JPH11349625A - Preparation of water absorbent and water absorbent - Google Patents

Preparation of water absorbent and water absorbent

Info

Publication number
JPH11349625A
JPH11349625A JP17957498A JP17957498A JPH11349625A JP H11349625 A JPH11349625 A JP H11349625A JP 17957498 A JP17957498 A JP 17957498A JP 17957498 A JP17957498 A JP 17957498A JP H11349625 A JPH11349625 A JP H11349625A
Authority
JP
Japan
Prior art keywords
water
physiological saline
load
particles
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17957498A
Other languages
Japanese (ja)
Inventor
Masashi Date
雅志 伊達
Yoshiyuki Iwasaki
義行 岩崎
Hitoshi Takai
等 高井
Keiji Tanaka
敬次 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP17957498A priority Critical patent/JPH11349625A/en
Publication of JPH11349625A publication Critical patent/JPH11349625A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a water absorbent wherein the water retention and the absorption under a load are balanced at a high level by improving the surface- crosslinking process. SOLUTION: A solution containing a crosslinking agent in the state of droplets with an average particle size of 200 microns or smaller is sprayed onto and mixed with a water-absorbing resin particle which is not surface- crosslinked and has an average particle size of from 200 to 500 μm, wherein the content of particles of 100 μm or smaller is 3 wt.% or lower and wherein the water retention against physiological saline is 50 g/g or larger, and heated to obtain a water absorbent wherein the water retention and the absorption under a load are well balanced and high.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は吸水剤の製造法およ
び吸水剤に関する。更に詳しくは、保水力が高く、且つ
荷重下における吸収性能にも優れる吸水剤の製造法およ
び吸水剤に関するものである。
The present invention relates to a method for producing a water absorbing agent and a water absorbing agent. More specifically, the present invention relates to a method for producing a water-absorbing agent having a high water-holding power and excellent absorption performance under load, and a water-absorbing agent.

【0002】[0002]

【発明が解決しようとする課題】紙オムツ等の吸収性物
品に用いられる吸水性樹脂あるいは吸水剤は、着用者の
体重が加わらない状態での保水量と、体重の加わった状
態での荷重下吸収量の双方がバランスが取れて高いレベ
ルであることが要望されている。この要望に対応して、
荷重下における吸収量を高める方法として、吸水性樹脂
粒子の表面近傍を架橋剤で架橋する、いわゆる表面架橋
方法が従来から数多く提案されている。
The water-absorbing resin or the water-absorbing agent used in absorbent articles such as disposable diapers has a water retention capacity when the weight of the wearer is not increased and a load under the weighted state. It is desired that both of the absorption amounts be balanced and at a high level. In response to this request,
As a method for increasing the amount of absorption under a load, many so-called surface cross-linking methods for cross-linking the vicinity of the surface of the water-absorbent resin particles with a cross-linking agent have been proposed.

【0003】この表面架橋プロセスにおいて重要な点
は、架橋剤の浸透度合(粒子表面からの架橋の深さ)の
コントロール、並びに吸水性樹脂粒子を均一に表面架橋
させることにある。架橋剤の浸透度合のコントロールに
関する技術としては、溶解度パラメーターの異なる架
橋剤を併用する方法(例えば、特開平6−184320
号公報)や吸水性樹脂粒子の含水率を制御する方法が提
案されている。各粒子を均一に架橋させる技術として
は、混合機内壁面を特定の材質とし、高速撹拌下で水
性架橋剤液を添加混合する方法(例えば、特開平4−1
14738号公報);特定の範囲の平均粒径及び粒径
分布を持つ重合体粉体の表面を架橋処理する方法(例え
ば、特開平2−196802号公報、特開平9−309
916号公報)等が提案されている。
The important points in this surface cross-linking process are to control the degree of penetration of the cross-linking agent (the depth of cross-linking from the particle surface) and to uniformly cross-link the water-absorbent resin particles. Techniques for controlling the degree of penetration of the cross-linking agent include a method in which cross-linking agents having different solubility parameters are used in combination (for example, JP-A-6-184320).
And a method for controlling the water content of the water-absorbent resin particles. As a technique for uniformly cross-linking the respective particles, a method in which the inner wall surface of a mixer is made of a specific material and an aqueous cross-linking agent liquid is added and mixed under high-speed stirring (for example, see Japanese Patent Application Laid-Open No.
14738); a method of crosslinking the surface of a polymer powder having a specific range of average particle size and particle size distribution (for example, JP-A-2-196802, JP-A-9-309)
No. 916) has been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記の表面架
橋技術では、荷重下における吸収量を上げるに伴い、保
水量の低下が大きいことから、双方を高いレベルでバラ
ンスさせるには限度があり、必ずしも満足のいくのもで
はなかった。。従来は、幼児用の紙おむつが吸水性樹脂
の主用途であったことから、上記のような吸水性樹脂で
も使用可能であった。しかし、大人用紙おむつへの吸水
性樹脂の適用が進むにつれて、一度に多量に排泄される
尿を効率よく保水する能力と、大人の体重が加わった状
態のような高荷重下での吸収能力とがバランスして高い
レベルにある吸水性樹脂あるいは吸水剤の出現が望まれ
ている。
However, in the above-mentioned surface cross-linking technique, since the amount of water retention is greatly reduced as the amount of absorption under load is increased, there is a limit in balancing the two at a high level. It was not always satisfactory. . Conventionally, the disposable diapers for infants have been the main use of the water-absorbent resin, so that the above-described water-absorbent resin can also be used. However, as the application of water-absorbent resin to adult paper diapers progresses, the ability to efficiently retain urine excreted in large quantities at a time and the ability to absorb under high loads, such as when the weight of an adult is added, are increasing. However, the appearance of a water-absorbing resin or a water-absorbing agent at a high level in a balanced manner is desired.

【0005】[0005]

【課題を解決するための手段】本発明者らは、表面架橋
プロセスを改善して、保水量と荷重下での吸収量の双方
が高いレベルでバランスが取れた吸水剤を得るべく鋭意
検討した結果、本発明に到達した。
Means for Solving the Problems The present inventors have intensively studied to improve the surface cross-linking process to obtain a water-absorbing agent in which both the amount of water retention and the amount of absorption under load are balanced at a high level. As a result, the present invention has been achieved.

【0006】すなわち本発明は、平均粒径200〜50
0ミクロンで、100ミクロン以下の粒子の含有量が3
質量%以下であり、生理食塩水に対する保水量が50g
/g以上の表面架橋されていない吸水性樹脂(A1)の
粒子に、架橋剤含有液(B)を平均粒径200ミクロン
以下の液滴の状態で噴霧混合して加熱することを特徴と
する表面架橋された吸水剤の製造法;並びに、吸水性樹
脂(A1)の粒子の表面近傍が、架橋剤含有液(B)を
平均粒径200ミクロン以下の液滴の状態で噴霧して架
橋された吸水剤(A2)であって、吸水性樹脂(A1)
の保水量と吸水剤(A2)の保水量との差が20g/g
以内であり、且つ下記〜の要件を満足する吸水剤で
ある。 生理食塩水に対する保水量が35g/g以上、 20g/cm2荷重下における生理食塩水に対する吸
収量が25g/g以上、 40g/cm2荷重下における生理食塩水に対する吸
収量が15g/g以上、 60g/cm2荷重下における生理食塩水に対する吸
収量が10g/g以上。
That is, the present invention provides an average particle size of 200 to 50.
0 micron, content of particles less than 100 micron is 3
% By weight or less, and the water retention capacity with respect to physiological saline is 50 g.
/ G or more of particles of the water-absorbent resin (A1) which has not been surface-crosslinked and spray-mixed with the crosslinking agent-containing liquid (B) in the form of droplets having an average particle diameter of 200 μm or less, followed by heating. A method for producing a surface-crosslinked water-absorbing agent; and the vicinity of the surface of the water-absorbent resin (A1) particles is crosslinked by spraying the crosslinking agent-containing liquid (B) in the form of droplets having an average particle diameter of 200 μm or less. Water absorbing agent (A2), wherein the water absorbing resin (A1)
Difference between the water holding capacity of the water absorbent and the water holding capacity of the water absorbing agent (A2) is 20 g / g
And a water-absorbing agent satisfying the following requirements. Water absorption capacity for physiological saline is 35 g / g or more; absorption capacity for physiological saline under 20 g / cm 2 load is 25 g / g or more; absorption capacity for physiological saline under 40 g / cm 2 load is 15 g / g or more; Absorption amount to physiological saline under a load of 60 g / cm 2 is 10 g / g or more.

【0007】[0007]

【発明の実施の形態】本発明において、吸水性樹脂(A
1)としては、例えば、ポリアクリル酸部分中和塩の架
橋体、自己架橋型ポリアクリル酸部分中和塩、デンプン
−アクリル酸グラフト共重合体部分中和塩の架橋物、デ
ンプンーアクリロニトリルグラフト重合体の加水分解
物、酢酸ビニルーアクリル酸エステル共重合体のケン化
物、アクリル酸塩ーアクリルアミド共重合体架橋物、ポ
リアクリルアミド架橋物またはこの加水分解物、アクリ
ル酸と2−アクリルアミド−2メチルプロパンスルホン
酸共重合体の塩の架橋物、イソブチレンー無水マレイン
酸共重合体塩の架橋物、架橋カルボキシメチルセルロー
ス塩などの吸水性樹脂の1種以上が挙げられる。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, a water-absorbent resin (A
Examples of 1) include, for example, a crosslinked product of a partially neutralized salt of polyacrylic acid, a partially neutralized salt of a self-crosslinkable polyacrylic acid, a crosslinked product of a partially neutralized salt of a starch-acrylic acid graft copolymer, and a starch-acrylonitrile graft polymer. Combined hydrolyzate, saponified vinyl acetate-acrylate copolymer, cross-linked acrylate-acrylamide copolymer, cross-linked polyacrylamide or hydrolyzate thereof, acrylic acid and 2-acrylamide-2-methylpropane One or more water-absorbing resins such as a crosslinked product of a sulfonic acid copolymer salt, a crosslinked product of an isobutylene-maleic anhydride copolymer salt, and a crosslinked carboxymethylcellulose salt are exemplified.

【0008】上記において塩としては、ナトリウム塩、
カリウム塩、アンモニウム塩、アミン塩(メチルアミ
ン、トリメチルアミンなどのアルキルアミン塩;トリエ
タノールアミン、ジエタノールアミンなどのアルカノー
ルアミン塩など)などの塩が挙げられる。好ましい塩は
ナトリウム塩、カリウム塩である。
In the above, the salt is a sodium salt,
Salts such as potassium salt, ammonium salt and amine salt (alkylamine salt such as methylamine and trimethylamine; alkanolamine salt such as triethanolamine and diethanolamine) are included. Preferred salts are sodium and potassium salts.

