JPH11344574A - Charging type underground crustal activity observation device - Google Patents

Charging type underground crustal activity observation device

Info

Publication number
JPH11344574A
JPH11344574A JP10253192A JP25319298A JPH11344574A JP H11344574 A JPH11344574 A JP H11344574A JP 10253192 A JP10253192 A JP 10253192A JP 25319298 A JP25319298 A JP 25319298A JP H11344574 A JPH11344574 A JP H11344574A
Authority
JP
Japan
Prior art keywords
crustal activity
recording unit
data
unit
rechargeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10253192A
Other languages
Japanese (ja)
Other versions
JP4000497B2 (en
Inventor
Tsuneo Yamauchi
常生 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNO TOGO KK
Original Assignee
TECHNO TOGO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNO TOGO KK filed Critical TECHNO TOGO KK
Priority to JP25319298A priority Critical patent/JP4000497B2/en
Publication of JPH11344574A publication Critical patent/JPH11344574A/en
Application granted granted Critical
Publication of JP4000497B2 publication Critical patent/JP4000497B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten the working time to embed a measurement part in a bottom of a boring hole by providing a charging type underground crustal activity observation device capable of detaching a compound cable, to lower a boring equipment to the hole bottom in renewing the measurement part of the device, to recover the measurement part of the embedded device for recycling the hole bottom. SOLUTION: A measurement part 1 of a charging type underground crustal activity observation device is embedded in a boring hole 3, and a compound cable 100 having an electrode 70 to supply the power to a tip part of the measurement part 1 from a recording part 2 installed on a mouth of the boring hole 3 and a data exchanging means to transmit/receive the data and the control signal to/from the measurement part 1 is lowered into the boring hole 3. The tip of the compound cable 100 is joined with the measurement part inside a container provided on an upper part of the measurement part, and covered with an electrically insulating liquid to charge a power source of the measurement part 1 and to transmit/receive the control signal while protecting a joined part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は,ボーリング孔で使用す
る充電式地下埋設型地殻活動観測装置であって,地殻活
動に伴う物理現象の変化を観測する装置に関する.
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rechargeable underground type crustal activity observation device used in a borehole, and a device for observing a change in a physical phenomenon accompanying the crustal activity.

【従来の技術】[Prior art]

【0002】ボーリング孔に埋設して使用される地震計
やひずみ計には,信号線や電源線で構成される複合ケー
ブルが結合されており,この複合ケーブルを介して,埋
設された計器に電源が供給されたり,埋設された計器か
らの電気信号が記録計に入力される.
2. Description of the Related Art A composite cable composed of a signal line and a power supply line is connected to a seismometer or a strain gauge buried in a borehole, and power is supplied to the buried instrument via the composite cable. Is supplied or an electrical signal from the buried instrument is input to the recorder.

【0003】[0003]

【発明が解決しようとする課題】地震計やひずみ計をボ
ーリング孔に埋設する場合,計器に結合された複合ケー
ブルが埋設作業の妨げになる.また,孔底に埋設された
これらの計器を更新する場合,ボーリングを行ってこれ
らの計器を回収する必要があるが,計器に結合された複
合ケーブルが妨げとなり,ボーリング用の機材を孔底ま
で降下させることができない.したがって,地震計やひ
ずみ計を更新するためには,経費をかけてボーリング孔
よりケーブルを取り除いたり,別途ボーリング孔を穿孔
する必要がある.
When a seismometer or a strain gauge is buried in a borehole, a compound cable connected to the instrument hinders the burying operation. When replacing these instruments buried at the bottom of the hole, it is necessary to carry out boring and collect these instruments. However, the composite cable connected to the instrument is an obstacle, and the equipment for boring must be moved to the bottom of the hole. You cannot drop. Therefore, in order to update the seismometers and strain gauges, it is necessary to remove the cable from the borehole and to drill the borehole separately.

【0004】本発明は上記問題点にかんがみなされたも
のであり,脱着が可能な複合ケーブルを有する充電式地
下埋設型地殻活動観測装置を提供し,観測装置の計測部
を簡単にボーリング孔に埋設できるようにし,埋設に伴
う作業時間を短縮する.また,計測部を更新する場合,
複合ケーブルを巻き揚げた状態でボーリング孔の孔底ま
でボーリング機材を降下させ,埋設された計測部の回収
を行って,孔底を再利用し,ボーリングの穿孔経費を節
減する.
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and provides a rechargeable underground type crustal activity observation device having a detachable composite cable, in which a measurement portion of the observation device is easily embedded in a borehole. And reduce the work time associated with burial. When updating the measurement unit,
The boring equipment is lowered to the bottom of the boring hole with the composite cable unwound, and the buried measuring unit is collected, and the bottom of the hole is reused to reduce boring drilling costs.

