balance of fluidity, heat resistance, and rigidity. There is a strong demand for the development of rubber-modified styrenic resins. As a method of improving fluidity, for example, a method of adding a plasticizer such as mineral oil is generally performed as proposed in Japanese Patent Application Laid-Open No. 60-192755. By the addition of the plasticizer, the fluidity is improved and the molding temperature can be lowered. However, since the heat resistance is reduced, there is a problem that the solidification temperature of the molded article is lowered, the solidification time is relatively long, and the productivity is conversely reduced. Also, Japanese Patent Laid-Open No. 24744/1990
No. 6, JP-A No. 9-111071 discloses a resin having an excellent balance between fluidity and heat resistance by limiting the content of a rubbery polymer, the molecular weight of a styrene resin in a continuous phase, the content of a plasticizer, and the like. Proposed. In these methods, the balance between fluidity and heat resistance is slightly improved, but the heat resistance is insufficient for shortening the solidification time, the tensile yield stress is low and the rigidity of the molded product is insufficient, There was a drawback that molding was difficult. In addition, Japanese Patent Application Laid-Open No. 5-33942
No. 0 and JP-A-6-157920 disclose a third component such as a hydroxy group-containing aromatic phosphate ester, a compound having a specific functional group, an organic compound having a plasticizing effect, and a fat and oil gelling agent. Thus, a technique for improving the balance between heat resistance and fluidity has been proposed. However, these methods do not have a sufficient fluidity improving effect, and the additives used are relatively expensive, which increases the production cost of the resin and is not preferable from an industrial viewpoint.

【0003】[0003]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、流動性、耐熱性、剛性、伸びの物性バラン
スに優れ、さらに成形時間を大幅に短縮することが可能
なゴム変性スチレン系樹脂組成物を提供することにあ
る。
The problem to be solved by the present invention is to provide a rubber-modified styrene-based material which has an excellent balance of fluidity, heat resistance, rigidity and elongation, and is capable of greatly shortening the molding time. It is to provide a resin composition.

【0004】[0004]

【課題を解決するための手段】本発明者らは上記の課題
を解決すべく鋭意検討を重ねた結果、用いるゴム状重合
体のスチレン溶液粘度を規定し、連続相を形成するスチ
レン系重合体の重量平均分子量を特定範囲に制御し、分
散相を形成する軟質成分のゴム状重合体の量を規定し、
さらに該樹脂組成物中のミネラルオイル含有量を特定範
囲内に制御させたゴム変性スチレン系樹脂組成物とする
ことにより、上記課題を解決し得ることを見いだし、本
発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, have determined the styrene solution viscosity of the rubbery polymer to be used, and formed a styrene-based polymer forming a continuous phase. Controlling the weight average molecular weight of the specific range, the amount of the rubbery polymer of the soft component forming a dispersed phase,
Furthermore, it has been found that the above problem can be solved by using a rubber-modified styrene-based resin composition in which the content of mineral oil in the resin composition is controlled within a specific range, and the present invention has been completed.

【0005】すなわち、本発明はゴム状重合体存在下で
スチレン系単量体を重合してなる、スチレン系重合体の
連続相とスチレン系重合体を内包するゴム状重合体から
なる軟質成分粒子を分散相とするゴム変性スチレン系樹
脂組成物において、 1)用いるゴム状重合体の温度25℃で測定した5重量
%スチレン溶液粘度が100〜400センチポイズであ
り、 2)該樹脂組成物中のゴム状重合体の含有量が4.0〜
9.0重量%であり、 3)連続相を形成するスチレン系重合体の重量平均分子
量が14万〜18万であり、 4)該樹脂組成物中のミネラルオイルの含有量が0.1
〜1.1重量%であるゴム変性スチレン系樹脂組成物を
提供するものである。
That is, the present invention provides a soft component particle comprising a continuous phase of a styrenic polymer and a rubbery polymer containing a styrenic polymer, which is obtained by polymerizing a styrenic monomer in the presence of a rubbery polymer. In a rubber-modified styrenic resin composition having a dispersion phase of: 1) the viscosity of a 5% by weight styrene solution measured at a temperature of 25 ° C. of a rubbery polymer to be used is 100 to 400 centipoise; When the content of the rubbery polymer is 4.0 to 4.0
3) the weight average molecular weight of the styrenic polymer forming the continuous phase is 140,000 to 180,000; and 4) the content of mineral oil in the resin composition is 0.1.
To 1.1% by weight of a rubber-modified styrene resin composition.

【0006】以下、本発明について詳細に説明する。本
発明のゴム変性スチレン系樹脂組成物において、用いる
ゴム状重合体は、ポリブタジエン、スチレン−ブタジエ
ンのランダムまたはブロック共重合体が一般的である
が、ポリイソプレン、スチレン−イソプレンのランダム
またはブロック共重合体、エチレン−プロピレンゴム、
エチレン−プロピレン−ジエンゴム、アクリルゴム等を
単独あるいは2種類以上を組み合わせて使用することが
できる。
Hereinafter, the present invention will be described in detail. In the rubber-modified styrenic resin composition of the present invention, the rubbery polymer used is generally a polybutadiene, styrene-butadiene random or block copolymer, but polyisoprene, styrene-isoprene random or block copolymer. Coalesce, ethylene-propylene rubber,
Ethylene-propylene-diene rubber, acrylic rubber and the like can be used alone or in combination of two or more.

【0007】さらに、用いるゴム状重合体は温度25℃
で測定した5重量%スチレン溶液粘度が100〜400
センチポイズであり、好ましくは150センチポイズ以
上300センチポイズ未満である。溶液粘度が100セ
ンチポイズ未満であると、樹脂組成物におけるミネラル
オイル添加による伸びの改善効果が小さく、ミネラルオ
イル含有量を本発明で示した上限まで増加させても、伸
びを満足するレベルまで増加させることは出来ない。伸
びの改善のためにはさらにミネラルオイル含有量を増加
させることとなり、その結果、耐熱性や引張降伏応力が
低下してしまい、本発明の流動性、耐熱性、剛性および
伸びの物性バランスに優れたゴム変性スチレン系樹脂組
成物を得ることは出来ない。また、溶液粘度が400セ
ンチポイズを超えるほど高いと、ゴム溶解工程に時間を
要し、製造上好ましくない。
Further, the rubbery polymer used has a temperature of 25 ° C.
5% by weight styrene solution viscosity measured at 100 to 400
Centipoise, preferably 150 to less than 300 centipoise. When the solution viscosity is less than 100 centipoise, the effect of improving the elongation by adding mineral oil to the resin composition is small, and even if the mineral oil content is increased to the upper limit shown in the present invention, the elongation is increased to a level that satisfies the elongation. I can't do that. In order to improve elongation, the mineral oil content will be further increased, and as a result, heat resistance and tensile yield stress will decrease, and the fluidity, heat resistance, rigidity and elongation of the present invention will be excellent in the balance of physical properties. A modified rubber-modified styrenic resin composition cannot be obtained. On the other hand, if the solution viscosity is so high as to exceed 400 centipoise, a long time is required for the rubber dissolving step, which is not preferable in production.

