JPH11347706A - Differential pressure casting method - Google Patents

Differential pressure casting method

Info

Publication number
JPH11347706A
JPH11347706A JP15337198A JP15337198A JPH11347706A JP H11347706 A JPH11347706 A JP H11347706A JP 15337198 A JP15337198 A JP 15337198A JP 15337198 A JP15337198 A JP 15337198A JP H11347706 A JPH11347706 A JP H11347706A
Authority
JP
Japan
Prior art keywords
molten metal
mold
furnace
gate
sprue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15337198A
Other languages
Japanese (ja)
Inventor
Minoru Uozumi
稔 魚住
Shoichiro Nitta
彰一郎 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP15337198A priority Critical patent/JPH11347706A/en
Publication of JPH11347706A publication Critical patent/JPH11347706A/en
Pending legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a differential pressure casting method which can be economically executed respectively under pressurization and under reduced pressure to a high m.p. material and a differential pressure casting apparatus which can apply to the high m.p. material and effectively performs by providing a sprue part which can durably be used, and using a stable molten surface detecting sensor having the durability. SOLUTION: This differential pressure casting method is composed of the processes, in which a mold 3 and the sprue part 1 are mated with a molten metal running part, the sprue part 1 is inserted in the opening part above the molten metal in an air-tight furnace body and projected in the inner part of the furnace body and dipped into a prescribed depth in the molten metal 4, a cavity is filled with the molten metal 4 3-3 by pressurizing the air-tight furnace, when the molten metal in the sprue part 1 and a mating part of the mold body reaches to about >=40% solid phase ratio, the mold body is separated from the sprue part 1 and shifted to the mold opening process outside of the furnace, the sprue part 1 is separated from the air-tight furnace body, the solidified molten metal 4-1 in the sprue part 1 outside of the furnace is pushed out to the molten metal immersion end side and removed, and subsequently, the mold body is prepared to the following casting by setting the mold body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は鉄系材料等の高融点
材料の差圧鋳造をストークを使用しないで行う差圧式鋳
造法とその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a differential pressure casting method and an apparatus for performing differential pressure casting of a high melting point material such as an iron-based material without using a stalk.

【0002】[0002]

【従来の技術】溶湯を鋳型に減圧、もしくは加圧して充
填する差圧鋳造は、充填が制御できるため、品質の良い
製品を鋳造するのに適する。アルミ等の低融点の合金で
は、差圧鋳造法は、シリンダヘッドのような複雑な形状
の部品を製造する主な鋳造法として使用されている。し
かし、鉄系材料のような高融点材料には、減圧を利用し
た方法が提案されているものの、実際の適用は限られて
いる。比較的に融点が低い鋳鉄では、大型の加圧式の保
持炉によるサイホン式の鋳込みが使用されている。
2. Description of the Related Art Differential pressure casting, in which molten metal is filled into a mold by depressurization or pressurization, is capable of controlling the filling, and is suitable for casting high-quality products. For low melting point alloys such as aluminum, differential pressure casting has been used as the main casting method for producing components with complex shapes such as cylinder heads. However, for high melting point materials such as iron-based materials, although a method utilizing reduced pressure has been proposed, its practical application is limited. For cast iron having a relatively low melting point, siphon casting using a large pressurized holding furnace is used.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の高融点
材料の差圧鋳造法及び装置には、つぎの問題があった。
従来、差圧鋳造の、鉄系の高融点材料への適用におい
て、鋳型と溶湯容器を連結する給湯管に耐久性のあるも
のが無く、1回毎に付け替える消耗的なものしかなかっ
た。このため、差圧鋳造の、気密炉体を使用する加圧式
への適用は見られず、鋳型の気密化のみで実施可能な減
圧式にのみ、適用されている。また、砂型等の鋳型湯口
を直接溶湯に浸漬して減圧鋳込みを行うことが実用され
ている。この場合でも、湯口部は浸漬のため通常の形状
に比べ大となり、1回毎に消耗するので、コストが高
く、また砂型のため通気性があり鋳込み時の空気の巻き
込みが生じたり、溶湯浸漬時に砂が落ちる等の問題があ
った。また、大物で高さの高い鋳造製品では、減圧法で
は高減圧によるガス欠陥発生等の問題があった。また、
Mgを含む球状黒鉛鋳鉄等では、減圧による黒鉛の粗大
化等の問題もあった。鋳鉄に対しては、サイホン式の加
圧鋳込みの実例もあるが、装置内溶湯の凝固を防止する
には給湯部は大きな径の形状が必要で不要な溶湯を保持
したり、給湯系の保温装置が必要となったり、休止時の
凝固皮膜除去等、実際操業上の問題が多い。さらに、融
点の高い鋳綱等への適用は不可能であった。本発明の目
的は、高融点材料の差圧鋳造を経済的に行う差圧鋳造法
を加圧、減圧それぞれに提供すること、耐久的に使用可
能な湯口部を提供すること、高融点材料用に適用可能な
加圧式差圧鋳造装置を提供すること、耐久性のある安定
な液面検知センサを用いて、本発明をより効果的に実施
する加圧式差圧鋳造装置を提供すること、にある。
However, the conventional method and apparatus for differential pressure casting of a high melting point material have the following problems.
Conventionally, in the application of differential pressure casting to an iron-based high melting point material, there is no durable hot water supply pipe connecting the mold and the molten metal container, and there is only a consumable one that is replaced every time. For this reason, the application of the differential pressure casting to the pressurization type using an airtight furnace body has not been observed, and it has been applied only to the reduced pressure type that can be implemented only by sealing the mold. In addition, it is practical to immerse a mold gate of a sand mold or the like directly in a molten metal to perform casting under reduced pressure. Even in this case, the sprue is large compared to the normal shape due to immersion, and is consumed each time. Therefore, the cost is high. In addition, since the sand mold is air permeable and entraps air at the time of casting, the molten metal is immersed. Sometimes there was a problem such as sand falling. In addition, in the case of a large and high cast product, the decompression method has a problem such as generation of gas defects due to high decompression. Also,
In the case of spheroidal graphite cast iron or the like containing Mg, there is also a problem such as coarsening of graphite due to reduced pressure. For cast iron, there is an example of siphon-type pressure casting.However, in order to prevent solidification of the molten metal in the equipment, the hot water supply section needs to have a large diameter and holds unnecessary molten metal, and keeps the hot water supply system warm. There are many practical problems, such as the necessity of an apparatus and the removal of a solidified film at rest. Furthermore, it was impossible to apply to a casting line having a high melting point. An object of the present invention is to provide a differential pressure casting method for economically performing differential pressure casting of a high melting point material for each of pressurization and decompression, to provide a gate portion that can be used in a durable manner, To provide a pressure-type differential pressure casting apparatus applicable to the present invention, and to provide a pressure-type differential pressure casting apparatus that implements the present invention more effectively by using a durable and stable liquid level detection sensor. is there.