【0009】上記のうちで好ましい吸水性樹脂(A1)
は、最終的に得られる吸水性樹脂の吸収性能を考慮する
と、アクリル酸及び/またはその塩を主構成単位とする
エチレン性不飽和単量体の架橋重合体(ポリアクリル酸
部分中和塩の架橋体、自己架橋型ポリアクリル酸中和
塩、デンプン−アクリル酸グラフト共重合体部分中和塩
の架橋物など)である。特に好ましい樹脂は、酸基を有
するラジカル重合性モノマー及び/又は加水分解により
酸基を形成するラジカル重合性モノマーと架橋剤及び必
要によりグラフト基剤からなる重合成分を水溶液重合
し、必要により加水分解して中和し、乾燥、粉砕して得
られる粒子状の吸水性樹脂である。更に好ましくは、吸
収性能に優れ、水可溶性成分量の少ない樹脂が得られる
と言う点で、ラジカル重合性モノマーとしてアクリル酸
を使用し、架橋剤として2個以上のラジカル重合性二重
結合を有する化合物を使用して重合し、その後中和して
得られる吸水性樹脂である。
[0009] Among the above, preferred water-absorbing resin (A1)
Considering the absorption performance of the finally obtained water-absorbent resin, a crosslinked polymer of an ethylenically unsaturated monomer having acrylic acid and / or a salt thereof as a main constituent unit (a partially neutralized salt of polyacrylic acid) Crosslinked products, neutralized salts of self-crosslinked polyacrylic acid, crosslinked products of partially neutralized starch-acrylic acid graft copolymer salts). Particularly preferred resin is a polymerizable component comprising a radical polymerizable monomer having an acid group and / or a radical polymerizable monomer capable of forming an acid group by hydrolysis, a crosslinking agent and, if necessary, a grafting agent, and if necessary, hydrolysis. This is a particulate water-absorbing resin obtained by neutralizing, drying and pulverizing. More preferably, acrylic acid is used as a radical polymerizable monomer, and two or more radical polymerizable double bonds are used as a cross-linking agent in that a resin having excellent absorption performance and a small amount of a water-soluble component is obtained. It is a water-absorbing resin obtained by polymerizing using a compound and then neutralizing.

【0010】吸水性樹脂(A1)の製造法については特
に限定はなく、ラジカル重合開始剤を使用する水溶液重
合法、懸濁重合法、逆相懸濁重合法、光開始重合法、電
子線や紫外線などで重合を開始させる方法など従来から
公知の重合方法で製造される。好ましくは、重合設備が
比較的安価で、重合時の温度制御が不要な水溶液断熱重
合法である。
The method for producing the water-absorbent resin (A1) is not particularly limited, and may be an aqueous solution polymerization method using a radical polymerization initiator, a suspension polymerization method, a reversed-phase suspension polymerization method, a photoinitiated polymerization method, an electron beam polymerization method, or the like. It is manufactured by a conventionally known polymerization method such as a method of initiating polymerization by ultraviolet rays or the like. Preferably, the aqueous solution adiabatic polymerization method is relatively inexpensive in polymerization equipment and does not require temperature control during polymerization.

【0011】(A1)の粒子の形状については特に制限
はなく、破砕状、リン片状、パール状、造粒状などのい
ずれの形状でもよいが、紙おむつ用途でのパルプ等の繊
維状物とのからみが良く、繊維状物からの脱落が少ない
と言う点で、乾燥、粉砕して得られる破砕状の粒子が好
ましい。
The shape of the particles of (A1) is not particularly limited, and may be any of crushed, scaly, pearl, granulated, etc., and may be fibrous materials such as pulp for use in disposable diapers. Crushed particles obtained by drying and pulverizing are preferred in that they have good entanglement and are less likely to fall off from the fibrous material.

【0012】本発明の方法おいて、(A1)の粒子径と
微粒子の含有量が重要なファクターである。(A1)の
粒子径に関しては、通常、平均粒径が200〜500ミ
クロン、好ましくは250〜450ミクロンである。平
均粒径が200ミクロン未満の場合、架橋剤含有液
(B)の液滴と(A1)との均一混合性が低下し、表面
架橋後の保水量の低下が大きくなることがある。一方、
平均粒径が500ミクロンを越える場合についても、架
橋剤含有液(B)の液滴と(A)との均一混合性が低下
し、表面架橋後の保水量の低下が大きくなるとともに、
吸収速度が遅くなると言う別の問題が生じる。(A1)
の微粒子含量も重要なファクターであり、100ミクロ
ン以下の微粒子の含有量は3質量%以下、好ましくは2
質量%以下である。100ミクロン以下の粒子の含有量
が3質量%を越える場合、架橋剤含有液(B)の液滴と
(A1)との混合の均一性が不充分となる。上記のよう
な平均粒径と100ミクロン以下の微粒子含量の(A
1)を得るために、必要により、通常の方法(例えば、
篩い操作や風力分級など)で粒度調整を行う。
In the method of the present invention, the particle size of (A1) and the content of fine particles are important factors. Regarding the particle diameter of (A1), the average particle diameter is usually 200 to 500 microns, preferably 250 to 450 microns. When the average particle size is less than 200 microns, the uniform mixing property between the droplets of the crosslinking agent-containing liquid (B) and (A1) is reduced, and the reduction in water retention after surface crosslinking may be increased. on the other hand,
Even in the case where the average particle diameter exceeds 500 microns, the uniform mixing property of the droplets of the crosslinking agent-containing liquid (B) and (A) is reduced, and the water retention after surface crosslinking is greatly reduced.
Another problem arises in that the absorption rate is reduced. (A1)
Is also an important factor, and the content of fine particles of 100 microns or less is 3% by mass or less, preferably 2% by mass or less.
% By mass or less. When the content of the particles having a size of 100 μm or less exceeds 3% by mass, the uniformity of the mixture of the droplets of the crosslinking agent-containing liquid (B) and (A1) becomes insufficient. (A) having an average particle size as described above and a fine particle content of 100 microns or less.
In order to obtain 1), a usual method (for example,
The particle size is adjusted by sieving or air classification.

【0013】本発明の方法で使用される表面架橋されて
いない吸水性樹脂(A1)の生理食塩水に対する保水量
は通常50g/g以上、好ましくは55g/g以上であ
る。また、20g/cm2の荷重下における生理食塩水
に対する吸収量が10g/g以下である。(A1)の保
水量が50g/g未満の場合、表面架橋によって荷重下
における吸水量の大きな樹脂を得たとしても、保水量が
低下することから、保水量と荷重下吸収量とのバランス
に優れた樹脂を得ることが難しくなる。
The water-absorbing resin (A1) having no surface cross-linked used in the method of the present invention has a water retention capacity for physiological saline of usually 50 g / g or more, preferably 55 g / g or more. Further, the amount of absorption in physiological saline under a load of 20 g / cm 2 is 10 g / g or less. When the water retention of (A1) is less than 50 g / g, even if a resin having a large water absorption under load is obtained by surface crosslinking, the water retention is reduced, so that the balance between the water retention and the absorption under load is reduced. It becomes difficult to obtain an excellent resin.

【0014】吸水性樹脂(A1)の含水率については特
に制限されないが、通常、10質量%以下、好ましくは
7質量%以下である。含水率が10質量%を越える場
合、架橋剤含有液(B)の(A1)の粒子内部への浸透
が助長され、(A1)の粒子の表面近傍への架橋剤の浸
透度合いを制御して効率的な表面架橋を行わせることが
難しくなる。
The water content of the water-absorbent resin (A1) is not particularly limited, but is usually 10% by mass or less, preferably 7% by mass or less. When the water content exceeds 10% by mass, penetration of the crosslinking agent-containing liquid (B) into the inside of the particles of (A1) is promoted, and the degree of penetration of the crosslinking agent into the vicinity of the surface of the particles of (A1) is controlled. It becomes difficult to perform efficient surface crosslinking.

【0015】本発明にいて架橋剤含有液(B)として
は、通常、架橋剤、水および有機溶剤からなる混合水溶
液が使用される。架橋剤としては、(A1)の官能基と
反応しうる基を2個以上有する架橋剤が通常使用され
る。架橋剤としては、例えば、エチレングリコールジグ
リシジルエーテル、グリセロールジグリシジルエーテ
ル、ポリグリセロールポリグリシジルエーテル等のポリ
グリシジル化合物、グリセリン、エチレングリコール等
の多価アルコール類、エチレンカーボネート類、ポリア
ミドポリアミンエピクロルヒドリン樹脂等のポリアミン
樹脂類、エチレンジアミン等のポリアミン化合物、アジ
リジン化合物等が挙げられる。好ましくは、比較的低い
温度で架橋反応を行うことができると言う点で、ポリグ
リシジル化合物およびポリアミン樹脂類である。これら
の架橋剤は単独で使用してもよく、2種以上を併用して
もよい。
In the present invention, as the crosslinking agent-containing liquid (B), a mixed aqueous solution comprising a crosslinking agent, water and an organic solvent is usually used. As the crosslinking agent, a crosslinking agent having two or more groups capable of reacting with the functional group of (A1) is usually used. As the crosslinking agent, for example, ethylene glycol diglycidyl ether, glycerol diglycidyl ether, polyglycidyl compounds such as polyglycerol polyglycidyl ether, glycerin, polyhydric alcohols such as ethylene glycol, ethylene carbonates, polyamide polyamine epichlorohydrin resin and the like Examples thereof include polyamine resins, polyamine compounds such as ethylenediamine, and aziridine compounds. Preferred are polyglycidyl compounds and polyamine resins in that the crosslinking reaction can be carried out at a relatively low temperature. These crosslinking agents may be used alone or in combination of two or more.