【0005】[0005]

【課題を解決するための手段】請求項1に記載される本
発明による,地殻活動に伴う物理現象の変化を観測する
充電式地下埋設型地殻活動観測装置は,ボーリング孔に
設置する計測部と孔口に設置する記録部より構成され,
計測部を構成する密閉した容器内部には,地殻活動に伴
う物理現象の変化をデジタルデータに変換する手段と,
そのデータを保存する手段と,電源用の電気エネルギー
を蓄える手段と,充電用の電源を受給する手段と,孔口
に設置した記録部との間でデータや制御信号の送受信を
行うデータ交換手段を備える.孔口に設置する記録部に
は,巻き揚げが可能な複合ケーブルの先端に,計測部に
充電用の電源を供給する手段と,計測部との間でデータ
や制御信号の送受信を行うデータ交換手段を備える.
According to the first aspect of the present invention, there is provided a rechargeable underground type crustal activity observation device for observing a change in a physical phenomenon accompanying crustal activity, comprising: a measuring unit installed in a borehole; It consists of a recording unit installed at the hole,
Inside the sealed container that constitutes the measurement unit, means for converting changes in physical phenomena due to crustal activity into digital data,
Means for storing the data, means for storing electric energy for power supply, means for receiving power for charging, and data exchange means for transmitting and receiving data and control signals between a recording unit installed in a hole. Is provided. The recording unit installed at the hole has a means for supplying power for charging to the measuring unit at the end of a composite cable that can be unwound, and a data exchange for transmitting and receiving data and control signals to and from the measuring unit. Provide means.

【0006】孔口に設置した記録部より,巻き揚げが可
能な複合ケーブルの先端をボーリング孔に降ろし,孔内
に設置した計測部に備えた絶縁性の液体内において,複
合ケーブルの先端を計測部に接合し,電源用の電極を介
して計測部の二次電池を充電したり,信号用の電極を介
して計測部と記録部との間でデータや制御信号の送受信
を行う.また,非接触の手段で計測部の電源用の二次電
池を充電したり,非接触の手段で計測部と記録部との間
でデータや制御信号の送受信を行う.
[0006] The leading end of the composite cable that can be unwound is lowered from the recording unit installed at the hole into the boring hole, and the leading end of the composite cable is measured in the insulating liquid provided at the measuring unit installed in the hole. It connects to the unit and charges the secondary battery of the measurement unit via the power supply electrode, and sends and receives data and control signals between the measurement unit and the recording unit via the signal electrode. In addition, the secondary battery for the power supply of the measuring unit is charged by non-contact means, and data and control signals are transmitted and received between the measuring unit and the recording unit by non-contact means.

【0007】通常,計測部と記録部は一体として商用電
源で作動させるが,記録部が電源用の電気エネルギーを
蓄える手段とデータを保存する手段を備えていれば,定
期的に充電を行うことで記録部に電源線を接続しなくて
も地殻活動に伴う物理現象の変化が観測できる.
Normally, the measuring unit and the recording unit are operated integrally with a commercial power supply. However, if the recording unit has a means for storing electric energy for the power supply and a means for storing data, it is necessary to charge the battery periodically. The change in physical phenomena associated with crustal activity can be observed without connecting a power line to the recording unit.

【0008】[0008]

【発明の作用効果】本発明による充電式地下埋設型地殻
活動観測装置であれば,埋設する計測部と記録部を切り
離すことが可能である.ボーリング孔より複合ケーブル
やワイヤーを巻き揚げた状態であれば,計測部の埋設作
業が簡単になり,埋設に要する経費を軽減できる.
The rechargeable underground crustal activity observation device according to the present invention can separate the buried measuring unit and recording unit. If the composite cable or wire is unwound from the boring hole, the work of burying the measuring part becomes simple and the cost required for burying can be reduced.

【0009】また,孔底に埋設した計測部を更新する場
合でも,ボーリング孔から複合ケーブルやワイヤーを巻
き揚げれば,ボーリング用の機材を孔底まで降下させる
ことが可能で,計測部を埋設した場所のボーリングを行
うことができ,埋設した計測部を回収できる.このた
め,ボーリング孔の孔底を再利用でき,ボーリング孔を
新しく穿孔する経費が節約できる.
[0009] Even when the measuring unit embedded in the bottom of the hole is to be renewed, the boring equipment can be lowered to the bottom of the hole by winding up the composite cable or wire from the boring hole. Drilling can be performed in a buried place, and the buried measuring part can be collected. For this reason, the bottom of the borehole can be reused, and the cost of newly drilling the borehole can be saved.

【0010】本発明による充電式地下埋設型地殻活動観
測装置を埋設した場合,計測部と記録部を定期的に接合
すれば,複合ケーブルを介して計測部の二次電池を充電
できるし,計測部に保存したデータを孔口に設置した記
録部に伝送できる.このため,複合ケーブルが接続され
ている従来の地殻活動観測装置と同様に,必要とする時
間に,地殻活動に伴う物理現象の変化を観測できる.
[0010] When the rechargeable underground crustal activity monitoring device according to the present invention is buried, if the measuring unit and the recording unit are periodically joined, the secondary battery of the measuring unit can be charged via the composite cable, and the measurement can be performed. The data stored in the unit can be transmitted to the recording unit installed in the hole. For this reason, it is possible to observe changes in physical phenomena due to crustal activity at the required time, similar to the conventional crustal activity monitoring device to which the composite cable is connected.