【0004】[0004]

【課題を解決するための手段】上記目的を達成する本発
明は、つぎの通りである。 (1) 鋳型本体と湯口部を溶湯通路部で合わせ、気密
炉体の溶湯上の開口部に湯口部を挿入し、該湯口部を炉
体内部に突出させ、湯口部外周で前記開口部の周囲部に
気密に当接させ、湯口部と高融点材料の溶湯を相対的に
移動させて前記湯口部を溶湯中に所定深さに浸漬させ、
気密炉内を加圧することで溶湯を鋳型本体内キャビティ
に充填し、湯口部および鋳型本体接合部内の溶湯が固相
率約40%以上の時点で鋳型本体を湯口部から分離し、
炉外の型開き工程に移動させ、湯口部は気密炉体から離
脱させ炉外で鋳型本体接合部側から湯口部の凝固溶湯を
溶湯浸漬端側に押し出して除去し、湯口部を炉上に戻
し、ついで鋳型本体をセットすることでつぎの鋳造に備
える、工程からなる加圧式差圧鋳造法。 (2) 鋳型本体と湯口部を溶湯通路部で合わせ、湯口
開口部を除き鋳型本体周囲を外包部により気密に覆い、
溶湯中に湯口部を予め設定した深さまで浸漬し、前記気
密外包部を減圧し、溶湯を鋳型本体内キャビティに充填
し、湯口部および鋳型本体の接合部の溶湯が固相率約4
0%以上に達した時点で、湯口部から鋳型本体を分離
し、鋳型本体は炉外の型開き工程に移動させるととも
に、湯口部は炉から離脱させて炉外に移動し、鋳型本体
接合面側から湯口部の凝固溶湯を溶湯浸漬側に押し出す
ことで除去し、湯口部を炉に戻し、ついで鋳型本体を湯
口部上にセットしてつぎの鋳造に備える、工程からなる
減圧式差圧鋳造法。 (3) 内部に加熱要素を備えた気密溶湯保持容器およ
びその気密蓋と、気密蓋にベローズ等の気密弾性部材も
しくは摺動シール部で上下に移動可能の、外径が溶湯容
器より小で底面に周辺部にシール面を有した開口部を有
する鋳型受けと、鋳型受けと連結した電極もしくは光学
的手段で構成された溶湯の液面検知センサと、シリンダ
等で構成された前記鋳型受けの上下駆動手段と、前記液
面検出手段に接続された上下駆動手段の制御盤と、前記
液面検知センサと接続された気密炉圧力制御装置と、鋳
型の前記鋳型受けへの脱着手段と、からなる加圧式差圧
鋳造装置。 (4) 前記湯口部が、1個または複数個の貫通口を有
し、貫通口の上側は鋳型本体のキャビティに連結可能
で、内部の縦断面形状が干渉なく下方に抜ける断面形状
をなし、さらに少なくとも溶湯浸漬部の外形が下方にい
くにつれて縮小し、外形縦断面形状が干渉なく下方に抜
ける形状とされ、少なくとも溶湯接触部は内部に冷却媒
体が流動的に存在可能な空洞を有し、外部と空洞との連
結口を有し、上面に前記開口部を囲むシール部、もしく
は下面に溶湯浸漬部より大きな外形のシール部を有する
張り出し部をもち、溶湯と同種、もしくは低融点の金属
部材、金属と同等の熱伝導率を有するセラミック部材、
もしくは黒鉛部材等の気密性高熱伝導材料で構成されて
いる、(3)記載の加圧式差圧鋳造装置。 (5) 前記液面検知センサが、溶湯に湯口が浸漬され
たことを、鋳型、炉の気密部位内の圧力と大気との差圧
が所定値以上の時に検出する検出器からなる、(3)記
載の加圧式差圧鋳造装置。
The present invention to achieve the above object is as follows. (1) The mold body and the sprue are aligned in the molten metal passage, and the sprue is inserted into an opening above the molten metal of the hermetic furnace, and the spout is projected into the furnace body. The surrounding portion is airtightly contacted, and the gate portion and the molten metal of the high melting point material are relatively moved to immerse the gate portion to a predetermined depth in the molten metal,
The molten metal is filled into the cavity in the mold body by pressurizing the inside of the airtight furnace, and the molten metal in the sprue part and the joint part of the mold body is separated from the sprue when the solid phase ratio is about 40% or more,
Moved to the mold opening process outside the furnace, the gate section is separated from the airtight furnace body, the solidified molten metal of the gate section is extruded from the mold body joint side to the molten metal immersion end side outside the furnace and removed, and the gate section is placed on the furnace. A pressurized differential pressure casting method comprising the steps of returning, and then setting the mold body to prepare for the next casting. (2) The mold body and the sprue are joined together in the molten metal passage, and the mold body is air-tightly covered with an outer package except for the sprue opening.
The gate is immersed in the molten metal to a preset depth, the airtight outer casing is decompressed, and the molten metal is filled into the cavity in the mold body.
When it reaches 0% or more, the mold body is separated from the sprue, and the mold body is moved to the mold opening process outside the furnace, and the sprue is separated from the furnace and moved out of the furnace, and the mold body joining surface Depressurized differential pressure casting consisting of removing the solidified molten metal at the gate from the side by pushing it out to the molten metal immersion side, returning the gate to the furnace, setting the mold body on the gate and preparing for the next casting Law. (3) An airtight molten metal holding container having a heating element inside, and an airtight lid thereof, and an airtight elastic member such as a bellows or a sliding seal portion on the airtight lid which can be moved up and down. A mold receiver having an opening having a sealing surface in a peripheral portion, a liquid level detection sensor of a molten metal constituted by electrodes or optical means connected to the mold receiver, and an upper and lower part of the mold receiver constituted by a cylinder or the like. A drive unit, a control panel of an up-down drive unit connected to the liquid level detection unit, an airtight furnace pressure control unit connected to the liquid level detection sensor, and a unit for detaching a mold from the mold receiver. Pressure differential pressure casting equipment. (4) The gate section has one or a plurality of through-holes, and the upper side of the through-hole can be connected to the cavity of the mold body, and has a cross-sectional shape in which the internal vertical cross-sectional shape can be drawn downward without interference, Further, at least the outer shape of the molten metal immersion portion is reduced as it goes downward, the outer shape of the vertical cross section is shaped to be pulled down without interference, and at least the molten metal contact portion has a cavity in which a cooling medium can be fluidly present, A metal member having a connection port between the outside and the cavity and having a sealing portion surrounding the opening on the upper surface or an overhanging portion having a sealing portion having a larger outer shape than the molten metal immersion portion on the lower surface, and of the same type as the molten metal or a low melting point metal member , A ceramic member having a thermal conductivity equivalent to that of a metal,
Alternatively, the pressure-type differential pressure casting apparatus according to (3), wherein the apparatus is made of an airtight high heat conductive material such as a graphite member. (5) The liquid level detection sensor comprises a detector that detects that the gate is immersed in the molten metal when the pressure difference between the pressure in the airtight part of the mold and the furnace and the atmosphere is equal to or higher than a predetermined value. ).