【0008】また、本発明のゴム変性スチレン系樹脂組
成物において、ゴム状重合体の含有量は、4.0〜9.
0重量%であり、好ましくは5.0〜8.0重量%であ
る。ゴム状重合体の含有量が9.0重量%を越えると、
引張降伏応力が低下する。また、4.0重量%より少な
くなると、耐衝撃性および伸びが低下する。
In the rubber-modified styrenic resin composition of the present invention, the content of the rubbery polymer is from 4.0 to 9.0.
0% by weight, and preferably 5.0 to 8.0% by weight. When the content of the rubbery polymer exceeds 9.0% by weight,
The tensile yield stress decreases. On the other hand, if it is less than 4.0% by weight, impact resistance and elongation decrease.

【0009】なお、ゴム変性スチレン系樹脂組成物中の
ゴム状重合体の含有量は次のようにして測定した。ゴム
変性スチレン系樹脂組成物をクロロホルムに溶解させ、
一定量の一塩化ヨウ素/四塩化炭素溶液を加え暗所に放
置した。約1時間経過後、ヨウ化カリウム溶液を加え、
過剰の一塩化ヨウ素を0.1Nチオ硫酸ナトリウム/エ
タノール水溶液で滴定し、付加した一塩化ヨウ素量から
ゴム状重合体の含有量を算出した。
[0009] The content of the rubbery polymer in the rubber-modified styrene resin composition was measured as follows. Dissolve the rubber-modified styrenic resin composition in chloroform,
A fixed amount of an iodine monochloride / carbon tetrachloride solution was added, and the mixture was allowed to stand in a dark place. After about 1 hour, add potassium iodide solution,
Excess iodine monochloride was titrated with 0.1N sodium thiosulfate / ethanol aqueous solution, and the content of the rubbery polymer was calculated from the amount of iodine monochloride added.

【0010】本発明のゴム変性スチレン系樹脂組成物に
おいて、ゴム状重合体はスチレン系重合体を内包し、ス
チレン系重合体の連続相中に粒子状に分散している必要
がある。分散粒子はいわゆるサラミ構造を有することが
好ましい。この分散相を成すスチレン系重合体を内包し
たゴム状重合体の軟質成分粒子の粒子径は特に制限され
るものではないが、体積平均粒子径で1.5〜4.0μ
mが好ましい。
In the rubber-modified styrenic resin composition of the present invention, the rubbery polymer must include the styrene-based polymer and be dispersed in the styrene-based polymer in a continuous phase. The dispersed particles preferably have a so-called salami structure. Although the particle diameter of the soft component particles of the rubbery polymer containing the styrene-based polymer constituting the dispersed phase is not particularly limited, the volume average particle diameter is 1.5 to 4.0 μm.
m is preferred.

【0011】ここで、軟質成分粒子の体積平均粒子径は
次のように評価した。すなわち、ゴム変性スチレン系樹
脂組成物をジメチルホルムアミドに完全に溶解させ、得
られた試料について下記の粒度分布測定装置により求め
た。 測定装置:コールター製 レーザー回折方式粒子アナラ
イザー LS−230型 溶媒 :ジメチルホルムアミド
Here, the volume average particle diameter of the soft component particles was evaluated as follows. That is, the rubber-modified styrenic resin composition was completely dissolved in dimethylformamide, and the obtained sample was determined by the following particle size distribution analyzer. Measuring device: Coulter Laser Diffraction Particle Analyzer LS-230 Model Solvent: Dimethylformamide

【0012】本発明のゴム変性スチレン系樹脂組成物の
連続相を成すスチレン系重合体は、スチレン系単量体の
重合体である。スチレン系単量体としては、スチレンが
一般的であるが、o−メチルスチレン、m−メチルスチ
レン、p−メチルスチレン、2,4−ジメチルスチレ
ン、エチルスチレン、p−tert−ブチルスチレン等
の核アルキル置換スチレン、α−メチルスチレン、α−
メチル−p−メチルスチレン等のα−アルキル置換スチ
レン等を単独あるいは2種以上を組み合わせて使用する
こともできる。
The styrene polymer constituting the continuous phase of the rubber-modified styrene resin composition of the present invention is a polymer of a styrene monomer. As the styrene-based monomer, styrene is generally used, and nuclei such as o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, ethylstyrene, and p-tert-butylstyrene are used. Alkyl-substituted styrene, α-methylstyrene, α-
Α-alkyl-substituted styrenes such as methyl-p-methylstyrene and the like can be used alone or in combination of two or more.

【0013】また、スチレン系単量体と共重合可能なビ
ニル系単量体を共重合させることもできる。共重合可能
なビニル系単量体としては、アクリル酸、メタクリル酸
メチル、アクリロニトリル等が挙げられる。これらのビ
ニル系単量体を単独あるいは2種以上を組み合わせて使
用することもできる。
Further, a vinyl monomer copolymerizable with a styrene monomer can be copolymerized. Examples of the copolymerizable vinyl monomer include acrylic acid, methyl methacrylate, and acrylonitrile. These vinyl monomers can be used alone or in combination of two or more.

【0014】本発明のゴム変性スチレン系樹脂組成物の
連続相を成すスチレン系重合体の重量平均分子量は14
万〜18万である。重量平均分子量が14万未満では流
動性は増し、成形温度を低下させることができるが、伸
び、引張降伏応力が低下するので好ましくない。例え
ば、伸び、引張降伏応力が低下すると、ビス等を使用せ
ずに薄肉成形体を勘合しようとした場合、小さな衝撃で
勘合部分が外れてしまうというような問題が発生する。
また、重量平均分子量が18万を超えると流動性が低下
し、成形温度を高くする必要があり、高速成形が困難と
なる。
The styrene polymer constituting the continuous phase of the rubber-modified styrenic resin composition of the present invention has a weight average molecular weight of 14
10,000 to 180,000. When the weight average molecular weight is less than 140,000, the fluidity increases and the molding temperature can be lowered, but it is not preferable because elongation and tensile yield stress decrease. For example, when the elongation and the tensile yield stress are reduced, when a thin molded body is fitted without using a screw or the like, a problem occurs that the fitted portion comes off with a small impact.
On the other hand, when the weight average molecular weight exceeds 180,000, the fluidity decreases, and it is necessary to increase the molding temperature, and high-speed molding becomes difficult.