【0011】一方,計測部と記録部との間で,データや
制御信号の送受信を電磁波・可視線・紫外線・赤外線・
超音波を介した非接触の手段で行えば,データや制御信
号の送受信用ケーブルに非接触の部分があるため,ボー
リング孔に埋設した計測部が落雷で故障しにくくなる.
この場合,計測部に設けた絶縁性の液体の中で,これら
の手段による送受信を行うと次のような効果がある.す
なわち,これらの手段に用いる電子回路や電極が,絶縁
性の液体で覆われボーリング孔内の水と接触しなくな
る.そのため,データや制御信号の送受信用の電子回路
が故障しにくくなり,長期間安定して作動する.
On the other hand, transmission and reception of data and control signals between the measuring unit and the recording unit are performed by using electromagnetic waves, visible rays, ultraviolet rays, infrared rays,
If it is done by non-contact means via ultrasonic waves, the measurement part buried in the borehole is less likely to break down due to lightning strike because the cable for transmitting and receiving data and control signals has a non-contact part.
In this case, the following effects are obtained by transmitting and receiving by these means in the insulating liquid provided in the measuring unit. That is, the electronic circuits and electrodes used for these means are covered with the insulating liquid and do not come into contact with the water in the borehole. For this reason, the electronic circuit for transmitting and receiving data and control signals is less likely to fail and operates stably for a long time.

【0012】本発明による充電式地下埋設型地殻活動観
測装置によれば,充電可能な二次電池を内蔵しており,
電源用の電池を充電した後であれば,ボーリング孔から
複合ケーブルを巻き揚げても地殻活動の観測が継続でき
る.そのため,本発明による観測装置を埋設したボーリ
ング孔であれば,従来は難しかったボーリング孔の多目
的利用が可能である.
According to the rechargeable underground type crustal activity observation device of the present invention, a rechargeable secondary battery is built-in.
After charging the battery for power supply, the observation of crustal activity can be continued even if the composite cable is unwound from the borehole. Therefore, the drilling hole in which the observation device according to the present invention is buried can be used for multipurpose use which was difficult in the past.

【0013】すなわち,複合ケーブルやワイヤーを巻き
揚げた状態であれば,複合ケーブルやワーヤーが妨げに
ならず,同じボーリング孔の内部で地下水の温度を測定
したり水質を測定することができる.そして,地下水の
温度や水質の測定等の作業が終了した後,複合ケーブル
やワイヤーを降下させて地殻活動の観測を続ける.作業
中の観測データが必要であれば,制御信号を送ること
で,計測部のメモリーに保存したデータを孔口の記録部
に送信する.
That is, if the composite cable or wire is unwound, the composite cable or wire is not obstructed, and the temperature of groundwater and the quality of water can be measured inside the same borehole. Then, after the work such as measurement of groundwater temperature and water quality is completed, the composite cable and wire are lowered to continue observation of crustal activity. If the observation data during the work is required, the data saved in the memory of the measurement unit is transmitted to the recording unit of the hole by sending a control signal.

【0014】[0014]

【発明の実施の形熊】以下,本発明の実施の形態を図面
に基づいて説明する.
Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1は,一実施例による充電式地下埋設型
地殻活動観測装置の使用熊様図,図2は同装置の計測部
1の構成図,図3は同装置の記録部2の使用実態図,を
それぞれ示している.
FIG. 1 is a diagram showing a use of a rechargeable underground type crustal activity observation device according to an embodiment, FIG. 2 is a configuration diagram of a measurement unit 1 of the device, and FIG. 3 is a use of a recording unit 2 of the device. Actual figures are shown.

【0016】本実施例の計測部1は,図2で示すように
電源としての二次電池10と,電源を受給する手段を構
成する電極20と,物理現象の変化に対応したアナログ
信号をデジタルデータに変換するアナログ/デジタル変
換器30とデータや制御信号の送受信をするデータ交換
手段40を構成する電極50と,これらの電極20や5
0がボーリング孔内の水に接触しないように絶縁性の液
体で覆う手段60を備えている.
As shown in FIG. 2, the measuring section 1 of this embodiment includes a secondary battery 10 as a power supply, an electrode 20 constituting a means for receiving the power, and an analog signal corresponding to a change in a physical phenomenon. An electrode 50 constituting an analog / digital converter 30 for converting data and data exchange means 40 for transmitting and receiving data and control signals;
Means 60 is provided for covering with an insulating liquid so as to prevent 0 from contacting the water in the borehole.

【0017】本実施例の記録部2は,巻き上げ可能な複
合ケーブル100を有しており,図3で示すように,そ
の先端に,計測部1に充電用の電源を供給する電極7
0,計測部1との間でデータや制御信号の送受信を行う
データ交換手段80を構成する電極90を先端に備え,
ボーリング孔に降下させて使用する.
The recording section 2 of this embodiment has a composite cable 100 that can be wound up. As shown in FIG.
0, an electrode 90 constituting a data exchange means 80 for transmitting and receiving data and control signals to and from the measuring unit 1 is provided at the tip,
Use by dropping into the boring hole.