【0005】上記(1)、(2)、(3)の方法または
装置では、製品の種類に応じて減圧、加圧の選択が自在
でそれぞれに最適な鋳造法が提供される。鋳込み後、鋳
型(金型ともいう)と湯口部を分離し、型抜き、湯口部
清掃を行うことで、溶湯給湯管を用いることなく、湯口
部を繰り返し使用することができて経済的となり、特に
鉄系高融点材料に対しても、差圧鋳造を行うことができ
る。本発明の加圧式差圧鋳造装置は上記湯口部以外の一
般の鋳型にも適用可能で、アルミ等で実績のある低鋳並
の品質で鋳鋼等の鋳造を可能とする。また、湯口受けに
よる炉内への湯口部の侵入可能によって、鉄系溶湯に最
適な坩堝式誘導炉の使用が可能となり、炉のみを気密構
造とするコンパクトな装置が可能となった。また、溶湯
のキャビティへの経路が短く熱損失も最小にでき鋳造性
が向上する。また、固相率約40%以上に達した時点で
鋳型本体を分離するので、溶湯の凝固物が溶湯中に落下
することがなく、それによる製品品質への悪影響はな
い。また、上記(4)の湯口部は、鉄系のような高融点
溶湯に対しても接触面に早期に凝固膜を形成し、溶湯と
の直接接触が防止され、同時に湯口部側の接触部の温度
は湯口部の材料の融点以下の低温に保たれ、溶湯による
湯口部の熱的損傷や浸食が防止される。また接触部が一
体構造で機械的な損傷も防止される。この結果、従来無
かった鉄系溶湯用の耐久湯口部を実現できる。また、湯
口部が差圧鋳造で必要な気密空間の要素として作用し、
圧漏れによる欠陥発生等が防止される。上記(5)の装
置は、閉塞空間の特徴をとらえた液面検出法を提供し、
耐久性のある安定した制御を可能とした。以上、広範囲
な鉄系製品に対して、差圧鋳造を安定的、経済的に適用
可能とした。
In the above methods (1), (2), and (3), the most suitable casting method is provided by freely selecting pressure reduction or pressure depending on the type of product. After casting, the mold (also called a mold) and the sprue are separated, the mold is removed, and the sprue is cleaned, so that the sprue can be used repeatedly without using a molten metal hot water supply pipe, which makes it economical. In particular, the differential pressure casting can be performed on an iron-based high melting point material. The pressure-type differential pressure casting apparatus of the present invention can be applied to general molds other than the above-mentioned gate section, and enables casting of cast steel or the like with a low quality of casting similar to that of aluminum and the like. In addition, since the gate section can be inserted into the furnace by the gate receiver, it is possible to use a crucible type induction furnace which is optimal for iron-based molten metal, and a compact apparatus having only the furnace in an airtight structure has been made possible. Further, the path of the molten metal to the cavity is short, so that heat loss can be minimized, and the castability is improved. Further, since the mold body is separated when the solid phase ratio reaches about 40% or more, the solidified material of the molten metal does not fall into the molten metal, and there is no adverse effect on the product quality. In addition, the gate section of the above (4) forms a solidified film on the contact surface early even with a high melting point molten metal such as an iron-based material, thereby preventing direct contact with the molten metal and at the same time, the contact section on the side of the gate section. Is maintained at a low temperature equal to or lower than the melting point of the material of the sprue, thereby preventing thermal damage and erosion of the sprue by the molten metal. In addition, the contact portion has an integral structure, thereby preventing mechanical damage. As a result, it is possible to realize a durable gate for an iron-based molten metal, which has not been conventionally provided. In addition, the gate section acts as an element of the airtight space required for differential pressure casting,
The occurrence of defects due to pressure leakage is prevented. The device (5) provides a liquid level detection method that captures the characteristics of the closed space,
Durable and stable control is enabled. As described above, differential pressure casting can be applied stably and economically to a wide range of iron-based products.

【0006】[0006]

【発明の実施の形態】本発明の望ましい実施例に係る差
圧鋳造方法および装置を説明する。図1〜図7に本発明
による減圧式差圧鋳造装置と、その装置を用いて実施さ
れる減圧式差圧鋳造法の工程を示す。図1において、湯
口部1には湯口1−1に半径方向外側に張り出す張り出
し部1−7を設け、上面を平面で構成し、開口部1−2
の上面周囲にシール部材1−4を配置してある。開口部
1−2は下方にいくにつれて横断面形状を広げ、縦断面
形状が干渉なく抜ける形状をなす。また、湯口1−1の
外形は下方にいくにつれて狭くなっており、縦断面形状
が干渉なく下方に抜ける形状をなす。湯口1−1は、内
部に水等の冷却媒体を保持する空間1−3を有してお
り、空間1−3は連結導管1−31を経由し、図示しな
いシリンダ等で構成される湯口部昇降移動機構の保持部
1−6から外部供給源および排出先に連通する。また、
湯口1−1、開口部1−2の溶湯接触部位は一体構造で
あるので、接合部に隙間はない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A differential pressure casting method and apparatus according to a preferred embodiment of the present invention will be described. 1 to 7 show a reduced pressure differential pressure casting apparatus according to the present invention and steps of a reduced pressure differential pressure casting method performed by using the apparatus. In FIG. 1, the sprue 1 is provided with an overhang 1-7 projecting radially outward from the sprue 1-1, the upper surface of the sprue 1-1 being flat, and the opening 1-2.
Are disposed around the upper surface of the seal member. The opening 1-2 widens in cross section as it goes down, and has a shape in which the vertical cross section comes out without interference. In addition, the outer shape of the sprue 1-1 becomes narrower as it goes downward, and the vertical cross-sectional shape has a shape that can be pulled down without interference. The sprue 1-1 has a space 1-3 for holding a cooling medium such as water therein, and the space 1-3 passes through a connecting conduit 1-31 and is constituted by a sprue portion (not shown) or the like. The holding unit 1-6 of the lifting / lowering mechanism communicates with an external supply source and a discharge destination. Also,
Since the molten metal contact portions of the gate 1-1 and the opening 1-2 have an integral structure, there is no gap at the joint.

【0007】液面検知センサ2はその下方に検出電極2
−1を有しており、液面検知センサ2の出力は図示しな
い湯口部材昇降移動機構の制御盤に出力される。鋳型3
は、下型3−1、上型3−2で構成され、製品キャビテ
ィ3−3を形成する。キャビティ3−3は下型3−1中
央部に設けられた湯口3−4で外部に開口する。3−5
はOリング等で構成されたシール部材であり、下型3−
1、上型3−2の見切り面を気密シールする。キャビテ
ィ3−3の上部に設けられた3−6は細孔等で構成され
たベントであり、上型3−2の中央部に設けられた減圧
孔3−61、上型3−2の上部に接続された減圧ホース
3−62を経由して、図示しない外部の真空ポンプ等で
構成される減圧装置に連結する。下型3−1の下面に設
けられた3−7は気密シール溝である。また、鋳型3は
図示しない脱着機構に保持されており、昇降、移動が可
能である。以下の図において、工程に関与する部分のみ
番号を示す。同一番号は同一内容を示す。図2におい
て、4は図示しない加熱手段を有する保持炉等の炉内の
溶湯である。図4において、キャビティ3−3内部、湯
口1−1周囲に存在する4−1は凝固溶湯を示す。図5
において、5は凝固した製品を示す。図6において、6
は残湯除去装置であり、残湯除去装置6は炉外に設置さ
れ、図示しない油圧シリンダ等の駆動手段に連結した抜
きピン6−1、湯口受け6−2、で構成される。
The liquid level detection sensor 2 has a detection electrode 2
−1, and the output of the liquid level detection sensor 2 is output to a control panel of a gate member moving mechanism (not shown). Mold 3
Is composed of a lower mold 3-1 and an upper mold 3-2, and forms a product cavity 3-3. The cavity 3-3 is opened to the outside at a gate 3-4 provided at the center of the lower mold 3-1. 3-5
Is a seal member composed of an O-ring or the like,
1. Hermetically seal the parting surface of the upper mold 3-2. A vent 3-6 provided in the upper part of the cavity 3-3 is a vent composed of fine holes and the like, and a decompression hole 3-61 provided in the center of the upper mold 3-2, and an upper part of the upper mold 3-2. Via a decompression hose 3-62 connected to a decompression device including an external vacuum pump (not shown). Reference numeral 3-7 provided on the lower surface of the lower mold 3-1 is an airtight seal groove. Further, the mold 3 is held by a detachment mechanism (not shown), and can be moved up and down and moved. In the following figures, only the numbers related to the steps are shown. The same numbers indicate the same contents. In FIG. 2, reference numeral 4 denotes a molten metal in a furnace such as a holding furnace having heating means (not shown). In FIG. 4, 4-1 existing inside the cavity 3-3 and around the gate 1-1 indicates solidified molten metal. FIG.
, 5 indicates a solidified product. In FIG. 6, 6
Is a residual hot water removing device, and the residual hot water removing device 6 is provided outside the furnace, and includes a drain pin 6-1 and a gate holder 6-2 connected to driving means such as a hydraulic cylinder (not shown).

