JPH11347438A - Dry pulverizer and production of rare earth sintered magnet using same - Google Patents

Dry pulverizer and production of rare earth sintered magnet using same

Info

Publication number
JPH11347438A
JPH11347438A JP10155491A JP15549198A JPH11347438A JP H11347438 A JPH11347438 A JP H11347438A JP 10155491 A JP10155491 A JP 10155491A JP 15549198 A JP15549198 A JP 15549198A JP H11347438 A JPH11347438 A JP H11347438A
Authority
JP
Japan
Prior art keywords
pulverizing
chamber
coarse powder
nozzle
pulverization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10155491A
Other languages
Japanese (ja)
Other versions
JP4069326B2 (en
Inventor
Osamu Taira
治 平
Koji Kobayashi
光次 小林
Keisuke Nakamura
啓介 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP15549198A priority Critical patent/JP4069326B2/en
Publication of JPH11347438A publication Critical patent/JPH11347438A/en
Application granted granted Critical
Publication of JP4069326B2 publication Critical patent/JP4069326B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Disintegrating Or Milling (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the pulverizing efficiency of a dry pulverizer. SOLUTION: Pulverizing nozzles 60a whose the injectors are opened into a pulverizing chamber 20 of a dry pulverizer A are provided with inter- pulverizing chambers coarse powder circulating paths 61 so that coarse powder which has been insufficiently pulverized (insufficiently pulverized coarse powder) can be taken from the inside of the pulverizing chamber 20 into the pulverizing nozzles 60. Pulverizing nozzles 60b are provided with inter-classifying chambers coarse powder circulating paths so that the insufficiently pulverized coarse powder in the classifying chambers can be taken in the pulverizing nozzles 60. Both the pulverizing nozzles 60a, 60b are alternately provided along the inner periphery of the pulverizing chamber 20 and the respective open end sides are projected into the pulverizing chamber 20. By using the dry pulverizer A, a fine powder magnet raw material having the low content of oxygen is obtained and a rare earth sintered magnet excellent in magnetic property can be produced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、希土類焼結磁石を
製造するに際して予め粗粉にした磁石原料を微粉砕する
ための乾式粉砕装置およびそれを用いた希土類焼結磁石
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dry pulverizing apparatus for finely pulverizing a magnet raw material which has been coarsened in advance when producing a rare earth sintered magnet, and a method for producing a rare earth sintered magnet using the same.

【0002】[0002]

【従来の技術】希土類焼結磁石は、所要の金属組成を有
する希土類焼結磁石用合金の粗粉砕、その後の微粉砕、
成形、焼結、熱処理などの工程を経て製造されている。
2. Description of the Related Art Rare earth sintered magnets are obtained by coarsely pulverizing an alloy for a rare earth sintered magnet having a required metal composition, followed by fine pulverization.
It is manufactured through processes such as molding, sintering, and heat treatment.

【0003】上記合金の粗粉砕後の微粉砕に際しては、
摺動部分がなく粉砕時の発熱が抑えられ、且つ粉砕効率
の優れたジェットミルと呼ばれる乾式粉砕装置が、近年
盛んに使用されている。
In the fine pulverization of the above alloy after the coarse pulverization,
In recent years, dry pulverizers called jet mills, which have no sliding parts, suppress heat generation during pulverization, and have excellent pulverization efficiency, have been actively used in recent years.

【0004】従来の乾式粉砕装置Bは、図4、5に示す
ように、架台100に設置されたケーシング110内に
粉砕室120と、粉砕室120の上方に連通させられた
分級室130とが設けられ、この分級室130に排気パ
イプ140が連通させられて構成されている。
As shown in FIGS. 4 and 5, a conventional dry pulverizer B includes a pulverizing chamber 120 in a casing 110 installed on a gantry 100 and a classifying chamber 130 communicated above the pulverizing chamber 120. An exhaust pipe 140 is provided to communicate with the classification chamber 130.

【0005】粉砕室120は、図5に示すように、上方
の分級室130内に設けられる分級板131を支持する
支持筒132の周囲にリング状空間として形成されてい
る。かかる粉砕室120内には、上記希土類焼結磁石用
合金を粗粉砕した粗粉を供給する原料供給ノズル150
の供給口が開口させられている。
As shown in FIG. 5, the pulverizing chamber 120 is formed as a ring-shaped space around a support cylinder 132 which supports a classifying plate 131 provided in an upper classifying chamber 130. A raw material supply nozzle 150 for supplying coarse powder obtained by coarsely pulverizing the rare earth sintered magnet alloy is provided in the pulverizing chamber 120.
Supply port is opened.

【0006】原料供給ノズル150は、図4に示すよう
に、原料供給用のホッパー151に途中分岐接続させた
圧送管152(図5)に接続されている。ホッパー15
1に投入された粗粉は、定量器(図示せず)を介して、
その一定量が連続的に圧送管152内に送られ、圧送管
152内を流れる不活性ガスにより原料供給ノズル15
0から粉砕室120内に気流搬送されることとなる。
As shown in FIG. 4, the raw material supply nozzle 150 is connected to a pressure feed pipe 152 (FIG. 5) which is branched and connected to a raw material supply hopper 151 on the way. Hopper 15
The coarse powder charged in 1 is passed through a quantifier (not shown)
The fixed amount is continuously fed into the pressure feed pipe 152, and the raw material supply nozzle 15 is fed by the inert gas flowing through the pressure feed pipe 152.
From 0, the air is conveyed into the pulverizing chamber 120.

【0007】また、リング状空間に構成された粉砕室1
20の周面120aには、図4、5に示すように、粉砕
ノズル160の噴射口160aが開口させられている。
粉砕ノズル160の後端側は、エアヘッダ161に接続
され、高圧で超音速に加速された不活性ガスが粉砕ノズ
ル160から粉砕室120内に吹き出せるように構成さ
れている。
[0007] Further, a crushing chamber 1 formed in a ring-shaped space.
As shown in FIGS. 4 and 5, an injection port 160 a of the pulverizing nozzle 160 is opened on the peripheral surface 120 a of the nozzle 20.
The rear end side of the crushing nozzle 160 is connected to the air header 161, and is configured so that the inert gas accelerated at a high pressure and supersonic speed can be blown out from the crushing nozzle 160 into the crushing chamber 120.

【0008】上記原料供給ノズル150の圧送管152
も、エアヘッダ161にエアレギュレータ(図示せず)
を介して連結され、粉砕ノズル160から吹き出す同じ
不活性ガスで、粉砕室120内に粗粉を圧送することが
できるように構成されている。
The feed pipe 152 of the raw material supply nozzle 150
Also, an air regulator (not shown) is attached to the air header 161.
And the same inert gas blown out from the pulverizing nozzle 160 so that coarse powder can be pumped into the pulverizing chamber 120.

【0009】上記構成の粉砕ノズル160のノズル経路
の途中分岐部には、図4に示すように、粉砕室120の
上方に連通する分級室130との間に分級室間粗粉循環
路162が設けられている。
As shown in FIG. 4, a coarse powder circulation path 162 between the classifying chambers is provided between the classifying chamber 130 communicating with the upper part of the pulverizing chamber 120 at a branch portion in the middle of the nozzle path of the pulverizing nozzle 160 having the above configuration. Is provided.

【0010】かかる構成の乾式粉砕装置Bでは、原料供
給ノズル150から粉砕室120内に供給された粗粉
に、背後の粉砕ノズル160から高圧の不活性ガスが噴
射される。粉砕の詳細な機構は不明ではあるが、この不
活性ガスの渦流により粉砕室120内に粉砕ゾーンが形
成され、この粉砕ゾーン内で粗粉同士が衝突させられて
微粉に粉砕されるものと思われる。
In the dry pulverizing apparatus B having such a configuration, a high-pressure inert gas is injected from the pulverizing nozzle 160 at the back to the coarse powder supplied from the raw material supply nozzle 150 into the pulverizing chamber 120. Although the detailed mechanism of the pulverization is unknown, it is assumed that the vortex of the inert gas forms a pulverization zone in the pulverization chamber 120, in which the coarse powders collide with each other and are pulverized into fine powders. It is.

【0011】原料供給ノズル150、粉砕ノズル160
から粉砕室120内に噴出された不活性ガスは、粉砕室
120に連通した上方の分級室130を経由して排気パ
イプ140から排気されることとなる。
Raw material supply nozzle 150, crushing nozzle 160
The inert gas jetted into the pulverizing chamber 120 from below is exhausted from the exhaust pipe 140 via the upper classifying chamber 130 communicating with the pulverizing chamber 120.