【0016】架橋剤の(A1)に対する使用量は、架橋
剤の種類、得られる吸水剤(A2)の性能目標などによ
って種々変化させることができるが、通常(A1)の質
量に基づいて0.005〜2質量%、好ましくは、0.
01〜1質量%、特に好ましくは0.05〜0.5質量
%である。架橋剤の使用量が0.005質量%未満の場
合、表面の架橋度が不足し、荷重下吸収量の向上効果が
不充分となる。一方、架橋剤の使用量が2質量%を越え
る場合、荷重下吸収量の向上は図れるが、表面の架橋が
過度となりすぎて保水量が低下し、荷重下吸収量と保水
量とを高いレベルでバランスさせることが難しくなる。
The amount of the crosslinking agent to be used for (A1) can be variously changed depending on the kind of the crosslinking agent, the performance target of the obtained water-absorbing agent (A2) and the like, but is usually 0.1% based on the mass of (A1). 005 to 2% by mass, preferably 0.
The content is from 01 to 1% by mass, particularly preferably from 0.05 to 0.5% by mass. If the amount of the crosslinking agent used is less than 0.005% by mass, the degree of crosslinking on the surface is insufficient, and the effect of improving the absorption under load becomes insufficient. On the other hand, when the amount of the cross-linking agent exceeds 2% by mass, the absorption under load can be improved, but the cross-linking of the surface becomes excessive and the water retention decreases, and the absorption under load and the water retention increase to a high level. Makes it difficult to balance.

【0017】本発明において、(A1)の粒子内部への
架橋剤の浸透度合いの調節、および(A1)と架橋剤と
の反応性を制御するために、(A1)に対する水の添加
量をコントロールすると同時に、有機溶剤が併用され
る。水の使用量は、得られる吸水剤(A2)の目標性能
により種々変化させることができ、且つ従来の表面架橋
の方法よりも少ない使用量でよいが、(A1)の質量に
基づいて、通常1〜8質量%、好ましくは2〜6質量%
である。水の使用量が1質量%未満の場合、架橋剤の
(A1)の粒子内部への浸透が不充分となり、荷重下に
おける吸収量、特に高い荷重下(例えば、60g/cm
2)における吸収量の向上効果が乏しくなる。一方、水
の使用量が8質量%を越える場合、架橋剤の(A1)の
粒子内部への浸透が過度となり、荷重下における吸収量
の向上は認められるものの、保水量が低下すると言う問
題を生じ、荷重下吸収量と保水量とを高いレベルでバラ
ンスさせることが難しくなる。
In the present invention, the amount of water added to (A1) is controlled to control the degree of penetration of the crosslinking agent into the interior of the particles of (A1) and to control the reactivity of (A1) with the crosslinking agent. At the same time, an organic solvent is used in combination. The amount of water used can be variously changed depending on the target performance of the obtained water-absorbing agent (A2), and may be smaller than the conventional surface crosslinking method. 1 to 8% by mass, preferably 2 to 6% by mass
It is. When the amount of water used is less than 1% by mass, the cross-linking agent (A1) does not sufficiently penetrate inside the particles, and the amount of absorption under load, particularly under high load (for example, 60 g / cm)
The effect of improving the amount of absorption in 2 ) becomes poor. On the other hand, if the amount of water used exceeds 8% by mass, the penetration of the cross-linking agent (A1) into the inside of the particles becomes excessive, and although the amount of absorption under load is improved, the water retention is reduced. This makes it difficult to balance the absorption under load and the water retention at a high level.

【0018】水と併用して使用される溶媒の種類につい
ては特に限定はなく、従来から公知の溶媒が使用可能で
あり、架橋剤の(A1)の粒子内部への浸透度合い、架
橋剤の反応性等を考慮して適宜選択して使用することが
できるが、好ましくは、比誘電率が25以上のアルコー
ル系有機溶剤を少なくとも1種含有する有機溶媒を使用
することである。このような有機溶媒としては、エチレ
ングリコール、ジエチレングリコール、プロピレングリ
コール、グリセリン、メタノール等が挙げられる。この
ような溶媒は単独で使用してもよいし、2種以上を併用
してもよい。溶媒の使用量は、溶媒の種類により変化さ
せることができるが、(A1)の質量に基づいて、通常
1〜8質量%、好ましくは2〜6質量%である。また、
水に対する溶媒の比率についても任意に変化させること
ができ、質量基準で通常20〜80質量%、好ましくは
30〜70質量%である。
The type of the solvent used in combination with water is not particularly limited, and a conventionally known solvent can be used, and the degree of penetration of the crosslinking agent into the inside of the particles (A1), the reaction of the crosslinking agent Although it can be appropriately selected and used in consideration of properties and the like, it is preferable to use an organic solvent containing at least one alcohol-based organic solvent having a relative dielectric constant of 25 or more. Examples of such an organic solvent include ethylene glycol, diethylene glycol, propylene glycol, glycerin, and methanol. Such solvents may be used alone or in combination of two or more. The amount of the solvent to be used can be changed depending on the type of the solvent, but is usually 1 to 8% by mass, preferably 2 to 6% by mass, based on the mass of (A1). Also,
The ratio of the solvent to water can also be arbitrarily changed, and is usually 20 to 80% by mass, preferably 30 to 70% by mass on a mass basis.

【0019】本発明において、架橋剤含有液(B)の液
滴の平均粒径を200ミクロン以下とすることが必須要
件である。好ましくは100ミクロン以下、更に好まし
くは50ミクロン以下、特に好ましくは30ミクロン以
下である。液滴の平均粒径が200ミクロンを越える場
合、(A1)と(B)との均一混合性が不十分となり、
保水量の低下が大きくなるだけでなく、荷重下吸収量性
能の向上効果も不十分なものとなる。更に、保水量や荷
重下吸収量のバラツキが大きくなる。(B)の液滴径を
制御する方法としては、(B)を液体加圧式ノズルから
噴出する方法、(B)をノズルより噴出させると同時に
エアーを混合して噴霧してミスト化する方法等が挙げら
れる。好ましくは、平均粒径の細かい液滴が得られる点
で、(B)をノズルより噴出させると同時にエアーを混
合して噴霧する方法である。
In the present invention, it is an essential requirement that the average particle size of the droplets of the crosslinking agent-containing liquid (B) be 200 microns or less. It is preferably at most 100 microns, more preferably at most 50 microns, particularly preferably at most 30 microns. If the average particle size of the droplets exceeds 200 microns, the uniform mixing of (A1) and (B) becomes insufficient,
Not only does the decrease in water retention increase, but the effect of improving the absorption performance under load becomes insufficient. Further, the dispersion of the water retention amount and the absorption amount under load increases. As a method for controlling the droplet diameter in (B), a method in which (B) is ejected from a liquid pressurized nozzle, a method in which (B) is ejected from a nozzle, and a method in which air is mixed and sprayed to form a mist, etc. Is mentioned. Preferably, a method in which (B) is ejected from a nozzle and, at the same time, air is mixed and sprayed in that a droplet having a fine average particle diameter can be obtained.

【0020】(B)の混合時に必要により用いるエアー
の圧力は、ノズルの形状、ノズルのサイズ、ノズル噴出
口の径、架橋剤含有液(B)の種類や粘度、流量等の条
件によって変化させることができるが、通常0.3〜
3.0kg/cm2の範囲である。エア−の圧力が0.
3kg/cm2未満の場合、エアーの混合によって
(B)の液滴の径を小さく制御する効果が不十分とな
る。一方、エア−の圧力が3,0kg/cm2を越える
場合、(B)の噴霧圧力が大きすぎて(A1)の飛散が
生じ、逆に均一混合性が不十分となるケースがある。特
に、高速攪拌型混合機に、このようなノズルを設置して
(B)を噴霧するような場合、エアーの過度の圧力が高
速攪拌機内の(A1)の攪拌効果を損なう原因になる。
一方、架橋剤含有液(B)は、加圧状態、無加圧状態の
いずれの状態で供給してもよいが、加圧状態の場合の圧
力は通常0.3〜3kg/cm2の範囲であることが好
ましい。
The pressure of the air used as necessary during the mixing of (B) is changed depending on conditions such as the shape of the nozzle, the size of the nozzle, the diameter of the nozzle orifice, the type and viscosity of the crosslinking agent-containing liquid (B), and the flow rate. But usually 0.3-
It is in the range of 3.0 kg / cm 2 . The pressure of air is 0.
If it is less than 3 kg / cm 2, the effect of controlling the droplet diameter in (B) to be small by mixing air is insufficient. On the other hand, when the pressure of the air exceeds 3.0 kg / cm 2 , the spray pressure of (B) is too large, causing the scattering of (A1), and conversely, the uniform mixing may be insufficient. In particular, in a case where such a nozzle is installed in a high-speed stirring type mixer to spray (B), excessive pressure of air may impair the stirring effect of (A1) in the high-speed stirring machine.
On the other hand, the crosslinking agent-containing liquid (B) may be supplied in any of a pressurized state and a non-pressurized state, but the pressure in the pressurized state is usually in the range of 0.3 to 3 kg / cm 2 . It is preferred that

【0021】本発明において、(A1)と(B)の液滴
との混合は、通常(A1)の攪拌下に行う。好ましくは
複数のパドルが付いた攪拌軸を有する混合機(C)を使
用して(A1)を高速攪拌しながら(B)を噴霧混合す
ることである。このような混合機(C)としては、高速
撹拌混合が可能であれば特に制限はないが、例えば、タ
ービュライザー(ホソカワミクロン株式会社製)等が粉
体と液体を連続的に混合できることから好ましい。混合
時の撹拌速度は、通常、パドルの先端の線速度が250
〜3000m/分、好ましくは300〜2500m/分
の範囲となるようにして行う。パドル先端の線速度が2
50m/分未満の場合、(B)を細かい液滴にして噴霧
したとしても、(A1)の撹拌効果が小さいために、
(A1)と(B)との均一混合性が不十分となる。一
方、パドル先端の線速度が3000m/分を越える場
合、高速撹拌による機械的剪断力によって(A1)が壊
れ、微粒子の含有量が増えることがあるので好ましくな
い。また、撹拌機に過度の負荷がかかり、連続混合撹拌
機にとって好ましい条件ではない。
In the present invention, the mixing of the droplets (A1) and (B) is usually carried out with stirring (A1). It is preferable to spray-mix (B) while high-speed stirring (A1) using a mixer (C) having a stirring shaft with a plurality of paddles. Such a mixer (C) is not particularly limited as long as high-speed stirring and mixing can be performed. However, for example, a turbulizer (manufactured by Hosokawa Micron Corporation) or the like is preferable because a powder and a liquid can be continuously mixed. . The stirring speed during mixing is usually set at a linear speed at the tip of the paddle of 250.
To 3000 m / min, preferably 300 to 2500 m / min. Paddle tip linear velocity is 2
In the case of less than 50 m / min, even if (B) is made into fine droplets and sprayed, since the stirring effect of (A1) is small,
The uniform mixing of (A1) and (B) becomes insufficient. On the other hand, if the linear velocity at the tip of the paddle exceeds 3000 m / min, (A1) is broken by mechanical shearing force due to high-speed stirring, and the content of fine particles may be undesirably increased. Further, an excessive load is applied to the stirrer, which is not a preferable condition for the continuous mixing stirrer.