【0008】つぎに、減圧式差圧鋳造装置の作用および
減圧式差圧鋳造方法の各工程の作用を、図1〜図6を参
照して説明する。図1において、鋳型3は下型3−1、
上型3−2が型合わしされ、見切り面をシール部材3−
5でシールされ、これによってキャビティ3−3は湯口
3−4を除いて、大気から気密にシールされる。この金
型3を湯口部1に隙間なく密着させる。この時、湯口3
−4と湯口部開口部1−2を合わせ、下型3−1と湯口
1の上面をシール部材1−4でシールする。また、この
時、湯口部1の空間1−3には、冷却媒体である水が保
持材1−6から通水されている。湯口部昇降機構によっ
て全体を降下させ、図2に示すように溶湯4に湯口1−
1が浸漬される。検出電極2−1が溶湯4にふれ、液面
検知センサ2が溶湯面を検知し下降が停止される。湯口
の開口部1−2は溶湯4によって大気からシールされ、
内部に気密空間を形成する。図3で図示しない減圧装置
を作動させ、減圧ホース3−62、減圧孔3−61、ベ
ント3−6を経由してキャビティ3−3内を減圧し、溶
湯4をキャビティ3−3に吸い上げ充填する。図10
は、その時の鋳型内圧力の変化を示す。
Next, the operation of the reduced pressure differential pressure casting apparatus and the operation of each step of the reduced pressure differential pressure casting method will be described with reference to FIGS. In FIG. 1, the mold 3 is a lower mold 3-1;
The upper mold 3-2 is mated, and the parting surface is sealed with a sealing member 3-
5, whereby the cavity 3-3 is hermetically sealed from the atmosphere except for the gate 3-4. The mold 3 is brought into close contact with the gate 1 without any gap. At this time, the gate 3
The lower mold 3-1 and the upper surface of the gate 1 are sealed with a sealing member 1-4. Further, at this time, the space 1-3 of the gate section 1 is supplied with water as a cooling medium from the holding material 1-6. The entirety is lowered by the gate-portion elevating mechanism, and as shown in FIG.
1 is dipped. The detection electrode 2-1 touches the molten metal 4, the liquid level detection sensor 2 detects the molten metal surface, and the descent is stopped. The opening 1-2 of the gate is sealed from the atmosphere by the molten metal 4,
Form an airtight space inside. By operating a pressure reducing device (not shown in FIG. 3), the pressure inside the cavity 3-3 is reduced through the pressure reducing hose 3-62, the pressure reducing hole 3-61, and the vent 3-6, and the molten metal 4 is sucked into the cavity 3-3 and filled. I do. FIG.
Indicates a change in the pressure in the mold at that time.

【0009】図4に示すように、湯口部1の内部にある
空間1−3、連結導管1−31には水等が通してあり、
湯口部1はそれにより冷却されており、湯口1−1の溶
湯浸漬部には凝固膜4−1が形成される。また、強力な
冷却によって、湯口部1の溶湯接触部の温度は、湯口部
1の融点以下に保たれる。金型3内部でも充填溶湯が凝
固していく。図5で湯口部分の溶湯が固相率約40%以
上の時点で金型3のみを上昇させ、充填された溶湯を金
型3と湯口部1の境界で分断する。湯口部1の開口部1
−2内の溶湯の凝固は進行する。
As shown in FIG. 4, water and the like are passed through the space 1-3 and the connecting conduit 1-31 inside the gate section 1.
The gate 1 is thereby cooled, and a solidified film 4-1 is formed in the molten metal immersion portion of the gate 1-1. Moreover, the temperature of the molten metal contact portion of the gate section 1 is kept below the melting point of the gate section 1 by vigorous cooling. The molten metal solidifies inside the mold 3 as well. In FIG. 5, only the mold 3 is raised when the molten metal in the gate section has a solid phase ratio of about 40% or more, and the filled molten metal is divided at the boundary between the mold 3 and the gate section 1. Opening 1 of the gate 1
The solidification of the molten metal in -2 proceeds.

【0010】つぎに、湯口部1を溶湯4から離脱させ炉
外に持ち出し,図6に示すように残湯除去装置6にセッ
トし、湯口受け6−2で保持し、抜きピン6−1で凝固
残湯4−1を下に押し出し除去する。湯口部1の形状が
前記のような形状のため,湯口開口部1−2内溶湯が全
て凝固しても、湯口部1に妨げられることなしに押し出
すことができる。鋳型3も、図7に示すように、上下を
開き、凝固した製品5を取り出す。湯口部1は、つぎの
鋳込みのため図1の位置に戻り、全工程を終了する。
Next, the gate section 1 is detached from the molten metal 4, taken out of the furnace, set in the residual hot water removing device 6 as shown in FIG. 6, held in the gate receiver 6-2, and removed with the pin 6-1. The remaining solidified water 4-1 is extruded downward and removed. Since the shape of the gate 1 is as described above, even if the molten metal in the gate opening 1-2 is completely solidified, it can be extruded without being hindered by the gate 1. The mold 3 is also opened up and down as shown in FIG. 7, and the solidified product 5 is taken out. The gate section 1 returns to the position of FIG. 1 for the next casting, and the entire process is completed.

【0011】湯口部1の浸漬深さは、溶湯によるシール
作用を確保するため、予め実験等で設定する。図5の分
離も、予め実験等で鋳込みからの経過時間で設定する。
本実施例では湯口部1、金型3は共に銅合金にした。溶
湯4はステンレス鋳鋼材で、溶湯温度は約1550℃
で、総鋳込み量約3kgの多数個の小物部品を鋳造した。
湯口部1の浸漬深さは、鋳込み後の湯面低下を見込み5
0mmとし、鋳込み後5秒で湯口部材1と金型3の分離を
行った。また、固相率40%以上では、溶湯の落下が起
こらない。
The immersion depth of the gate section 1 is set in advance by an experiment or the like in order to secure the sealing action by the molten metal. The separation in FIG. 5 is also set in advance by experiments or the like based on the elapsed time from casting.
In the present embodiment, the gate section 1 and the mold 3 are both made of a copper alloy. The molten metal 4 is a cast stainless steel material, and the molten metal temperature is about 1550 ° C.
Thus, a large number of small parts with a total casting amount of about 3 kg were cast.
The immersion depth of the gate 1 is expected to decrease the level of the molten metal after casting.
The sprue member 1 and the mold 3 were separated 5 seconds after casting. When the solid phase ratio is 40% or more, the molten metal does not drop.

【0012】湯口部は他の金属材料でも可能であり、冷
却効果のよい、熱伝導率の高いものがよく、また、比較
的熱伝導率の低い材料では肉厚を薄く設計して使用して
もよい。さらに冷却が可能なセラミック、黒鉛材料でも
よい。また本実施例では湯口部1には鋳込み前に黒鉛系
の離型材を塗布したが、図6の残湯除去に効果があっ
た。溶湯への浸漬は、本実施例のように一定に固定して
も、鋳込み中湯面低下に合わせて降下させても良い。ま
た、本実施例では減圧を鋳型自身の気密保持で行った
が、別に鋳型全体を覆う気密用のチャンバを使用しても
良い。本実施例では金型を鋳造毎に炉外で冷却していた
が、金型にも冷却経路を設け水冷等の適用は可能であ
る。
The gate section can be made of another metal material, and it is preferable to use a material having a good cooling effect and a high thermal conductivity. A material having a relatively low thermal conductivity is designed to have a small thickness. Is also good. Further, a ceramic or graphite material which can be cooled may be used. In addition, in this embodiment, the gate part 1 was coated with a graphite-based release material before casting, but was effective in removing the residual hot water shown in FIG. The immersion in the molten metal may be fixed at a fixed value as in the present embodiment, or may be lowered in accordance with a decrease in the level of the molten metal during casting. Further, in this embodiment, the decompression is performed by maintaining the airtightness of the mold itself. However, an airtight chamber that entirely covers the entire mold may be used. In the present embodiment, the mold is cooled outside the furnace for each casting, but a cooling path may be provided in the mold to apply water cooling or the like.