【0018】上記のように構成された充電式地下埋設型
地殻活動観測装置をボーリング孔に埋設して地殻活動に
伴う物理現象の変化を観測する方法を,図1を参照しつ
つ説明する.図1で示すように,図2の構成の計測部1
をボーリング孔3に埋設し,孔口に設置した記録部2よ
り複合ケーブル100をボーリング孔に降ろし,計測部
1と接合する.図1の実施例では,計測部1の上部に,
絶縁性の液体で覆う手段60として水より比重が大きい
液体を満たした容器があり,その内部に電源の受給用の
電極20とデータや制御信号の送受信に使用する信号用
の電極50が設けてある.そして,これらの電極と,複
合ケーブル100の先端に設けた図3で示す構成の電源
を供給する電極70や信号用の電極90を接合する.
A method for observing a change in a physical phenomenon accompanying crustal activity by burying the rechargeable underground type crustal activity monitoring device configured as described above in a borehole will be described with reference to FIG. As shown in FIG. 1, the measuring unit 1 having the configuration of FIG.
Is buried in the boring hole 3, the composite cable 100 is lowered from the recording unit 2 installed in the hole to the boring hole, and joined to the measuring unit 1. In the embodiment of FIG.
As a means 60 for covering with an insulating liquid, there is a container filled with a liquid having a specific gravity greater than that of water, and an electrode 20 for receiving a power supply and an electrode 50 for a signal used for transmitting and receiving data and control signals are provided therein. is there. Then, these electrodes are joined to the power supply electrode 70 and the signal electrode 90 having the configuration shown in FIG.

【0019】図1,図2,図3で示した実施例によれ
ば,記録部2よりボーリング孔に降ろしたケーブル10
0の先端を計測部1に接合した場合,電源の受給用の電
極20と供給用の電極70,および,データ交換手段を
構成する電極50と90が,絶縁性の液体で覆う手段6
0の内部で接合される.この構成であれば,絶縁性の液
体より比重が小さい水は,電極20,50,70,90
が接触する絶縁性の液体で覆われた部分へは浸透するこ
となく,計測部1に電源の供給を行うことができる.ま
た,図示してないマイクロコンピューターやスケジュー
ラーの制御によって,計測部1と記録部2の間で,デー
タや制御信号の送受信を行うことができ,地殻活動の観
測を継続できる.この実施例によると,複合ケーブル1
00を巻き揚げた状態で作業を行えば,計測部1の埋設
は容易であるし,1を更新する場合も,ボーリング孔の
孔底までボーリング用の機材を降下させることができ,
孔底を再利用できる.
According to the embodiment shown in FIGS. 1, 2 and 3, the cable 10 dropped from the recording unit 2 into the borehole
In the case where the leading end of the power supply unit 0 is joined to the measuring unit 1, the power supply receiving electrode 20 and the power supply electrode 70, and the electrodes 50 and 90 constituting the data exchange means are covered with the insulating liquid 6
Joined inside 0. With this configuration, water having a specific gravity smaller than that of the insulating liquid is applied to the electrodes 20, 50, 70, and 90.
The power can be supplied to the measuring unit 1 without penetrating into the portion covered with the insulating liquid that comes into contact. In addition, data and control signals can be transmitted and received between the measurement unit 1 and the recording unit 2 under the control of a microcomputer or a scheduler (not shown), and observation of crustal activity can be continued. According to this embodiment, the composite cable 1
If the work is performed with the 00 rolled up, the embedding of the measuring unit 1 is easy, and even when updating 1, the boring equipment can be lowered to the bottom of the boring hole.
The bottom of the hole can be reused.

【0020】図4は,他の実施例による充電式地下埋設
型地殻活動観測装置の構成図である.この例では,計測
部1の内部にデータ交換手段としてコイル110を設け
る.そして,計測部1の上方に絶縁性の液体を満たした
容器を備え,その内部に電源の受給用の電極20を設け
る.また,孔口の記録部より降ろした複合ケーブル10
0の先端には計測部1へ電源を供給する電極70,およ
び,データ交換手段80としてコイル120を設ける.
FIG. 4 is a configuration diagram of a rechargeable underground type crustal activity observation device according to another embodiment. In this example, a coil 110 is provided inside the measuring unit 1 as data exchange means. Then, a container filled with an insulating liquid is provided above the measuring unit 1, and an electrode 20 for receiving power is provided inside the container. In addition, the composite cable 10 dropped from the recording section at the hole.
An electrode 70 for supplying power to the measuring unit 1 and a coil 120 as a data exchange means 80 are provided at the tip of 0.