【0012】粉砕室120内には、図5に示すように、
複数の粉砕ノズル160の噴射口160aが開口させら
れ、粉砕室120内の粉砕ゾーンで粉砕されて、所定粒
度となった微粉が高速でリング状粉砕室120内を渦流
のように高速で回りながら、排気パイプ140の吸引力
により不活性ガスの排気と共に上方の分級室130内に
引き上げられていく。
In the crushing chamber 120, as shown in FIG.
The injection ports 160a of the plurality of pulverizing nozzles 160 are opened, and the fine powder having a predetermined particle size, which is pulverized in the pulverizing zone in the pulverizing chamber 120, rotates at high speed in the ring-shaped pulverizing chamber 120 at high speed like a vortex. The inert gas is discharged into the upper classifying chamber 130 together with the exhaust of the inert gas by the suction force of the exhaust pipe 140.

【0013】分級室130内には、分級板131が設け
られ、所望粒径以下に細かくなった微粉が分級される。
分級された微粉は、排気パイプ140側に不活性ガスと
ともに引かれて排気されることとなる。排気パイプ14
0は捕集器(図示せず)に接続されており、この捕集器
で希土類焼結磁石用原料に好適な粒径の微粉が捕集され
ることとなる。なお、非常に細かな微粉は捕集器のバグ
フィルタ(図示省略)により除去することがよい。
A classifying plate 131 is provided in the classifying chamber 130, and classifies fine powder having a desired particle size or less.
The classified fine powder is drawn together with the inert gas to the exhaust pipe 140 side and is exhausted. Exhaust pipe 14
Numeral 0 is connected to a collector (not shown), and the collector collects fine powder having a particle diameter suitable for a raw material for a rare earth sintered magnet. Note that very fine powder is preferably removed by a bag filter (not shown) of the collector.

【0014】上記要領で粗粉は微粉砕されるが、十分に
所定粒径にまで微粉砕されない粗粉(以下、粉砕途中の
未だ所定の粒径にまで粉砕されない粗粉を、原料供給ノ
ズル150から供給される粗粉と区別するために、粉砕
不十分粗粉と呼ぶことにする。)は、分級室130内に
不活性ガスや希土類焼結磁石用として好適な粒径の微粉
とともに引き上げられても、粉砕ゾーンにおける遠心力
と排気パイプの吸引力とのバランスによって、分級室間
粗粉循環路162を通って、粉砕ノズル160内に還流
させられる。
Although the coarse powder is finely pulverized in the above-described manner, the coarse powder that is not sufficiently pulverized to a predetermined particle size (hereinafter, coarse powder that is not pulverized to a predetermined particle size during the pulverization) is supplied to the raw material supply nozzle 150. Will be referred to as insufficiently pulverized coarse powder in order to be distinguished from the coarse powder supplied from Co., Ltd.) in the classifying chamber 130 together with an inert gas or fine powder having a particle diameter suitable for rare earth sintered magnets. Even in this case, due to the balance between the centrifugal force in the grinding zone and the suction force of the exhaust pipe, the powder is returned into the grinding nozzle 160 through the coarse powder circulation path 162 between the classification chambers.

【0015】粉砕ノズル160内に還流させられた粉砕
不十分粗粉は、噴射口160aから高速で粉砕室120
内に送られ、再粉砕されることとなる。
The insufficiently pulverized coarse powder recirculated into the pulverizing nozzle 160 is rapidly discharged from the pulverizing chamber 120 through the injection port 160a.
And re-crushed.

【0016】[0016]

【発明が解決しようとする課題】従来より、希土類焼結
磁石の製造では、製造品質の向上と、併せてその生産効
率の向上が強く求められ、上記ジエットミルなどの乾式
粉砕装置を使用した粉砕工程での効率向上が求められて
いた。
Heretofore, in the production of rare earth sintered magnets, it has been strongly required to improve the production efficiency as well as the production quality, and the pulverization process using a dry pulverizer such as the above-mentioned jet mill is required. There was a demand for improved efficiency.

【0017】上記構成の乾式粉砕装置では、原料供給ノ
ズルにより粉砕室内に供給された粗粉は、所定粒径にな
るまで微粉砕が繰り返されることとなるが、本発明者ら
は、かかる繰返粉砕の時間短縮が図れないかと考えた。
In the dry pulverizer having the above-mentioned structure, the coarse powder supplied into the pulverizing chamber by the raw material supply nozzle is repeatedly pulverized until it reaches a predetermined particle size. We thought whether the time for grinding could be shortened.

【0018】また、粉砕不十分粗粉が前記繰返粉砕によ
り粉砕室から分級室空間に長時間にわたって停滞すると
最終的に得られる微粉の酸素含有量が増大し、希土類焼
結磁石の磁気特性が低下することが本発明者らにより知
見され、かかる点の解決も強く求められている。
Further, if the insufficiently pulverized coarse powder stays in the classifying chamber space from the pulverization chamber for a long time due to the repetitive pulverization, the oxygen content of the finally obtained fine powder increases, and the magnetic characteristics of the rare earth sintered magnet are reduced. It has been found by the present inventors that this is reduced, and there is a strong demand for a solution to this point.

【0019】従って、本発明の目的は、希土類焼結磁石
用原料微粉の酸素含有量を低減できるとともに、粉砕効
率を向上した乾式粉砕装置およびそれを用いた低酸素含
有量の希土類焼結磁石の製造方法を提供することにあ
る。
Accordingly, an object of the present invention is to provide a dry-type pulverizer capable of reducing the oxygen content of a raw material fine powder for a rare-earth sintered magnet and improving the pulverization efficiency, and a rare-earth sintered magnet having a low oxygen content using the same. It is to provide a manufacturing method.

【0020】[0020]

【課題を解決するための手段】本発明は、原料供給ノズ
ルから粉砕室内に供給された粗粉に、前記粉砕室内に開
口した粉砕ノズルの噴射口から高圧の不活性ガスを噴射
して、前記粗粉を相互に衝突させて微粉砕し、前記粉砕
室に連通する分級室で微粉を分級して回収する乾式粉砕
装置であって、前記粉砕ノズルには、前記粉砕室内の粉
砕不十分な粗粉をノズル経路内に流入させる粉砕室間粗
粉循環路が設けられていることを特徴とする。
According to the present invention, a high-pressure inert gas is injected into a coarse powder supplied from a raw material supply nozzle into a crushing chamber through an injection port of a crushing nozzle opened into the crushing chamber. A dry pulverizing apparatus for crushing coarse powder with each other to finely pulverize the fine powder and classifying and collecting the fine powder in a classifying chamber communicating with the pulverizing chamber, wherein the pulverizing nozzle includes an insufficiently pulverized coarse powder in the pulverizing chamber. It is characterized in that a coarse powder circulation path between the pulverizing chambers for flowing the powder into the nozzle path is provided.

【0021】前記粉砕ノズルには、前記分級室内の粉砕
不十分な粗粉をノズル経路内に流入させる分級室間粗粉
循環路が併設させられていることを特徴とする。
[0021] The pulverizing nozzle is characterized in that a coarse powder circulation path between the classification chambers through which insufficiently pulverized coarse powder in the classification chamber flows into the nozzle path.

【0022】また、本発明は、原料供給ノズルから粉砕
室内に供給された粗粉に、前記粉砕室内に開口した複数
の粉砕ノズルの噴射口から高圧の不活性ガスを噴射し
て、前記粗粉を相互に衝突させて微粉砕し、微粉を前記
粉砕室に連通する分級室で分級して回収する乾式粉砕装
置であって、前記粉砕室内の粉砕不十分な粗粉をノズル
経路内に流入させる粉砕室間粗粉循環路と、前記分級室
内の粉砕不十分な粗粉をノズル経路内に流入させる分級
室間粗粉循環路とが、別々の粉砕ノズルに設けられてい
ることを特徴とする。
The present invention also provides a method of spraying high-pressure inert gas onto the coarse powder supplied from a raw material supply nozzle into a pulverizing chamber through injection ports of a plurality of pulverizing nozzles opened into the pulverizing chamber. A dry pulverizing apparatus that pulverizes fine powder by colliding them with each other, classifies and collects fine powder in a classification chamber communicating with the pulverization chamber, and causes insufficiently pulverized coarse powder in the pulverization chamber to flow into a nozzle path. A coarse powder circulation path between the pulverizing chambers and a coarse powder circulation path between the classification chambers for allowing the insufficiently pulverized coarse powder in the classification chamber to flow into the nozzle path are provided in separate pulverizing nozzles. .

【0023】前記粉砕室間粗粉循環路を設けた粉砕ノズ
ルの噴射口と、前記分級室間粗粉循環路を設けた粉砕ノ
ズルの噴射口とが、粉砕室の周面の円周方向に沿って交
互に開口させられていることを特徴とする。
The injection port of the pulverizing nozzle provided with the coarse powder circulation path between the pulverizing chambers and the injection port of the pulverization nozzle provided with the coarse powder circulation path between the classifying chambers are arranged in the circumferential direction of the peripheral surface of the pulverizing chamber. It is characterized by being alternately opened along.

【0024】前記粉砕ノズルの前記粉砕室内への開口端
側が、前記粉砕室内の周面から突設させられていること
を特徴とする。
[0024] An opening end side of the crushing nozzle into the crushing chamber is protruded from a peripheral surface in the crushing chamber.

【0025】前記粉砕ノズルの軸方向と、そのノズルの
軸方向と前記粉砕室の周面とが交わる位置における前記
周面の接線方向とがなす角度(θ)が、θ=30〜50
度であることを特徴とする。
The angle (θ) between the axial direction of the crushing nozzle and the tangential direction of the peripheral surface at the position where the axial direction of the nozzle intersects the peripheral surface of the crushing chamber is θ = 30 to 50.
Degree.

【0026】前記粉砕ノズルの軸方向と、粉砕室の周面
に開口した粉砕室間粗粉循環路の中心位置とがなす角度
(α)が、α=80〜150度であることを特徴とす
る。
The angle (α) formed between the axial direction of the pulverizing nozzle and the center position of the coarse powder circulation path between the pulverizing chambers opened on the peripheral surface of the pulverizing chamber is α = 80 to 150 degrees. I do.

【0027】本発明は、上記構成の乾式粉砕装置を用い
て希土類焼結磁石用原料を微粉砕し、その原料微粉を用
いて希土類焼結磁石を製造することを特徴とする。
The present invention is characterized in that a raw material for a rare earth sintered magnet is finely pulverized by using the dry pulverizer having the above-mentioned structure, and a rare earth sintered magnet is produced by using the fine powder of the raw material.

【0028】特に、希土類焼結磁石が、R2 14B金属
間化合物を主相とするR−T−B系異方性焼結磁石(R
はYを含めた希土類元素の1種または2種以上、TはF
eまたはFeとCo)である場合に好適である。
In particular, the rare earth sintered magnet is an RTB-based anisotropic sintered magnet (R 2 T 14 B intermetallic compound having a main phase of R 2 T 14 B intermetallic compound).
Is one or more kinds of rare earth elements including Y, and T is F
e or Fe and Co).

【0029】本発明の乾式粉砕装置には、粉砕ノズル
に、粉砕室内と連絡された粉砕室間粗粉循環路が設けら
れている。粉砕ノズルにかかる粉砕室間粗粉循環路を設
けることにより、従来とは異なり、所定粒径に達しない
粉砕不十分粗粉を分級室に極力送らずに、粉砕室内から
粉砕ノズル内に直接還流させることができる。
In the dry pulverizer of the present invention, the pulverizing nozzle is provided with a coarse powder circulation path between the pulverizing chambers communicating with the pulverizing chamber. By providing a coarse powder circulation path between the grinding chambers connected to the grinding nozzle, unlike the conventional method, the insufficiently ground coarse powder that does not reach the predetermined particle size is directly returned from the grinding chamber to the grinding nozzle without being sent to the classification chamber as much as possible. Can be done.

【0030】従来は、粉砕ノズル内に粉砕不十分粗粉を
還流させるためには、一旦分級室まで粉砕不十分粗粉が
上り、分級室内から分級室間粗粉循環路を通って粉砕ノ
ズル内に送る方法のみが採用されていた。
Conventionally, in order to recirculate the insufficiently pulverized coarse powder into the pulverizing nozzle, the insufficiently pulverized coarse powder goes up to the classifying chamber once, passes from the classifying chamber to the coarse powder circulation path between the classifying chambers, and then flows into the pulverizing nozzle. Only the method of sending to was adopted.

【0031】しかし、本発明の上記構成のように粉砕ノ
ズルに粉砕室間粗粉循環路を設けておけば、分級室を経
由して粉砕ノズルに還流される経路よりも非常に短い経
路で、粉砕不十分粗粉を粉砕ノズル内に送ることができ
る。すなわち、ショートパスを通過する分短い時間で、
粉砕不十分粗粉の再粉砕が行え、粉砕効率の著しい向上
が図れることとなる。
However, if the coarse powder circulation path between the pulverizing chambers is provided in the pulverizing nozzle as in the above-described configuration of the present invention, the path is much shorter than the path recirculated to the pulverizing nozzle via the classification chamber. Insufficiently ground coarse powder can be sent into the grinding nozzle. In other words, in a short time that passes through the short pass,
The re-pulverization of the insufficiently pulverized coarse powder can be performed, and the pulverization efficiency can be remarkably improved.

【0032】併せて、上記のように粉砕効率が向上する
分、粉砕工程で不活性ガスに微量混入されている酸素と
の接触時間も短くなり、希土類焼結磁石用原料微粉に含
まれる酸素含有量を低減させることができる。
At the same time, as the grinding efficiency is improved as described above, the contact time with oxygen that is slightly mixed in the inert gas in the grinding step is shortened, and the oxygen-containing material contained in the raw material powder for the rare earth sintered magnet is reduced. The amount can be reduced.

【0033】本発明の乾式粉砕装置において、粉砕ノズ
ルと分級室との間に設けられていた従来の分級室間粗粉
循環路を全くなくすのではなく、複数の粉砕ノズルのう
ち少なくとも一本の粉砕ノズルにはこの分級室間粗粉循
環路を残すように、すなわち粉砕室間粗粉循環路と分級
室間粗粉循環路とが併存するようにすることが好まし
い。
In the dry pulverizer of the present invention, the conventional coarse powder circulation path between the classifying chamber and the pulverizing nozzle provided between the pulverizing nozzle and the classifying chamber is not eliminated at all. It is preferable that the coarse powder circulation path between the classification chambers is left in the pulverizing nozzle, that is, the coarse powder circulation path between the pulverization chambers and the coarse powder circulation path between the classification chambers coexist.

【0034】これは、粉砕室間粗粉循環路を設けても、
分級室内に至る粉砕不十分粗粉も存在するため、かかる
粉砕不十分粗粉を粉砕ノズルに送る必要があるためであ
る。かかる粉砕室間粗粉循環路と、分級室間粗粉循環路
とは、同一の粉砕ノズルに併設するようにしても構わな
いし、あるいは別々の粉砕ノズルに設けるようにしても
構わない。
This is because even if the coarse powder circulation path between the grinding chambers is provided,
This is because the insufficiently pulverized coarse powder that reaches the classification chamber is also present, and thus it is necessary to send the insufficiently pulverized coarse powder to the pulverizing nozzle. The coarse powder circulation path between the pulverizing chambers and the coarse powder circulation path between the classification chambers may be provided in the same pulverizing nozzle or may be provided in separate pulverizing nozzles.

【0035】粉砕室間粗粉循環路と分級室間粗粉循環路
とを別々の粉砕ノズルに設けるに際しては、例えば、粉
砕室間粗粉循環路を設けた粉砕ノズルと分級室間粗粉循
環路とを設けた粉砕ノズルとを粉砕室の周面にその噴射
口が円周方向に交互に配置するように設ければ、より良
好な粉砕効率が得られることが分かった。
When the coarse powder circulation path between the pulverizing chambers and the coarse powder circulation path between the classification chambers are provided in separate pulverizing nozzles, for example, the pulverizing nozzle provided with the coarse powder circulation path between the pulverizing chambers and the coarse powder circulation between the classification chambers are used. It has been found that better crushing efficiency can be obtained by arranging the crushing nozzle provided with the passage and the crushing nozzle on the peripheral surface of the crushing chamber such that the injection ports are alternately arranged in the circumferential direction.

【0036】また、従来は粉砕室の周面から粉砕ノズル
の噴射口の開口端側が突設しないように構成されていた
が、本発明者らの実験により、粉砕ノズルの上記開口端
側を粉砕室内へ突設させると粉砕効率が向上することが
分かった。
Further, conventionally, the opening end side of the injection port of the pulverizing nozzle was configured not to protrude from the peripheral surface of the pulverizing chamber. However, according to experiments by the present inventors, the pulverizing nozzle was pulverized at the opening end side. It was found that the pulverizing efficiency was improved by protruding indoors.

【0037】粉砕室内での粗粉の粉砕機構については、
粗粉同士の衝突、粉砕不十分粗粉同士の衝突、粗粉およ
び粉砕不十分粗粉との衝突、あるいは粉砕室などの装置
内壁面などとの種々の衝突などで粉砕が進められると考
えられるが、上記のように粉砕ノズルの開口端側を粉砕
室側に突設させることにより粉砕効率が向上するという
点については、断定はできないものの、高速で運動する
粗粉あるいは粉砕不十分粗粉がこの粉砕ノズルの突設部
に衝突して、従来以上に粉砕が促進されるのではないか
と推定される。
Regarding the grinding mechanism of the coarse powder in the grinding chamber,
It is considered that the pulverization is promoted by collision between coarse powders, collision between insufficiently pulverized coarse powders, collision with coarse powder and insufficiently pulverized coarse powder, or various collisions with the inner wall surface of the apparatus such as a pulverizing chamber. However, as described above, by making the opening end side of the crushing nozzle protrude toward the crushing chamber side, the crushing efficiency is improved. It is estimated that the collision with the protruding portion of the pulverizing nozzle may promote the pulverization more than before.

【0038】かかる粉砕ノズルの開口方向は、粉砕ノズ
ルの軸方向と、粉砕室の周面とこの軸方向とが交差する
位置における前記周面の接線とがなす角度(θ)を、θ
=30〜50度の範囲内にあるように設定すればよい。
The opening direction of the pulverizing nozzle is defined by the angle (θ) between the axial direction of the pulverizing nozzle and the tangent to the peripheral surface of the pulverizing chamber at a position where the axial direction intersects the axial direction.
= 30 to 50 degrees.

【0039】θが30度未満では、開口方向が極端に粉
砕室の周面側に向き過ぎて、粗粉を十分な高速で衝突さ
せる方向への吹出が行えない。また、θが50度を越え
ると、開口方向が粉砕室の粗粉の還流路を横断する方向
に吹き付け、粗粉の粉砕室内での高速衝突運動を妨げて
しまう。より好ましくは、θ=35〜40度の範囲であ
る。
If the angle θ is less than 30 degrees, the opening direction is extremely directed toward the peripheral surface of the pulverizing chamber, so that it is not possible to blow the coarse powder in a direction to collide with sufficiently high speed. If θ exceeds 50 degrees, the opening direction is sprayed in a direction crossing the recirculation path of the coarse powder in the crushing chamber, which hinders the high-speed collision movement of the coarse powder in the crushing chamber. More preferably, θ is in the range of 35 to 40 degrees.

【0040】併せて、粉砕室間粗粉循環路の開口方向
も、粉砕室内を流れる粉砕不十分粗粉を十分に取り込み
易い方向に開口させる必要がある。実験では、上記のよ
うに突出させた粉砕ノズルの軸方向と、粉砕室間粗粉循
環路の粉砕室周面側における開口の中心位置とのなす角
度(α)が、α=80〜150度であればよい。
In addition, the opening direction of the coarse powder circulation path between the pulverizing chambers must be opened in a direction in which insufficiently pulverized coarse powder flowing in the pulverizing chamber is easily taken in. In the experiment, the angle (α) between the axial direction of the pulverizing nozzle protruded as described above and the center position of the opening on the side of the pulverization chamber in the coarse powder circulation path between pulverization chambers is α = 80 to 150 degrees. Should be fine.

【0041】αが80度未満では、粗粉の還流方向に対
してより交差する方向に開口することになり、逆に15
0度を越えると、開口方向が粉砕室の周面方向に向い過
ぎて粗粉の循環運動方向から外れるため、粉砕不十分粗
粉の取り込みが十分に行えない。より好ましくは、α=
90〜120度の範囲である。
When α is less than 80 degrees, the opening is made in a direction more intersecting with the reflux direction of the coarse powder.
If it exceeds 0 degree, the opening direction is too directed to the circumferential direction of the crushing chamber and deviates from the direction of circulating movement of the coarse powder, so that insufficiently crushed coarse powder cannot be sufficiently taken in. More preferably, α =
The range is 90 to 120 degrees.

【0042】また、上記構成の乾式粉砕装置を使用して
R−T−B系希土類焼結磁石用粗粉原料を微粉砕し、得
られた微粉を用いて、例えば、R2 14B金属間化合物
を主相とするR−T−B系異方性焼結磁石(RはYを含
めた希土類元素の1種または2種以上、TはFeまたは
FeとCo)を製造すれば、微粉砕効率が著しく向上で
きるとともに、酸素量の少ない磁気特性の優れた希土類
焼結磁石を得ることができる。
The RTB-based rare earth sintered magnet coarse powder raw material is finely pulverized by using the dry pulverizer having the above-mentioned structure, and the obtained fine powder is used to form, for example, R 2 T 14 B metal. When an RTB based anisotropic sintered magnet having an intermetallic compound as a main phase (R is one or more rare earth elements including Y and T is Fe or Fe and Co) is produced, The pulverization efficiency can be remarkably improved, and a rare earth sintered magnet having a small amount of oxygen and excellent in magnetic properties can be obtained.

【0043】[0043]

【発明の実施の形態】以下、本発明の乾式粉砕装置を図
面に基づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The dry pulverizer of the present invention will be described below in detail with reference to the drawings.

【0044】本発明の乾式粉砕装置Aは、図1の縦断面
図、および図1のX−X線で切断した平断面図に示すよ
うに、架台に設置されたケーシング10内に粉砕室20
と、粉砕室20の上方に連通させられた分級室30が設
けられている。
As shown in the vertical sectional view of FIG. 1 and the plan sectional view taken along the line XX of FIG. 1, the dry grinding apparatus A of the present invention has a grinding chamber 20 in a casing 10 installed on a gantry.
And a classifying chamber 30 communicated above the pulverizing chamber 20.

【0045】分級室30は、図1に示すように、その上
方が排気パイプ40に連通させられ、粉砕室20内で粉
砕されて生成した微粉が、その上方の分級室30内に吸
引され、分級板31で分級されて所望粒径の微粉が排気
パイプ40から排出させられるようになっている。
As shown in FIG. 1, the classifying chamber 30 is connected to an exhaust pipe 40 at an upper part thereof, and fine powder generated by pulverization in the pulverizing chamber 20 is sucked into the classifying chamber 30 above the classifying chamber. The fine powder having a desired particle size after being classified by the classification plate 31 is discharged from the exhaust pipe 40.

【0046】粉砕室20は、図2に示すように、上方の
分級室30内に設けられる分級板31を支持する支持筒
32の周囲にリング状空間として形成されている。粉砕
室20内には、磁石原料用の合金を粗粉砕した粗粉を供
給するための原料供給ノズル50が、粉砕室20の周面
20aに沿って開口させられている。
As shown in FIG. 2, the pulverizing chamber 20 is formed as a ring-shaped space around a support cylinder 32 which supports a classifying plate 31 provided in an upper classifying chamber 30. In the pulverizing chamber 20, a raw material supply nozzle 50 for supplying coarse powder obtained by coarsely pulverizing the alloy for the magnet raw material is opened along the peripheral surface 20 a of the pulverizing chamber 20.

【0047】原料供給ノズル50は、図2に示すよう
に、原料供給用のホッパー51(図1)に途中分岐接続
させられた圧送管52に接続され、ホッパー51内に投
入された粗粉が定量器(図示せず)を介して、その一定
量が連続的に圧送管52内に送られ、圧送管52内を流
れる不活性ガスにより原料供給ノズル50から粉砕室2
0内に気流搬送されるようになっている。
As shown in FIG. 2, the raw material supply nozzle 50 is connected to a pressure feed pipe 52 that is branched and connected to a raw material supply hopper 51 (FIG. 1). A certain amount thereof is continuously fed into a pressure feed pipe 52 through a quantifier (not shown), and is supplied from a raw material supply nozzle 50 to a grinding chamber 2 by an inert gas flowing through the pressure feed pipe 52.
The air flow is conveyed into the inside.

【0048】リング状空間に構成された前記粉砕室20
には、図1、2に示すように、粉砕ノズル60が開口さ
せられている。本実施の形態では、粉砕ノズル60は、
粉砕室20のリング状の周面に沿って等間隔に8本設け
られている。8本の粉砕ノズル60は、粉砕室間粗粉循
環路61を設けた粉砕ノズル60aと、分級室間粗粉循
環路62を設けた粉砕ノズル60bとに区分され、それ
ぞれが交互に配置されている。
The crushing chamber 20 formed in a ring-shaped space
1, a pulverizing nozzle 60 is opened as shown in FIGS. In the present embodiment, the crushing nozzle 60
Eight are provided at equal intervals along the ring-shaped peripheral surface of the crushing chamber 20. The eight pulverizing nozzles 60 are divided into a pulverizing nozzle 60a provided with a coarse powder circulation path 61 between pulverization chambers and a pulverization nozzle 60b provided with a coarse powder circulation path 62 between the classifying chambers, and are arranged alternately. I have.

【0049】粉砕ノズル60a(60)、60b(6
0)のそれぞれは、その噴射口の開口端側が粉砕室20
内に突設させられている。粉砕ノズル60a、60bの
開口方向は、開口方向に沿った軸aが、図2に示すよう
に、粉砕室20の湾曲した周面20aと軸aとの交差す
る点での周面20aの接線bと軸aとのなす角度θが、
30〜50度の範囲内に入るように設定されている。
The pulverizing nozzles 60a (60) and 60b (6
0), the opening end side of the injection port is the crushing chamber 20.
It is projected inside. The opening direction of the crushing nozzles 60a, 60b is such that the axis a along the opening direction is a tangent to the curved peripheral surface 20a of the crushing chamber 20 and the point at which the axis a intersects, as shown in FIG. The angle θ between b and the axis a is
It is set to fall within the range of 30 to 50 degrees.

【0050】より好ましくは、35〜45度の範囲内で
あればよい。本実施の形態では、8本の粉砕ノズル60
におけるかかる角度θが同一に設定されている。
More preferably, the angle may be in the range of 35 to 45 degrees. In the present embodiment, eight grinding nozzles 60
Are set to be the same.

【0051】粉砕ノズル60aには、図2に示すよう
に、粉砕室間粗粉循環路61が粉砕ノズル60aのノズ
ル経路内の途中部分から分岐されて、分岐先端側が粉砕
室20の周面20aにおいて粉砕室内粗粉循環口61a
として開口させられている。
As shown in FIG. 2, the crushing nozzle 60a has a coarse powder circulation path 61 between crushing chambers that branches off from the middle of the nozzle path of the crushing nozzle 60a. In the grinding room coarse powder circulation port 61a
It is opened as.

【0052】粉砕室内粗粉循環口61aの開口方向は、
粉砕室内粗粉循環口61a側の直管部分61bに管路方
向に沿った軸cと、上記軸aとがなす角度αが、80〜
150度の範囲内になるように設定されている。より好
ましくは、90〜120度の範囲内に収まるようにして
おけばよい。
The opening direction of the coarse powder circulation port 61a in the grinding chamber is
The angle α between the axis c along the pipe direction and the axis a in the straight pipe portion 61b on the side of the coarse powder circulation port 61a in the crushing chamber is 80 to
It is set to be within the range of 150 degrees. More preferably, it should be within the range of 90 to 120 degrees.

【0053】なお、粉砕室間粗粉循環路61は、直線状
に設けることが加工上有利であるが、湾曲させて設けて
もよい。
It is advantageous for processing that the coarse powder circulation path 61 between the pulverizing chambers is provided in a straight line, but may be provided in a curved shape.

【0054】本実施の形態のように等間隔に粉砕ノズル
60a、60bとを交互に配置して、粉砕ノズル60
a、60b、粉砕室内粗粉循環口61aを上記範囲内に
収まるように設定すれば、粉砕ノズル60aの開口方向
(軸aに沿った方向)が、粉砕ノズル60bを間に置い
た一つ先の粉砕ノズル60aの粉砕室内粗粉循環口61
aの開口方向(軸cに沿った方向)に略沿うこととな
る。
As in the present embodiment, the crushing nozzles 60a and 60b are alternately arranged at regular intervals, and
a, 60b, if the coarse powder circulation port 61a in the crushing chamber is set within the above range, the opening direction of the crushing nozzle 60a (the direction along the axis a) is one point away from the crushing nozzle 60b. Crushing chamber coarse powder circulation port 61 of crushing nozzle 60a
This substantially follows the opening direction of a (direction along the axis c).

【0055】原料供給ノズル50から粉砕室20内に送
られた粗粉は、粉砕ノズル60から吹き付けられた超高
速の不活性ガス流により、粗粉同士が衝突して粉砕され
ることとなるが、その際生じた微粉は直ぐに上方の分級
室30内に引かれ、比較的粉砕が進んでいない粉砕不十
分粗粉が、粉砕室20内を循環している間に粉砕室内粗
粉循環口61aに取り込まれることとなる。
The coarse powder sent from the raw material supply nozzle 50 into the pulverizing chamber 20 is pulverized by the collision of the coarse powders by the ultrahigh-speed inert gas flow blown from the pulverizing nozzle 60. The fine powder generated at that time is immediately drawn into the upper classifying chamber 30, and the insufficiently crushed coarse powder, which has not been relatively crushed, is circulated in the crushing chamber 20 while the coarse powder circulation port 61 a is being circulated. It will be taken into.

【0056】また、粉砕不十分粗粉は、粉砕ノズル60
から吹き出される超高速不活性ガスによりリング状の粉
砕室20内を高速で渦流状に運動させられるが、この運
動時に遠心力により粉砕室20側に押しやられ、粉砕室
内粗粉循環口61aに取り込まれることともなる。この
様子を図2に矢印で示した。
The insufficiently pulverized coarse powder is supplied to the pulverizing nozzle 60
The ring-shaped crushing chamber 20 is moved in a vortex at high speed by an ultra-high-speed inert gas blown out of the crushing chamber. It will be taken in. This is shown by arrows in FIG.

【0057】一方、粉砕ノズル60bには、図2の要部
断面図である図3に部分的に示すように、分級室間粗粉
循環路62が、図4に示す従来例の構成と同様にして設
けられている。粉砕室20内で粉砕され、微粉とともに
分級室30内に引かれた粉砕不十分粗粉は、分級板31
で分級されて、分級室内に開口させた分級室内粗粉循環
口62aから分級室間粗粉循環路62に入り、粉砕ノズ
ル60bに至り、粉砕ノズル60bから粉砕室20内に
戻されて再粉砕させられることとなる。
On the other hand, as shown partially in FIG. 3, which is a cross-sectional view of a main part in FIG. 2, a coarse powder circulation path 62 between classification chambers is provided in the pulverizing nozzle 60b in the same manner as the conventional example shown in FIG. It is provided in. The insufficiently crushed coarse powder pulverized in the crushing chamber 20 and drawn together with the fine powder into the classification chamber 30 is classified into a classification plate 31.
And then enters the inter-classification room coarse powder circulation path 62 from the classification room coarse powder circulation port 62a opened into the classification chamber, reaches the pulverization nozzle 60b, is returned from the pulverization nozzle 60b into the pulverization chamber 20, and is re-pulverized. Will be made to do.

【0058】かかる構成の粉砕ノズル60(粉砕ノズル
60a、60b)は、図1に示すように、エアヘッダ7
0に接続され、超音速に加速された不活性ガスが粉砕ノ
ズル60から粉砕室内に吹き出せるように構成されてい
る。
As shown in FIG. 1, the pulverizing nozzles 60 (pulverizing nozzles 60a and 60b) having this configuration
0, and is configured so that the inert gas accelerated to the supersonic speed can be blown out from the grinding nozzle 60 into the grinding chamber.

【0059】上記原料供給ノズル50の圧送管52も、
エアヘッダ70にエアレギュレータ(図示せず)を介し
て連結され、粉砕ノズル60から吹き出す同じ不活性ガ
スで、粉砕室20内に粗粉を圧送することができるよう
に構成されている。
The feed pipe 52 of the raw material supply nozzle 50 is also
It is connected to the air header 70 via an air regulator (not shown), and is configured so that coarse powder can be pressure-fed into the crushing chamber 20 by the same inert gas blown out from the crushing nozzle 60.

【0060】上記構成のように粉砕室20内に開口させ
られた原料供給ノズル50、粉砕ノズル60から吹き出
させられた不活性ガスは、粉砕室20内で粗粉同士を衝
突させて粉砕を促進させるとともに、粉砕室20に連通
した上方の分級室30に、生じた微粉と若干の粉砕不十
分粗粉とを搬送することとなる。
The inert gas blown out from the raw material supply nozzle 50 and the pulverizing nozzle 60 opened in the pulverizing chamber 20 as described above accelerates the pulverization by causing the coarse particles to collide with each other in the pulverizing chamber 20. At the same time, the generated fine powder and a small amount of insufficiently crushed coarse powder are transported to the upper classification chamber 30 communicating with the crushing chamber 20.

【0061】分級室30内には、分級板31が設けら
れ、所定粒径以下に粉砕された微粉が不活性ガスととも
に、上方に連通した排気パイプ40から排出されること
となる。排出された微粉は、排気パイプ40に接続され
た捕集器(図示せず)で捕集されることとなる。所望粒
径以下の例えば超微粉は、別途フィルタ(図示せず)で
除去される。
A classifying plate 31 is provided in the classifying chamber 30, and fine powder pulverized to a predetermined particle size or less is discharged together with the inert gas from an exhaust pipe 40 communicating upward. The discharged fine powder is collected by a collector (not shown) connected to the exhaust pipe 40. For example, ultrafine powder having a desired particle size or less is separately removed by a filter (not shown).

【0062】粉砕不十分粗粉は、上記説明のように、分
級室間粗粉循環路62、粉砕ノズル60bを経由して粉
砕室20内に再粉砕させられるように戻される。
As described above, the insufficiently pulverized coarse powder is returned to the pulverization chamber 20 through the inter-classification chamber coarse powder circulation path 62 and the pulverization nozzle 60b so as to be pulverized again.

【0063】かかる乾式粉砕装置Aを使用して、希土類
焼結磁石用原料を微粉砕し、その原料微粉を用いて希土
類焼結磁石を製造すれば、粗粉を微粉にするに際して短
い時間で粉砕することができる。
The raw material for the rare earth sintered magnet is finely pulverized by using the dry pulverizing apparatus A, and the rare earth sintered magnet is manufactured using the raw material fine powder. can do.

【0064】併せて、粗粉から微粉にする粉砕時間を短
縮することができるので、酸化が抑えられて酸素含有量
の少ない希土類焼結磁石用原料微粉を製造することがで
きる。
In addition, since the pulverization time for converting the coarse powder to the fine powder can be shortened, it is possible to produce a raw material fine powder for a rare-earth sintered magnet having reduced oxygen content and reduced oxygen content.

【0065】上記構成を有する乾式粉砕装置Aを使用し
て、R2 14B金属間化合物を主相とするR−T−B系
異方性焼結磁石(RはYを含めた希土類元素の1種また
は2種以上、TはFeまたはFeとCo)を製造した場
合の実施例を以下に示す。
Using the dry grinding apparatus A having the above structure, an RTB based anisotropic sintered magnet having R 2 T 14 B intermetallic compound as a main phase (R is a rare earth element including Y Examples of the case where one or two or more of the above (T is Fe or Fe and Co) are produced are shown below.

【0066】(実施例)本実施例では、先ず、重量百分
率(wt%)で、Ndを29.5wt%、Prを0.5wt%、D
yを1.5wt%、Bを1.05wt%、Nbを0.35wt%、A
lを0.08wt%、Coを2.5wt%、Gaを0.09wt%、
Cuを0.08wt%、Oを0.03wt%、Cを0.005wt
%、Nを0.004wt%、残部をFeとした組成を有す
る、厚さが0.2〜0.5mmの薄帯状の合金を、ストリッ
プキャスト法で作成した。
Example In this example, first, in terms of weight percentage (wt%), Nd was 29.5 wt%, Pr was 0.5 wt%, D
1.5% by weight of y, 1.05% by weight of B, 0.35% by weight of Nb, A
1 is 0.08 wt%, Co is 2.5 wt%, Ga is 0.09 wt%,
0.08 wt% of Cu, 0.03 wt% of O, 0.005 wt% of C
%, N was 0.004 wt%, and the balance was Fe, and a strip-like alloy having a thickness of 0.2 to 0.5 mm was prepared by a strip casting method.

【0067】この薄帯状の合金を、窒素ガス雰囲気中で
1000℃で2時間加熱した。次に水素炉を使用し、こ
の薄帯状の合金を常温で水素ガス雰囲気中で水素吸蔵さ
せ、自然崩壊させた。
This ribbon-shaped alloy was heated at 1000 ° C. for 2 hours in a nitrogen gas atmosphere. Next, using a hydrogen furnace, the thin ribbon-shaped alloy was occluded with hydrogen in a hydrogen gas atmosphere at room temperature, and naturally collapsed.

【0068】次いで炉内を真空排気しつつ550℃まで
薄帯状の合金を加熱し、その温度で1時間保持して脱水
素処理を行った。崩壊した合金を窒素ガス雰囲気中で機
械的に粉砕して32メッシュアンダーの原料粗粉とし
た。
Next, the ribbon-shaped alloy was heated to 550 ° C. while the inside of the furnace was evacuated to vacuum, and the alloy was kept at that temperature for 1 hour to perform a dehydrogenation treatment. The collapsed alloy was mechanically pulverized in a nitrogen gas atmosphere to obtain a raw material coarse powder of 32 mesh under.

【0069】この原料粗粉を分析したところ、重量百分
率でNdを29.5wt%、Prを0.5wt%、Dyを1.5wt
%、Bを1.05wt%、Nbを0.35wt%、Alを0.08
wt%、Coを2.5wt%、Gaを0.09wt%、Cuを0.0
8wt%、Oを0.12wt%、Cを0.002wt%、Nを0.0
08wt%、残部をFeなる分析値を得た。
When the raw material powder was analyzed, Nd was 29.5% by weight, Pr was 0.5% by weight, and Dy was 1.5% by weight percentage.
%, B is 1.05 wt%, Nb is 0.35 wt%, and Al is 0.08 wt%.
wt%, Co: 2.5 wt%, Ga: 0.09 wt%, Cu: 0.0
8 wt%, O: 0.12 wt%, C: 0.002 wt%, N: 0.0
An analysis value of 08 wt% and the balance Fe were obtained.

【0070】この原料粗粉を図1、2に示す構成の本発
明の乾式粉砕装置Aで微粉砕した。乾式粉砕装置A内に
原料粗粉を装入する前に、乾式粉砕装置A内部を窒素ガ
スで置換し、窒素ガス中の酸素濃度を酸素分析値で0.0
2vol%とした。次いで、粉砕圧力7.0kg/cm2 で粉
砕した。得られた微粉の平均粒径は3.9μmであった。
This raw material powder was finely pulverized by the dry pulverizer A of the present invention having the structure shown in FIGS. Before the raw material coarse powder is charged into the dry grinding device A, the inside of the dry grinding device A is replaced with nitrogen gas, and the oxygen concentration in the nitrogen gas is determined by an oxygen analysis value of 0.0.
It was 2 vol%. Next, it was pulverized at a pulverization pressure of 7.0 kg / cm 2 . The average particle size of the obtained fine powder was 3.9 μm.

【0071】併せて、上記組成の原料粗粉を、図4、5
に示す従来構成の乾式粉砕装置Bで微粉砕して、本発明
の乾式粉砕装置Aを使用した場合とで、粉砕効率(kg
/h)および得られた微粉の含有酸素量(ppm:重量
比)について比較した結果を以下の表1に示す。
At the same time, the raw material powder having the above composition
The pulverization efficiency (kg) is compared with the case where the pulverization is performed by using the dry pulverizer A of the present invention.
/ H) and the oxygen content (ppm: weight ratio) of the obtained fine powder are shown in Table 1 below.

【0072】[0072]

【表1】 [Table 1]

【0073】上記表1から分かるように、粉砕室間粗粉
循環路61を設けた粉砕ノズル60aと、分級室間粗粉
循環路62を設けた粉砕ノズル60bとを、粉砕室20
内の周面にそれぞれの噴射口が円周方向に交互に配置さ
れ、且つ粉砕ノズル60a、60bの開口端側を粉砕室
20内に突設した上記構成の乾式粉砕装置Aを使用した
方が、従来の乾式粉砕装置Bより、粉砕効率が2.5倍も
向上することが分かる。
As can be seen from Table 1 above, the pulverizing nozzle 60a provided with the coarse powder circulation path 61 between the pulverizing chambers and the pulverizing nozzle 60b provided with the coarse powder circulation path 62 between the classifying chambers
It is better to use the dry pulverizer A having the above configuration in which the respective injection ports are alternately arranged in the circumferential direction on the inner peripheral surface, and the opening end sides of the pulverizing nozzles 60a and 60b protrude into the pulverizing chamber 20. It can be seen that the pulverization efficiency is improved by 2.5 times as compared with the conventional dry pulverizer B.

【0074】さらに得られた粉砕微粉酸素含有量の平均
値は、従来の乾式粉砕装置Bによる場合よりも、本発明
の乾式粉砕装置Aを使用する場合の方が、1600pp
m低かった。
Further, the average value of the oxygen content of the obtained finely divided pulverized powder was 1600 pp when using the dry pulverizing apparatus A of the present invention as compared with the case using the conventional dry pulverizing apparatus B.
m lower.

【0075】上記結果より、本発明の乾式粉砕装置A
は、粉砕効率、および得られる微粉の酸素含有量の低減
という点に関して、有効であることが検証された。
From the above results, the dry grinding apparatus A of the present invention was used.
Was proved to be effective in terms of grinding efficiency and reducing the oxygen content of the resulting fines.

【0076】粉砕効率の向上は、粉砕室間粗粉循環路6
1を設けることにより、粉砕不十分粗粉の粉砕室内に戻
る距離を短くして、その分粉砕時間の短縮ができるため
である。
The improvement of the pulverizing efficiency is achieved by the coarse powder circulation path 6 between the pulverizing chambers.
This is because the provision of No. 1 shortens the distance of the insufficiently pulverized coarse powder returning to the pulverization chamber, thereby shortening the pulverization time.

【0077】また、粉砕室間粗粉循環路61の開口端側
を突出させているので、粗粉と突設部との衝突が新たに
生起され、その分粉砕が促進されて粉砕効率の向上に寄
与しているものと推定される。
Further, since the open end side of the coarse powder circulation path 61 between the pulverizing chambers is protruded, a collision between the coarse powder and the projecting portion is newly generated, and the pulverization is accelerated by that amount, thereby improving the pulverization efficiency. Is presumed to have contributed to

【0078】酸素含有量については、粉砕時間が2/5
に短縮され、その含有酸素量が大きく低減させられてい
ることが分かる。
Regarding the oxygen content, the grinding time was 2/5
It can be seen that the oxygen content has been greatly reduced.

【0079】次に表1の実施例と比較例の微粉を用いて
希土類焼結磁石を形成し、磁気特性を評価したところ、
実施例のものに対して、比較例のものは20℃における
最大エネルギー積が1.9MGOe、保磁力( ic )が3.
8KOe低いものだった。よって、本発明によれば、実用
に耐える高い磁気特性のR−T−B系異方性焼結磁石を
提供することができる。
Next, a rare earth sintered magnet was formed using the fine powders of the examples and comparative examples in Table 1, and the magnetic properties were evaluated.
To that of embodiment, the maximum energy product at 20 ° C. of Comparative example 1.9MGOe, coercive force (i H c) is 3.
It was 8KOe lower. Therefore, according to the present invention, it is possible to provide an RTB-based anisotropic sintered magnet having high magnetic properties that can be practically used.

【0080】[0080]

【発明の効果】本発明では、粉砕室間粗粉循環路を粉砕
ノズルに設けたので、磁石原料の粗粉を微粉砕する際の
粉砕効率を向上させることができる。
According to the present invention, since the coarse powder circulation path between the pulverizing chambers is provided in the pulverizing nozzle, the pulverizing efficiency in finely pulverizing the coarse powder of the magnet raw material can be improved.

【0081】本発明では、粉砕室間粗粉循環路を設けた
粉砕ノズルと、分級室間粗粉循環路を設けた粉砕ノズル
とを、交互に設けたので、磁石原料の粗粉を微粉砕する
際の粉砕効率を向上させることができる。
In the present invention, the pulverizing nozzle provided with the coarse powder circulation path between the pulverizing chambers and the pulverizing nozzle provided with the coarse powder circulation path between the classifying chambers are alternately provided, so that the coarse powder of the magnet raw material is finely pulverized. Grinding efficiency can be improved.

【0082】本発明では、粉砕ノズルの粉砕室内への開
口端側を粉砕室側に突設させたので、磁石原料の粗粉を
微粉砕する際の粉砕効率を向上させることができる。
In the present invention, the opening end side of the pulverizing nozzle into the pulverizing chamber is protruded toward the pulverizing chamber, so that the pulverizing efficiency in finely pulverizing the coarse powder of the magnet raw material can be improved.

【0083】本発明の乾式粉砕装置では、従来構成の乾
式粉砕装置に比べて粉砕効率を向上し、かつ粉砕室から
分級室空間に停滞する時間が短縮される結果、回収微粉
の酸素含有量が低減されるものと推定する。
In the dry pulverizer of the present invention, the pulverization efficiency is improved as compared with the conventional dry pulverizer, and the time required for the stagnation from the pulverizing chamber to the classification chamber space is shortened. Presumed to be reduced.

【0084】本発明の希土類焼結磁石の製造方法によれ
ば、酸素含有量を低減させたものの製造ができ、特に、
2 14B金属間化合物を主相とするR−T−B系異方
性焼結磁石(RはYを含めた希土類元素の1種または2
種以上、TはFeまたはFeとCo)の磁気特性の向上
に寄与することができる。
According to the method for producing a rare earth sintered magnet of the present invention, a magnet having a reduced oxygen content can be produced.
R-T-B anisotropic sintered magnet having R 2 T 14 B intermetallic compound as a main phase (R is one or two of rare earth elements including Y
More than a kind, T can contribute to the improvement of the magnetic properties of Fe or Fe and Co).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態を示す乾式粉砕装置で、
粉砕室間粗粉循環路を設けた粉砕ノズルの様子が示され
ている縦断面図である。
FIG. 1 shows a dry pulverizer according to an embodiment of the present invention.
It is a longitudinal cross-sectional view showing a state of a grinding nozzle provided with a coarse powder circulation path between grinding chambers.

【図2】図1のX−X線で切断した粉砕室内の状況を示
す平断面図である。
FIG. 2 is a plan cross-sectional view showing a state in a grinding chamber taken along a line XX in FIG.

【図3】分級室間粗粉循環路を設けた粉砕ノズルの構成
を示す要部断面図である。
FIG. 3 is a sectional view of a main part showing a configuration of a pulverizing nozzle provided with a coarse powder circulation path between classification chambers.

【図4】従来の乾式粉砕装置の縦断面図である。FIG. 4 is a vertical cross-sectional view of a conventional dry pulverizer.

【図5】図4のY−Y線で切断した場合の粉砕室内の状
況を示す平断面図である。
FIG. 5 is a plan sectional view showing a state inside a grinding chamber when cut along a line YY in FIG. 4;

【符号の説明】[Explanation of symbols]

10 ケーシング 20 粉砕室 20a 周面 30 分級室 31 分級板 32 支持筒 40 排気パイプ 50 原料供給ノズル 51 ホッパー 52 圧送管 60 粉砕ノズル 60a 粉砕ノズル 60b 粉砕ノズル 61 粉砕室間粗粉循環路 61a 粉砕室内粗粉循環口 61b 直管部分 62 分級室間粗粉循環路 62a 分級室内粗粉循環口 70 エアヘッダ 100 架台 110 ケーシング 120 粉砕室 130 分級室 131 分級板 132 支持筒 140 排気パイプ 150 原料供給ノズル 151 ホッパー 152 圧送管 160 粉砕ノズル 161 エアヘッダ 162 分級室間粗粉循環路 DESCRIPTION OF SYMBOLS 10 Casing 20 Crushing chamber 20a Peripheral surface 30 Classification chamber 31 Classification plate 32 Support cylinder 40 Exhaust pipe 50 Raw material supply nozzle 51 Hopper 52 Pressure pipe 60 Crushing nozzle 60a Crushing nozzle 60b Crushing nozzle 61 Coarse powder circulation path between crushing chambers 61a Crushing chamber coarse Powder circulation port 61b Straight pipe portion 62 Classification room coarse powder circulation path 62a Classification room coarse powder circulation port 70 Air header 100 Stand 110 Casing 120 Crushing chamber 130 Classification chamber 131 Classification plate 132 Support cylinder 140 Exhaust pipe 150 Raw material supply nozzle 151 Hopper 152 Pressure feed pipe 160 Crushing nozzle 161 Air header 162 Classification room coarse powder circulation path

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 原料供給ノズルから粉砕室内に供給され
た粗粉に、前記粉砕室内に開口した粉砕ノズルの噴射口
から高圧の不活性ガスを噴射して、前記粗粉を相互に衝
突させて微粉砕し、前記粉砕室に連通する分級室で微粉
を分級して回収する乾式粉砕装置であって、 前記粉砕ノズルには、前記粉砕室内の粉砕不十分な粗粉
をノズル経路内に流入させる粉砕室間粗粉循環路が設け
られていることを特徴とする乾式粉砕装置。
1. A high-pressure inert gas is injected from an injection port of a pulverizing nozzle opened into the pulverizing chamber to coarse powder supplied from a raw material supply nozzle into the pulverizing chamber, and the coarse powder collide with each other. A dry pulverizer for finely pulverizing and classifying and collecting fine powder in a classifying chamber communicating with the pulverizing chamber, wherein the pulverizing nozzle causes insufficiently pulverized coarse powder in the pulverizing chamber to flow into a nozzle path. A dry pulverizing apparatus, wherein a coarse powder circulation path between pulverizing chambers is provided.
【請求項2】 請求項1記載の乾式粉砕装置において、 前記粉砕ノズルには、前記分級室内の粉砕不十分な粗粉
をノズル経路内に流入させる分級室間粗粉循環路が併設
させられていることを特徴とする乾式粉砕装置。
2. The dry pulverizing apparatus according to claim 1, wherein the pulverizing nozzle is provided with an inter-classification-room coarse powder circulation passage through which insufficiently pulverized coarse powder in the classification chamber flows into a nozzle path. A dry pulverizer.
【請求項3】 原料供給ノズルから粉砕室内に供給され
た粗粉に、前記粉砕室内に開口した複数の粉砕ノズルの
噴射口から高圧の不活性ガスを噴射して、前記粗粉を相
互に衝突させて微粉砕し、微粉を前記粉砕室に連通する
分級室で分級して回収する乾式粉砕装置であって、 前記粉砕室内の粉砕不十分な粗粉をノズル経路内に流入
させる粉砕室間粗粉循環路と、前記分級室内の粉砕不十
分な粗粉をノズル経路内に流入させる分級室間粗粉循環
路とが、別々の粉砕ノズルに設けられていることを特徴
とする乾式粉砕装置。
3. A high-pressure inert gas is injected from the injection ports of a plurality of pulverizing nozzles opened into the pulverizing chamber to coarse powder supplied from a raw material supply nozzle into the pulverizing chamber, so that the coarse powder collide with each other. A dry pulverization apparatus for classifying and collecting fine powder in a classification chamber communicating with the pulverization chamber, wherein the coarse pulverized powder in the pulverization chamber flows into a nozzle path. A dry pulverizer in which a powder circulation path and a coarse powder circulation path between classification chambers through which insufficiently pulverized coarse powder in the classification chamber flows into a nozzle path are provided in separate pulverization nozzles.
【請求項4】 請求項3記載の乾式粉砕装置において、 前記粉砕室間粗粉循環路を設けた粉砕ノズルの噴射口
と、前記分級室間粗粉循環路を設けた粉砕ノズルの噴射
口とが、粉砕室の周面の円周方向に沿って交互に開口さ
せられていることを特徴とする乾式粉砕装置。
4. The dry pulverizer according to claim 3, wherein an injection port of a pulverization nozzle provided with the coarse powder circulation path between the pulverization chambers, and an injection port of a pulverization nozzle provided with the coarse powder circulation path between the classification chambers. Are opened alternately along the circumferential direction of the peripheral surface of the grinding chamber.
【請求項5】 請求項1乃至4のいずれか1項に記載の
乾式粉砕装置において、 前記粉砕ノズルの前記粉砕室内への開口端側が、前記粉
砕室内の周面から突設させられていることを特徴とする
乾式粉砕装置。
5. The dry pulverizer according to claim 1, wherein an end of an opening of the pulverization nozzle into the pulverization chamber protrudes from a peripheral surface of the pulverization chamber. Dry pulverizer.
【請求項6】 請求項5記載の乾式粉砕装置において、 前記粉砕ノズルの軸方向と、そのノズルの軸方向と前記
粉砕室の周面とが交わる位置における前記周面の接線方
向とがなす角度(θ)が、θ=30〜50度であること
を特徴とする乾式粉砕装置。
6. The dry grinding apparatus according to claim 5, wherein an angle formed between an axial direction of the grinding nozzle and a tangential direction of the peripheral surface at a position where the axial direction of the nozzle intersects with the peripheral surface of the grinding chamber. (Θ) is θ = 30 to 50 degrees, a dry pulverizer.
【請求項7】 請求項5または6記載の乾式粉砕装置に
おいて、 前記粉砕ノズルの軸方向と、粉砕室の周面に開口した粉
砕室間粗粉循環路の中心位置とがなす角度(α)が、α
=80〜150度であることを特徴とする乾式粉砕装
置。
7. The dry grinding apparatus according to claim 5, wherein an angle (α) formed between an axial direction of the grinding nozzle and a center position of a coarse powder circulation path between the grinding chambers opened on a peripheral surface of the grinding chamber. Is α
= 80 to 150 degrees.
【請求項8】 請求項1乃至7のいずれか1項に記載の
乾式粉砕装置を用いて希土類焼結磁石用原料を微粉砕
し、その原料微粉を用いて希土類焼結磁石を製造するこ
とを特徴とする希土類焼結磁石の製造方法。
8. A method for finely pulverizing a raw material for a rare earth sintered magnet using the dry pulverizing apparatus according to claim 1 and manufacturing a rare earth sintered magnet using the fine powder of the raw material. A method for producing a rare earth sintered magnet.
【請求項9】 請求項8記載の希土類焼結磁石の製造方
法において、 希土類焼結磁石が、R2 14B金属間化合物を主相とす
るR−T−B系異方性焼結磁石(RはYを含めた希土類
元素の1種または2種以上、TはFeまたはFeとC
o)であることを特徴とする希土類焼結磁石の製造方
法。
9. The method for manufacturing a rare earth sintered magnet according to claim 8, wherein the rare earth sintered magnet is an RTB based anisotropic sintered magnet having an R 2 T 14 B intermetallic compound as a main phase. (R is one or more rare earth elements including Y, T is Fe or Fe and C
o) A method for producing a rare earth sintered magnet, which is characterized in that:
JP15549198A 1998-06-04 1998-06-04 Dry crusher for rare earth sintered magnet alloy and method for producing rare earth sintered magnet using the same Expired - Lifetime JP4069326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15549198A JP4069326B2 (en) 1998-06-04 1998-06-04 Dry crusher for rare earth sintered magnet alloy and method for producing rare earth sintered magnet using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15549198A JP4069326B2 (en) 1998-06-04 1998-06-04 Dry crusher for rare earth sintered magnet alloy and method for producing rare earth sintered magnet using the same

Publications (2)

Publication Number Publication Date
JPH11347438A true JPH11347438A (en) 1999-12-21
JP4069326B2 JP4069326B2 (en) 2008-04-02

Family

ID=15607218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15549198A Expired - Lifetime JP4069326B2 (en) 1998-06-04 1998-06-04 Dry crusher for rare earth sintered magnet alloy and method for producing rare earth sintered magnet using the same

Country Status (1)

Country Link
JP (1) JP4069326B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007275849A (en) * 2006-04-11 2007-10-25 Sunrex Kogyo Kk Jet mill and jet pulverizing method
CN105521853A (en) * 2016-01-18 2016-04-27 湖北三江航天机电设备有限责任公司 Ultrafine grinder capable of destroying circulation layer of ground materials
JP2018051474A (en) * 2016-09-29 2018-04-05 日立金属株式会社 Dry pulverizer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06340903A (en) * 1993-02-24 1994-12-13 Hitachi Metals Ltd Production of rare-earth permanent magnet raw powder
JPH08141430A (en) * 1994-11-21 1996-06-04 Hitachi Metals Ltd Micronizer type jet mill
JPH11179228A (en) * 1997-12-25 1999-07-06 Nippon Pneumatic Mfg Co Ltd Jet mill

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06340903A (en) * 1993-02-24 1994-12-13 Hitachi Metals Ltd Production of rare-earth permanent magnet raw powder
JPH08141430A (en) * 1994-11-21 1996-06-04 Hitachi Metals Ltd Micronizer type jet mill
JPH11179228A (en) * 1997-12-25 1999-07-06 Nippon Pneumatic Mfg Co Ltd Jet mill

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007275849A (en) * 2006-04-11 2007-10-25 Sunrex Kogyo Kk Jet mill and jet pulverizing method
CN105521853A (en) * 2016-01-18 2016-04-27 湖北三江航天机电设备有限责任公司 Ultrafine grinder capable of destroying circulation layer of ground materials
JP2018051474A (en) * 2016-09-29 2018-04-05 日立金属株式会社 Dry pulverizer

Also Published As

Publication number Publication date
JP4069326B2 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
JP3231034B1 (en) Rare earth magnet and manufacturing method thereof
EP0557103A1 (en) Master alloy for magnet production and its production, as well as magnet production
CN105855012B (en) A kind of jet mill crusher and a kind of method of air-flow crushing
US20230271224A1 (en) Method And Installation For Manufacturing A Starting Material For Producing Rare Earth Magnets
CN104190944B (en) A kind of preparation method of Sintered NdFeB magnet and device
JP4069326B2 (en) Dry crusher for rare earth sintered magnet alloy and method for producing rare earth sintered magnet using the same
CN112169963B (en) Jet mill for neodymium iron boron production and use method thereof
JP2003117426A (en) Comminuting apparatus and method
US11571744B2 (en) Micro powder for preparing neodymium-iron-boron permanent magnet material, method for preparing powder by target-type jet milling, and powder
CN115351284B (en) Be applied to multistage processing unit of sendust powder of metal magnetic powder core
US10717131B2 (en) Method of manufacturing a rare earth magnet alloy powder, a rare earth magnet made therefrom and a powder making device
CN2370958Y (en) Double-grading wheel-type loop running colliding fluidized bed airflow mill
US11897034B2 (en) Method for manufacturing rare earth permanent magnet
JPH05258928A (en) Permanent magnet and powder thereof and manufacturing method thereof
JP2020151645A (en) Cyclone collection device, rare earth magnet alloy crushing system, and method for manufacturing r-t-b-based sintered magnet
CN113751713A (en) Method for recovering neodymium iron boron ultrafine powder
JP4212047B2 (en) Rare earth alloy powder manufacturing method and manufacturing apparatus
CN108597846B (en) Target type jet mill and method for preparing economical sintered neodymium iron boron blank
TWI835100B (en) Magnet and method of fabricating the same
CN112570719B (en) Additive adding method and device for preparing samarium cobalt magnetic powder
CN114613585A (en) Device and method for crushing/surface modifying sintered neodymium-iron-boron powder
CN114588986B (en) Low-temperature auxiliary airflow powder grinding device
JP4840192B2 (en) Magnet manufacturing apparatus and manufacturing method
KR102045401B1 (en) Manufacturing method of rare earth sintered magnet
JPH0439205B2 (en)

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040608

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070612

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071231

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

EXPY Cancellation because of completion of term