【0013】図8、図9は減圧式差圧鋳造法および装置
の湯口部における、他の実施例(複数個の湯口部1’、
1”が一体となった湯口部)を示す平面図である。図1
〜図7と同一番号は図1〜図7と同一内容を示す。1−
311、1−312はそれぞれ冷却媒体の導入孔、排出
孔である。取り付けボルト等は図示を省略した。図9は
図8のA−A線での断面図である。その形状は図1の説
明と同様の内容である。
FIGS. 8 and 9 show another embodiment (a plurality of gate portions 1 ', 2) in the gate portion of the reduced pressure differential pressure casting method and apparatus.
1 (a) is a plan view showing a gate section in which 1 ″ is integrated.
7 to 7 indicate the same contents as those in FIGS. 1-
Reference numerals 311, 1-312 denote cooling medium introduction holes and cooling medium introduction holes, respectively. Illustration of mounting bolts and the like is omitted. FIG. 9 is a sectional view taken along line AA of FIG. The shape is the same as the description of FIG.

【0014】図11は加圧式差圧鋳造における実施例の
装置を示す。図1〜図7と同一番号は図1〜図7と同一
内容を示す。1−5は湯口部1の張り出し部1−7下面
に設けた気密接合面である。金型3は縦割になってお
り、左右型3−1’、3−2’で構成される。3−7
は、金型3の脱着部材であり、図示しないシリンダ等で
構成される昇降移動機構に接続される。気密容器9は、
誘導コイル10−2、鉄心等で構成されるインダクタ
ー、坩堝10−1、で構成される誘導炉体10を内蔵し
ている。9−1は気密フランジ、9−10は密閉空間で
ある。気密容器9の一部に設けられた加圧気体導入孔9
−2に加圧気体ホース9−3が接続されており、加圧気
体ホース9−3の加圧気体導入孔9−2に接続されてい
ない側は、図示しない加圧気体源に、同じく図示しない
加圧制御装置を経由して連結される。気密容器9の上面
にある8は気密蓋で、左右方向中央部に開口部8−1を
有しており、鋳型受け7が気密かつ摺動自在に挿入され
ることができる。鋳型受け7は、軸受け7−3で、気密
蓋8に固定された支柱8−2に対して、図示しないシリ
ンダ等の駆動手段で上下に移動可能である。鋳型受け7
は下端に、湯口部1の湯口1−1が挿入可能な開口部7
−1を有しており、その周辺に気密接合面7−2を有す
る。また、鋳型受け7の外径は、坩堝10−1内に挿入
可能になっている。
FIG. 11 shows an apparatus of an embodiment in the pressure differential pressure casting. 1 to 7 indicate the same contents as those in FIGS. Reference numeral 1-5 denotes an airtight joint surface provided on the lower surface of the overhang portion 1-7 of the gate section 1. The mold 3 is vertically divided and includes left and right molds 3-1 ′ and 3-2 ′. 3-7
Is a detachable member of the mold 3, and is connected to a lifting / lowering moving mechanism constituted by a cylinder or the like (not shown). The airtight container 9
An induction furnace body 10 composed of an induction coil 10-2, an inductor composed of an iron core, and a crucible 10-1 is incorporated. 9-1 is an airtight flange, and 9-10 is a closed space. Pressurized gas introduction hole 9 provided in a part of airtight container 9
-2 is connected to a pressurized gas hose 9-3, and the side of the pressurized gas hose 9-3 not connected to the pressurized gas introduction hole 9-2 is connected to a pressurized gas source (not shown). Not connected via a pressure control device. Reference numeral 8 on the upper surface of the airtight container 9 denotes an airtight lid, which has an opening 8-1 at the center in the left-right direction, so that the mold receiver 7 can be airtightly and slidably inserted. The mold receiver 7 can be moved up and down by a driving means such as a cylinder (not shown) with respect to a support 8-2 fixed to the airtight lid 8 by a bearing 7-3. Mold receiving 7
Has an opening 7 at the lower end into which the gate 1-1 of the gate 1 can be inserted.
−1, and has an airtight joint surface 7-2 around it. In addition, the outer diameter of the mold receiver 7 can be inserted into the crucible 10-1.

【0015】つぎに、加圧式の場合の実施例の方法を説
明する。図11は、鋳込み前の、金型のセットされた状
態を示す。金型3は減圧式とは異なり、左右型3−
1’、3−2’の見切り面はシールされておらず、キャ
ビティ3−3は見切りの隙間を介して大気と連通してお
り、また湯口部1にセットされた時も金型3と湯口部1
との接合面にはシールがない。湯口部1は、鋳型受け7
の開口部7−1に湯口1−1を挿入することにより、鋳
型受け7にセットされる。この時、開口部7−1の周囲
の気密接合面7−2と、張り出し部1−7の下面の気密
接合面1−5は、気密接触する。本実施例では機械仕上
げ面のみであるが、弾性シール部材を介してもよい。こ
の結果、気密容器9の蓋8、鋳型受け7、湯口部1で密
閉空間9−10が形成される。しかし、湯口部1の湯口
開口部1−2、キャビティ3−3を経由して、密閉空間
9−10は大気に連通状態にある。また、湯口部1には
保持部材1−6を経由して冷却水等が供給され、冷却水
等は他の保持部材1−6から排出される。脱着装置3−
7を鋳型3、湯口部1、鋳型受け7が密着された状態で
降下させる。液面検知センサ2’が溶湯4に接し、溶湯
液面を検出し、所定の浸漬深さで停止する。湯口部1が
溶湯4に突入した後、気密容器9、気密蓋8、湯口部1
で密閉空間9−10が形成される。
Next, the method of the embodiment in the case of the pressure type will be described. FIG. 11 shows the mold set before casting. The mold 3 is different from the decompression type,
The parting surfaces 1 ′ and 3-2 ′ are not sealed, the cavity 3-3 communicates with the atmosphere through the parting gap, and the mold 3 and the gate are set when the gate 1 is set. Part 1
There is no seal on the joint surface with. The gate 1 is provided with a mold receiver 7.
Is set in the mold receiver 7 by inserting the gate 1-1 into the opening 7-1. At this time, the hermetic bonding surface 7-2 around the opening 7-1 and the hermetic bonding surface 1-5 on the lower surface of the overhang portion 1-7 are in airtight contact. In this embodiment, only the machined surface is used, but an elastic seal member may be used. As a result, a closed space 9-10 is formed by the lid 8, the mold receiver 7, and the gate section 1 of the airtight container 9. However, the closed space 9-10 is in communication with the atmosphere via the gate opening 1-2 of the gate 1 and the cavity 3-3. Cooling water or the like is supplied to the gate 1 via a holding member 1-6, and the cooling water or the like is discharged from another holding member 1-6. Desorption device 3-
7 is lowered in a state where the mold 3, the gate section 1, and the mold receiver 7 are in close contact with each other. The liquid level detection sensor 2 'comes into contact with the molten metal 4, detects the liquid level of the molten metal, and stops at a predetermined immersion depth. After the gate section 1 enters the molten metal 4, the airtight container 9, the airtight lid 8, the gate section 1
Thus, a closed space 9-10 is formed.

【0016】この密閉空間9−10に加圧気体を加圧気
体ホース9−3、加圧気体導入孔9−2、を経由して供
給し、溶湯4を湯口部1からキャビティ3−3に押上
げ、充填する。図12はこの時の炉内圧力の上昇を示
す。このときも湯口部1には、内部の水冷効果と高熱伝
導率のため、早期に凝固膜が形成され、湯口部1の溶湯
接触部分の温度は、湯口部1の融点以下の低温に保たれ
る。
A pressurized gas is supplied to the closed space 9-10 through a pressurized gas hose 9-3 and a pressurized gas introduction hole 9-2, and the molten metal 4 is supplied from the gate 1 to the cavity 3-3. Push up and fill. FIG. 12 shows the rise in the furnace pressure at this time. Also at this time, a solidified film is formed early on the gate 1 due to the internal water cooling effect and high thermal conductivity, and the temperature of the molten metal contact portion of the gate 1 is kept at a low temperature equal to or lower than the melting point of the gate 1. It is.