【0015】ここで、連続相を成すスチレン系重合体の
重量平均分子量は次のように評価した。すなわち、ゴム
変性スチレン系樹脂組成物をメチルエチルケトン(ME
K)に溶解させ、遠心分離にて不溶分を分離後、その上
澄み液をメタノールを用いて析出させた。得られたサン
プル35mgを、テトラヒドルフラン(THF)30m
lに溶解させ、濾過した後、ゲル・パーミエーション・
クロマトグラフ(GPC)を使用し、下記の条件にて測
定を行った。 測定装置:昭和電工製 SHODEX SYSTEM−
21 カラム :POLYMER LABORATORY I
NC.製 PL gelMIXED−B 3本 溶媒 :テトラヒドロフラン 定量 :標準ポリスチレンを用いた検量線
Here, the weight average molecular weight of the styrene polymer constituting the continuous phase was evaluated as follows. That is, the rubber-modified styrenic resin composition was converted to methyl ethyl ketone (ME
K), and after separating insoluble components by centrifugation, the supernatant was precipitated using methanol. 35 mg of the obtained sample was placed in a tetrahydrofuran (THF) 30 m
and filtered, then gel permeation.
The measurement was performed using a chromatograph (GPC) under the following conditions. Measuring device: SHOdex SYSTEM- manufactured by Showa Denko
21 Column: POLYMER LABORATORY I
NC. PL gelMIXED-B x 3 Solvent: tetrahydrofuran Quantitation: calibration curve using standard polystyrene

【0016】さらに、本発明のゴム変性スチレン系樹脂
組成物において、ミネラルオイル含有量が0.1〜1.
1重量%であることが必要である。ミネラルオイル含有
量が0.1重量%未満であると、伸びが著しく低下す
る。また、ミネラルオイル含有量が1.1重量%を超え
ると耐熱性が低下するとともに、引張降伏応力が低下す
る。ミネラルオイルの添加は重合時に添加しておいて
も、あるいは押出造粒時に添加してもよく、その添加法
にはこだわるものではない。
Further, in the rubber-modified styrenic resin composition of the present invention, the mineral oil content is 0.1 to 1.
It needs to be 1% by weight. When the mineral oil content is less than 0.1% by weight, the elongation is significantly reduced. On the other hand, when the mineral oil content exceeds 1.1% by weight, the heat resistance decreases and the tensile yield stress decreases. The mineral oil may be added at the time of polymerization or at the time of extrusion granulation, and the addition method is not particular.

【0017】上記ミネラルオイルとしては、特に限定す
る物ではないが、ASTM−D1160により測定した
10mmHg減圧下における2.5重量%留出点が温度
240℃以上である物が好ましい。
The mineral oil is not particularly limited, but preferably has a 2.5% by weight distillation point at a temperature of 240 ° C. or higher under a reduced pressure of 10 mmHg measured by ASTM-D1160.

【0018】なお、本発明のゴム変性スチレン系樹脂組
成物中のミネラルオイル含有量は、得られた該樹脂組成
物を石油エーテルに溶解させ、ミネラルオイルを含むサ
ンプルを抽出させ,得られた試料中のミネラルオイル含
有量を下記の条件のガスクロマトグラフにより、測定し
た。 測定装置:ヒューレットパッカード HP5890−I
I カラム :キャピラリーカラム HP−5(0.2mm
Φ×12m) 温度 :50〜300℃
The content of mineral oil in the rubber-modified styrenic resin composition of the present invention is determined by dissolving the obtained resin composition in petroleum ether, extracting a sample containing mineral oil, and obtaining a sample. The mineral oil content in the sample was measured by gas chromatography under the following conditions. Measuring device: Hewlett Packard HP5890-I
I column: Capillary column HP-5 (0.2 mm
Φ × 12m) Temperature: 50-300 ° C

【0019】次に、本発明のゴム変性スチレン系樹脂組
成物の製造方法について説明する。本発明のゴム変性ス
チレン系樹脂組成物の製造は、本発明の要件が満足され
ていれば特に制限するものではないが、公知の連続塊状
重合法、あるいは塊状−懸濁重合法等により得ることが
できる。
Next, a method for producing the rubber-modified styrenic resin composition of the present invention will be described. The production of the rubber-modified styrenic resin composition of the present invention is not particularly limited as long as the requirements of the present invention are satisfied, but may be obtained by a known continuous bulk polymerization method or a bulk-suspension polymerization method or the like. Can be.

【0020】以下、連続塊状重合法および塊状−懸濁重
合法の実施方法について述べる。連続塊状重合法におい
ては、ゴム状重合体をスチレン系単量体に溶解させ、必
要に応じて溶剤を加え、熱重合の場合には温度100〜
200℃で、触媒重合の場合には温度60〜180℃で
加熱重合が実施される。重合終了後、未反応のスチレン
系単量体や溶剤等は減圧下加熱除去し、ペレット形状と
される。
Hereinafter, a method of performing the continuous bulk polymerization method and the bulk-suspension polymerization method will be described. In the continuous bulk polymerization method, a rubber-like polymer is dissolved in a styrene-based monomer, and a solvent is added as necessary.
Heat polymerization is carried out at 200 ° C. and at a temperature of 60 to 180 ° C. in the case of catalytic polymerization. After completion of the polymerization, unreacted styrene-based monomers and solvents are removed by heating under reduced pressure to obtain pellets.

【0021】塊状−懸濁重合法においては、前半の反応
を塊状重合で行い、後半の反応を懸濁重合で行うもの
で、先の塊状重合法の場合と同様に、ゴム状重合体をス
チレン系単量体に溶解させたものを熱重合あるいは触媒
重合にて、スチレン系単量体の通常50重量%以下まで
部分的に重合が実施される。次いで、この部分的に重合
した混合物を懸濁安定剤またはこれと界面活性剤の両者
の存在下、攪拌下、水性媒体中に分散させ、重合反応を
完結させる。重合終了後、洗浄、乾燥させ、必要に応じ
て押出機により通常のペレット形状とされる。
In the bulk-suspension polymerization method, the first half of the reaction is carried out by bulk polymerization, and the second half of the reaction is carried out by suspension polymerization. The styrene-based monomer is partially polymerized by thermal polymerization or catalytic polymerization, usually up to 50% by weight of the styrene-based monomer. The partially polymerized mixture is then dispersed in an aqueous medium under agitation in the presence of a suspension stabilizer or both of this and a surfactant to complete the polymerization reaction. After the completion of the polymerization, the polymer is washed and dried, and if necessary, formed into a normal pellet shape by an extruder.

