JPH11343868A - Gas turbine control device - Google Patents

Gas turbine control device

Info

Publication number
JPH11343868A
JPH11343868A JP15251798A JP15251798A JPH11343868A JP H11343868 A JPH11343868 A JP H11343868A JP 15251798 A JP15251798 A JP 15251798A JP 15251798 A JP15251798 A JP 15251798A JP H11343868 A JPH11343868 A JP H11343868A
Authority
JP
Japan
Prior art keywords
fuel
air
combustor
gas turbine
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15251798A
Other languages
Japanese (ja)
Inventor
Naoyuki Nagabuchi
尚之 永渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15251798A priority Critical patent/JPH11343868A/en
Publication of JPH11343868A publication Critical patent/JPH11343868A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To execute operation corresponding to change with the lapse of time by estimating the flame temperature of a combustor, local air-fuel ratio, and a NOx quantity based on various operating conditions, and successively renewing the present operating conditions, in the control device for a gas turbine having the combustor consisting of diffusion and premixed burners. SOLUTION: Air is regulated in flow by guide vanes 5, and after being compressed into high pressure by a compressor 2, supplied to a combustor 3. Fuel is supplied to the combustor 3, after regulating the flow by diffusion and premixed fuel valve 6, 7. From the air and the fuel. combustion reacting high temperature gas is generated, and the gas is supplied to a gas turbine to be converted to power. In this case, in a control device 1, based on a fuel supply quantity, compressor discharge temperature, and gas turbine exhaust temperature respectively detected by respective detectors 10-13, the flame temperature of the combustor 3, local air-fuel ratio, and a NOx quantity are estimated, and in addition the estimated values are compared with the actual measured values detected with respective detectors 14, 15, to successively renew the present operating conditions.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低NOx燃焼器を
用いたガスタービンのような熱源機器の制御装置に関す
る。特に、経時変化による各機器特性の変化を考慮し
て、設定運転状態とするように燃料供給量を調整するこ
とと、同時に運転中に発生するNOx量を許容値に修ま
る様にすることを目的とする。したがって、商用発電プ
ラント,コージェネプラント及び自家発電プラント等、
熱源機器及び耐環境装置を有するプラントの運転監視装
置に有効である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for a heat source device such as a gas turbine using a low NOx combustor. In particular, it is necessary to adjust the fuel supply amount so as to achieve the set operation state in consideration of changes in the characteristics of each device due to aging, and to simultaneously reduce the amount of NOx generated during operation to an allowable value. Aim. Therefore, commercial power plants, cogeneration plants, private power plants, etc.
It is effective for operation monitoring equipment of a plant having heat source equipment and environmental protection equipment.

【0002】[0002]

【従来の技術】従来のガスタービン運転調整では、予め
燃焼器の性能検討によって設定された運転線を基準とし
た制御設定値により運転されており、試運転時及び定期
点検時の調整期間において、前記制御設定値の調整を実
施している。
2. Description of the Related Art In a conventional gas turbine operation adjustment, the gas turbine is operated according to a control set value based on an operation line set in advance by examining the performance of the combustor. Adjustment of control set value is being implemented.

【0003】[0003]

【発明が解決しようとする課題】従来の技術では、前回
の定期点検から次回の定期点検までの間については、制
御設定値の調整は成されず、プラントの経時的な特性変
化に対応した運転を実施することができなかった。
In the prior art, the control set value is not adjusted between the previous periodic inspection and the next periodic inspection, and the operation corresponding to the time-dependent characteristic change of the plant is not performed. Could not be implemented.

【0004】[0004]

【課題を解決するための手段】前記課題を解決するため
に、燃焼器での火炎温度,局所燃空比及び発生NOx量
を予測する手段と、該手段からの情報とプラントの現状
運転状態とを比較して最適燃空比となるように燃料弁開
度を調整する手段と、NOx値が許容値となるように拡
散と予混合の燃料比率を調整する手段とを設ける。
In order to solve the above-mentioned problems, means for estimating a flame temperature, a local fuel-air ratio and an amount of generated NOx in a combustor, information from the means and a current operation state of the plant are provided. And means for adjusting the fuel valve opening so as to obtain an optimum fuel-air ratio by comparing the fuel cell and the fuel ratio of diffusion and premixing so that the NOx value becomes an allowable value.