【0022】混合機(C)の内壁面に突起部分を有する
混合機を用いることにより、均一混合性は更に高まる。
この効果は、本発明者らにとっても意外であったが、該
突起部分の効果は、突起部分が吸水性樹脂(A1)及び
/または(A1)と(B)の混合物の混合機内での流れ
を乱すことにより、混合性が向上したことによると推定
される。該突起部分の形状は、上記効果が得られるもの
であれば特に制限されるものではないが、角柱状または
円柱状の形状が好ましい。
By using a mixer having a protruding portion on the inner wall surface of the mixer (C), the uniform mixing property is further enhanced.
Although this effect was surprising to the present inventors, the effect of the projecting portion was such that the projecting portion caused the flow of the water-absorbent resin (A1) and / or the mixture of (A1) and (B) in the mixer. Is presumed to be due to the improved mixing property. The shape of the protruding portion is not particularly limited as long as the above effects can be obtained, but is preferably a prismatic or columnar shape.

【0023】該突起物のサイズは、混合機の大きさ、パ
ドルの数および単位時間当たりの処理量によって適宜選
択することができる。該突起部分の高さは、好ましくは
0.1〜1.0cm、より好ましくは0.2〜0.6c
mである。突起部分の高さが0.1cm未満の場合、突
起部分を設けた効果が現れない。一方、突起部分の高さ
が1.0cmを越える場合、撹拌部分と混合機内壁の隙
間を大きく取る必要があり、混合機(C)の撹拌による
均一混合効果が低下する。該突起部分の上部面積は0.
09〜9cm2であることが好ましい。より好ましくは
0.15〜2.5cm2である。上部面積が0.09c
2未満の場合、突起を設けた効果が乏しくなる。一
方、上部面積が9cm2を越える場合、突起どうしの間
に(A)と(B)の混合物が堆積する等の問題が起こる
場合があり、このような堆積物の発生は、混合の均一性
を妨げる原因となる。
The size of the projection can be appropriately selected depending on the size of the mixer, the number of paddles, and the throughput per unit time. The height of the projection is preferably 0.1 to 1.0 cm, more preferably 0.2 to 0.6 c.
m. When the height of the projection is less than 0.1 cm, the effect of providing the projection is not exhibited. On the other hand, if the height of the projection exceeds 1.0 cm, it is necessary to increase the gap between the stirring portion and the inner wall of the mixer, and the uniform mixing effect due to the stirring of the mixer (C) is reduced. The upper area of the protruding portion is 0.
It is preferably from 09 to 9 cm 2 . More preferably, it is 0.15 to 2.5 cm 2 . Top area is 0.09c
If it is less than m 2, the effect of providing the projections will be poor. On the other hand, if the upper area exceeds 9 cm 2 , there may be a problem that a mixture of (A) and (B) is deposited between the protrusions. May be disturbed.

【0024】該突起部分を設ける位置については、突起
部分の各々がパドルの回転する円周面の延長上の内壁面
に位置することが好ましい。混合機(C)の内面は、
(A1)と(B)との混合物の(C)の内面への付着を
防止すると言う観点から、少なくとも突起部分以外の表
面部分の材質がテフロン等の付着性の低い材質であるこ
とが好ましい。更に好ましくは、該突起部分の表面につ
いてもテフロン等の付着性の低い材質とすることであ
る。付着性の高い材質、例えばステンレスを内面材質と
した場合、長期間の運転において固い凝集物が内壁表面
に付着、堆積することがあり、好ましくない。
Regarding the position where the projections are provided, it is preferable that each of the projections is located on the inner wall surface on the extension of the rotating circumferential surface of the paddle. The inner surface of the mixer (C)
From the viewpoint of preventing the mixture of (A1) and (B) from adhering to the inner surface of (C), it is preferable that at least the material of the surface portion other than the protruding portion is a material having low adhesion such as Teflon. More preferably, the surface of the projecting portion is also made of a material having low adhesion such as Teflon. When a material having high adhesiveness, for example, stainless steel is used as the inner surface material, hard aggregates may adhere and accumulate on the inner wall surface during long-term operation, which is not preferable.

【0025】(A1)の粒子に(B)の液滴を噴霧して
混合して、加熱反応を行う。加熱反応の方法は、従来公
知の方法および装置で行うことができる。例えば、回転
式乾燥機、パドルドライヤー、ナウター型乾燥機、ロー
タリーキルン等を使用することができる。加熱反応の条
件は、架橋剤の種類、使用量、得られる吸水剤(A2)
の性能目標等により適宜選択することができるが、例え
ばポリグリシジル化合物を架橋剤として使用する場合、
通常100〜160℃の温度で、20〜60分間の加熱
することで実施される。本発明の方法において、(B)
に架橋反応の促進剤(例えば、アジピン酸、酢酸などの
有機カルボン酸化合物;メルカプトエタノール、チオリ
ンゴ酸、メルカプト酢酸などのチオール化合物;トリエ
タノールアミン、トリイソプロパノールアミンなどの1
価アミン化合物等)を共存させることにより、架橋反応
の効率を向上させることができる。また、表面架橋して
得られた吸水剤(A2)に更に追加の表面架橋を施し
て、2段階で表面架橋を行ってもよい。
The droplets of (B) are sprayed onto the particles of (A1) and mixed to carry out a heating reaction. The heating reaction can be performed by a conventionally known method and apparatus. For example, a rotary dryer, a paddle dryer, a Nauter-type dryer, a rotary kiln, or the like can be used. The conditions for the heating reaction are as follows: the type and amount of the cross-linking agent, and the obtained water-absorbing agent (A2).
Although it can be appropriately selected depending on the performance goal of, for example, when using a polyglycidyl compound as a crosslinking agent,
It is usually carried out by heating at a temperature of 100 to 160 ° C. for 20 to 60 minutes. In the method of the present invention, (B)
A crosslinking reaction accelerator (for example, an organic carboxylic acid compound such as adipic acid and acetic acid; a thiol compound such as mercaptoethanol, thiomalic acid, and mercaptoacetic acid; and a compound such as triethanolamine and triisopropanolamine).
(E.g., a divalent amine compound), the efficiency of the crosslinking reaction can be improved. Further, the water-absorbing agent (A2) obtained by surface cross-linking may be subjected to additional surface cross-linking, and the surface cross-linking may be performed in two stages.

【0026】本発明の実施により、表面架橋前の吸水性
樹脂(A1)の保水量と、(A1)の粒子を表面架橋し
て得られる吸水剤(A2)の保水量の差が20g/g以
下であり、且つ、下記〜の要件を満足する吸水剤の
製造法を提供する。 生理食塩水に対する保水量が35g/g以上、 20g/cm2荷重下における生理食塩水に対する吸
収量が25g/g以上、 40g/cm2荷重下における生理食塩水に対する吸
収量が15g/g以上、 60g/cm2荷重下における生理食塩水に対する吸
収量が10g/g以上。 好ましくは、吸水性樹脂(A1)の保水量と吸水剤(A
2)の保水量の差が15g/g以下であり、且つ下記
〜の要件を満足する吸水剤の製造法である。 生理食塩水に対する保水量が37g/g以上、 20g/cm2荷重下における生理食塩水に対する吸
収量が30g/g以上、 40g/cm2荷重下における生理食塩水に対する吸
収量が20g/g以上、 60g/cm2荷重下における生理食塩水に対する吸
収量が15g/g以上。
According to the practice of the present invention, the difference between the water retention of the water-absorbent resin (A1) before surface crosslinking and the water retention of the water-absorbing agent (A2) obtained by surface-crosslinking the particles of (A1) is 20 g / g. A method for producing a water-absorbing agent which is the following and satisfies the following requirements: Water absorption capacity for physiological saline is 35 g / g or more; absorption capacity for physiological saline under 20 g / cm 2 load is 25 g / g or more; absorption capacity for physiological saline under 40 g / cm 2 load is 15 g / g or more; Absorption amount to physiological saline under a load of 60 g / cm 2 is 10 g / g or more. Preferably, the water retention amount of the water absorbing resin (A1) and the water absorbing agent (A
This is a method for producing a water-absorbing agent in which the difference in water retention of 2) is 15 g / g or less and satisfies the following requirements. Water absorption capacity for physiological saline is 37 g / g or more, absorption capacity for physiological saline under 20 g / cm 2 load is 30 g / g or more, absorption capacity for physiological saline under 40 g / cm 2 load is 20 g / g or more, Absorbed amount to physiological saline under a load of 60 g / cm 2 is 15 g / g or more.

【0027】本発明の方法は、吸収性能の均一性の点に
おいて、従来の表面架橋技術に比べて優れている。すな
わち、架橋剤含有液(B)を細かい液滴の状態で(A
1)に噴霧混合し、加熱反応せしめること、及びこれら
の操作が連続的に実施できるプロセスであることから、
得られる吸水剤(A2)を5分間隔で各100gのサン
プリングを5回以上行ったときの、保水量、荷重下吸収
量の標準偏差σが平均値の3%以内であると言う極めて
均一性に優れた吸水剤の製造法である。更に、表面架橋
操作を長時間連続的に実施しても粒子同士の凝集による
塊状物の生成が極めて少ない特徴がある。また、本発明
の製造法では表面架橋の反応効率が向上することから、
使用した架橋剤の残存が少なく、実質上ほとんどゼロで
ある。
The method of the present invention is superior to the conventional surface cross-linking technique in terms of uniformity of absorption performance. That is, the crosslinking agent-containing liquid (B) is converted into fine droplets (A)
Since it is a process that can be performed continuously by spray-mixing and heating reaction in 1),
When the obtained water-absorbing agent (A2) is sampled 100 times at intervals of 5 minutes for each 100 g or more, the standard deviation σ of the water retention and the absorption under load is within 3% of the average value. This is a method for producing a water-absorbing agent having excellent properties. Further, even when the surface crosslinking operation is continuously performed for a long period of time, there is a feature that generation of aggregates due to aggregation of particles is extremely small. Further, in the production method of the present invention, since the reaction efficiency of surface crosslinking is improved,
The remaining cross-linking agent used is small and substantially zero.