【0022】いずれの方法でも、重合反応時のゴム状重
合体濃度、攪拌動力、重合温度、可塑剤量、連鎖移動剤
量等を調整することにより、本発明の条件を満足するゴ
ム変性スチレン系樹脂組成物を得ることができる。
In any method, the rubber-modified styrene type satisfying the conditions of the present invention is adjusted by adjusting the concentration of the rubbery polymer, the stirring power, the polymerization temperature, the amount of the plasticizer, the amount of the chain transfer agent and the like during the polymerization reaction. A resin composition can be obtained.

【0023】本発明の樹脂には必要に応じて滑剤、離型
剤、熱安定剤、酸化防止剤、帯電防止剤、強度補強剤、
難燃剤等の添加剤を加えることができる。
The resin of the present invention may contain, if necessary, a lubricant, a release agent, a heat stabilizer, an antioxidant, an antistatic agent, a strength reinforcing agent,
Additives such as flame retardants can be added.

【0024】[0024]

【実施例】以下に実施例を示すが、本発明はこれらの実
施例に限定されるものではない。なお、実施例に示され
たデータは次の方法に基づいて測定されたものである。 (1)メルトフローレート JIS K 7210に基づき、試料5gをシリンダー
に投入し、ピストン挿入後おもりを載せ、6分間の予熱
後に、一定時間内に押し出された樹脂を切り取り、冷却
後秤量して算出した。 測定装置:東洋精機 メルトインデクサー 温度 :200℃ 荷重 :5kg (2)ビカット軟化点 JIS K7206に基づき、試験片を装置フレームに
載せ、規定の5kg荷重をかけ、伝熱媒体を昇温し、圧
子先端が試験片中に1mm侵入したときの温度を読みと
った。 測定装置:東洋精機 全自動ビカット軟化点測定装置 昇温速度:50℃/時間 荷重 :5kg 試験片 :30.0mm×19.0mm×3.2mm 圧子 :断面積1mm2 (3)引張降伏応力、および伸び ASTM D638に基づき、試験片を装置のつかみ部
に取付け、装置を始動させ、試験片が破断するまで測定
を続けた。荷重−伸び曲線から、引張降伏応力および伸
びを読みとった。なお、引張降伏応力を剛性の目安とし
た。 測定装置:オリエンテック 全自動引張試験機 RTM
−500 引張速度:5mm/分 試験片 :タイプIダンベル チャック間隔:114mm (4)アイゾット衝撃強度 ASTM D256に基づき、試験片にVノッチを入
れ、ノッチの下部を固定してハンマーでたたき、試験片
を破断するのに要したエネルギーより衝撃強度を求め
た。 測定装置:東洋精機 全自動衝撃試験機 試験片 :63.5mm×12.7mm×6.4mm Vノッチ:試験片の一端より31.8mmの位置に深さ
2.54mm、開き角4 5度、先端0.25R (5)成形時間 下記条件にて、成形温度を3水準(200、220、2
40℃)に変更してスパイラルフロー測定し、温度と流
動長との関係をプロットした図より、流動長さが35c
mとなる温度(T)を読みとった。 射出成形機:東芝機械製 IS−30 EPN金型
:スパイラルフロー測定用金型(アルキメデスタイ
プ) 金型温度 :40℃ 射出圧力 :50kg/cm2 G 次に、流動長が同一の35cmになる温度(T)にて試
験片を成形し、試験片にソリが発生しない最短の冷却時
間を固化時間とし、下記の基準で判定した。 試験片 :127.0mm×12.7mm×6.4m
m 判断基準 : (○):固化時間が8秒未満 (△):固化時間が8秒以上10秒未満 (×):固化時間が10秒以上 固化時間が短いほど、成形時間は短縮される。
EXAMPLES Examples are shown below, but the present invention is not limited to these examples. The data shown in the examples was measured based on the following method. (1) Melt flow rate Based on JIS K 7210, 5 g of a sample is put into a cylinder, a weight is placed after the piston is inserted, the resin extruded within a certain time after preheating for 6 minutes is cut out, weighed after cooling, and calculated. did. Measuring device: Toyo Seiki Melt Indexer Temperature: 200 ° C Load: 5 kg (2) Vicat softening point Based on JIS K7206, a test piece is placed on the device frame, a specified 5 kg load is applied, the heat transfer medium is heated, and the indenter is heated. The temperature when the tip penetrated 1 mm into the test piece was read. Measuring device: Toyo Seiki fully automatic Vicat softening point measuring device Heating rate: 50 ° C./hour Load: 5 kg Test piece: 30.0 mm × 19.0 mm × 3.2 mm Indenter: Cross-sectional area 1 mm 2 (3) Tensile yield stress, According to ASTM D638, the test piece was attached to the grip of the apparatus, the apparatus was started, and the measurement was continued until the test piece broke. The tensile yield stress and elongation were read from the load-elongation curve. The tensile yield stress was used as a measure of rigidity. Measuring device: Orientec fully automatic tensile tester RTM
-500 Tensile speed: 5 mm / min Specimen: Type I dumbbell Chuck spacing: 114 mm (4) Izod impact strength Based on ASTM D256, a V-notch is inserted into the specimen, the lower part of the notch is fixed, and the specimen is beaten with a hammer. The impact strength was determined from the energy required to break the sample. Measuring device: Toyo Seiki fully automatic impact tester Test piece: 63.5 mm x 12.7 mm x 6.4 mm V notch: 2.54 mm deep at a position 31.8 mm from one end of the test piece, opening angle 45 degrees, Tip 0.25R (5) Molding time Under the following conditions, the molding temperature was adjusted to three levels (200, 220, 2
40 ° C.), the spiral flow was measured, and the relationship between the temperature and the flow length was plotted.
The temperature (T) that resulted in m was read. Injection molding machine: Toshiba Machine's IS-30 EPN mold
: Mold for spiral flow measurement (Archimedes type) Mold temperature: 40 ° C Injection pressure: 50 kg / cm 2 G Next, a test piece is molded at a temperature (T) at which the flow length becomes the same 35 cm, and the test piece is formed. The solidification time was defined as the shortest cooling time during which no warpage occurred, and the evaluation was made according to the following criteria. Test piece: 127.0 mm x 12.7 mm x 6.4 m
m Judgment criteria: (○): solidification time of less than 8 seconds (△): solidification time of 8 seconds or more and less than 10 seconds (×): solidification time of 10 seconds or more The shorter the solidification time, the shorter the molding time.