【0005】[0005]

【発明の実施の形態】以下、本発明の実施の形態を、ガ
スタービン複合発電プラントへ適用した場合について説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A case where an embodiment of the present invention is applied to a gas turbine combined cycle power plant will be described below.

【0006】図1は、本発明の概要を示したものであ
る。
FIG. 1 shows an outline of the present invention.

【0007】空気は、圧縮機入口案内翼5の開度に応じ
て風量を調整され、圧縮機2にて高圧となり、燃焼器3
へと供給される。燃料は、拡散及び予混合燃料弁6及び
7の開度に応じて流量を調整され、前記燃焼器3へと供
給される。該燃焼器3内部では、前記圧縮機2からの高
圧空気と燃料弁6及び7からの燃料により燃焼反応高温
ガスを発生させる。該ガスはガスタービン4へ供給さ
れ、動力へと変換される。
[0007] The air volume is adjusted in accordance with the opening of the compressor inlet guide vanes 5, and becomes high pressure in the compressor 2.
Supplied to. The flow rate of the fuel is adjusted according to the degree of opening of the diffusion and premix fuel valves 6 and 7 and supplied to the combustor 3. Inside the combustor 3, high-pressure air from the compressor 2 and fuel from the fuel valves 6 and 7 generate combustion reaction high-temperature gas. The gas is supplied to the gas turbine 4 and converted into power.

【0008】前記圧縮機入口案内翼5には案内翼開度検
出器8が設けられており、開度信号を制御装置1へと伝
達する。前記燃料弁6及び7の上流側に燃料弁元圧力計
9と、各弁に開度検出器10及び11が設けられてお
り、各信号を制御装置1へと伝達する。前記圧縮機2出
口には圧縮機吐出温度検出器12が設けられており、吐
出空気温度信号を制御装置1へと伝達する。前記タービ
ン4出口及び回転軸には各々排気温度検出器13,NO
x検出器14及び回転数検出器15が設けられており、
各信号を制御装置1へと伝達する。
The compressor inlet guide vane 5 is provided with a guide vane opening detector 8 for transmitting an opening signal to the control device 1. A fuel valve pressure gauge 9 is provided upstream of the fuel valves 6 and 7, and opening degree detectors 10 and 11 are provided for each valve, and each signal is transmitted to the control device 1. A compressor discharge temperature detector 12 is provided at the outlet of the compressor 2, and transmits a discharge air temperature signal to the control device 1. The exhaust temperature detector 13 and the NO
An x detector 14 and a rotation speed detector 15 are provided,
Each signal is transmitted to the control device 1.

【0009】次に、制御装置1の内容について説明す
る。先ず、燃料量調整について図2を用いて説明する。
燃空比は、以下の方法で算出する。圧縮機吐出空気温度
検出器12からの信号と燃空比仮設定発生器16からの
信号は、火炎温度演算器17へ入力される。該演算器1
7には、空気温度と燃空比を引数とする火炎温度計算式
が設定されており、火炎温度計算値を排気温度演算器1
8へ出力する。該演算器18には、断熱膨張の計算式が
設定されており、前記ガスタービン4の排気温度計算値
を減算器19へ出力する。該減算器19へは、排気温度
検出器13からの信号が入力されており、前記2つの信
号の差を判定器20へ出力する。減算器19の信号が許
容範囲でない場合は、燃空比更新器21により初期設定
した燃空比を更新した後、再度火炎温度演算器17へ入
力し、許容範囲となるまで計算を繰り返す。前記減算器
19の出力が許容範囲の場合は、現在のプラント運転状
態での燃空比であると判定し、除算器23へ出力する。
Next, the contents of the control device 1 will be described. First, the fuel amount adjustment will be described with reference to FIG.
The fuel-air ratio is calculated by the following method. A signal from the compressor discharge air temperature detector 12 and a signal from the fuel-air ratio temporary setting generator 16 are input to a flame temperature calculator 17. The arithmetic unit 1
7 is set with a flame temperature calculation formula using the air temperature and the fuel-air ratio as arguments, and calculates the flame temperature calculation value into the exhaust temperature calculator 1.
8 is output. A calculation formula for adiabatic expansion is set in the arithmetic unit 18, and outputs the calculated exhaust gas temperature of the gas turbine 4 to a subtractor 19. The signal from the exhaust gas temperature detector 13 is input to the subtractor 19, and the difference between the two signals is output to the determiner 20. If the signal from the subtracter 19 is not within the allowable range, the fuel-air ratio initially updated by the fuel-air ratio updater 21 is updated, and then input to the flame temperature calculator 17 again, and the calculation is repeated until the signal reaches the allowable range. If the output of the subtractor 19 is within the allowable range, the output is determined to be the fuel-air ratio in the current plant operation state, and is output to the divider 23.

