JPH11347165A - Fluid resistance decreasing device for columnar object - Google Patents

Fluid resistance decreasing device for columnar object

Info

Publication number
JPH11347165A
JPH11347165A JP11052733A JP5273399A JPH11347165A JP H11347165 A JPH11347165 A JP H11347165A JP 11052733 A JP11052733 A JP 11052733A JP 5273399 A JP5273399 A JP 5273399A JP H11347165 A JPH11347165 A JP H11347165A
Authority
JP
Japan
Prior art keywords
fluid
groove
shaft
flow
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11052733A
Other languages
Japanese (ja)
Inventor
Kosuke Umazume
耕輔 馬詰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Funagata Kagaku Kenkyusho Kk
Original Assignee
Funagata Kagaku Kenkyusho Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Funagata Kagaku Kenkyusho Kk filed Critical Funagata Kagaku Kenkyusho Kk
Priority to JP11052733A priority Critical patent/JPH11347165A/en
Priority to US09/287,906 priority patent/US20010039216A1/en
Publication of JPH11347165A publication Critical patent/JPH11347165A/en
Priority to JP2000053754A priority patent/JP2000314408A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B60/00Details or accessories of golf clubs, bats, rackets or the like
    • A63B60/006Surfaces specially adapted for reducing air resistance
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/10Non-metallic shafts
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B60/00Details or accessories of golf clubs, bats, rackets or the like
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2225/00Miscellaneous features of sport apparatus, devices or equipment
    • A63B2225/01Special aerodynamic features, e.g. airfoil shapes, wings or air passages
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B60/00Details or accessories of golf clubs, bats, rackets or the like
    • A63B60/48Details or accessories of golf clubs, bats, rackets or the like with corrugated cross-section

Abstract

PROBLEM TO BE SOLVED: To generate a sliding flow on the surface of a columnar object, such as golf club shaft, which moves relatively in fluid and to decreases the fluid resistance, i.e., fluid friction resistance and pressure resistance, generated in the object by forming a groove for introducing the fluid moving along the surface on the surface of the object. SOLUTION: The groove M which allows the introduction of the fluid moving along the surface S of the columnar object, for example, the object B, such as golf club shaft or the suspension rope of a bridge, moving relatively in the fluid and rotates the fluid to the moving direction of the object B is formed on the surface S of the object B. According thereto, the fluid rotates in the flow direction (x) is the bottom of the groove M and, therefore, a back flow R is generated and the code of the primary gradient in the velocity component is made negative and the absolute value of the primary gradient in the region of the groove M decreases, as a result, of which the slip flow is induced on the surface of the object B. Then, the pressure in the base region on the downward end side of the object B is increased and the occurrence of the turbulence in the flow of the fluid on the downstream end side is substantially prevented and the pressure resistance is lowered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、流体中を相対移
動する表面が円柱面状となっている円柱状物体に生じる
流体抵抗を低減することができる、同物体の流体抵抗低
減装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for reducing fluid resistance of a cylindrical object having a cylindrical surface whose surface relatively moves in a fluid. is there.

【0002】[0002]

【従来の技術】従来の円柱状物体、たとえば、ゴルフク
ラブのシャフトは、その表面が円柱滑面となっている。
また橋梁の懸垂ロープは、その表面が乱流遷移促進用の
微小な突起を設けた円柱滑面となっている。
2. Description of the Related Art A conventional cylindrical object such as a golf club shaft has a cylindrical smooth surface.
The suspension rope of the bridge has a cylindrical smooth surface provided with minute projections for promoting turbulent flow transition.

【0003】しかし、このような形状のシャフトや懸垂
ロープでは、空気(流体)の中にある範囲の相対移動速
度をもって置かれた場合、円柱滑面での流体の速度分布
に関するすべり無し流れを充分に回避できず、これがシ
ャフトや懸垂ロープの流体抵抗を大きくする原因となっ
ていた。
[0003] However, a shaft or a hanging rope having such a shape, when placed in the air (fluid) with a relative moving speed in a certain range, can sufficiently provide a non-slip flow related to the velocity distribution of the fluid on the cylindrical smooth surface. This has led to an increase in the fluid resistance of the shaft and the hanging rope.