【0028】本発明の実施により得られる吸水剤(A
2)は、表面架橋前の吸水性樹脂(A1)の保水量と、
表面架橋後の吸水剤(A2)の保水量の差が20g/g
以下であり、且つ、下記〜の要件を満足する優れた
吸収特性を示す。 生理食塩水に対する保水量が35g/g以上、 20g/cm2荷重下における生理食塩水に対する吸
収量が25g/g以上、 40g/cm2荷重下における生理食塩水に対する吸
収量が15g/g以上、 60g/cm2荷重下における生理食塩水に対する吸
収量が10g/g以上。
The water absorbing agent (A) obtained by carrying out the present invention
2) is a water retention amount of the water absorbent resin (A1) before surface crosslinking,
Difference in water retention of water absorbing agent (A2) after surface crosslinking is 20 g / g
And excellent absorption properties satisfying the following requirements. Water absorption capacity for physiological saline is 35 g / g or more; absorption capacity for physiological saline under 20 g / cm 2 load is 25 g / g or more; absorption capacity for physiological saline under 40 g / cm 2 load is 15 g / g or more; Absorption amount to physiological saline under a load of 60 g / cm 2 is 10 g / g or more.

【0029】本発明の方法における任意の段階で、防腐
剤、防かび剤、抗菌剤、酸化防止剤、紫外線吸収剤、酸
化防止剤、着色剤、芳香剤、消臭剤、無機質微粉末、有
機質繊維状物などを添加することができ、その量は得ら
れた吸水剤に対して通常5質量%以下、好ましくは3質
量%以下である。また、本発明の吸水剤を更に造粒や成
型を行ってもよい。
At any stage in the process of the present invention, preservatives, fungicides, antibacterial agents, antioxidants, ultraviolet absorbers, antioxidants, coloring agents, fragrances, deodorants, inorganic fine powders, organic A fibrous substance or the like can be added, and the amount is usually 5% by mass or less, preferably 3% by mass or less based on the obtained water-absorbing agent. Further, the water absorbing agent of the present invention may be further granulated or molded.

【0030】[0030]

【実施例】以下、実施例及び比較例により本発明をさら
に説明するが、本発明はこれらに限定されるものではな
い。生理食塩水に対する保水量、20g/cm2、40
g/cm2、60g/cm2の荷重下における吸収量は下
記の方法により測定した。以下、特に定めない限り、%
は質量%を示す。
The present invention will be further described below with reference to examples and comparative examples, but the present invention is not limited to these examples. Water holding capacity for physiological saline, 20 g / cm 2 , 40
The absorption amount under a load of g / cm 2 or 60 g / cm 2 was measured by the following method. Below, unless otherwise specified,%
Indicates mass%.

【0031】<保水量>250メッシュのナイロン網で
作成したティーバッグ(縦20cm、横10cm)に吸
水性樹脂1.000gを入れ、生理食塩水(NaCl濃
度0.90%のイオン交換水溶液)中に60分間浸漬し
た後、15分間吊るして水切りしてから、ティーバッグ
ごと遠心脱水機に入れて、150Gで90秒間遠心脱水
を行い、余剰水を除去する。遠心脱水後の増加質量を測
定し、保水量とした。 <荷重下吸収量>250メッシュのナイロン網を底面に
貼ったプラスチック製円筒(内径25mm、高さ30m
m)内に吸水性樹脂0.160gを入れて均一に均し、
この吸水性樹脂の上に外径25mmでスムーズに円筒内
を上下する100gの分銅を乗せる。この時の荷重は約
20g/cm2に相当する。生理食塩水60mlの入っ
たシャーレー(直径:12cm)の中に吸水性樹脂と分
銅の入ったプラスチック円筒をナイロン網側を下面にし
て浸し、放置する。吸水性樹脂が生理食塩水を吸収して
増加した質量を60分後に測定し、その値を吸水剤1g
当たりの値に換算して20g/cm2の荷重下における
吸収量とした。40g/cm2、60g/cm2の荷重下
における吸収量は、各々同じ外径の200g、300g
の分銅を使用して同様の測定を行うことによって求めら
れる。
<Water Retention> 1.000 g of a water-absorbent resin was placed in a tea bag (length 20 cm, width 10 cm) made of a 250-mesh nylon net, and placed in a physiological saline solution (an ion exchange aqueous solution having a NaCl concentration of 0.90%). After being immersed in water for 60 minutes, it is hung for 15 minutes and drained. Then, the whole tea bag is put into a centrifugal dehydrator and centrifugally dehydrated at 150 G for 90 seconds to remove excess water. The increased mass after the centrifugal dehydration was measured and defined as the water retention. <Absorption under load> A plastic cylinder with a 250 mesh nylon mesh attached to the bottom surface (inner diameter 25 mm, height 30 m)
m) into 0.160 g of a water-absorbent resin, and evenly
On this water-absorbent resin is placed a weight of 100 g that moves up and down smoothly in the cylinder with an outer diameter of 25 mm. The load at this time corresponds to about 20 g / cm 2 . A plastic cylinder containing a water-absorbent resin and a weight is immersed in a petri dish (diameter: 12 cm) containing 60 ml of physiological saline with the nylon mesh side facing down, and left. The mass of the water-absorbent resin increased by absorbing the physiological saline was measured after 60 minutes, and the value was measured as 1 g of the water-absorbing agent.
It was converted into the value per unit and the absorption amount under a load of 20 g / cm 2 was obtained. The absorption amounts under a load of 40 g / cm 2 and 60 g / cm 2 were 200 g and 300 g of the same outer diameter, respectively.
Is determined by performing the same measurement using a weight of

【0032】吸水性樹脂の製造例1 アクリル酸2000部、架橋剤としてペンタエリスリト
ールトリアリルエーテル6部、イオン交換水5377部
を混合して重合性単量体水溶液を作成し、溶液温度が5
℃となるまで冷却した後、この溶液を断熱重合可能な重
合槽に投入した。溶液中に窒素ガスを導入することによ
り、溶液中の溶存酸素量を0.2ppm以下とした。こ
の重合溶液に1%過酸化水素水溶液10部、0.5%L
−アスコルビン酸水溶液10部、10%のV−50(和
光純薬工業製アゾ系触媒)水溶液10部を添加した。約
20分後に重合開始を示す温度上昇が確認され、約2.
5時間後に最高温度に到達した。更に4時間熟成して含
水ゲル状重合体を得た。この含水ゲル状重合体を小型ニ
ーダーを用いて小片に砕断した後、これに50%のNa
OH水溶液1600部を添加し、重合体中のカルボキシ
ル基の約72モル%をナトリウム塩とした。この中和さ
れた含水ゲル状重合体を150℃の熱風で含水率が約4
%となるまで乾燥した後、粉砕して22メッシュの金網
を通過し、119メッシュの金網を通過しない部分をと
って、粒子状の吸水性樹脂(1)を得た。吸水性樹脂
(1)の粒度分布を測定した結果、平均粒径は380ミ
クロン、100ミクロン以下の微粒子を0.4%含有し
ていた。吸水性樹脂(1)の性能評価結果を表1に示
す。
Production Example 1 of Water Absorbent Resin Acrylic acid (2,000 parts), pentaerythritol triallyl ether (6 parts) as a crosslinking agent, and ion exchange water (5377 parts) were mixed to prepare an aqueous polymerizable monomer solution.
After cooling to ℃, this solution was charged into a polymerization tank capable of adiabatic polymerization. The amount of dissolved oxygen in the solution was reduced to 0.2 ppm or less by introducing nitrogen gas into the solution. To this polymerization solution, 10 parts of a 1% aqueous hydrogen peroxide solution, 0.5% L
-10 parts of an aqueous solution of ascorbic acid and 10 parts of a 10% aqueous solution of V-50 (azo catalyst manufactured by Wako Pure Chemical Industries) were added. After about 20 minutes, a temperature rise indicating initiation of polymerization was confirmed.
The maximum temperature was reached after 5 hours. After further aging for 4 hours, a hydrogel polymer was obtained. The hydrogel polymer was cut into small pieces using a small kneader, and 50% Na was added thereto.
1600 parts of an aqueous OH solution were added, and about 72 mol% of the carboxyl groups in the polymer were converted into sodium salts. The neutralized hydrogel polymer is heated with hot air at 150 ° C. to a water content of about 4
%, And then pulverized, passed through a 22-mesh wire mesh, and removed from a portion not passing through a 119-mesh wire mesh, to obtain a particulate water-absorbent resin (1). As a result of measuring the particle size distribution of the water-absorbent resin (1), the average particle size was 380 microns, and contained 0.4% of fine particles of 100 microns or less. Table 1 shows the performance evaluation results of the water absorbent resin (1).

【0033】吸水性樹脂の製造例2 アクリル酸2000部および水4100部からなる溶液
に、冷却下、50%NaOH水溶液1600部を添加し
てアクリル酸の約72モル%をナトリウム塩とした。架
橋剤としてN,N’−メチレンビスアクリルアミド6部
を加えて溶解させた後、更に冷却して溶液温度を5℃と
した。この重合溶液を断熱重合可能な重合槽に投入し、
溶液中に窒素ガスを導入することにより、溶液中の溶存
酸素量を0.2ppm以下とした。この重合溶液に、1
%過酸化水素水溶液10部、0.5%L−アスコルビン
酸水溶液10部、10%のV−50水溶液10部を添加
した。約30分後に重合開始を示す温度上昇が確認さ
れ、約3時間後に最高温度に到達した。更に4時間熟成
して含水ゲル状重合体を得た。この含水ゲル状重合体を
小型ニーダーを用いて小片に砕断した後、150℃の熱
風で含水率が約4%となるまで乾燥した後、粉砕して2
2メッシュの金網を通過し、119メッシュの金網を通
過しない部分をとって、粒子状の吸水性樹脂(2)を得
た。吸水性樹脂(2)の粒度分布を測定した結果、平均
粒径は375ミクロン、100ミクロン以下の微粒子を
0.7%含有していた。吸水性樹脂(2)の性能評価結
果を表1に示す。
Production Example 2 of Water Absorbent Resin To a solution consisting of 2000 parts of acrylic acid and 4100 parts of water, 1600 parts of a 50% aqueous NaOH solution was added under cooling to convert about 72 mol% of acrylic acid into a sodium salt. After adding and dissolving 6 parts of N, N'-methylenebisacrylamide as a crosslinking agent, the solution was further cooled to a solution temperature of 5 ° C. This polymerization solution is charged into a polymerization tank capable of adiabatic polymerization,
The amount of dissolved oxygen in the solution was reduced to 0.2 ppm or less by introducing nitrogen gas into the solution. In this polymerization solution, 1
10 parts of a 10% aqueous hydrogen peroxide solution, 10 parts of a 0.5% L-ascorbic acid aqueous solution, and 10 parts of a 10% V-50 aqueous solution were added. After about 30 minutes, a temperature rise indicating the start of polymerization was confirmed, and the maximum temperature was reached after about 3 hours. After further aging for 4 hours, a hydrogel polymer was obtained. The hydrogel polymer was crushed into small pieces using a small kneader, dried with hot air at 150 ° C. until the water content became about 4%, and crushed to obtain a powder.
A portion passing through a 2-mesh wire mesh and not passing through a 119-mesh wire mesh was taken to obtain a particulate water-absorbent resin (2). As a result of measuring the particle size distribution of the water-absorbent resin (2), the average particle size was 375 microns, and contained 0.7% of fine particles of 100 microns or less. Table 1 shows the performance evaluation results of the water absorbent resin (2).