【0017】湯口部1と鋳型3の境界の溶湯が固相率約
40%以上になる時点で、脱着装置3−7を上昇させ、
鋳型3と湯口部1を分離し、内部の凝固溶湯を分断す
る。鋳型3は外部で脱型し製品5を取り出す。分離後、
保持部材1−6によって、湯口部1を上昇させ外部に取
り出し、図6と同様に凝固残湯を下に押しだし除去す
る。また、鋳型受け7も上昇し誘導炉外の位置に戻る。
湯口部1を再度鋳型受け7にセットすればつぎの鋳造が
可能となる。炉の加圧は鋳型3と湯口部1の分離時に解
除する。加圧式では気密容器9内で炉10を上下しても
よいが、密閉空間9−10の容量が大きくなり制御性が
悪化する。また、鉄系材料に対しては誘導加熱が有効
で、坩堝型の誘導炉が最適である。気密容器9の誘導加
熱を防止するため、鉄心入のインダクターを使用した。
本実施例では、加圧式のため減圧式ではガス欠陥等で適
用が難しい約1000mmの鋳鋼部品を製造した。鋳型3
は減圧式の場合の実施例と同じく銅合金で、湯口部1も
同材であった。鋳型受け7と気密蓋8のシールはベロー
ズ等の気密弾性部材で構成してもよい。
When the molten metal at the boundary between the gate section 1 and the mold 3 has a solid phase ratio of about 40% or more, the desorption device 3-7 is raised,
The mold 3 and the gate section 1 are separated, and the solidified molten metal inside is separated. The mold 3 is released from the outside and the product 5 is taken out. After separation,
The spout 1 is raised by the holding member 1-6 and taken out to the outside, and the remaining solidified hot water is pushed down and removed as in FIG. The mold receiver 7 also rises and returns to a position outside the induction furnace.
If the gate section 1 is set in the mold receiver 7 again, the next casting becomes possible. Pressurization of the furnace is released when the mold 3 and the sprue 1 are separated. In the pressurized type, the furnace 10 may be moved up and down in the hermetic container 9, but the capacity of the closed space 9-10 becomes large and controllability deteriorates. In addition, induction heating is effective for iron-based materials, and a crucible-type induction furnace is optimal. In order to prevent induction heating of the airtight container 9, an inductor containing a core was used.
In this embodiment, a cast steel part of about 1000 mm was manufactured which is difficult to apply due to gas defects and the like in the decompression method because of the pressurization method. Mold 3
Is a copper alloy as in the case of the decompression type, and the gate 1 is also made of the same material. The seal between the mold receiver 7 and the airtight lid 8 may be made of an airtight elastic member such as a bellows.

【0018】また、本実施例装置では、従来まったく実
績の無い鉄系材料の加圧式差圧鋳造が可能である。ま
た、鋳型受け7に入り、開口部7−1に入る湯口を持つ
鋳型であれば、消耗性の砂型でも適用可能である。ま
た、砂型、金型の混合した構成でもよい。また坩堝10
−1内に鋳型受け7が入り込み、溶湯4と鋳型3の距離
を短縮でき、加圧条件が一定でよく、温度降下も少ない
という利点がある。図8、図9に示した湯口部の他の実
施例は、加圧式の場合にも適用可能である。加圧用では
上面のシール1−4は不要で、張り出し部1−7の下面
に気密接合部を鋳型受け7に合わせて設置すればよい。
Further, in the apparatus of this embodiment, it is possible to perform a pressure-type differential pressure casting of an iron-based material, which has never been achieved in the past. In addition, a consumable sand mold can be used as long as the mold has a gate that enters the mold receiver 7 and enters the opening 7-1. Further, a configuration in which a sand mold and a mold are mixed may be used. Also crucible 10
In this case, the mold receiver 7 is inserted into -1, so that the distance between the molten metal 4 and the mold 3 can be shortened. The other embodiments of the gate section shown in FIGS. 8 and 9 are also applicable to the case of the pressurized type. For pressurization, the seal 1-4 on the upper surface is unnecessary, and an airtight joint may be installed on the lower surface of the overhang portion 1-7 in accordance with the mold receiver 7.

【0019】以上の実施例では、溶湯液面の検出は電極
等の接触式であったが、耐久性に問題がある。加圧、減
圧両方式において湯口が溶湯に接触すると加圧式では炉
側、減圧式では鋳型に気密空間が形成される。このため
湯口部の浸漬量を増加させると気密空間が圧縮され、そ
の圧力が上昇する。この圧力上昇を検出することで液面
検知を行なってもよい。その場合は、溶湯との接触部分
が湯口のみでよいので耐久性がある。図10に減圧式、
図12に加圧式へ適用した場合の、各々の密閉空間の圧
力を示す。実際の圧力上昇は小さいので模式的に示す。
加圧式の場合は鋳型受け7が侵入するので,圧力上昇は
減圧式の場合より大となる。図13に、気密空間の圧力
上昇による液面検出のブロック図を示す。炉または型の
圧力と大気圧とを差圧リレー20に導き、差圧が所定値
より大になって差圧リレー20がONとなると、液面が
所定レベルに達したとみなして、差圧リレー20の信号
を鋳造装置制御盤21に送り、降下停止信号を発すると
共に、加圧/減圧開始信号を発するようにしてある。大
気との差圧を測定することで大気圧の変動の影響を回避
した。
In the above-described embodiment, the detection of the liquid level of the molten metal is carried out by a contact type such as an electrode, but there is a problem in durability. In both the pressurizing and depressurizing methods, when the gate comes into contact with the molten metal, an airtight space is formed in the furnace side in the pressurizing method and in the mold in the depressurizing method. Therefore, when the amount of immersion in the gate section is increased, the airtight space is compressed, and the pressure increases. The liquid level may be detected by detecting this pressure rise. In that case, the contact portion with the molten metal only needs to be the gate, so that there is durability. FIG. 10 shows a decompression type,
FIG. 12 shows the pressure in each closed space when applied to the pressurized type. The actual pressure rise is small and is shown schematically.
In the case of the pressurized type, since the mold receiver 7 enters, the pressure rise is larger than in the case of the depressurized type. FIG. 13 shows a block diagram of liquid level detection based on an increase in pressure in an airtight space. The pressure of the furnace or the mold and the atmospheric pressure are led to the differential pressure relay 20, and when the differential pressure becomes larger than a predetermined value and the differential pressure relay 20 is turned on, it is considered that the liquid level has reached a predetermined level, A signal from the relay 20 is sent to the control panel 21 of the casting apparatus to generate a descent stop signal and a pressurization / decompression start signal. The influence of atmospheric pressure fluctuation was avoided by measuring the pressure difference from the atmosphere.

【0020】[0020]