【0004】この発明は、このような従来の問題点を解
決するためになされたもので、円柱状物体の表面形状
を、よどみ点の圧力の低減と剥離点の流体下流側への移
動を可能にするとともに、円柱状同物体の表面に沿う流
体の速度分布がすべり無し流れの条件を満足しない形状
とすることにより、流体抵抗を低減することができる、
円柱状物体の流体抵抗低減装置を提供することを目的と
する。
The present invention has been made in order to solve such a conventional problem, and it has been made possible to reduce the pressure at the stagnation point and move the separation point to the downstream side of the fluid by changing the surface shape of the cylindrical object. In addition, by making the velocity distribution of the fluid along the surface of the same cylindrical body not satisfy the condition of the non-slip flow, the fluid resistance can be reduced.
An object of the present invention is to provide a fluid resistance reducing device for a columnar object.

【0005】[0005]

【課題を解決するための手段及び作用】円柱状物体(以
下、単に物体という。)Bの表面Sに生じる流体摩擦抵
抗は、図1に示すように、流体の流れ方向(x)の速度
分布(u)の物体Bの表面S上における鉛直方向(у)
の一次勾配(du/dy)(正、0、負の値のいずれも
とり得る)に流体の粘性係数(μ)を乗じたもので定義
される、下式で示す摩擦応力(τ)に比例する。
The fluid frictional resistance generated on the surface S of a columnar object (hereinafter simply referred to as an object) B is, as shown in FIG. 1, the velocity distribution in the fluid flow direction (x). (U) Vertical direction on the surface S of the object B (у)
Is proportional to the frictional stress (τ) defined by the primary gradient (du / dy) (which can be positive, zero or negative) multiplied by the viscosity coefficient (μ) of the fluid .

【0006】[0006]

【数1】 (Equation 1)

【0007】したがって、一次勾配(du/dy)の絶
対値を低減するか、あるいはその符号を図1に示す通常
の正の状態から負の状態に転換できれば、流体摩擦抵抗
が低下する。
Therefore, if the absolute value of the primary gradient (du / dy) is reduced or its sign can be changed from the normal positive state shown in FIG. 1 to the negative state, the fluid frictional resistance decreases.

【0008】そのためには、物体Bの表面S近傍での速
度成分の差を0に近づけるか、あるいは物体Bの表面に
流体の逆流を生じさせて一次勾配(du/dy)の符号
を負にすればよい。
For this purpose, the difference between the velocity components near the surface S of the object B is made closer to 0, or a reverse flow of the fluid is generated on the surface of the object B so that the sign of the primary gradient (du / dy) becomes negative. do it.

【0009】そこで、この発明においては、図2に示す
ように、物体Bの表面Sにそって移動する流体を導入し
てその移動方向へ回転させる溝Mを、物体Bの表面Sに
設けた。
Therefore, in the present invention, as shown in FIG. 2, a groove M for introducing a fluid moving along the surface S of the object B and rotating it in the moving direction is provided on the surface S of the object B. .

【0010】このようにすれば、図2に示すように、溝
Mの底部では、流体がその流れ方向へ回転することで、
逆流Rが生じ、流体の流れ方向の速度成分の一次勾配の
符号が負となる。また、溝Mの領域における流体の速度
成分の一次勾配の絶対値を低減することができる。その
結果、物体の表面に「すべり流れ」が起きる。
In this way, as shown in FIG. 2, at the bottom of the groove M, the fluid rotates in the flow direction,
The backflow R occurs, and the sign of the primary gradient of the velocity component in the flow direction of the fluid becomes negative. Further, the absolute value of the primary gradient of the velocity component of the fluid in the region of the groove M can be reduced. As a result, "slip flow" occurs on the surface of the object.