【0010】燃料流量は、以下の方法で算出する。燃料
弁元圧力検出器9からの信号と拡散及び予混合燃料弁開
度検出器10及び11からの信号は、燃料流量演算器2
2へ入力される。該演算器22には、弁元圧と弁開度を
引数とする流量計算式が設定されており、燃料量計算値
を前記除算器23へ出力する。該除算器23では、燃料
量と燃空比を除算することにより、空気量を減算器25
へ出力する。
[0010] The fuel flow rate is calculated by the following method. The signal from the fuel valve pressure detector 9 and the signals from the diffusion and premixed fuel valve opening detectors 10 and 11 are combined with the fuel flow rate calculator 2
2 is input. The computing unit 22 is set with a flow rate calculation formula using the valve base pressure and the valve opening as arguments, and outputs the calculated fuel amount to the divider 23. The divider 23 divides the fuel amount and the fuel-air ratio to reduce the air amount by a subtractor 25.
Output to

【0011】空気量は、以下の方法で計算する。回転数
検出器15及び案内翼開度検出器8からの信号は、空気
流量演算器24へ入力される。該演算機24には、回転
数と案内翼開度を引数とする圧縮機空気量計算式が設定
されており、空気量計算値を前記減算器25へ出力す
る。該減算器25の出力は判定器26へ入力され、入力
値が0の場合は、現状運転状態を保持する信号1として
出力される。前記減算器25の信号が0以外の場合は、
更に判定器27へ出力される。該判定器27の入力値が
正の場合は、各燃料弁開度を増加する信号2を出力す
る。該判定器27の入力値が負の場合は、各燃料弁開度
を減少する信号3を出力する。
The amount of air is calculated by the following method. Signals from the rotation speed detector 15 and the guide vane opening detector 8 are input to an air flow calculator 24. The computing unit 24 is set with a compressor air amount calculation formula having the rotation speed and the guide vane opening as arguments, and outputs the calculated air amount value to the subtractor 25. The output of the subtracter 25 is input to the determiner 26, and when the input value is 0, it is output as a signal 1 that holds the current operating state. When the signal of the subtractor 25 is other than 0,
Further, it is output to the decision unit 27. When the input value of the determiner 27 is positive, a signal 2 for increasing each fuel valve opening is output. When the input value of the judging device 27 is negative, a signal 3 for decreasing the opening of each fuel valve is output.

【0012】次に、予混合燃料比率調整について図3を
用いて説明する。図2中の演算器22からの燃料量情報
と予混合燃料比率仮設定値発生器30からの信号は、乗
算器28に入力され、予混合燃料量として除算器29へ
出力される。一方、前記仮設定値発生器30からの信号
は、減算器31にて定数発生器32に設定されている
1.0 と減算され、拡散燃料比率として乗算器33に入
力され、前記演算器22からの燃料量情報と乗算されて
拡散燃料量として除算器34へ出力される。図2中の除
算器23からの空気量情報は、空気配分演算器37に入
力される。該演算器37には、予め要素試験等により得
られた予混合及び拡散燃焼用空気配分の経験式が設定さ
れており、予混合及び拡散空気量を各々除算器29及び
34へ出力する。該除算器29及び34により予混合燃
空比及び拡散燃空比が計算され、各々予混合燃焼NOx
発生量演算器35及び拡散燃焼NOx発生量演算器36
へ出力される。該演算器35及び36には、予め要素試
験等により得られた予混合及び拡散燃焼NOx発生量の
経験式が設定されており、予混合及び拡散燃焼でのNO
x発生量を加算器39へ出力する。
Next, adjustment of the premixed fuel ratio will be described with reference to FIG. The fuel amount information from the calculator 22 and the signal from the premixed fuel ratio provisional set value generator 30 in FIG. 2 are input to the multiplier 28 and output to the divider 29 as the premixed fuel amount. On the other hand, the signal from the tentative set value generator 30 is subtracted from 1.0 set in the constant generator 32 by a subtractor 31 and input to a multiplier 33 as a diffusion fuel ratio. Is multiplied by the fuel amount information from the controller and output to the divider 34 as a diffusion fuel amount. The air amount information from the divider 23 in FIG. 2 is input to the air distribution calculator 37. An empirical formula for air distribution for premixing and diffusion combustion obtained in advance by an element test or the like is set in the arithmetic unit 37, and outputs the amounts of premixing and diffusion air to the dividers 29 and 34, respectively. The premixed fuel-air ratio and the diffusion fuel-air ratio are calculated by the dividers 29 and 34, and the premixed combustion NOx
Generation amount calculator 35 and diffusion combustion NOx generation amount calculator 36
Output to The empirical formulas of the premixed and diffused combustion NOx generation amounts obtained in advance by element tests and the like are set in the arithmetic units 35 and 36.
The x generation amount is output to the adder 39.