【0034】実施例1 高速撹拌混合機としてタービュライザー(ホソカワミク
ロン製;ハイテックミキサーHX−2)を使用した。こ
の混合機内面は6mm厚さのテフロン樹脂で被覆されれ
おり、20個のパドルを有し、パドルの相対する箇所に
高さ0.2cm、上部面積0.16cm2の角柱状で且
つ表面をテフロン樹脂で覆った突起物が固定されてい
る。吸水性樹脂のタービュラーザーへの供給には、供給
フィーダー(ファイントロンFT−25;ホソカワミク
ロン製)を設置した。架橋剤含有液は、エチレングリコ
ールジグリシジルエーテル、水、ジエチレングリコール
(比誘電率:31.7)を5/22/13比率で、あら
かじめ混合して作成した。架橋剤含有液の供給は、ター
ビュラーザーの原料投入口に挿入され、パドルの約1c
m上に固定されたエアーアトマイジングノズル(スプレ
ーセットアップ番号:SU1)を用いて行った。このエ
アーアトマイジングノズルには、架橋剤含有液供給用の
滴下用定量ポンプとエアー供給用のエアー圧力レギュレ
ーターが接続されており、架橋剤含有液の供給と同時に
エアーを供給して、噴霧状態で架橋剤含有液を添加し
た。液滴径はエアー圧力によって調節される。タービュ
ライザーの回転速度を2160rpmにセットし(パド
ル先端部の線速度:407m/分)、吸水性樹脂を50
kg/時間の速度でタービュラーザーのサンプル投入口
から連続添加すると同時に、架橋剤含有液を0.4kg
/時間の速度、且つエアー圧を0.8kg/cm2に制
御して供給し、吸水性樹脂に連続噴霧し混合した。架橋
剤含有液の平均液滴径は15〜20ミクロンであった。
タービュラーザーの取り出し口から排出された吸水性樹
脂と架橋剤含有液の混合物は、加熱ジャケットを備えた
加熱機(内面がテフロン樹脂で被覆されておらず、角柱
状突起物をもたない以外はタービュライザーと同種構
造)に連続供給して加熱反応を行なった。この時の反応
温度は140℃、加熱機内での滞留時間は約30分であ
る。吸水剤(イ)の排出開始から、5分間隔で、各回約
100gの吸水剤のサンプリングを5回実施した。各サ
ンプルを22メッシュの金網を通過させて、吸水剤
(イ)−1〜(イ)−5を得た。各サンプルにおいて、
10メッシュを通過しなかった租い粒子の含有量の平均
値は0.2%であり、塊状物の発生はほとんど見られな
かった。吸水剤(イ)−1〜(イ)−5の性能評価結果
を表2および表5に示す。
Example 1 A turbulizer (manufactured by Hosokawa Micron; Hitech Mixer HX-2) was used as a high-speed stirring mixer. The inner surface of this mixer is coated with 6 mm thick Teflon resin, has 20 paddles, and has a prismatic shape having a height of 0.2 cm and an upper area of 0.16 cm 2 at opposing locations of the paddles, and has a surface. A projection covered with Teflon resin is fixed. A supply feeder (Finetron FT-25; manufactured by Hosokawa Micron) was installed to supply the water-absorbent resin to the turbulator. The crosslinker-containing liquid was prepared by previously mixing ethylene glycol diglycidyl ether, water, and diethylene glycol (dielectric constant: 31.7) at a ratio of 5/22/13. The supply of the cross-linking agent-containing liquid is inserted into the raw material inlet of the turbulaser, and about 1 c of the paddle is supplied.
m, using an air atomizing nozzle (spray setup number: SU1) fixed above. This air atomizing nozzle is connected to a dropping metering pump for supplying the cross-linking agent-containing liquid and an air pressure regulator for supplying air. The crosslinker-containing liquid was added. The droplet diameter is adjusted by the air pressure. The rotation speed of the turbulizer was set to 2160 rpm (linear velocity at the tip of the paddle: 407 m / min), and 50% of the water-absorbent resin was used.
At the same time, 0.4 kg of the crosslinker-containing liquid was added at the same time as continuous addition from the sample inlet of the turbuler at a rate of kg / hour
/ Hour, and the air pressure was controlled at 0.8 kg / cm 2 , and continuously sprayed and mixed with the water absorbent resin. The average droplet size of the crosslinker-containing liquid was 15-20 microns.
The mixture of the water-absorbing resin and the cross-linking agent-containing liquid discharged from the outlet of the turbulizer was heated with a heating jacket (except that the inner surface was not coated with Teflon resin and did not have prismatic projections). (The same structure as the turbulizer) and a heating reaction was performed. At this time, the reaction temperature is 140 ° C., and the residence time in the heater is about 30 minutes. From the start of discharging the water-absorbing agent (a), sampling of about 100 g of the water-absorbing agent was performed five times at 5 minute intervals. Each sample was passed through a 22-mesh wire net to obtain water absorbing agents (A) -1 to (A) -5. In each sample,
The average value of the content of the repellent particles that did not pass through the 10 mesh was 0.2%, and generation of lumps was hardly observed. Tables 2 and 5 show the performance evaluation results of the water absorbing agents (a) -1 to (a) -5.

【0035】実施例2 実施例1において、エアー圧0.8kg/cm2に代
え、0.5kg/cm2とする以外は実施例1と同様に
して吸水剤(ロ)−1〜(ロ)−5を得た。この時の架
橋剤含有液の平均液滴径は45〜60ミクロンであっ
た。各サンプルにおいて、10メッシュを通過しなかっ
た粗い粒子の含有量の平均値は0.4%であり、塊状物
の発生はほとんど見られなかった。吸水剤(ロ)−1〜
(ロ)−5の評価結果を表3および表5に示す。
[0035] In Example 1, instead of the air pressure 0.8kg / cm 2, 0.5kg / cm 2 except that as in the same manner as in Example 1 water-absorbing agent (b) -1 (b) -5 was obtained. At this time, the average droplet diameter of the crosslinking agent-containing liquid was 45 to 60 microns. In each sample, the average value of the content of coarse particles that did not pass through the 10 mesh was 0.4%, and generation of lumps was hardly observed. Water absorbing agent (b) -1
The evaluation results of (b) -5 are shown in Tables 3 and 5.

【0036】実施例3 実施例1において、吸水性樹脂(1)に代えて、吸水性
樹脂(2)を使用する以外は実施例1と同様にして吸水
剤(ハ)を得た。各サンプルにおいて、10メッシュを
通過しなかった租い粒子の含有量の平均値は0.3%で
あり、塊状物の発生はほとんど見られなかった。吸水剤
(ハ)の性能評価結果の平均値を表5に示す。
Example 3 A water absorbing agent (c) was obtained in the same manner as in Example 1 except that the water absorbent resin (2) was used instead of the water absorbent resin (1). In each sample, the average value of the content of the dust particles that did not pass through the 10 mesh was 0.3%, and generation of lumps was hardly observed. Table 5 shows the average value of the performance evaluation results of the water absorbing agent (c).

【0037】比較例1 実施例1において、エアーアトマイジングノズルを用い
ずに、タービュラーザーに直接接続された滴下用定量ポ
ンプで架橋剤含有液を連続滴下して供給する以外は実施
例1と同様にして比較吸水剤(ニ)−1〜(ニ)−5を
得た。この時の架橋剤含有液の平均液滴径は約400〜
600ミクロンであった。各サンプルの10メッシュを
通過しなかった粗い粒子の含有量の平均値は5.3%で
あり、この物は固い塊状物であった。比較吸水剤(ニ)
−1〜(ニ)−5の評価結果を表4及び表5に示す。
Comparative Example 1 In the same manner as in Example 1, except that the crosslinking agent-containing liquid was continuously dropped and supplied by the dropping metering pump directly connected to the turbulator, without using the air atomizing nozzle. Thus, comparative water absorbing agents (d) -1 to (d) -5 were obtained. The average droplet diameter of the crosslinking agent-containing liquid at this time is about 400 to
It was 600 microns. The average value of the content of coarse particles that did not pass through the 10 mesh of each sample was 5.3%, which was a hard lump. Comparative water-absorbing agent (d)
Tables 4 and 5 show the evaluation results of -1 to (d) -5.

【0038】比較例2 実施例1において、エアー圧0.8kg/cm2に代
え、0.3kg/cm2とする以外は実施例1と同様に
して比較吸水剤(ホ)を得た。この時の架橋剤含有液の
平均液滴径は210〜250ミクロンであった。各サン
プルの10メッシュを通過しなかった粗い粒子の含有量
の平均値は2.6%であり、この物は固い塊状物であっ
た。比較吸水剤(ホ)の評価結果の平均値を表5に示
す。
[0038] In Comparative Example 2 Example 1, instead of the air pressure 0.8 kg / cm 2, except that the 0.3 kg / cm 2 was obtained by the same way comparative water-absorbing agent as in Example 1 (e). At this time, the average droplet diameter of the crosslinking agent-containing liquid was 210 to 250 microns. The average value of the content of coarse particles that did not pass through the 10 mesh of each sample was 2.6%, which was a hard lump. Table 5 shows the average value of the evaluation results of the comparative water absorbing agent (e).