【発明の効果】請求項1の加圧式差圧鋳造法、請求項2
の減圧式差圧鋳造法、請求項3の加圧式差圧鋳造装置に
よれば、製品の種類に応じて減圧、加圧の選択が自在
で,それぞれに最適な鋳造法が提供される。鋳込み後、
鋳型と湯口部を分離することで,とくに鉄系高融点材料
に対して型抜き、湯口清掃が容易になる。請求項4の装
置によれば、湯口部が,鉄系のような高融点溶湯に対し
ても接触面の早期に凝固膜を形成し、溶湯との直接接触
が防止され、同時に湯口部側の接触部の温度は、湯口部
の材料の融点以下の低温に保たれ、溶湯による熱的損傷
や浸食が防止される。また接触部が一体構造であるの
で、機械的な損傷も防止される。この結果、従来無かっ
た鉄系用の耐久湯口部が可能となった。また、湯口部が
差圧鋳造で必要な気密空間の要素として作用し、圧漏れ
による欠陥発生等が防止された。請求項3の加圧式差圧
鋳造装置によれば、上記湯口部以外の一般の鋳型にも適
用可能で、アルミ等で実績のある低鋳並の品質で、鋳鋼
等の鋳造を可能とした。また湯口受けによる坩堝内への
湯口部の侵入可能によって鉄系で最適な坩堝式誘導炉の
使用が可能となり、炉のみを気密構造とするコンパクト
装置が可能となった。また少量の溶解保持が可能で、生
産に見合った装置が提供できる。また、溶湯の経路が短
く熱損失も最小にでき、鋳造性が向上する。請求項5の
装置によれば、閉塞空間の圧力上昇により液面検出する
ので、センサを溶湯に接触させる場合に比べて、耐久性
のある安定した検出が可能となる。
According to the first aspect of the present invention, there is provided a pressure-type differential pressure casting method.
According to the pressure-reducing differential pressure casting method and the pressure-type differential pressure casting apparatus of claim 3, the pressure reduction and the pressure can be freely selected according to the type of the product, and the most suitable casting method is provided for each. After casting
Separating the mold and the sprue facilitates die-cutting and sprue cleaning, especially for iron-based high melting point materials. According to the device of the fourth aspect, the gate section forms a solidified film at an early stage on the contact surface even with a high melting point molten metal such as an iron-based material, so that direct contact with the molten metal is prevented, and at the same time, on the side of the gate section side. The temperature of the contact portion is maintained at a low temperature equal to or lower than the melting point of the material of the sprue portion, thereby preventing thermal damage and erosion due to the molten metal. Further, since the contact portion has an integral structure, mechanical damage is also prevented. As a result, an iron-based durable gate section, which was not previously available, has become possible. In addition, the gate section functions as an element of an airtight space required for differential pressure casting, and the occurrence of defects due to pressure leakage and the like is prevented. According to the pressure-type differential pressure casting apparatus of claim 3, it is applicable to general molds other than the gate section, and enables casting of cast steel or the like with a low quality of casting that has been proven in aluminum and the like. In addition, the intrusion of the sprue into the crucible by the sprue receiver enabled the use of an iron-based optimal crucible-type induction furnace, and a compact device having only the furnace in an airtight structure became possible. In addition, a small amount of dissolution can be maintained, and an apparatus suitable for production can be provided. Further, the path of the molten metal is short, and the heat loss can be minimized, so that the castability is improved. According to the device of the fifth aspect, since the liquid level is detected by the pressure increase in the closed space, stable and durable detection is possible as compared with the case where the sensor is brought into contact with the molten metal.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施例の減圧式差圧鋳造方法を実施する
装置の一部の断面図である。
FIG. 1 is a sectional view of a part of an apparatus for performing a reduced pressure differential pressure casting method according to an embodiment of the present invention.

【図2】図1の装置の、湯口部が溶湯に浸漬された状態
の断面図である。
FIG. 2 is a cross-sectional view of the apparatus of FIG. 1 in a state where a gate section is immersed in a molten metal.

【図3】図1の装置の、キャビティに溶湯が充填された
状態の断面図である。
FIG. 3 is a sectional view of the apparatus of FIG. 1 in a state in which a cavity is filled with a molten metal.

【図4】図1の装置において、キャビティ内で溶湯が約
40%凝固した状態を示す断面図である。
FIG. 4 is a cross-sectional view showing a state in which about 40% of a molten metal is solidified in a cavity in the apparatus of FIG.

【図5】図1の装置において、溶湯凝固後に鋳型のみを
上昇させた状態の断面図である。
FIG. 5 is a cross-sectional view of the apparatus of FIG. 1, in which only the mold is raised after solidification of the molten metal.

【図6】図1の装置において、溶湯凝固後に鋳型の上
型、下型を分離し、湯口部から凝固残湯を除去している
状態の断面図である。
FIG. 6 is a cross-sectional view of the apparatus of FIG. 1, in which an upper mold and a lower mold of a mold are separated after solidification of a molten metal, and residual solidified metal is removed from a sprue.

【図7】図1の装置において、鋳造製品を鋳型から取り
外している状態の断面図である。
7 is a cross-sectional view of the apparatus of FIG. 1 in a state where a cast product is removed from a mold.

【図8】他の実施例における、湯口部近傍における平面
図である。
FIG. 8 is a plan view in the vicinity of a gate section in another embodiment.

【図9】図8のA−A線に沿う断面図である。FIG. 9 is a sectional view taken along line AA of FIG. 8;

【図10】減圧式における鋳型内空間の圧力の変化を示
すグラフである。
FIG. 10 is a graph showing a change in pressure in a space in a mold in a decompression method.

【図11】本発明実施例の加圧式差圧鋳造方法を実施す
る装置の断面図である。
FIG. 11 is a cross-sectional view of an apparatus for performing a pressure differential pressure casting method according to an embodiment of the present invention.

【図12】加圧式の炉内の密閉空間における圧力の変化
を示すグラフである。
FIG. 12 is a graph showing a change in pressure in a closed space in a pressure furnace.

【図13】圧力を検出することにより、液面を検出する
工程を示すブロック図である。
FIG. 13 is a block diagram illustrating a process of detecting a liquid level by detecting a pressure.

【符号の説明】[Explanation of symbols]

1 湯口部 1−1 湯口 1−2 開口部 1−3 空間 3 鋳型 3−3 キャビティ 3−61 減圧孔 4 溶湯(高融点材料) 6 残湯除去装置 6−1 抜きピン 7 鋳型受け 8 気密蓋 9 気密容器 9−2 加圧気体導入孔 20 差圧リレー DESCRIPTION OF SYMBOLS 1 Gate part 1-1 Gate 1-2 Opening 1-3 Space 3 Mold 3-3 Cavity 3-61 Depressurization hole 4 Molten metal (high melting point material) 6 Remaining molten metal removing device 6-1 Drain pin 7 Mold receiving 8 Airtight lid 9 Airtight container 9-2 Pressurized gas introduction hole 20 Differential pressure relay