【0013】図2中の判定器20からの燃空比情報と前
記除算器29及び34からの局所燃空比情報は、干渉燃
焼NOx発生量演算器38へ出力される。該演算器38
には、予め要素試験等により得られた干渉燃焼NOx発
生量の経験式が設定されており、干渉燃焼により発生す
るNOx発生量を加算器39へ出力する。該加算器39
の出力と図1中のNOx検出器14からの信号は減算器
40によって減算され、出力を判定器41へ出力され
る。該出力値が0の場合は、現状運転状態を保持する信
号4として出力される。前記減算器40の信号が0以外
の場合は、更に判定器42へ出力される。該判定器42
の入力値が正の場合は、予混合燃料比率を増加させる様
に予混合燃料弁開度を増加すると同時に拡散燃料弁開度
を減少する信号5を出力する。該判定器42の入力値が
負の場合は、予混合燃料比率を減少させる様に予混合燃
料弁開度を減少すると同時に拡散燃料弁開度を増加する
信号6を出力する。
The fuel / air ratio information from the determiner 20 and the local fuel / air ratio information from the dividers 29 and 34 in FIG. 2 are output to an interference combustion NOx generation amount calculator 38. The computing unit 38
Is set in advance, an empirical formula of the amount of NOx generated by interference combustion obtained by an element test or the like is set, and the amount of generated NOx generated by interference combustion is output to the adder 39. The adder 39
1 and the signal from the NOx detector 14 in FIG. 1 are subtracted by the subtractor 40, and the output is output to the determiner 41. When the output value is 0, it is output as a signal 4 for maintaining the current operation state. If the signal of the subtractor 40 is other than 0, it is further output to the decision unit 42. The determiner 42
Is positive, the signal 5 is output to increase the premixed fuel valve opening so as to increase the premixed fuel ratio and at the same time decrease the diffusion fuel valve opening. When the input value of the judgment unit 42 is negative, a signal 6 for decreasing the premixed fuel valve opening and simultaneously increasing the diffusion fuel valve opening so as to decrease the premixed fuel ratio is output.

【0014】[0014]

【発明の効果】以上の実施形態により、燃焼器での火炎
温度,局所燃空比及びNOx量の予測値と実機各特性測
定値とを比較し、得られた情報をもとに最適運転燃空比
及び最適予混合燃料比率となるように現状運転条件を逐
次更新することができる。
According to the above embodiment, the predicted values of the flame temperature, the local fuel-air ratio and the NOx amount in the combustor are compared with the measured values of the characteristics of the actual machine, and the optimum operating fuel is determined based on the obtained information. The current operating conditions can be sequentially updated so that the air ratio and the optimal premixed fuel ratio are obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例であるガスタービン複合発電プ
ラントの系統図。
FIG. 1 is a system diagram of a gas turbine combined cycle power plant according to an embodiment of the present invention.

【図2】図1の制御装置1の燃料量調整部分の説明図。FIG. 2 is an explanatory diagram of a fuel amount adjusting portion of the control device 1 of FIG. 1;

【図3】図1の制御装置1の予混合燃料比率調整部分の
説明図。
FIG. 3 is an explanatory diagram of a premixed fuel ratio adjustment portion of the control device 1 of FIG. 1;

【符号の説明】[Explanation of symbols]

1…制御装置、2…圧縮機、3…燃焼器、4…タービ
ン、5…圧縮機入口案内翼、6…拡散燃料弁、7…予混
合燃料弁、8…案内翼開度検出器、9…燃料弁元圧力
計、10…予混合燃料弁開度検出器、11…拡散燃料弁
開度検出器、12…圧縮機吐出空気温度計、13…排気
温度検出器、14…NOx検出器、15…回転数検出
器、16…燃空比仮設定値発生器、17…火炎温度演算
器、18…排気温度演算器、19,25,31,40…
減算器、20,26,27,41,42…判定器、21
…燃空比更新器、22…燃料流量演算器、23,29,
34…除算器、24…空気流量演算器、28,33…乗
算器、30…予混合燃料比率仮設定値発生器、32…定
数発生器、35…予混合燃焼NOx発生量演算器、36
…拡散燃焼NOx発生量演算器、37…空気配分演算
器、38…干渉燃焼NOx発生量演算器、39…加算
器。
DESCRIPTION OF SYMBOLS 1 ... Control device, 2 ... Compressor, 3 ... Combustor, 4 ... Turbine, 5 ... Compressor inlet guide vane, 6 ... Diffusion fuel valve, 7 ... Premix fuel valve, 8 ... Guide vane opening detector, 9 ... Fuel valve pressure gauge, 10 ... Premixed fuel valve opening detector, 11 ... Diffusion fuel valve opening detector, 12 ... Compressor discharge air thermometer, 13 ... Exhaust temperature detector, 14 ... NOx detector, 15: rotation speed detector, 16: fuel / air ratio temporary set value generator, 17: flame temperature calculator, 18: exhaust temperature calculator, 19, 25, 31, 40 ...
Subtractor, 20, 26, 27, 41, 42...
... fuel-air ratio updater, 22 ... fuel flow rate calculator, 23, 29,
34: Divider, 24: Air flow rate calculator, 28, 33: Multiplier, 30: Premixed fuel ratio temporary set value generator, 32: Constant generator, 35: Premixed combustion NOx generation amount calculator, 36
... diffusion combustion NOx generation amount calculator, 37 ... air distribution calculation unit, 38 ... interference combustion NOx generation amount calculation unit, 39 ... adder.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】拡散及び予混合バーナより成る燃焼器を有
するガスタービンの制御装置において、前記各バーナへ
の供給燃料量,圧縮機吐出空気温度及びタービン排気温
度の情報をもとに、前記燃焼器での火炎温度,局所燃空
比及びNOx量を予測する機能と、該機能の出力と実機
各特性測定値とを比較し、得られた情報をもとに現状運
転条件を逐次更新する機能とを設けることを特徴とする
ガスタービンの制御装置。
1. A control apparatus for a gas turbine having a combustor comprising a diffusion and a premix burner, wherein said combustion is performed on the basis of information on a fuel supply amount to each of said burners, a compressor discharge air temperature and a turbine exhaust temperature. Function to predict the flame temperature, local fuel-air ratio, and NOx amount in the heater, and to compare the output of this function with the measured values of each characteristic of the actual machine, and to sequentially update the current operating conditions based on the obtained information. And a control device for a gas turbine.
【請求項2】請求項1の制御装置は、拡散及び予混合用
燃料流量調整弁開度及び該弁元圧より得られる燃料流量
計算値と火炎温度予測値より得られる燃空比計算値とか
ら空気流量を計算し、該計算値と圧縮機回転数及び入口
案内翼開度情報より得られる空気流量値とを比較する機
能と、該機能からの情報をもとに最適運転燃空比となる
ように前記燃焼器内に供給される燃料流量を調整するよ
う、前記各流量調整弁開度の操作信号を出力する機能と
を具備していることを特徴とするガスタービン制御装
置。
2. The fuel control apparatus according to claim 1, wherein the fuel flow rate calculation value obtained from the diffusion and premixing fuel flow rate control valve opening degree and the valve base pressure, and the fuel air ratio calculation value obtained from the flame temperature prediction value. Function to calculate the air flow rate from the calculated value and the air flow rate value obtained from the compressor rotation speed and the inlet guide vane opening degree information, and the optimal operating fuel-air ratio based on the information from this function A function of outputting an operation signal for each of the flow control valve opening degrees so as to adjust the flow rate of the fuel supplied into the combustor.
【請求項3】請求項1の制御装置は、排気ガス中のNO
x濃度計測値と局所燃空比予測値から得られるNOx量
計算値とを比較し、許容NOx値となるように予混合燃
料比率を調整し、得られた情報をもとに前記各流量調整
弁開度の操作信号を出力する機能を具備していることを
特徴とするガスタービン制御装置。
3. The control device according to claim 1, wherein the control unit controls the NO in the exhaust gas.
The x-concentration measurement value is compared with the calculated NOx amount obtained from the local fuel-air ratio prediction value, and the premixed fuel ratio is adjusted so as to be an allowable NOx value. A gas turbine control device having a function of outputting an operation signal of a valve opening degree.
JP15251798A 1998-06-02 1998-06-02 Gas turbine control device Pending JPH11343868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15251798A JPH11343868A (en) 1998-06-02 1998-06-02 Gas turbine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15251798A JPH11343868A (en) 1998-06-02 1998-06-02 Gas turbine control device

Publications (1)

Publication Number Publication Date
JPH11343868A true JPH11343868A (en) 1999-12-14

Family

ID=15542184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15251798A Pending JPH11343868A (en) 1998-06-02 1998-06-02 Gas turbine control device

Country Status (1)

Country Link
JP (1) JPH11343868A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004019576A (en) * 2002-06-18 2004-01-22 Ishikawajima Harima Heavy Ind Co Ltd Control device of cogeneration plant
JP2006509957A (en) * 2002-12-17 2006-03-23 ヌオーヴォ ピニォーネ ホールディング ソシエタ ペル アチオニ Correction parameter control method for a two-shaft gas turbine
JP2012067764A (en) * 2012-01-10 2012-04-05 Hitachi Ltd Two-shaft gas turbine
JP2014169701A (en) * 2014-05-20 2014-09-18 Mitsubishi Heavy Ind Ltd Method of controlling gas turbine and method of setting fuel-air ratio of gas turbine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004019576A (en) * 2002-06-18 2004-01-22 Ishikawajima Harima Heavy Ind Co Ltd Control device of cogeneration plant
JP2006509957A (en) * 2002-12-17 2006-03-23 ヌオーヴォ ピニォーネ ホールディング ソシエタ ペル アチオニ Correction parameter control method for a two-shaft gas turbine
US7634914B2 (en) 2002-12-17 2009-12-22 Nuovo Pignone Holding S.P.A. Corrected parameter control method for a two-shaft gas turbine
JP2012067764A (en) * 2012-01-10 2012-04-05 Hitachi Ltd Two-shaft gas turbine
JP2014169701A (en) * 2014-05-20 2014-09-18 Mitsubishi Heavy Ind Ltd Method of controlling gas turbine and method of setting fuel-air ratio of gas turbine

Similar Documents

Publication Publication Date Title
US7565805B2 (en) Method for operating gas turbine engine systems
CA2344210C (en) Dynamic control system and method for catalytic combustion process and gas turbine engine utilizing same
US7610746B2 (en) Combustion control device for gas turbine
US8516829B2 (en) Systems and methods for modifying the performance of a gas turbine
EP0765998B1 (en) Turbine engine control system
US7162875B2 (en) Method and system for controlling fuel supply in a combustion turbine engine
JPH06323165A (en) Control device and method for gas turbine
US20060005526A1 (en) Combustor controller
EP2423489A2 (en) Methods for controlling fuel splits to a gas turbine combustor
US6530207B2 (en) Gas turbine system
US9909509B2 (en) Gas turbine fuel supply method and arrangement
JPWO2012105053A1 (en) Control device for gas turbine power plant
US20150142188A1 (en) Automated Commissioning of a Gas Turbine Combustion Control System
US20150040571A1 (en) Method for fuel split control to a gas turbine using a modified turbine firing temperature
JP5836069B2 (en) Gas turbine and combustion control method for gas turbine
JPH11343868A (en) Gas turbine control device
KR101043295B1 (en) Combustor for various testing capability and durability of tubocharger and combustion control system including thereof
JPH09317499A (en) Control method for blast furnace gas monofuel combustion gas turbine
CN104791107B (en) A kind of gas turbine combustion control device and method
JP2000130750A (en) Combustion monitoring device
Maughan et al. A dry low NOx combustor for the MS3002 regenerative gas turbine
JP2001082173A (en) Gas turbine combustion abnormality-monitoring/ controlling device
Rouwenhorst et al. Part-Load Limit Reduction of a Frame 9E Using a Precursor for Combustion Dynamics
JPH11218004A (en) Gas turbine operation monitoring device
US20150000301A1 (en) System and method for modeling bottoming cycle performance of a combined cycle power plant