【0025】実施例1 スチレン単量体89.0重量部に対し、ミネラルオイル
を0.5重量部、および溶剤としてエチルベンゼンを
5.0重量部加え、ポリブタジエンゴム(旭化成製、商
品名ジエン55A)5.5重量部を溶解させ、原料液と
した。この原料液を内容積40Lの完全混合槽型反応器
(以下、CSTRとする)に毎時15Lの速度で連続的
に供給し、同時に、重合開始剤1,1−ビス(ターシャ
リブチルパーオキシ)−3,3,5−トリメチルシクロ
ヘキサンをエチルベンゼンにて3重量%に希釈した溶液
を毎時50gの速度でCSTR内に連続的に供給した。
さらに、CSTR内の重合液の温度を128℃に制御
し、重合液のCSTR内の滞留量が20Lとなるように
重合液を連続的に取り出した。なお、CSTRより取り
出した重合液の一部をメチルエチルケトンに溶解後、多
量のメタノールにて析出させ、析出した全固形分量を測
定すると、おおよそ30重量%であった。次いで、CS
TRより取り出された重合液を内容積40Lの塔型反応
器(以下、PFRとする)に連続的に供給し、同時に、
ターシャリドデシルメルカプタンをエチルベンゼンにて
20重量%に希釈した溶液を毎時40gの速度でPFR
に連続的に供給した。さらに、PFR内の重合液の温度
を130℃〜170℃まで連続的に上昇させ、重合液を
連続的に取り出した。次いで、PFRより取り出された
重合液を、脱揮装置に供給し、未反応の単量体や溶剤な
どの揮発成分を分離した。揮発成分の発生速度から、P
FR出口での固形分量を算出したところ、おおよそ80
重量%であった。次いで、脱揮装置から取り出された重
合液を造粒装置に供給し、通常のペレット形状とした。
得られた樹脂組成物の物性を第1表に示す。
Example 1 To 89.0 parts by weight of a styrene monomer, 0.5 parts by weight of a mineral oil and 5.0 parts by weight of ethylbenzene as a solvent were added, and polybutadiene rubber (trade name: Diene 55A, manufactured by Asahi Kasei Corporation) was added. 5.5 parts by weight were dissolved to obtain a raw material liquid. This raw material liquid is continuously supplied at a rate of 15 L / hour to a complete mixing tank type reactor (hereinafter referred to as CSTR) having an internal volume of 40 L, and at the same time, a polymerization initiator 1,1-bis (tert-butylperoxy) A solution obtained by diluting -3,3,5-trimethylcyclohexane to 3% by weight with ethylbenzene was continuously supplied into the CSTR at a rate of 50 g / h.
Further, the temperature of the polymerization liquid in the CSTR was controlled at 128 ° C., and the polymerization liquid was continuously taken out such that the amount of the polymerization liquid retained in the CSTR was 20 L. A part of the polymerization solution taken out from the CSTR was dissolved in methyl ethyl ketone and precipitated with a large amount of methanol, and the total solid content was measured to be about 30% by weight. Then, CS
The polymerization liquid taken out from the TR is continuously supplied to a column-type reactor (hereinafter, referred to as PFR) having an internal volume of 40 L, and at the same time,
A solution obtained by diluting tertiary decyl mercaptan to 20% by weight with ethylbenzene is subjected to PFR at a rate of 40 g / h.
Continuously. Further, the temperature of the polymerization liquid in the PFR was continuously increased from 130 ° C. to 170 ° C., and the polymerization liquid was continuously taken out. Next, the polymerization liquid taken out of the PFR was supplied to a devolatilizer to separate volatile components such as unreacted monomers and solvents. From the generation rate of volatile components, P
When the solid content at the FR outlet was calculated, it was approximately 80
% By weight. Next, the polymerization liquid taken out of the devolatilization device was supplied to a granulation device, and was made into a usual pellet shape.
Table 1 shows the physical properties of the obtained resin composition.

【0026】実施例2 スチレン単量体90.0重量部に対し、ミネラルオイル
を0.5重量部、エチルベンゼンを5.0重量部、ポリ
ブタジエンゴムを4.5重量部溶解させ、原料液とした
以外は、実施例1と同様の方法で行った。表1に物性を
示す。
Example 2 0.5 parts by weight of mineral oil, 5.0 parts by weight of ethylbenzene, and 4.5 parts by weight of polybutadiene rubber were dissolved in 90.0 parts by weight of a styrene monomer to prepare a raw material liquid. Except for this, the procedure was the same as in Example 1. Table 1 shows the physical properties.

【0027】実施例3 重合開始剤を使用せず、CSTR内の重合液の温度を1
38℃に制御し、ターシャリドデシルメルカプタンをエ
チルベンゼンにて10重量%に希釈した溶液を毎時40
gの速度でPFRに連続的に供給したこと以外は、実施
例1と同様の方法で行った。表1に物性を示す。
Example 3 Without using a polymerization initiator, the temperature of the polymerization solution in the CSTR was adjusted to 1
At 38 ° C., a solution prepared by diluting tertiary decyl mercaptan to 10% by weight with ethylbenzene was added at a rate of 40 hours / hour.
The procedure was performed in the same manner as in Example 1 except that the PFR was continuously supplied at a speed of g. Table 1 shows the physical properties.

【0028】実施例4 重合開始剤を使用せず、CSTR内の重合液の温度を1
38℃に制御し、ターシャリドデシルメルカプタンをエ
チルベンゼンにて10重量%に希釈した溶液を毎時40
gの速度でPFRに連続的に供給したこと以外は、実施
例2と同様の方法で行った。表1に物性を示す。
Example 4 Without using a polymerization initiator, the temperature of the polymerization solution in the CSTR was adjusted to 1
At 38 ° C., a solution prepared by diluting tertiary decyl mercaptan to 10% by weight with ethylbenzene was added at a rate of 40 hours / hour.
The procedure was performed in the same manner as in Example 2, except that the PFR was continuously supplied at a rate of g. Table 1 shows the physical properties.

【0029】実施例5 容量60Lのオートクレーブ中に、スチレン単量体3
7.80kgおよびミネラルオイル0.20kgを加
え、ポリブタジエンゴム(宇部興産製、商品名BR−2
2H)2.00kgを溶解させ、原料液とした。この原
料液に、ターシャリブチルパーオキシ−3,5,5−ト
リメチルヘキサノエート16g、エチル−3,3−ジ
(ターシャリブチルパーオキシ)ブチレート5g、ター
シャリドデシルメルカプタン40g、α−メチルスチレ
ンダイマー50gを加えて攪拌した。オートクレーブ内
を窒素置換後、密閉して昇温し、温度105℃で3.5
時間重合した後冷却し予備重合を終えた。次いで、容量
150Lのオートクレーブ中に、純水50kg、ドデシ
ルベンゼンスルホン酸ナトリウム0.50g、第三リン
酸カルシウム500gを加えて攪拌し、前記の予備重合
液および2,2−ジ(ターシャリブチルパーオキシ)ブ
タン75g、エチル−3,3−ジ(ターシャリブチルパ
ーオキシ)ブチレート40g加えて、窒素置換後密閉し
て昇温し温度110℃で4時間、132℃で4時間重合
し冷却した。常法に従い、中和、脱水、乾燥させた後、
重合物を得た。この重合物100重量部に対して滑剤と
してステアリン酸亜鉛および酸化防止剤としてIrga
nox1076を各々0.05重量部添加して押出機出
機により通常のペレット形状にした。表2に得られた樹
脂組成物の物性を示す。
Example 5 A styrene monomer 3 was placed in a 60-liter autoclave.
7.80 kg and 0.20 kg of mineral oil were added, and polybutadiene rubber (trade name BR-2 manufactured by Ube Industries, Ltd.) was added.
2H) 2.00 kg was dissolved to obtain a raw material liquid. 16 g of tert-butyl peroxy-3,5,5-trimethylhexanoate, 5 g of ethyl-3,3-di (tert-butyl peroxy) butyrate, 40 g of tert-butyl decyl mercaptan, α-methylstyrene 50 g of dimer was added and stirred. After the inside of the autoclave was purged with nitrogen, the temperature was increased and the temperature was increased.
After polymerization for an hour, the mixture was cooled to complete the preliminary polymerization. Next, 50 kg of pure water, 0.50 g of sodium dodecylbenzenesulfonate and 500 g of tribasic calcium phosphate were added and stirred in a 150 L autoclave, and the above prepolymerized solution and 2,2-di (tert-butylperoxy) were added. After 75 g of butane and 40 g of ethyl-3,3-di (tert-butylperoxy) butyrate were added, the mixture was replaced with nitrogen, sealed, heated, and polymerized at 110 ° C. for 4 hours and 132 ° C. for 4 hours and cooled. After neutralization, dehydration and drying according to the usual method,
A polymer was obtained. 100 parts by weight of this polymer were zinc stearate as a lubricant and Irga as an antioxidant.
Nox 1076 was added in an amount of 0.05 part by weight, and formed into a normal pellet shape by an extruder. Table 2 shows the physical properties of the obtained resin composition.

【0030】実施例6 原料液中のスチレン単量体含有量が37.96kg、ミ
ネラルオイル含有量が0.04kgであり、予備重合時
に加えるα−メチルスチレンダイマーの添加量が90g
であること以外は、実施例5と同様の方法で行った。表
2に物性を示す。
Example 6 The styrene monomer content in the raw material liquid was 37.96 kg, the mineral oil content was 0.04 kg, and the amount of α-methylstyrene dimer added during the prepolymerization was 90 g.
Was performed in the same manner as in Example 5, except that Table 2 shows the physical properties.

【0031】実施例7 原料液中のスチレン単量体含有量が37.20kg、ミ
ネラルオイル含有量が0.40kg、ポリブタジエンゴ
ム含有量が2.40kgであり、予備重合時に加えるα
−メチルスチレンダイマーの添加量が40gであること
以外は、実施例5と同様の方法で行った。表2に物性を
示す。
Example 7 The raw material liquid had a styrene monomer content of 37.20 kg, a mineral oil content of 0.40 kg, and a polybutadiene rubber content of 2.40 kg.
The same procedure as in Example 5 was carried out except that the amount of the methylstyrene dimer added was 40 g. Table 2 shows the physical properties.

【0032】実施例8 1,4−シス含有量が97.6重量%、1,2−ビニル
含有量が1.2重量%で、かつムーニー粘度(ML1+4)
が50、温度25℃で測定した5重量%スチレン溶液粘
度が165であるポリブタジエンゴムを使用したこと以
外は、実施例7と同様の方法で行った。第2表に物性を
示す。
Example 8 A 1,4-cis content of 97.6% by weight, a 1,2-vinyl content of 1.2% by weight, and a Mooney viscosity (ML 1 + 4 )
Was carried out in the same manner as in Example 7, except that a polybutadiene rubber having a viscosity of 5 and a 5% by weight styrene solution measured at a temperature of 25 ° C. of 165 was used. Table 2 shows the physical properties.

【0033】比較例1 スチレン単量体88.5重量部に対し、ミネラルオイル
を0.5重量部、エチルベンゼンを5.0重量部、ポリ
ブタジエンゴムを6.0重量部溶解させたものを原料液
とし、ターシャリドデシルメルカプタンをエチルベンゼ
ンにて20重量%に希釈した溶液を毎時50gの速度で
PFRに連続的に供給したこと以外は、実施例1と同様
の方法で行った。表3に得られた樹脂組成物の物性を示
す。
Comparative Example 1 A raw material solution obtained by dissolving 0.5 parts by weight of mineral oil, 5.0 parts by weight of ethylbenzene, and 6.0 parts by weight of polybutadiene rubber was dissolved in 88.5 parts by weight of a styrene monomer. The procedure was carried out in the same manner as in Example 1 except that a solution prepared by diluting tert-idodecyl mercaptan to 20% by weight with ethylbenzene was continuously supplied to the PFR at a rate of 50 g / h. Table 3 shows the physical properties of the obtained resin composition.

【0034】比較例2 スチレン単量体87.3重量部に対し、ミネラルオイル
を0.5重量部、エチルベンゼンを5.0重量部、ポリ
ブタジエンゴムを7.2重量部溶解させたものを原料液
とし、ターシャリドデシルメルカプタンをエチルベンゼ
ンにて5重量%に希釈した溶液を毎時50gの速度でP
FRに連続的に供給したこと以外は、実施例1と同様の
方法で行った。表3に物性を示す。
Comparative Example 2 A raw material liquid obtained by dissolving 0.5 parts by weight of mineral oil, 5.0 parts by weight of ethylbenzene, and 7.2 parts by weight of polybutadiene rubber was dissolved in 87.3 parts by weight of a styrene monomer. And a solution obtained by diluting tertiary decyl mercaptan to 5% by weight with ethylbenzene is added to P at a rate of 50 g / h.
The same procedure as in Example 1 was performed except that the FR was continuously supplied. Table 3 shows the physical properties.

【0035】比較例3 スチレン単量体91.7重量部に対し、ミネラルオイル
を0.5重量部、エチルベンゼンを5.0重量部、ポリ
ブタジエンゴムを2.8重量部溶解させたものを原料液
とし、ターシャリドデシルメルカプタンをエチルベンゼ
ンにて10重量%に希釈した溶液を毎時50gの速度で
PFRに連続的に供給したこと以外は、実施例1と同様
の方法で行った。表3に物性を示す。
Comparative Example 3 A raw material liquid obtained by dissolving 0.5 parts by weight of mineral oil, 5.0 parts by weight of ethylbenzene, and 2.8 parts by weight of polybutadiene rubber was mixed with 91.7 parts by weight of a styrene monomer. The procedure was performed in the same manner as in Example 1 except that a solution obtained by diluting tertiary decyl mercaptan to 10% by weight with ethylbenzene was continuously supplied to the PFR at a rate of 50 g / h. Table 3 shows the physical properties.

【0036】比較例4 スチレン単量体86.5重量部に対し、ミネラルオイル
を0.5重量部、エチルベンゼンを5.0重量部、ポリ
ブタジエンゴムを8.0重量部溶解させたものを原料液
とし、ターシャリドデシルメルカプタンをエチルベンゼ
ンにて10重量%に希釈した溶液を毎時50gの速度で
PFRに連続的に供給したこと以外は、実施例1と同様
の方法で行った。表3に物性を示す。
Comparative Example 4 A raw material liquid obtained by dissolving 0.5 parts by weight of mineral oil, 5.0 parts by weight of ethylbenzene, and 8.0 parts by weight of polybutadiene rubber was mixed with 86.5 parts by weight of a styrene monomer. The procedure was performed in the same manner as in Example 1 except that a solution obtained by diluting tertiary decyl mercaptan to 10% by weight with ethylbenzene was continuously supplied to the PFR at a rate of 50 g / h. Table 3 shows the physical properties.

【0037】比較例5 スチレン単量体89.0重量部に対し、ミネラルオイル
を添加せず、エチルベンゼンを5.0重量部、ポリブタ
ジエンゴムを6.0重量部溶解させたものを原料液とし
たこと以外は、実施例1と同様の方法で行った。表3に
物性を示す。
Comparative Example 5 A raw material liquid was prepared by dissolving 5.0 parts by weight of ethylbenzene and 6.0 parts by weight of polybutadiene rubber without adding mineral oil to 89.0 parts by weight of a styrene monomer. Except for this, the procedure was the same as in Example 1. Table 3 shows the physical properties.

【0038】比較例6 スチレン単量体87.5重量部に対し、ミネラルオイル
を2.0重量部、エチルベンゼンを5.0重量部、ポリ
ブタジエンゴムを5.5重量部溶解させたものを原料液
としたこと以外は、実施例1と同様の方法で行った。表
4に物性を示す。
Comparative Example 6 A raw material solution obtained by dissolving 2.0 parts by weight of mineral oil, 5.0 parts by weight of ethylbenzene, and 5.5 parts by weight of polybutadiene rubber with respect to 87.5 parts by weight of a styrene monomer was used. The procedure was performed in the same manner as in Example 1, except that Table 4 shows the physical properties.

【0039】比較例7 用いるポリブタジエンゴムの種類が旭化成製、商品名ジ
エン35Aであり、スチレン単量体88.5重量部に対
して、ミネラルオイルを0.5重量部、エチルベンゼン
を5.0重量部、ポリブタジエンゴムを6.0重量部溶
解させたものを原料液とし、ターシャリドデシルメルカ
プタンをエチルベンゼンにて10重量%に希釈した溶液
を毎時50gの速度でPFRに連続的に供給したこと以
外は、実施例1と同様の方法で行った。表4に得られた
樹脂組成物の物性を示す。
Comparative Example 7 The type of polybutadiene rubber used was Asahi Kasei's diene 35A (trade name), and 0.5 parts by weight of mineral oil and 5.0 parts by weight of ethylbenzene were used for 88.5 parts by weight of a styrene monomer. Parts, a solution prepared by dissolving 6.0 parts by weight of polybutadiene rubber was used as a raw material liquid, and a solution prepared by diluting tertiary decyl mercaptan to 10% by weight with ethylbenzene was continuously supplied to the PFR at a rate of 50 g / h. The same procedure as in Example 1 was performed. Table 4 shows the physical properties of the obtained resin composition.

【0040】比較例8 用いるポリブタジエンゴムの種類が宇部興産製、商品名
BR−15Hであり、原料液中のスチレン単量体含有量
が37.40kg、ミネラルオイル含有量が0.20k
g、ポリブタジエンゴム含有量が2.40kgであるこ
と以外は、実施例5と同様の方法で行った。表4に得ら
れた樹脂組成物の物性を示す。
Comparative Example 8 The type of polybutadiene rubber used was BR-15H (trade name, manufactured by Ube Industries, Ltd.), the styrene monomer content in the raw material liquid was 37.40 kg, and the mineral oil content was 0.20 k.
g, except that the polybutadiene rubber content was 2.40 kg. Table 4 shows the physical properties of the obtained resin composition.

【0041】比較例9 用いるポリブタジエンゴムの種類が宇部興産製、商品名
BR−15Hであり、原料液中のスチレン単量体含有量
が36.28kg、ミネラルオイル含有量が0.52k
g、ポリブタジエンゴム含有量が3.20kgであり、
予備重合時に加えるα−メチルスチレンダイマーの添加
量が90gであること以外は、実施例5と同様の方法で
行った。表4に物性を示す。
Comparative Example 9 The type of polybutadiene rubber to be used was BR-15H (trade name, manufactured by Ube Industries, Ltd.), the styrene monomer content in the raw material liquid was 36.28 kg, and the mineral oil content was 0.52 k.
g, polybutadiene rubber content is 3.20 kg,
The procedure was performed in the same manner as in Example 5, except that the amount of the α-methylstyrene dimer added during the prepolymerization was 90 g. Table 4 shows the physical properties.

【0042】比較例10 用いるポリブタジエンゴムの種類が旭化成製、商品名ア
サプレン1005Aであり、原料液中のスチレン単量体
含有量が37.40kg、ミネラルオイル含有量が0.
20kg、ポリブタジエンゴム含有量が2.40kgで
あり、予備重合時に加えるα−メチルスチレンダイマー
の添加量が90gであること以外は、実施例5と同様の
方法で行った。表4に物性を示す。
Comparative Example 10 The kind of polybutadiene rubber used was Asaprene 1005A (trade name, manufactured by Asahi Kasei Corporation), the styrene monomer content in the raw material liquid was 37.40 kg, and the mineral oil content was 0.
Example 5 was repeated except that the content of polybutadiene rubber was 20 kg, the content of polybutadiene rubber was 2.40 kg, and the amount of α-methylstyrene dimer added during prepolymerization was 90 g. Table 4 shows the physical properties.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【表2】 [Table 2]

【0045】[0045]

【表3】 [Table 3]

【0046】[0046]

【表4】 [Table 4]

【0047】実施例と比較例で対比されるとおり、用い
るゴム状重合体の特定温度でのスチレン溶液粘度が特定
範囲の値を満足すること、さらに連続相を成すスチレン
系重合体の重量平均分子量が特定範囲に制御されている
こと、分散相を成す軟質成分のゴム状重合体の含有量が
特定範囲にあること、さらにミネラルオイル含有量も特
定範囲内にあることを満足した樹脂組成物においてのみ
流動性、耐熱性、剛性、伸びの物性バランスに優れ、さ
らに成形時間を大幅に短縮することができることがわか
る。
As compared with the examples and the comparative examples, the viscosity of the styrene solution at a specific temperature of the rubbery polymer used satisfies a value in a specific range, and the weight-average molecular weight of the styrene-based polymer forming the continuous phase. Is controlled to a specific range, that the content of the rubbery polymer of the soft component constituting the dispersed phase is in the specific range, and that the resin composition satisfying that the mineral oil content is also in the specific range. It can be seen that only the fluidity, heat resistance, rigidity, and the balance of physical properties of elongation are excellent, and the molding time can be significantly reduced.

【0048】[0048]

【発明の効果】本発明のゴム変性スチレン系樹脂組成物
は、流動性、耐熱性、剛性、伸びの物性バランスに優れ
ているだけでなく、成形時間を大幅に短縮することが可
能であり、家電機器、OA機器、雑貨等の産業分野に広
く利用できる。
The rubber-modified styrenic resin composition of the present invention not only has excellent physical properties such as fluidity, heat resistance, rigidity and elongation, but also can greatly reduce the molding time. It can be widely used in industrial fields such as home appliances, OA equipment, and miscellaneous goods.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ゴム状重合体存在下でスチレン系単量体
を重合してなる、スチレン系重合体の連続相とスチレン
系重合体を内包するゴム状重合体からなる軟質成分粒子
を分散相とするゴム変性スチレン系樹脂組成物におい
て、 1)用いるゴム状重合体の温度25℃で測定した5重量
%スチレン溶液粘度が100〜400センチポイズであ
り、 2)該樹脂組成物中のゴム状重合体の含有量が4.0〜
9.0重量%であり、 3)連続相を形成するスチレン系重合体の重量平均分子
量が14万〜18万であり、 4)該樹脂組成物中のミネラルオイルの含有量が0.1
〜1.1重量%であることを特徴とするゴム変性スチレ
ン系樹脂組成物。
A styrene-based monomer is polymerized in the presence of a rubber-like polymer, and a continuous phase of a styrene-based polymer and soft component particles of a rubber-like polymer containing a styrene-based polymer are dispersed in a dispersed phase. 1) The 5% by weight styrene solution viscosity of the rubbery polymer to be used measured at 25 ° C. is 100 to 400 centipoise, and 2) the rubbery weight in the resin composition. When the content of the coalescence is 4.0
3) the weight average molecular weight of the styrenic polymer forming the continuous phase is 140,000 to 180,000; and 4) the content of mineral oil in the resin composition is 0.1.
A rubber-modified styrenic resin composition, characterized in that the composition is 0.1 to 1.1% by weight.
【請求項2】 メルトフローレートが6.5〜12.0
g/10分であることを特徴とする請求項1記載のゴム
変性スチレン系樹脂組成物。
2. The melt flow rate is 6.5 to 12.0.
The rubber-modified styrenic resin composition according to claim 1, wherein the composition is g / 10 minutes.
【請求項3】 ビカット軟化点が95℃以上であり、引
張降伏応力が290kg/cm2以上であり、伸びが20%以
上であることを特徴とする請求項1または2記載のゴム
変性スチレン系樹脂組成物。
3. The rubber-modified styrene system according to claim 1, wherein the Vicat softening point is 95 ° C. or more, the tensile yield stress is 290 kg / cm 2 or more, and the elongation is 20% or more. Resin composition.
JP15735598A 1998-06-05 1998-06-05 Rubber-modified styrene resin composition Pending JPH11349641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15735598A JPH11349641A (en) 1998-06-05 1998-06-05 Rubber-modified styrene resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15735598A JPH11349641A (en) 1998-06-05 1998-06-05 Rubber-modified styrene resin composition

Publications (1)

Publication Number Publication Date
JPH11349641A true JPH11349641A (en) 1999-12-21

Family

ID=15647869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15735598A Pending JPH11349641A (en) 1998-06-05 1998-06-05 Rubber-modified styrene resin composition

Country Status (1)

Country Link
JP (1) JPH11349641A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5242174B2 (en) * 2006-01-31 2013-07-24 Psジャパン株式会社 Rubber-modified styrene resin and light diffusion plate comprising the resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5242174B2 (en) * 2006-01-31 2013-07-24 Psジャパン株式会社 Rubber-modified styrene resin and light diffusion plate comprising the resin

Similar Documents

Publication Publication Date Title
KR102086537B1 (en) Preparation method of modified acrylonitrile-butadiene-styrene resin and modified acrylonitrile-butadiene-styrene resin produced by thereof
KR102207173B1 (en) Method for preparing graft copolymer, graft copolymer and thermoplastic resin products
US20130144013A1 (en) Process for Preparing High Impact Monovinylaromatic Polymers in the Presence of a Borane Complex
JP6978412B2 (en) A rubber-modified vinyl-based graft copolymer and a thermoplastic resin composition containing the same.
EP3770192A1 (en) Diene-based rubber latex, manufacturing method thereof, and core-shell structured graft copolymer comprising same
TWI542602B (en) Heat-resistant styrene copolymer and styrene resin composition comprising the same
TWI564309B (en) Heat-resistant styrene copolymer and styrene resin composition comprising the same
JP5876551B2 (en) Rubber-modified styrenic resin composition, method for producing the same, and molded product
JP3603425B2 (en) Styrene random copolymer and method for producing the same
JP5607065B2 (en) Rubber reinforced vinyl aromatic (co) polymer with optimal balance of physical / mechanical properties and high gloss
KR101594648B1 (en) Thermoplastic ABS resin composition with improved mold shrinkage for blow molding
JPH07165844A (en) Rubber-modified polystyrene resin composition, its production, and injection-molded product
JPH11349641A (en) Rubber-modified styrene resin composition
JP2006522838A (en) Thermoplastic resin composition
KR100518891B1 (en) Thermoplastic Resin Composition with Reduced Cold Stress Whitening
KR100561339B1 (en) Abs thermoplastic resin composition
TW202024216A (en) Chain extended or branched copolymers of vinylidene aromatic monomer and unsaturated compounds with electrophilic groups
JP7220082B2 (en) Method for producing resin composition
JPH09255703A (en) Production of styrene polymer
KR100775737B1 (en) Good curl-fit thermoplastic resin composition
JP2866788B2 (en) Rubber modified styrenic resin composition
JP2001089620A (en) Rubber modified aromatic vinyl resin composition
JPH04255706A (en) Rubber-modified styrene-based resin excellent in strength
JPH07258508A (en) Rubber-modified styrene resin composition and its production
JPH0578431A (en) Production of graft copolymer resin

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20050527

A711 Notification of change in applicant

Effective date: 20050622

Free format text: JAPANESE INTERMEDIATE CODE: A711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070911