【0021】図4の実施例によれば,計測部1の上部に
おいて,絶縁性の液体で覆われた状熊で電源を受給する
手段を構成する電極20と電源を供給する手段を構成す
る電極70を接合し,計測部1の電源用の二次電池10
を充電する.一方,計測部1に設けたコイル110や複
合ケーブル100の先端に設けたコイル120を介し
て,物理現象の変化に対応したアナログ信号をデジタル
データに変換するアナログ/デジタル変換器30による
データを電磁波を用いるアンテナカップリング法で,図
示してないマイクロコンピューターやスケジューラーの
制御によって記録部2に送信する.この実施例の場合,
複合ケーブル100は電源線と信号線で構成されている
が,計測部1と記録部2を接合する電極が少ないため,
接合する部分の構成を簡単にできる.この実施例の場合
も,前記した実施例と同様に複合ケーブル100を巻き
揚げれば,埋設等の作業が簡単になる.
According to the embodiment of FIG. 4, an electrode 20 constituting a means for receiving power and an electrode constituting a means for supplying power are provided above the measuring section 1 by means of a cover covered with an insulating liquid. 70, and the secondary battery 10 for the power source of the measuring unit 1
Charge. On the other hand, the data from the analog / digital converter 30 that converts an analog signal corresponding to a change in a physical phenomenon into digital data via the coil 110 provided in the measuring unit 1 or the coil 120 provided at the end of the composite cable 100 is transmitted to an electromagnetic wave. Is transmitted to the recording unit 2 under the control of a microcomputer or a scheduler (not shown). In this example,
Although the composite cable 100 is composed of a power supply line and a signal line, since the number of electrodes for joining the measuring unit 1 and the recording unit 2 is small,
The structure of the joining part can be simplified. In the case of this embodiment as well, when the composite cable 100 is unwound as in the above-described embodiment, the work such as burying is simplified.

【0022】図5は,他の実施例による充電式地下埋設
型地殻活動観測装置の構成図である.この実施例では,
図4の実施例と同様に,絶縁性の液体で覆う手段60と
して計測部1の上方に絶縁性の液体を満たした容器を備
え,その内部には電源の受給用の電極20を設ける.ま
た,孔口の記録部より同軸ケーブル130を降ろし,そ
の先端に計測部1に電源を供給するための電極70を設
ける.そして,計測部1に設けた電源を受給するための
手段を構成する電極20と,電源を供給する手段を構成
する電極70を絶縁性の液体で覆う手段60の内部で接
合し,二次電池10を充電する.この実施例の場合は,
同じ同軸ケーブル130をデータ交換手段にも使用す
る.具体的には,計測部1に設けたコイル110,及
び,コンデンサーを介して電源を受給する手段を構成す
る電極20に接合したコイル140の2つのコイルをア
ンテナカップリングさせ,電磁波によってアナログ/デ
ジタル変換器30によるデータや制御信号の送受信をす
る.
FIG. 5 is a block diagram of a rechargeable underground type crustal activity observation device according to another embodiment. In this embodiment,
As in the embodiment of FIG. 4, a container filled with an insulating liquid is provided above the measuring unit 1 as means 60 for covering with an insulating liquid, and an electrode 20 for receiving power is provided inside the container. Further, the coaxial cable 130 is dropped from the recording section at the hole, and an electrode 70 for supplying power to the measuring section 1 is provided at the end. Then, the electrode 20 constituting the means for receiving power provided in the measuring section 1 and the electrode 70 constituting the means for supplying power are joined inside the means 60 for covering the electrode 70 with an insulating liquid, thereby forming the secondary battery. Charge 10. In this example,
The same coaxial cable 130 is also used for data exchange means. More specifically, two coils, a coil 110 provided in the measuring section 1 and a coil 140 joined to the electrode 20 constituting a means for receiving power through a capacitor, are subjected to antenna coupling, and analog / digital signals are generated by electromagnetic waves. Data and control signals are transmitted and received by the converter 30.

【0023】この実施例の場合は,記録部2に接続され
た複合ケーブルに相当するものが,電源線と信号線を兼
ねた同軸ケーブル130のみで構成されており,ケーブ
ルを細くできる.ケーブルが細くなれば,ケーブルの巻
き揚げが簡単になり,計測部1の埋設深度を深くでき
る.
In the case of this embodiment, the cable corresponding to the composite cable connected to the recording section 2 is constituted only by the coaxial cable 130 which also serves as a power supply line and a signal line, and the cable can be made thin. If the cable becomes thinner, it becomes easier to wind up the cable, and the burial depth of the measuring unit 1 can be increased.