【0011】このように、溝Mにより物体Bの表面で
「すべり流れ」が起きると、図3に示すように、物体B
の流体上流側にある剥離点Qが、図4に示すように、流
体下流側に移動する。
As described above, when "slip flow" occurs on the surface of the object B due to the groove M, as shown in FIG.
The separation point Q on the upstream side of the fluid moves to the downstream side of the fluid as shown in FIG.

【0012】その結果、物体Bの下流幅W1 (図4)が
溝Mを設けない物体BのそれW2 (図3)より小さくな
り、物体Bの下流端側のベース領域Kにおける圧力が上
昇する。それと同時に、物体Bの下流端側における流体
の流れに乱れが生じなくなる。このため、物体Bの圧力
抵抗が低下する。
As a result, the downstream width W 1 (FIG. 4) of the object B becomes smaller than that W 2 (FIG. 3) of the object B having no groove M, and the pressure in the base region K on the downstream end side of the object B is reduced. Rise. At the same time, turbulence does not occur in the fluid flow on the downstream end side of the object B. Therefore, the pressure resistance of the object B decreases.

【0013】また、図3に示す、溝Mを設けない物体B
のよどみ点Yの圧力は、高くなるが、溝Mが、図4のよ
うに、よどみ線L上にきたときは、よどみ点Yにおける
よどみ圧が下がり、物体Bに生じる圧力抵抗が低下す
る。
An object B without the groove M shown in FIG.
The pressure at the stagnation point Y increases, but when the groove M comes on the stagnation line L as shown in FIG. 4, the stagnation pressure at the stagnation point Y decreases, and the pressure resistance generated on the object B decreases.

【0014】この発明における溝Mは、物体の表面全体
に、あるいは部分的に設ける。また、長いものを連続的
に設けることもできるし、短いものを断続的に設けるこ
ともできるし、長いものと短いものを任意に組み合わせ
て設けることもできる。
In the present invention, the groove M is provided on the entire surface of the object or partially. In addition, long ones can be provided continuously, short ones can be provided intermittently, and long ones and short ones can be provided in any combination.

【0015】溝Mの断面形状は、上述の流体摩擦抵抗を
低減できる形状、すなわち、物体の表面に沿って流れる
流体の速度がすべり無し流れの条件を満足しない形状で
あれば、その態様は問わない。溝Mの代表的な断面形状
は、例示すれば、図5から図9に示すような形状であ
る。図中、矢印は流体の流れ方向を示す。流体は、物体
の表面と平行に流れる場合もあり、同表面に対し斜めに
(交差方向)流れる場合もあり、同表面と直行する方向
に流れる場合もある。
The shape of the cross section of the groove M is not limited as long as the shape can reduce the above-mentioned fluid frictional resistance, that is, the shape of the fluid flowing along the surface of the object does not satisfy the condition of non-slip flow. Absent. A typical sectional shape of the groove M is, for example, a shape as shown in FIGS. 5 to 9. In the figure, arrows indicate the flow direction of the fluid. The fluid may flow parallel to the surface of the object, may flow obliquely to (intersecting with) the surface, or may flow in a direction perpendicular to the surface.

【0016】図5の溝M1 は断面長方形のものであり、
図6の溝M2 は流体の上流側と下流側にひさしH2 を設
けた断面長方形のものである。図7の溝M3 は底面と側
面の間に湾曲面を設けた断面U字形のものである。図8
の溝M4 は断面長円形のものであり、図9の溝M5 は断
面円形のものである。
The groove M 1 in FIG. 5 has a rectangular cross section,
FIG groove M 2 of 6 is of rectangular cross section provided with eaves H 2 on the upstream side and the downstream side of the fluid. Groove M 3 in FIG. 7 is of U-shaped cross section having a curved surface between the bottom and sides. FIG.
Groove M 4 of is of oval cross section, the groove M 5 in FIG. 9 is of circular cross-section.