【0039】[0039]

【表1】 *荷重下吸収量20:20g/cm2の荷重下おける吸
収量
[Table 1] * Absorption under load 20: Absorption under load of 20 g / cm 2

【0040】[0040]

【表2】 *荷重下吸収量40:40g/cm2の荷重下おける吸
収量
[Table 2] * Absorption amount under load 40: Absorption amount under load of 40 g / cm 2

【0041】[0041]

【表3】 [Table 3]

【0042】[0042]

【表4】 [Table 4]

【0043】[0043]

【表5】 [Table 5]

【0044】[0044]

【発明の効果】本発明の製造法では、表面架橋時の架橋
剤含有液の液滴の平均粒径を200ミクロン以下にコン
トロールして吸水性樹脂に噴霧混合することから、表面
架橋の均一性が著しく改善され、粒子同士の凝集による
塊状物生成がほとんどない。従って、バラツキの少ない
均一な性能を有する吸水剤が製造できるとともに、従来
の表面架橋技術に比べて表面架橋による保水量の低下も
少ない。その結果、保水量と荷重下吸収量とが高いレベ
ルでバランスした、従来にない吸水剤を製造することが
できる。特に高荷重下における吸収性能に優れる特長が
ある。更に、表面架橋に使用する架橋剤の残存も少な
く、ほとんどゼロである。以上の効果を奏することか
ら、本発明の吸水剤は、紙おむつ、生理用ナプキンなど
の吸収性物品に好適に使用できる。
According to the production method of the present invention, since the average particle size of the liquid droplets of the crosslinking agent-containing liquid at the time of surface crosslinking is controlled to 200 μm or less and spray-mixed with the water-absorbing resin, the uniformity of surface crosslinking is achieved. Is remarkably improved, and hardly any lumps are formed due to aggregation of particles. Therefore, a water-absorbing agent having uniform performance with little variation can be produced, and the decrease in water retention due to surface cross-linking is small as compared with the conventional surface cross-linking technology. As a result, it is possible to produce an unprecedented water absorbing agent in which the water retention amount and the absorption amount under load are balanced at a high level. In particular, it has a feature of excellent absorption performance under a high load. Further, the amount of the cross-linking agent used for surface cross-linking is small and almost zero. Due to the above effects, the water absorbing agent of the present invention can be suitably used for absorbent articles such as disposable diapers and sanitary napkins.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 敬次 京都市東山区一橋野本町11番地の1 三洋 化成工業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Keiji Tanaka 11-1 Hitotsubashi Nohonmachi, Higashiyama-ku, Kyoto Sanyo Chemical Industry Co., Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径200〜500ミクロンで、1
00ミクロン以下の粒子の含有量が3質量%以下であ
り、生理食塩水に対する保水量が50g/g以上の表面
架橋されていない吸水性樹脂(A1)の粒子に、架橋剤
含有液(B)を平均粒径200ミクロン以下の液滴の状
態で噴霧混合して加熱することを特徴とする表面架橋さ
れた吸水剤(A2)の製造法。
(1) an average particle size of 200 to 500 microns,
A cross-linking agent-containing liquid (B) is added to particles of the water-absorbing resin (A1) having a surface water-absorbing resin (A1) having a content of particles of not more than 00 microns of not more than 3% by mass and having a water retention capacity of not less than 50 g / g with respect to physiological saline. And heating the mixture in the form of droplets having an average particle size of 200 μm or less, and heating the surface-crosslinked water-absorbing agent (A2).
【請求項2】 架橋剤含有液(B)をノズルより噴出さ
せる際にエアーを混合して平均粒径が200ミクロン以
下の液滴とする請求項1記載の製造方法。
2. The method according to claim 1, wherein air is mixed when the crosslinking agent-containing liquid (B) is ejected from the nozzle to form droplets having an average particle diameter of 200 microns or less.
【請求項3】 吸水性樹脂(A1)の粒子を攪拌下しな
がら、(B)の液滴を噴霧混合する請求項1または2記
載の製造法。
3. The method according to claim 1, wherein the droplets of (B) are spray-mixed while stirring the particles of the water-absorbent resin (A1).
【請求項4】 吸水性樹脂(A1)の粒子の攪拌を、複
数のパドルを備えた攪拌軸を有する混合機(C)を用い
て行い、且つ、回転するパドルの先端の線速度が250
〜3000m/分で攪拌を行う請求項3記載の製造法。
4. The stirring of the particles of the water-absorbent resin (A1) is performed using a mixer (C) having a stirring shaft provided with a plurality of paddles, and the linear velocity at the tip of the rotating paddle is 250.
4. The method according to claim 3, wherein the stirring is performed at a rate of 3000 m / min.
【請求項5】 混合機(C)が、その内壁面に、高さ
0.1〜1cm、上部面積0.09〜9cm2の角柱状
または円柱状の複数の突起部分を有する混合機である請
求項4記載の製造法。
5. The mixer (C) has a plurality of prism-shaped or column-shaped projections having a height of 0.1 to 1 cm and an upper area of 0.09 to 9 cm 2 on its inner wall surface. The method according to claim 4.
【請求項6】 該突起部分各々が、パドルの回転する円
周面の延長上の内壁面に位置する請求項5記載の製造
法。
6. The method according to claim 5, wherein each of said projections is located on an inner wall surface on an extension of a rotating circumferential surface of the paddle.
【請求項7】 混合機内面の少なくとも突起部分以外の
表面部分の材質がテフロンである請求項4〜6のいずれ
か記載の製造法。
7. The production method according to claim 4, wherein the material of at least the surface of the inner surface of the mixer other than the protruding portion is Teflon.
【請求項8】 吸水性樹脂(A1)が、酸基を有するラ
ジカル重合性モノマー及び/又は加水分解により酸基を
形成するラジカル重合性モノマー、架橋剤及び必要によ
りグラフト基剤を主構成成分とする重合成分を水溶液重
合し、必要により加水分解して中和し、乾燥、粉砕して
得られる粒子である請求項1〜7のいずれか記載の製造
法。
8. The water-absorbent resin (A1) comprises a radical polymerizable monomer having an acid group and / or a radical polymerizable monomer which forms an acid group by hydrolysis, a crosslinking agent and, if necessary, a graft base as main components. The method according to any one of claims 1 to 7, wherein the particles are obtained by subjecting a polymerization component to be subjected to aqueous polymerization, hydrolyzing and neutralizing as necessary, drying and pulverizing.
【請求項9】 吸水性樹脂(A1)の生理食塩水に対す
る保水量が50g/g以上であり、且つ、20g/cm
2の荷重下における吸収量が10g/g以下である請求
項1〜9のいずれか記載の製造法。
9. The water-absorbent resin (A1) has a water retention capacity of not less than 50 g / g with respect to physiological saline, and 20 g / cm.
The method according to any one of claims 1 to 9, wherein an absorption amount under a load of 2 is 10 g / g or less.
【請求項10】 吸水性樹脂(A1)の保水量と、表面
架橋して得られる吸水剤(A2)の保水量の差が20g
/g以下であり、且つ、下記〜の要件を満足する請
求項1〜8のいずれか記載の製造法。 生理食塩水に対する保水量が35g/g以上、 20g/cm2荷重下における生理食塩水に対する吸
収量が25g/g以上、 40g/cm2荷重下における生理食塩水に対する吸
収量が15g/g以上、 60g/cm2荷重下における生理食塩水に対する吸
収量が10g/g以上。
10. The difference between the water holding capacity of the water absorbing resin (A1) and the water holding capacity of the water absorbing agent (A2) obtained by surface crosslinking is 20 g.
The production method according to any one of claims 1 to 8, which is not more than / g and satisfies the following requirements. Water absorption capacity for physiological saline is 35 g / g or more; absorption capacity for physiological saline under 20 g / cm 2 load is 25 g / g or more; absorption capacity for physiological saline under 40 g / cm 2 load is 15 g / g or more; Absorption amount to physiological saline under a load of 60 g / cm 2 is 10 g / g or more.
【請求項11】 吸水性樹脂(A1)の粒子の表面近傍
が、架橋剤含有液(B)を平均粒径200ミクロン以下
の液滴の状態で噴霧して架橋された吸水剤(A2)であ
って、吸水性樹脂(A1)の保水量と吸水剤(A2)の
保水量との差が20g/g以下であり、且つ下記〜
の要件を満足する吸水剤。 生理食塩水に対する保水量が35g/g以上、 20g/cm2荷重下における生理食塩水に対する吸
収量が25g/g以上、 40g/cm2荷重下における生理食塩水に対する吸
収量が15g/g以上、 60g/cm2荷重下における生理食塩水に対する吸
収量が10g/g以上。
11. Near the surface of the particles of the water-absorbent resin (A1) is a water-absorbing agent (A2) crosslinked by spraying the crosslinking agent-containing liquid (B) in the form of droplets having an average particle diameter of 200 μm or less. The difference between the water holding capacity of the water absorbing resin (A1) and the water holding capacity of the water absorbing agent (A2) is 20 g / g or less, and
Water-absorbing agent that meets the requirements of Water absorption capacity for physiological saline is 35 g / g or more; absorption capacity for physiological saline under 20 g / cm 2 load is 25 g / g or more; absorption capacity for physiological saline under 40 g / cm 2 load is 15 g / g or more; Absorption amount to physiological saline under a load of 60 g / cm 2 is 10 g / g or more.
JP17957498A 1998-06-10 1998-06-10 Preparation of water absorbent and water absorbent Pending JPH11349625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17957498A JPH11349625A (en) 1998-06-10 1998-06-10 Preparation of water absorbent and water absorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17957498A JPH11349625A (en) 1998-06-10 1998-06-10 Preparation of water absorbent and water absorbent

Publications (1)

Publication Number Publication Date
JPH11349625A true JPH11349625A (en) 1999-12-21

Family

ID=16068124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17957498A Pending JPH11349625A (en) 1998-06-10 1998-06-10 Preparation of water absorbent and water absorbent

Country Status (1)