【0024】図6は,他の実施例による充電式地下埋設
型地殻活動観測装置の構成図である.この実施例では,
データや制御信号の送受信を行う手段として超音波を用
いるもので,図4の実施例で使用したコイル110の代
わりに,計測部内部に超音波によるデータ交換手段15
0を設ける.また,孔口の記録部2よりボーリング孔に
降下させた複合ケーブル100の先端にもコイル120
の代わりに,超音波によるデータ交換手段160を設け
る.そして,データや制御信号の送受信を絶縁性の液体
で覆う手段60を介して超音波で行う.一方,絶縁性の
液体が透明であれば,データの送受信をする手段を可視
線・紫外線・赤外線等に変更してもよい.この実施例の
場合も図4の実施例と同様に,電源を供給する手段を構
成する電極20や電源を充電する手段を構成する電極7
0,二次電池10やアナログ/デジタル変換器30を備
えている.
FIG. 6 is a block diagram of a rechargeable underground type crustal activity observation device according to another embodiment. In this embodiment,
Ultrasonic waves are used as a means for transmitting and receiving data and control signals. Instead of the coil 110 used in the embodiment of FIG.
0 is provided. A coil 120 is also attached to the end of the composite cable 100 which is lowered from the recording unit 2 at the hole to the boring hole.
Instead of this, a data exchange means 160 using ultrasonic waves is provided. Then, transmission and reception of data and control signals are performed by ultrasonic waves through means 60 for covering with an insulating liquid. On the other hand, if the insulating liquid is transparent, the means for transmitting and receiving data may be changed to visible rays, ultraviolet rays, infrared rays, etc. In the case of this embodiment, as in the embodiment of FIG. 4, the electrode 20 constituting the means for supplying power and the electrode 7 constituting the means for charging the power supply
0, a secondary battery 10 and an analog / digital converter 30.

【0025】図7は,充電式地下埋設型地殻活動観測装
置の使用態様図の他の例である.この実施例では,計測
部1を埋設したボーリング孔3の上部の帯水層4にスト
レーナー5を設け,水温や水質を測定する例である.複
合ケーブル100を巻き揚げた状態でストレーナー5の
近くで水温や水質を測定し,水温や水質の測定が終わっ
たら複合ケーブル100をボーリング孔に降ろし,継続
して地殻活動に伴う物理現象の変化を観測する.
FIG. 7 is another example of a usage pattern of the rechargeable underground crustal activity observation device. In this embodiment, a strainer 5 is provided in an aquifer 4 above a borehole 3 in which a measuring unit 1 is buried, and water temperature and water quality are measured. Water temperature and water quality are measured near the strainer 5 while the composite cable 100 is unwound, and after the measurement of water temperature and water quality is completed, the composite cable 100 is lowered into a borehole to continuously monitor changes in physical phenomena associated with crustal activity. Observe.

【0026】上述した本発明による充電式地下埋設型地
殻活動観測装置を使用する実施例は,記録部がボーリン
グ孔の孔口にある場合であったが,データを保存する手
段と,電源用の電気エネルギーを蓄える手段を備えた記
録部であれば,記録部をボーリング孔の内部に設置して
も効果は同じである.この場合は必要に応じて記録部を
引き揚げて,内部に保存したデータを取り出したり電源
用の二次電池を充電する.その後,記録部をボーリング
孔の内部に再設置して地殻活動に伴う物理現象の変化を
観測する.
In the embodiment using the rechargeable underground type crustal activity observation apparatus according to the present invention described above, the recording unit is located at the hole of the boring hole. If the recording unit is equipped with a means for storing electrical energy, the effect is the same even if the recording unit is installed inside the borehole. In this case, if necessary, pull up the recording unit to retrieve the data stored inside or charge the secondary battery for power supply. After that, the recording part is re-installed inside the borehole and changes in physical phenomena due to crustal activity are observed.

【0027】また,本発明による充電式地下埋設型地殻
活動観測装置は,海底に穿孔されたボーリング孔におい
ても使用可能である.防水対策を施した記録部であれ
ば,記録部を海底に設置することができるが,この場合
には,絶縁性の液体で記録部全体を覆う構成にするとよ
い.また,記録部の電源も充電可能な二次電池を用いる
と便利である.
The rechargeable underground crustal activity observation device according to the present invention can also be used in a borehole drilled in the sea floor. If the recording unit has been waterproofed, the recording unit can be installed on the seabed. In this case, it is advisable to cover the entire recording unit with an insulating liquid. It is also convenient to use a rechargeable secondary battery for the power supply of the recording unit.

【0028】本発明の実施例では,充電式地下埋設型地
殻活動観測装置の電源に,充電可能な二次電池を使用す
る手段を用いたが,電源用の電気エネルギーを蓄える手
段であれば,他の手段であっても本発明の課題を解決で
きる.例えば,スーパーコンデンサーと電圧レギュレー
ターを組み合わせ,電源を作成する方法がある.
In the embodiment of the present invention, the means for using a rechargeable secondary battery is used as the power source of the rechargeable underground type crustal activity observation apparatus, but any means for storing electric energy for the power source may be used. The problem of the present invention can be solved by other means. For example, there is a method of creating a power supply by combining a super capacitor and a voltage regulator.

【0029】本発明の実施例では,充電式地下埋設型地
殻活動観測装置に使用する絶縁性の液体として比重が水
より大きな液体の例を示したが,計測部1と複合ケーブ
ル100を接合する部分を構成する容器の形状を変えれ
ば,比重が水より小さい液体が利用できる.
In the embodiment of the present invention, the insulating liquid used in the rechargeable underground type crustal activity monitoring apparatus is an example of a liquid having a specific gravity larger than that of water, but the measuring unit 1 and the composite cable 100 are joined. By changing the shape of the container that makes up the part, a liquid with a specific gravity smaller than water can be used.