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 鋳型本体と湯口部を溶湯通路部で合わ
せ、気密炉体の溶湯上の開口部に湯口部を挿入し、該湯
口部を炉体内部に突出させ、湯口部外周で前記開口部の
周囲部に気密に当接させ、湯口部と高融点材料の溶湯を
相対的に移動させて前記湯口部を溶湯中に所定深さに浸
漬させ、気密炉内を加圧することで溶湯を鋳型本体内キ
ャビティに充填し、湯口部および鋳型本体接合部内の溶
湯が固相率約40%以上の時点で鋳型本体を湯口部から
分離し、炉外の型開き工程に移動させ、湯口部は気密炉
体から離脱させ炉外で鋳型本体接合部側から湯口部の凝
固溶湯を溶湯浸漬端側に押し出して除去し、湯口部を炉
上に戻し、ついで鋳型本体をセットすることでつぎの鋳
造に備える、工程からなる加圧式差圧鋳造法。
1. A mold body and a sprue portion are aligned at a molten metal passage portion, a sprue portion is inserted into an opening on the molten metal of the hermetic furnace body, the spout portion is protruded into the inside of the furnace body, and the opening is formed around an outer periphery of the sprue portion. The hermetically abuts the periphery of the portion, the gate and the molten metal of the high melting point material are relatively moved, and the gate is immersed in the molten metal to a predetermined depth, and the molten metal is pressed by pressurizing the airtight furnace. Filling the cavity in the mold body, the mold body is separated from the sprue when the molten metal in the sprue and the joint part of the mold body has a solid phase ratio of about 40% or more, and is moved to the mold opening step outside the furnace. Removed from the airtight furnace body, remove the solidified molten metal of the sprue from the joint side of the mold body outside the furnace by pushing it out to the immersion end side of the molten metal, return the sprue to the furnace, and then set the mold body to perform the next casting A pressure differential casting method comprising the steps of:
【請求項2】 鋳型本体と湯口部を溶湯通路部で合わ
せ、湯口開口部を除き鋳型本体周囲を外包部により気密
に覆い、溶湯中に湯口部を予め設定した深さまで浸漬
し、前記気密外包部を減圧し、溶湯を鋳型本体内キャビ
ティに充填し、湯口部および鋳型本体の接合部の溶湯が
固相率約40%以上に達した時点で、湯口部から鋳型本
体を分離し、鋳型本体は炉外の型開き工程に移動させる
とともに、湯口部は炉から離脱させて炉外に移動し、鋳
型本体接合面側から湯口部の凝固溶湯を溶湯浸漬側に押
し出すことで除去し、湯口部を炉に戻し、ついで鋳型本
体を湯口部上にセットしてつぎの鋳造に備える、工程か
らなる減圧式差圧鋳造法。
2. A mold body and a sprue portion are aligned by a molten metal passage, and the periphery of the mold body is air-tightly covered with an outer casing except for the spout opening, and the sprue is immersed in the molten metal to a predetermined depth. The molten metal is filled in the cavity in the mold body, and when the molten metal at the junction of the gate and the mold body reaches a solid phase ratio of about 40% or more, the mold body is separated from the gate and the mold body is removed. Is moved to the mold opening process outside the furnace, the gate is removed from the furnace and moved out of the furnace, and the solidified molten metal in the gate is extruded from the joining surface side of the mold body to the molten metal immersion side, thereby removing the gate. Is returned to the furnace, and then the mold body is set on the sluice portion to prepare for the next casting.
【請求項3】 内部に加熱要素を備えた気密溶湯保持容
器およびその気密蓋と、気密蓋にベローズ等の気密弾性
部材もしくは摺動シール部で上下に移動可能の、外径が
溶湯容器より小で底面に周辺部にシール面を有した開口
部を有する鋳型受けと、鋳型受けと連結した電極もしく
は光学的手段で構成された溶湯の液面検知センサと、シ
リンダ等で構成された前記鋳型受けの上下駆動手段と、
前記液面検出手段に接続された上下駆動手段の制御盤
と、前記液面検知センサと接続された気密炉圧力制御装
置と、鋳型の前記鋳型受けへの脱着手段と、からなる加
圧式差圧鋳造装置。
3. An airtight molten metal holding container having a heating element therein, an airtight lid thereof, and an airtight elastic member such as a bellows or a sliding seal portion on the airtight lid, the outer diameter of which is smaller than that of the molten metal container. A mold receiver having an opening having a sealing surface on the periphery at the bottom surface, a liquid level detection sensor for the molten metal constituted by electrodes or optical means connected to the mold receiver, and the mold receiver comprising a cylinder or the like. Up and down driving means,
A pressurized differential pressure comprising: a control panel of vertical drive means connected to the liquid level detection means, an airtight furnace pressure control device connected to the liquid level detection sensor, and a means for attaching and detaching a mold to and from the mold receiver. Casting equipment.
【請求項4】 前記湯口部が、1個または複数個の貫通
口を有し、貫通口の上側は鋳型本体のキャビティに連結
可能で、内部の縦断面形状が干渉なく下方に抜ける断面
形状をなし、さらに少なくとも溶湯浸漬部の外形が下方
にいくにつれて縮小し、外形縦断面形状が干渉なく下方
に抜ける形状とされ、少なくとも溶湯接触部は内部に冷
却媒体が流動的に存在可能な空洞を有し、外部と空洞と
の連結口を有し、上面に前記開口部を囲むシール部、も
しくは下面に溶湯浸漬部より大きな外形のシール部を有
する張り出し部をもち、溶湯と同種、もしくは低融点の
金属部材、金属と同等の熱伝導率を有するセラミック部
材、もしくは黒鉛部材等の気密性高熱伝導材料で構成さ
れている、請求項3記載の加圧式差圧鋳造装置。
4. The sprue portion has one or a plurality of through-holes, and the upper side of the through-hole can be connected to the cavity of the mold body, and has a cross-sectional shape in which the internal vertical cross-sectional shape can be drawn downward without interference. None, furthermore, at least the outer shape of the molten metal immersion portion is reduced as it goes downward, and the outer vertical cross-sectional shape is formed to be drawn downward without interference, and at least the molten metal contact portion has a cavity in which a cooling medium can flow therethrough. It has a connection port between the outside and the cavity, has a seal portion surrounding the opening on the upper surface, or has an overhang portion having a seal portion with a larger outer shape than the melt immersion portion on the lower surface, and is of the same type as the molten metal, or has a low melting point. The pressurized differential pressure casting apparatus according to claim 3, wherein the apparatus is made of a hermetic high heat conductive material such as a metal member, a ceramic member having the same thermal conductivity as metal, or a graphite member.
【請求項5】 前記液面検知センサが、溶湯に湯口が浸
漬されたことを、鋳型、炉の気密部位内の圧力と大気と
の差圧が所定値以上の時に検出する検出器からなる、請
求項3記載の加圧式差圧鋳造装置。
5. The liquid level detecting sensor comprises a detector for detecting that the gate is immersed in the molten metal when a pressure difference between a pressure in an airtight portion of the furnace and the atmosphere is equal to or higher than a predetermined value. The pressure differential pressure casting apparatus according to claim 3.
JP15337198A 1998-06-02 1998-06-02 Differential pressure casting method Pending JPH11347706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15337198A JPH11347706A (en) 1998-06-02 1998-06-02 Differential pressure casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15337198A JPH11347706A (en) 1998-06-02 1998-06-02 Differential pressure casting method

Publications (1)

Publication Number Publication Date
JPH11347706A true JPH11347706A (en) 1999-12-21

Family

ID=15561003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15337198A Pending JPH11347706A (en) 1998-06-02 1998-06-02 Differential pressure casting method

Country Status (1)

Country Link
JP (1) JPH11347706A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111299546A (en) * 2020-04-20 2020-06-19 江苏天宏智能装备有限公司 Pressure regulation control system for high-pressure differential pressure casting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111299546A (en) * 2020-04-20 2020-06-19 江苏天宏智能装备有限公司 Pressure regulation control system for high-pressure differential pressure casting

Similar Documents

Publication Publication Date Title
US11364539B2 (en) Method and apparatus for counter-gravity mold filling
CA1317437C (en) Apparatus and process for countergravity casting of metal with air exclusion
US4961455A (en) Countergravity casing apparatus and method with magnetically actuated valve to prevent molten metal run-out
IT9067832A1 (en) PROCEDURE AND EQUIPMENT FOR THE COUNTER-GRAVITY CASTING OF METALS, PARTICULARLY REACTIVE METALS
JP5319893B2 (en) High vacuum suction casting equipment
EP0697577B1 (en) Vacuum melting - pressure pouring induction furnace
US3635791A (en) Pressure pouring in a vacuum environment
JPH02104460A (en) Vacuum ani-gravity type casting device and method by using check valve
JPH11347706A (en) Differential pressure casting method
JPH05169232A (en) Casting device
US4865113A (en) Countergravity casting apparatus and process for casting thin-walled parts
JPH04231162A (en) Vacuum-assistant antigravity-casting device and its method
JP2000225455A (en) Method and apparatus for casting cast iron
EP1082187B1 (en) Investment casting using sealable pressure cap
JP3695478B2 (en) Casting method and equipment in inert gas atmosphere
JP3481671B2 (en) Low pressure casting equipment
JP2003275857A (en) Low-pressure casting method for grain dispersion aluminum alloy material
JP2003112249A (en) Method and apparatus for casting particle-dispersed aluminum alloy under low pressure
JPH11147170A (en) Differential pressure casting method
JPH07204825A (en) Suck-up casting method and apparatus therefor
KR100429738B1 (en) Metal casting method and apparatus
JPH05115959A (en) Casting apparatus
JPH0757416B2 (en) Suction casting method using sand sand stokes
JP2001232448A (en) Perpendicular continuous casting machine for metal
JP2009160651A (en) Molten metal supplying device, and supplying method therefor