【0017】この発明に言う物体は、円柱状であるか
ら、断面が円形のものに限定されない。楕円形に近い円
形、多角形のもの、花形のものなども、この発明にいう
円柱状物体に含まれる。
The object according to the present invention has a columnar shape and is not limited to a circular cross section. Circular, polygonal, and flower-like objects that are close to elliptical are also included in the columnar object according to the present invention.

【0018】断面多角形の物体の例としては、図5〜図
9を引用すれば、各図における溝M1 〜M5 の間を平面
にした形状のものが該当する。
An example of an object having a polygonal cross section corresponds to an object having a plane between grooves M 1 to M 5 in each of FIGS. 5 to 9.

【0019】溝Mを設ける物体Bの表面は、滑面であっ
てもよいし、粗面であってもよいし、凹凸があってもよ
い。
The surface of the object B on which the groove M is provided may be a smooth surface, a rough surface, or may have irregularities.

【0020】物体Bは剛体でもよいし、軟体でもよい
し、弾性体でも良い。溝Mを設けることができるもので
あれば、その種類を問わない。
The object B may be a rigid body, a soft body, or an elastic body. Any type can be used as long as the groove M can be provided.

【0021】[0021]

【発明の実施の形態】(実施例1)図10は、実施例1
のシャフトS1 の側面図で、後述する溝2の表示を省略
して示した図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (Embodiment 1) FIG.
FIG. 3 is a side view of the shaft S1 of FIG. 1 , omitting a display of a groove 2 described later.

【0022】シャフトS1 の長さは、1170mm、先
端部Eの外径r1 は9.3mmφ、基端部Gの外径r2
は15.8mmφ、先端部Eから900mmの位置であ
る中間部Fの外径r3 は15.15mmφである。中間
部Fから先端部Eまでの範囲は、後述する回転トルク試
験機による回転トルクの測定範囲である。
The length of the shaft S 1 is 1170 mm, the outer diameter r 1 of the distal end E is 9.3 mmφ, and the outer diameter r 2 of the proximal end G is 2 mm.
Is 15.8 mmφ, and the outer diameter r 3 of the intermediate portion F at a position 900 mm from the tip end E is 15.15 mmφ. The range from the intermediate portion F to the distal end portion E is a measurement range of the rotational torque by a rotational torque tester described later.

【0023】図11は、図10のH−H断面を拡大して
示した図で、H−H断面は、シャフトE1 の先端部Aか
ら320mmの位置(以下、H位置という。)にある。
FIG. 11 is a diagram showing an enlarged H-H cross section in FIG. 10, H-H cross section, the position of 320mm from the front end portion A of the shaft E 1 in (hereinafter, referred to as H position.) .

【0024】図11に示すように、シャフトS1 は、比
較例として挙げた図13に示す断面形状が円形で肉圧が
0.8mmの従来形のシャフトS0 に相当するシャフト
本体1の表面に、長さ方向に伸びる11本の真直ぐな凸
条3を同一の中心角間隔で一体に設けることによって、
各凸条3の間に11体の溝2を設けた形状になってい
る。
As shown in FIG. 11, the shaft S 1, the surface of the shaft body 1 the cross-sectional shape shown in FIG. 13 mentioned as a comparative example corresponding to the shaft S 0 of the conventional forms of 0.8mm meat pressure circular In addition, eleven straight ridges 3 extending in the length direction are integrally provided at the same center angle interval,
It has a shape in which eleven grooves 2 are provided between each of the ridges 3.

【0025】H位置における溝2の幅は1.2mm、深
さは0.4mmであり、溝2の断面形状はほぼ四角形で
ある。凸条3の断面形状は四角形で、出隅部の角度はほ
ぼ直角である。したがって、シャフトS1 の外径は、シ
ャフトS0 との比較でいえば、凸部3の高さ分だけシャ
フトS0 より大きい。
The groove 2 at the H position has a width of 1.2 mm and a depth of 0.4 mm, and the cross-sectional shape of the groove 2 is substantially square. The cross-sectional shape of the ridge 3 is quadrangular, and the angle of the protruding corner is almost a right angle. Therefore, the outer diameter of the shaft S 1, speaking in comparison to the shaft S 0, by the height greater than the shaft S 0 of the convex portion 3.

【0026】シャフトS1 は、炭素繊維とエポキシ樹脂
の成形体で作った、いわゆるカーボンシャフトで重量は
65gである。
The shaft S 1 is a so-called carbon shaft made of a molded product of carbon fiber and epoxy resin, and weighs 65 g.

【0027】(実施例2)図12は、実施例2のシャフ
トS2 の断面図で、図11に対応する図である。シャフ
トS2 の長さは1170mmで、図12はこれを前述し
たH位置に相当する部位で切断して拡大して示した図で
ある。
[0027] (Embodiment 2) FIG. 12 is a sectional view of a shaft S 2 Example 2 is a view corresponding to FIG. 11. Length of the shaft S 2 is 1170 mm, Fig. 12 is an enlarged view showing by cutting at a site corresponding to H position above it.

【0028】このシャフトS2 は、図13に示す従来形
のシャフトS0 に相当するシャフト本体1の表面に、長
さ方向に伸びる4本の真直ぐな凸条4を同一の中心角間
隔で一体に設けることによって、各凸状4の間に溝5を
全部で3本設けた形状になっている。
The shaft S 2 has four straight ridges 4 extending in the longitudinal direction integrally formed on the surface of the shaft body 1 corresponding to the conventional shaft S 0 shown in FIG. In this case, a total of three grooves 5 are provided between the projections 4.

【0029】シャフトS2 は、上記H位置に相当する部
位における断面部分(図12)で見れば、外径10.0
mmφのシャフト本体1の表面に、4本の凸条4を、シ
ャフトS2 の中心角90度の範囲に、1.2mm間隔で
設けた形状になっている。凸条4の断面形状は四角形
で、出隅部の角度はほぼ直角である。H位置における凸
条4の幅は1.0mm、高さは0.4mmであり、溝5
の幅は1.2mm、深さは0.4mmである。
The shaft S 2 has an outer diameter of 10.0 when viewed in a cross-sectional portion (FIG. 12) at a position corresponding to the H position.
the shaft body 1 in the surface of the mm [phi], 4 pieces of the protrusions 4, the range of center angle 90 degrees of the shaft S 2, has a shape which is provided at 1.2mm intervals. The cross-sectional shape of the ridge 4 is quadrangular, and the angle of the protruding corner is substantially a right angle. The width of the ridge 4 at the H position is 1.0 mm, the height is 0.4 mm, and the groove 5
Has a width of 1.2 mm and a depth of 0.4 mm.

【0030】シャフトS2 は、シャフトS1 と同じカー
ボンシャフトで、重量は62gである。
The shaft S 2 is the same carbon shaft as the shaft S 1 and weighs 62 g.

【0031】(比較例)図13は断面が円形の従来形の
シャフトS0 で、実施例1,2のシャフトS1,S2
比較例として挙げたものである。すなわち、シャフトS
1 ,S2 の空気抵抗がどの程度向上するかを比較するた
めに挙げたものである。
(Comparative Example) FIG. 13 shows a conventional shaft S 0 having a circular cross section, which is a comparative example of the shafts S 1 and S 2 of the first and second embodiments. That is, the shaft S
1, those listed in order to compare whether the air resistance of S 2 is how improved.

【0032】このシャフトS0 は、長さはシャフトS
1 ,S2 と同じ1170mmである。図10を引用して
言えば、先端部Eの外径r1 は、8.5mmφ、基端部
Gの外径r2 は15.0mmφ、先端部Eから900m
mの位置である中間部Fの外径r3 は14.35mm
φ、肉厚は0.8mmである。
The shaft S 0 has a length of the shaft S
1, is the same 1170mm and S 2. Referring to FIG. 10, the outer diameter r 1 of the distal end E is 8.5 mmφ, the outer diameter r 2 of the proximal end G is 15.0 mmφ, and 900 m from the distal end E.
The outer diameter r 3 of the intermediate portion F at the position of m is 14.35 mm
φ, wall thickness is 0.8 mm.

【0033】図14は、実施例1,2のシャフトS1
2 の回転トルク(空気抵抗)を比較例のシャフトS0
のそれと比較して示したグラフである。
FIG. 14 shows the shafts S 1 and S 1 of the first and second embodiments.
Shaft S 0 of the comparative example the rotational torque of the S 2 (air resistance)
3 is a graph shown in comparison with that of FIG.

【0034】各シャフトS0 ,S1 ,S2 の回転トルク
(空気抵抗)は、図15に示す回転トルク試験機によっ
て測定した。すなわち、同図に示すように、モータ11
で駆動する回転軸12に垂直に取り付けた回転アーム1
3にシャフトS0 ,S1 ,S2 を個別に装着し、各シャ
フトの回転数に対する回転トルク(kg・m)を、トル
ク計4で測定した。測定範囲は、シャフトの回転中心か
ら691mm〜1591mmの範囲、すなわち、シャフ
トの先端部Eから中間部Fまでの900mmの範囲であ
る。シャフトS0 ,S1 ,S2 の回転方向は、図11〜
13に矢印で示す方向である。なお、測定時のレイノル
ズ数は、104 の範囲である。
The rotational torque (air resistance) of each shaft S 0 , S 1 , S 2 was measured by a rotational torque tester shown in FIG. That is, as shown in FIG.
Arm 1 vertically mounted on a rotating shaft 12 driven by
Shafts S 0 , S 1 , and S 2 were individually mounted on 3, and the torque (kg · m) with respect to the number of rotations of each shaft was measured by a torque meter 4. The measurement range is 691 mm to 1591 mm from the rotation center of the shaft, that is, 900 mm from the tip E to the middle F of the shaft. The rotation directions of the shafts S 0 , S 1 , S 2 are shown in FIGS.
13 is a direction indicated by an arrow. The Reynolds number at the time of measurement is in the range of 10 4 .

【0035】図14から明らかなように、実施例1のシ
ャフトS1 の回転トルク(空気抵抗)は、従来形のシャ
フトS0 のそれより、先端速度40mにおいて、約20
%小さくなる。また、実施例2のシャフトS2 も、同様
に、約20%小さくなる。
As is clear from FIG. 14, the rotational torque (air resistance) of the shaft S 1 of the first embodiment is about 20 times less than that of the conventional shaft S 0 at a tip speed of 40 m.
% Smaller. Also, the shaft S2 of the second embodiment is similarly reduced by about 20%.

【0036】上述のように、実施例1,2のシャフトS
1 ,S2 は、シャフトの空気抵抗が小さくなるので、こ
れを使用したゴルフクラブは、シャフト以外の他の条件
を同一にした場合、従来のゴルフクラブより速く振るこ
とができる。速く振れるので、ヘッドスピードが速くな
り、従来形のシャフトを使用したゴルフクラブより、ボ
ールの飛距離が伸びる。
As described above, the shaft S of the first and second embodiments is used.
1, S 2, since the air resistance of the shaft is reduced, the golf club using this, when the same other conditions other than the shaft can be swung faster than conventional golf club. Since the swing is faster, the head speed is faster, and the flight distance of the ball is longer than that of a golf club using a conventional shaft.

【0037】図示しないが、実施例1,2の溝2,5に
代えて、例えば、幅1.2mm、深さ0.5mmの凸条
をシャフトの全表面に螺旋状に設けても作用効果は、実
施例1,2のそれと同じである。
Although not shown, in place of the grooves 2 and 5 of the first and second embodiments, for example, a ridge having a width of 1.2 mm and a depth of 0.5 mm may be spirally provided on the entire surface of the shaft. Is the same as that of the first and second embodiments.

【0038】[0038]

【発明の効果】以上説明したように、この発明によれ
ば、円柱状物体の表面に、流体のすべり流れを起こす溝
を設けたから、円柱状物体に生じる流体抵抗、すなわ
ち、流体摩擦抵抗と圧力抵抗を効果的に低減することが
できる。したがって、この発明によれば、ゴルフクラブ
のシャフト、橋梁の懸垂ロープ、ヨットの帆の張り線、
電線ケーブル、パンタグラフの支柱等の円柱状物体に生
じる流体摩擦抵抗と圧力抵抗を低減することができる。
As described above, according to the present invention, since a groove for causing a slip flow of a fluid is provided on the surface of a cylindrical object, the fluid resistance generated in the cylindrical object, that is, the fluid frictional resistance and pressure Resistance can be effectively reduced. Therefore, according to the present invention, the shaft of a golf club, the suspension rope of a bridge, the tension line of a sail of a yacht,
It is possible to reduce fluid friction resistance and pressure resistance generated in a columnar object such as an electric wire cable and a support of a pantograph.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 円柱状物体の表面近傍に発生する流体の速度
分布形状を示す図
FIG. 1 is a diagram showing a velocity distribution shape of a fluid generated near the surface of a cylindrical object.

【図2】 円柱状物体の表面に設けた溝とその近傍に発
生する流体の速度分布形状を示す図
FIG. 2 is a diagram showing a groove provided on the surface of a cylindrical object and a velocity distribution shape of a fluid generated in the vicinity thereof.

【図3】 円柱状物体の表面に発生する流体の挙動を示
す図
FIG. 3 is a diagram showing the behavior of a fluid generated on the surface of a cylindrical object.

【図4】 溝を設けた円柱状物体の表面に発生する流体
の挙動を示す図
FIG. 4 is a diagram showing the behavior of a fluid generated on the surface of a cylindrical object provided with a groove.

【図5】 この発明において採用できる溝の断面図FIG. 5 is a sectional view of a groove that can be employed in the present invention.

【図6】 この発明において採用できる溝の断面図FIG. 6 is a sectional view of a groove that can be employed in the present invention.

【図7】 この発明において採用できる溝の断面図FIG. 7 is a sectional view of a groove that can be employed in the present invention.

【図8】 この発明において採用できる溝の断面図FIG. 8 is a sectional view of a groove that can be employed in the present invention.

【図9】 この発明において採用できる溝の断面図FIG. 9 is a sectional view of a groove that can be employed in the present invention.

【図10】 実施例1のシャフトの側面図FIG. 10 is a side view of the shaft according to the first embodiment.

【図11】 図10のH−H断面図11 is a sectional view taken along line HH of FIG.

【図12】 実施例2のシャフトの断面図FIG. 12 is a sectional view of a shaft according to a second embodiment.

【図13】 比較例として示した従来形のシャフトの断
面図
FIG. 13 is a sectional view of a conventional shaft shown as a comparative example.

【図14】 実施例1,2のシャフトと比較例のシャフ
トの回転トルクを示すグラフ
FIG. 14 is a graph showing rotational torques of the shafts of Examples 1 and 2 and a shaft of a comparative example.

【図15】 回転トルクの測定に使用した回転トルク試
験機の構成図
FIG. 15 is a configuration diagram of a rotation torque tester used for measurement of rotation torque.

【符号の説明】[Explanation of symbols]

B 円柱状物体 x 流体の流れ方向 S 表面 M、M1 〜M5 溝 R 逆流 Q 剥離点 Y よどみ点 K ベース領域 L よどみ線 S0 、S1 、S2 シャフト 1 シャフト本体 2,5 溝 11 モータ 12 回転軸 13 回転アームB cylindrical object x fluid flow direction S surface M, M 1 ~M 5 groove R backflow Q separation point Y stagnation K base region L stagnation line S 0, S 1, S 2 shaft 1 shaft body 2 and 5 grooves 11 Motor 12 Rotation axis 13 Rotation arm

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 流体中を相対移動する円柱状物体に生じ
る流体抵抗の低減装置であって、円柱状物体の表面に設
け、かつ同物体の表面にそって移動する流体を導入する
溝で構成したことを特徴とする円柱状物体の流体抵抗低
減装置。
An apparatus for reducing fluid resistance generated on a cylindrical object relatively moving in a fluid, comprising a groove provided on a surface of the cylindrical object and for introducing a fluid moving along the surface of the object. A fluid resistance reducing device for a columnar object.
JP11052733A 1998-04-09 1999-03-01 Fluid resistance decreasing device for columnar object Pending JPH11347165A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP11052733A JPH11347165A (en) 1998-04-09 1999-03-01 Fluid resistance decreasing device for columnar object
US09/287,906 US20010039216A1 (en) 1998-04-09 1999-04-07 Fluid resistivity reducing structure of cylindrial body
JP2000053754A JP2000314408A (en) 1999-03-01 2000-02-29 Drag force reducer for object

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-97646 1998-04-09
JP9764698 1998-04-09
JP11052733A JPH11347165A (en) 1998-04-09 1999-03-01 Fluid resistance decreasing device for columnar object

Publications (1)

Publication Number Publication Date
JPH11347165A true JPH11347165A (en) 1999-12-21

Family

ID=26393388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11052733A Pending JPH11347165A (en) 1998-04-09 1999-03-01 Fluid resistance decreasing device for columnar object

Country Status (2)

Country Link
US (1) US20010039216A1 (en)
JP (1) JPH11347165A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8241139B2 (en) 2010-02-24 2012-08-14 Sri Sports Limited Golf club
US8951142B2 (en) 2010-02-24 2015-02-10 Sri Sports Limited Golf club

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8241139B2 (en) 2010-02-24 2012-08-14 Sri Sports Limited Golf club
US8784231B2 (en) 2010-02-24 2014-07-22 Sri Sports Limited Golf club
US8951142B2 (en) 2010-02-24 2015-02-10 Sri Sports Limited Golf club

Also Published As

Publication number Publication date
US20010039216A1 (en) 2001-11-08

Similar Documents

Publication Publication Date Title
JP2931256B2 (en) Axial flow type stirring blade
JP2000199505A (en) Fluid frictional resistance reducing device of substance
US20070201982A1 (en) Ventilator and ventilator blade
EP2592281A1 (en) An Axial Fan
KR870008608A (en) Mixing device
JPH11347165A (en) Fluid resistance decreasing device for columnar object
JP2000314408A (en) Drag force reducer for object
JP2007292663A (en) Device and method for measuring straightness, and application method
US10974100B2 (en) Racket and grommet
US4782710A (en) Karman vortex flow meter
JPS63113199A (en) Impeller
KR950703390A (en) REDUCED AERODYNAMIC DRAG BASE-BALL BAT
EP1443630A3 (en) Generator with fan
JP6431663B2 (en) Blower impeller
Silverman et al. String theory': equilibrium configurations of a helicoseir
JP2662125B2 (en) Axial fan
JPH01247797A (en) Fan
Hoang et al. Hemisphere cylinder at incidence at intermediate to high Reynolds numbers
KR20170011063A (en) Duct type propeller water-turbine including a wing tip
JP6730041B2 (en) Pneumatic tire
JP2761122B2 (en) Vortex flow meter
CN210214370U (en) Non-contact angle measuring device and winding system
JP6764116B2 (en) Golf club
Sorge Shear compliance and self-weight effects on traction belt mechanics
US4147057A (en) Wind component anemometer