【0030】本発明の実施例では,電極を介して計測部
の二次電池の充電を行う例を示したが,電磁波を利用す
れば,非接触で二次電池を充電することができる.
In the embodiment of the present invention, an example in which the secondary battery of the measuring section is charged via the electrode has been described. However, the secondary battery can be charged in a non-contact manner by using an electromagnetic wave.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一実施例による充電式地下埋設型地殻活動観測
装置の使用実態図である.
FIG. 1 is a diagram showing the use of a rechargeable underground crustal activity observation device according to one embodiment.

【図2】埋設する計測部の一構成図である.FIG. 2 is a configuration diagram of an embedded measuring unit.

【図3】充電式地下埋設型地殻活動観測装置の記録部の
一使用実態図である.
FIG. 3 is a diagram showing one use of a recording unit of a rechargeable underground type crustal activity observation device.

【図4】充電式地下埋設型地殻活動観測装置の計測部と
記録部の一構成図である.
Fig. 4 is a block diagram of the measuring unit and recording unit of the rechargeable underground crustal activity monitoring device.

【図5】充電式地下埋設型地殻活動観測装置の計測部と
記録部の他の構成図である.
FIG. 5 is another configuration diagram of the measurement unit and the recording unit of the rechargeable underground crustal activity observation device.

【図6】充電式地下埋設型地殻活動観測装置の計測部と
記録部の別の構成図である.
FIG. 6 is another configuration diagram of the measurement unit and the recording unit of the rechargeable underground crustal activity observation device.

【図7】別の実施例による充電式地下埋設型地殻活動観
測装置の使用実態図である.
FIG. 7 is a diagram showing the actual use of a rechargeable underground crustal activity observation device according to another embodiment.

【符号の説明】[Explanation of symbols]

1 充電式地下埋設型地殻活動観測装置の計測部 2 充電式地下埋設型地殻活動観測装置の記録部 3 ボーリング孔 4 帯水層 5 ストレーナー 10 二次電池 20 電極 30 アナログ/デジタル変換器 40 データ交換手段 50 電極 60 絶縁性の液体で覆う手段 70 電極 80 データ交換手段 90 電極 100 複合ケーブル 110 コイル 120 コイル 130 同軸ケーブル 140 コイル 150 超音波によるデータ交換手段 160 超音波によるデータ交換手段 Reference Signs List 1 Measurement section of rechargeable underground type crustal activity observation device 2 Record section of rechargeable underground type crustal activity observation device 3 Boring hole 4 Aquifer 5 Strainer 10 Secondary battery 20 Electrode 30 Analog / digital converter 40 Data exchange Means 50 Electrodes 60 Means for covering with insulating liquid 70 Electrodes 80 Data exchange means 90 Electrodes 100 Composite cable 110 Coil 120 Coil 130 Coaxial cable 140 Coil 150 Ultrasonic data exchange means 160 Ultrasonic data exchange means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 地中に穿孔されたボーリング孔に設置す
る計測部と,ボーリング孔の孔口に設置する記録部より
構成される充電式地下埋設型地殻活動観測装置であっ
て,計測部は,密閉された容器内部に,地殻活動に伴う
物理現象の変化をデジタルデータに変換する手段と,そ
のデータを保存する手段と,電源用の電気エネルギーを
蓄える手段と,充電用の電源を受給する手段と,孔口に
設置した記録部との間でデータや制御信号の送受信を行
うデータ交換手段を備え,記録部は,巻き上げが可能な
複合ケーブルを有し,その先端に計測部に充電用の電源
を供給する手段と,計測部との間でデータや制御信号の
送受信を行うデータ交換手段を備え,計測部と記録部が
マイクロコンピューターやスケジューラーの制御によっ
て一体として機能し,必要に応じて計測部と記録部を切
り離すことができることを特徴とする,地殻活動に伴う
物理現象の変化を観測する充電式地下埋設型地殻活動観
測装置.
1. A rechargeable underground crustal activity observation device comprising a measurement unit installed in a borehole drilled in the ground and a recording unit installed in the hole of the borehole, wherein the measurement unit is In a closed container, means for converting the change of physical phenomena due to crustal activity into digital data, means for storing the data, means for storing electric energy for power supply, and receiving power for charging Data exchange means for transmitting and receiving data and control signals between the recording means and the recording unit installed at the hole. The recording unit has a composite cable that can be wound up. And a data exchange unit for transmitting and receiving data and control signals to and from the measurement unit. The measurement unit and the recording unit function as a single unit under the control of a microcomputer or scheduler. A rechargeable underground type crustal activity observation device for observing changes in physical phenomena due to crustal activity, characterized in that the measuring unit and the recording unit can be separated as necessary.
【請求項2】 請求項1記載の充電用電源の受給と供給
をする手段と,データや制御信号の送受信を行うデータ
交換手段が電極を有し,これらの手段や電極がボーリン
グ孔内で水に接触しないように絶縁性の液体で覆う手段
を備えたことを特徴とする,請求項1記載の充電式地下
埋設型地殻活動観測装置.
2. A means for receiving and supplying a charging power source according to claim 1, and a data exchange means for transmitting and receiving data and control signals have electrodes, and these means and electrodes are provided with water in a borehole. The rechargeable underground type crustal activity observation device according to claim 1, further comprising means for covering with an insulating liquid so as not to contact the surface.
【請求項3】 記録部が電源用の電気エネルギーを蓄え
る手段と計測部より伝送されたデータを保存する手段を
有し,記録部に電源線を接続しなくても,地殻活動の観
測を継続できることを特徴とする,請求項1及び請求項
2に記載の充電式地下埋設型地殻活動観測装置.
3. The recording unit has means for storing electric energy for power supply and means for storing data transmitted from the measuring unit, and continues observation of crustal activity without connecting a power line to the recording unit. The rechargeable underground type crustal activity monitoring device according to claim 1 or 2, wherein the device is capable of observing crustal activity.
JP25319298A 1998-04-03 1998-08-04 Rechargeable underground buried crustal activity observation device Expired - Fee Related JP4000497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25319298A JP4000497B2 (en) 1998-04-03 1998-08-04 Rechargeable underground buried crustal activity observation device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-129425 1998-04-03
JP12942598 1998-04-03
JP25319298A JP4000497B2 (en) 1998-04-03 1998-08-04 Rechargeable underground buried crustal activity observation device