Country Link
JP (1) JPH11349625A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302810A (en) * 2000-04-21 2001-10-31 Toagosei Co Ltd Method for continuously producing highly water- absorbing resin
WO2001094459A1 (en) * 2000-06-05 2001-12-13 Nagase Chemtex Corporation Crosslinking agent for water-absorbing resin and water-absorbing material obtained with the same
JP2002045395A (en) * 2000-05-09 2002-02-12 Nippon Shokubai Co Ltd Absorber and absorptive goods using the same, and water absorptive resin
JP2002201290A (en) * 2000-09-20 2002-07-19 Nippon Shokubai Co Ltd Water-absorbing resin and its preparation process
WO2003022316A1 (en) * 2001-09-07 2003-03-20 Basf Aktiengesellschaft Super-absorbing hydrogels with a specific particle size distribution
JP2003105092A (en) * 2001-06-08 2003-04-09 Nippon Shokubai Co Ltd Water-absorbing agent and its manufacturing method, and hygienic material
JP2003225565A (en) * 2001-11-20 2003-08-12 San-Dia Polymer Ltd Water absorbent, manufacturing method therefor, and absorbing material and absorptive article using the water absorbent
US6720389B2 (en) 2000-09-20 2004-04-13 Nippon Shokubai Co., Ltd. Water-absorbent resin and production process therefor
JP2004359943A (en) * 2003-05-09 2004-12-24 Nippon Shokubai Co Ltd Water absorption resin and its producing method
JP2005179384A (en) * 2003-12-16 2005-07-07 Asahi Kasei Chemicals Corp Method for producing water absorbing resin
US20060276598A1 (en) * 2003-05-09 2006-12-07 Katsuyuki Wada Water-absorbent resin and its production process
US7193006B2 (en) 2002-12-06 2007-03-20 Nippon Shokubai Co., Ltd. Process for continuous production of water-absorbent resin product
US7241820B2 (en) 2000-10-30 2007-07-10 Stockhausen Gmbh Absorbing structure having improved blocking properties
US7288601B2 (en) 2003-05-30 2007-10-30 Nippon Shokubai Co., Ltd. Method for production of water-absorbent resin and plow-shaped mixing device
US7312278B2 (en) 2001-06-08 2007-12-25 Nippon Shokubai Co., Ltd. Water-absorbing agent and production process therefor, and sanitary material
US7347330B2 (en) 2003-05-27 2008-03-25 Nippon Shokubai Co., Ltd. Method for sizing of water-absorbent resin
JP2009084472A (en) * 2007-10-01 2009-04-23 San-Dia Polymer Ltd Absorptive resin particle, method for producing the same, and absorptive article
WO2010100936A1 (en) * 2009-03-04 2010-09-10 株式会社日本触媒 Process for producing water-absorbing resin
US8598254B2 (en) 2007-09-07 2013-12-03 Nippon Shokubai Co., Ltd. Binding method of water absorbent resin
WO2015102457A1 (en) * 2014-01-06 2015-07-09 한화케미칼 주식회사 Method for preparing superabsorbent polymer
EP1563002B2 (en) 2002-10-25 2017-12-13 Evonik Degussa GmbH Absorbent polymer structure provided with an improved retention capacity and permeability
JP2020037625A (en) * 2018-09-03 2020-03-12 Sdpグローバル株式会社 Absorbable resin particle and method for producing the same
WO2021049488A1 (en) * 2019-09-09 2021-03-18 住友精化株式会社 Water-absorbing resin particles and absorbent article

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302810A (en) * 2000-04-21 2001-10-31 Toagosei Co Ltd Method for continuously producing highly water- absorbing resin
JP2002045395A (en) * 2000-05-09 2002-02-12 Nippon Shokubai Co Ltd Absorber and absorptive goods using the same, and water absorptive resin
WO2001094459A1 (en) * 2000-06-05 2001-12-13 Nagase Chemtex Corporation Crosslinking agent for water-absorbing resin and water-absorbing material obtained with the same
EP1298162A1 (en) * 2000-06-05 2003-04-02 Nagase Chemtex Corporation Crosslinking agent for water-absorbing resin and water-absorbing material obtained with the same
EP1298162A4 (en) * 2000-06-05 2003-07-23 Nagase Chemtex Corp Crosslinking agent for water-absorbing resin and water-absorbing material obtained with the same
US6723797B2 (en) 2000-06-05 2004-04-20 Nagase Chemtex Corporation Crosslinking agent for water-absorbing resin and water-absorbing material obtained with the same
US7183456B2 (en) 2000-09-20 2007-02-27 Nippon Shokubai Co., Ltd. Water-absorbent resin and production process therefor
JP2002201290A (en) * 2000-09-20 2002-07-19 Nippon Shokubai Co Ltd Water-absorbing resin and its preparation process
EP2272898A1 (en) 2000-09-20 2011-01-12 Nippon Shokubai Co., Ltd. Water-absorbent polymer particles and production process therefor
US6720389B2 (en) 2000-09-20 2004-04-13 Nippon Shokubai Co., Ltd. Water-absorbent resin and production process therefor
US7427650B2 (en) 2000-10-30 2008-09-23 Stockhausen Gmbh Absorbing structure having improved blocking properties
US7241820B2 (en) 2000-10-30 2007-07-10 Stockhausen Gmbh Absorbing structure having improved blocking properties
US7312278B2 (en) 2001-06-08 2007-12-25 Nippon Shokubai Co., Ltd. Water-absorbing agent and production process therefor, and sanitary material
JP2009209373A (en) * 2001-06-08 2009-09-17 Nippon Shokubai Co Ltd Water-absorbing agent and its manufacturing method, and sanitary material
JP2003105092A (en) * 2001-06-08 2003-04-09 Nippon Shokubai Co Ltd Water-absorbing agent and its manufacturing method, and hygienic material
WO2003022316A1 (en) * 2001-09-07 2003-03-20 Basf Aktiengesellschaft Super-absorbing hydrogels with a specific particle size distribution
US7361712B2 (en) * 2001-11-20 2008-04-22 San-Dia Polymers, Ltd. Water absorbing agent, process for its production, and absorbers and absorbent articles made by using the agent
JP2006110545A (en) * 2001-11-20 2006-04-27 San-Dia Polymer Ltd Water absorbent, manufacturing method therefor and absorbing material and absorptive articles using water absorbent
EP1457541A1 (en) 2001-11-20 2004-09-15 San-Dia Polymers, Ltd. Water absorbing agent, process for its production, and absorbers and absorbent articles made by using the agent
JP2003225565A (en) * 2001-11-20 2003-08-12 San-Dia Polymer Ltd Water absorbent, manufacturing method therefor, and absorbing material and absorptive article using the water absorbent
EP1563002B2 (en) 2002-10-25 2017-12-13 Evonik Degussa GmbH Absorbent polymer structure provided with an improved retention capacity and permeability
US9382390B2 (en) 2002-12-06 2016-07-05 Nippon Shokubai Co., Ltd. Process for continuous production of water-absorbent resin product
US7193006B2 (en) 2002-12-06 2007-03-20 Nippon Shokubai Co., Ltd. Process for continuous production of water-absorbent resin product
EP1629019A4 (en) * 2003-05-09 2007-02-07 Nippon Catalytic Chem Ind Water-absorbent resin and its production process
JP2004359943A (en) * 2003-05-09 2004-12-24 Nippon Shokubai Co Ltd Water absorption resin and its producing method
US20060276598A1 (en) * 2003-05-09 2006-12-07 Katsuyuki Wada Water-absorbent resin and its production process
US8487048B2 (en) * 2003-05-09 2013-07-16 Nippon Shokubai Co., Ltd. Water-absorbent resin and its production process
US7347330B2 (en) 2003-05-27 2008-03-25 Nippon Shokubai Co., Ltd. Method for sizing of water-absorbent resin
US7288601B2 (en) 2003-05-30 2007-10-30 Nippon Shokubai Co., Ltd. Method for production of water-absorbent resin and plow-shaped mixing device
DE102004026934B4 (en) * 2003-05-30 2014-02-06 Nippon Shokubai Co., Ltd. Plow-shaped mixing plant, its use and method for modifying a water-absorbent resin
JP2005179384A (en) * 2003-12-16 2005-07-07 Asahi Kasei Chemicals Corp Method for producing water absorbing resin
US8598254B2 (en) 2007-09-07 2013-12-03 Nippon Shokubai Co., Ltd. Binding method of water absorbent resin
JP2009084472A (en) * 2007-10-01 2009-04-23 San-Dia Polymer Ltd Absorptive resin particle, method for producing the same, and absorptive article
WO2010100936A1 (en) * 2009-03-04 2010-09-10 株式会社日本触媒 Process for producing water-absorbing resin
US8648150B2 (en) 2009-03-04 2014-02-11 Nippon Shokubai Co., Ltd. Method for producing water absorbent resin
JP5615801B2 (en) * 2009-03-04 2014-10-29 株式会社日本触媒 Method for producing water absorbent resin
JP2015014002A (en) * 2009-03-04 2015-01-22 株式会社日本触媒 Water-absorbing resin production method
US9796820B2 (en) 2009-03-04 2017-10-24 Nippon Shokubai Co., Ltd. Method for producing water absorbent resin
WO2015102457A1 (en) * 2014-01-06 2015-07-09 한화케미칼 주식회사 Method for preparing superabsorbent polymer
JP2020037625A (en) * 2018-09-03 2020-03-12 Sdpグローバル株式会社 Absorbable resin particle and method for producing the same
WO2021049488A1 (en) * 2019-09-09 2021-03-18 住友精化株式会社 Water-absorbing resin particles and absorbent article

Similar Documents

Publication Publication Date Title
JPH11349625A (en) Preparation of water absorbent and water absorbent
JP4489957B2 (en) Hydrophilic and highly swellable hydrogel, its manufacture and use
US7009010B2 (en) Water-absorbent resin and production process therefor
US8017549B2 (en) Superabsorbents having superior permeability and conveying properties
CN100497447C (en) Water-absorbency resin and preparing method thereof
CN100584877C (en) Method for secondary crosslinking of water-absorbent polymers
CN101631819B (en) Process for producing re-moisturised surface-crosslinked superabsorbents
JPH09124879A (en) Modified water-absorptive resin particle and its production
US10066064B2 (en) Process for remoisturizing surface-postcrosslinked water-absorbing polymer particles
JP2010528128A (en) Method for gently mixing and coating superabsorbents
KR20160128350A (en) Method for producing polyacrylic acid (salt)-based water-absorbable resin
US8371475B2 (en) Process for metering superabsorbents
JPWO2016088848A1 (en) Method for producing water absorbent resin
JP6076455B2 (en) Method for producing water-absorbing polymer particles
KR100905853B1 (en) Production method of water-absorbent resin, water-absorbent resin, and usage of water-absorbent resin
WO2020067311A1 (en) Method for producing water-absorbing resin and water-absorbing resin
CN110372891A (en) The manufacturing method of polyacrylic water-absorbing resin
CN111116947A (en) Method for producing polyacrylic acid water-absorbent resin
US9328207B2 (en) Method for re-wetting surface post-cross-linked, water-absorbent polymer particles
CN112804976A (en) Process for producing superabsorbers
CN108178816A (en) The manufacturing method of water-absorbing resins with high rate of liquid aspiration
JPH06313042A (en) Production of resin having high water absorption property
CN113272365B (en) Water absorbing agent containing water absorbing resin as main component and method for producing same
KR20150113129A (en) Method for removal of residual monomers from water-absorbing polymer particles
JP7362653B2 (en) How to make superabsorbents