Publications (2)

Publication Number Publication Date
JPH11344574A true JPH11344574A (en) 1999-12-14
JP4000497B2 JP4000497B2 (en) 2007-10-31

Family

ID=26464819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25319298A Expired - Fee Related JP4000497B2 (en) 1998-04-03 1998-08-04 Rechargeable underground buried crustal activity observation device

Country Status (1)

Country Link
JP (1) JP4000497B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242648A (en) * 2005-03-01 2006-09-14 Central Res Inst Of Electric Power Ind Device for monitoring environment in subsurface layer and system for monitoring environment in subsurface layer using it
JP2010151633A (en) * 2008-12-25 2010-07-08 Shinya Baba System and method for measuring seismic wave
JP2012237677A (en) * 2011-05-12 2012-12-06 Ntt World Engineering Marine Corp Sensor installation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242648A (en) * 2005-03-01 2006-09-14 Central Res Inst Of Electric Power Ind Device for monitoring environment in subsurface layer and system for monitoring environment in subsurface layer using it
JP4484216B2 (en) * 2005-03-01 2010-06-16 財団法人電力中央研究所 Surface soil environment monitoring device and surface soil environment monitoring system using the same
JP2010151633A (en) * 2008-12-25 2010-07-08 Shinya Baba System and method for measuring seismic wave
JP2012237677A (en) * 2011-05-12 2012-12-06 Ntt World Engineering Marine Corp Sensor installation method

Also Published As

Publication number Publication date
JP4000497B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
JP4885880B2 (en) Measuring probe for on-site measurement and testing of the sea floor
CA2796841C (en) Ocean bottom seismic cable recording apparatus
EP2828479B1 (en) Environmentally powered transmitter for location identification of wellbores
EP1062753B1 (en) Borehole transmission system using impedance modulation
NO842180L (en) APPARATUS AND PROCEDURE FOR LOGGING OF BURNER DURING DRILLING
US7980331B2 (en) Accessible downhole power assembly
CN108107483A (en) A kind of seismic survey system based on underwater movable platform
NO317444B1 (en) Device and method of source telemetry by transmitting electromagnetic bolts along a source tube
JPH06505566A (en) Stationary equipment for active and/or passive monitoring of underground mineral deposits
US6644403B2 (en) Method and device for the measuring physical parameters in a production shaft of a deposit of underground fluid storage reservoir
CA2427118C (en) Streamlining data transfer to/from logging while drilling tools
CN103196421A (en) Automatic inspection type layered settlement instrument
CN107313771A (en) A kind of nearly bit measuring instrument with resistivity measurement function
CN101603420B (en) Method and device for telemetering torque moment of drill stem
US20100133833A1 (en) Electrical power generation for downhole exploration or production devices
CN207649716U (en) A kind of portable well groundwater level water temperature limnograph device
JP4000497B2 (en) Rechargeable underground buried crustal activity observation device
CN220752488U (en) Drill jumbo and detection device thereof
CN207528356U (en) A kind of multichannel temperature monitoring device for underground heat shallow well
CN211741464U (en) Wireless cable partial discharge detection device and system based on high-frequency current sensor
US6968735B2 (en) Long range data transmitter for horizontal directional drilling
CN211008622U (en) Anti-freezing device for water coupling probe in hole in alpine region
CN214427523U (en) Simple and easy efficient column foot resistivity sounding earthing device
CN216277859U (en) Wireless double-magnetic-mark recording device for bridge plug perforation of oil and gas well
EP0220047A2 (en) Borehole logging equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050418

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees