JPH11343124A - Glass melting vessel - Google Patents

Glass melting vessel

Info

Publication number
JPH11343124A
JPH11343124A JP14856998A JP14856998A JPH11343124A JP H11343124 A JPH11343124 A JP H11343124A JP 14856998 A JP14856998 A JP 14856998A JP 14856998 A JP14856998 A JP 14856998A JP H11343124 A JPH11343124 A JP H11343124A
Authority
JP
Japan
Prior art keywords
throat
tank
glass
melting
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14856998A
Other languages
Japanese (ja)
Inventor
Shinji Doi
真二 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP14856998A priority Critical patent/JPH11343124A/en
Publication of JPH11343124A publication Critical patent/JPH11343124A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/027Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
    • C03B5/03Tank furnaces
    • C03B5/031Cold top tank furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/20Bridges, shoes, throats, or other devices for withholding dirt, foam, or batch

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve productivity and durability of furnace materials by protecting short pass and reducing bubble formation by making protrude the inlet part of a tubular throat, which introduces molten glass into a working vessel through a partition board from a melting vessel, into the melting vessel and providing an aperture on the upper side of it. SOLUTION: A glass melting vessel 1 comprises a melting vessel 2 and a working vessel 3, which are separated with partition boards 4 and 5. The melting vessel 2 and the working vessel 3 are communicated by a communicative hole 14 which is disposed in the bottom parts of the partition boards 4 and 5, and a square or circle tubular throat 15 is inserted to be protruded from the communicative hole 14. The throat 15 has apertures at both ends on the upper side, as an upstream side aperture 16 and a downstream side aperture 17. Glass material 18 fed in the upper part of the melting vessel 2 melts gradually by heating, and is defoamed and allowed to flow into the aperture 16 and to flow out into the working vessel 3. A cross-sectional area (A cm<2> ) of flow passage in the throat is preferably to be in a range of a measure satisfying a relation of 5×10<-3> <=A/B<=5×10<-2> to a flat area (B cm<2> ) of the melting vessel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガラスの泡切れ、
生産性および炉材の延命を向上させる溶融装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a melting apparatus for improving productivity and extending the life of furnace materials.

【0002】[0002]

【従来の技術】従来、一部のガラス溶融槽は、ガラスの
溶融効率を向上させる方法の一つとして、溶解槽と作業
槽(或いは、ライザーおよびコンディショナー)間にそ
れぞれを区画する仕切壁を設け、該仕切壁の下部にスロ
ートと呼ばれる狭い連通孔を設けている。該スロート
は、高温のガラスが速い速度で流入するため激しく浸食
されるが、その浸食を出来るだけ抑制するために該仕切
壁を冷却することが一般に行われている。しかしなが
ら、仕切壁を冷却することによりスロートの浸食は抑制
されるものの、仕切壁近傍の溶融ガラスがより冷却さ
れ、該壁に沿って下降する溶融ガラスの量が多くなる傾
向にある。
2. Description of the Related Art Conventionally, some glass melting tanks are provided with a partition wall between a melting tank and a work tank (or a riser and a conditioner) as one of methods for improving the melting efficiency of glass. A narrow communication hole called a throat is provided at a lower portion of the partition wall. The throat is severely eroded by high-temperature glass flowing in at a high speed, and it is common practice to cool the partition wall in order to suppress the erosion as much as possible. However, although the erosion of the throat is suppressed by cooling the partition wall, the molten glass in the vicinity of the partition wall is more cooled, and the amount of the molten glass descending along the wall tends to increase.

【0003】ガラス原料は、溶融槽内の溶融されたガラ
スの上部に投入され、上部ヒータにより溶解されるが、
溶解された直後の未溶融原料を含む溶融ガラスが、仕切
壁近傍の下降流に乗るとスロート内に直接吸い込まれ、
ガラスの溶融が未だ不十分で泡を含むガラスが作業槽に
流出する。最終製品として満足する品質を得るために、
作業槽で再びガラスを高温に加熱し、低粘性化して、ガ
ラス中に残存する泡をストークス則で脱泡する必要があ
った。
[0003] The glass raw material is introduced into the upper part of the molten glass in the melting tank and is melted by the upper heater.
When the molten glass containing the unmelted raw material immediately after melting rides on the descending flow near the partition wall, it is sucked directly into the throat,
Melting of the glass is still insufficient and the glass containing bubbles flows out to the work tank. In order to obtain satisfactory quality as a final product,
It was necessary to heat the glass again to a high temperature in the work tank to reduce the viscosity, and to remove bubbles remaining in the glass by Stokes law.

【0004】そこで従来、これらの溶融が不十分なガラ
スが混入するのを防止するために、例えばスロートの底
面を溶解槽の底面より上方に位置させ、且つスロートの
入口を溶融槽側に向かって突出させること(特開昭52
−107017号公報)、或いは溶解槽の相対向する炉
壁に設ける電極対の一方の電極をスロート入口側の炉壁
に配設すること(特開平8−133746号公報)等の
発明がなされている。
Therefore, conventionally, in order to prevent such insufficiently molten glass from being mixed, for example, the bottom of the throat is positioned above the bottom of the melting tank, and the inlet of the throat is directed toward the melting tank. Protruding (Japanese Patent Laid-Open No. 52
Japanese Patent Application Laid-Open No. H08-133746), or disposing one electrode of an electrode pair provided on the furnace wall opposite to the melting tank on the furnace wall on the throat inlet side. I have.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、例えば
特開昭52−107017号公報記載の方法では、未溶
融のガラスが混入することは防止出来るが、設備的に不
安定であり、一方特開平8−133746号公報記載の
方法では炉壁の下降流の生成は防止できるが、装置が大
がかりとなる、且つスロート入口の炉材の浸食が著しい
という問題がある。
However, in the method described in, for example, JP-A-52-107017, the incorporation of unmelted glass can be prevented, but the equipment is unstable. Although the method described in JP-A-133746 can prevent the generation of the downflow of the furnace wall, there is a problem that the apparatus becomes large and the erosion of the furnace material at the throat inlet is remarkable.

【0006】[0006]

【課題を解決するための手段】本発明者等は、スロート
以外の付属装置を用いず、単にスロートだけの簡単な構
成で、品質と生産性、ガラス組成変更の効率化等を兼ね
備えたガラス溶融装置を提供するものである。
Means for Solving the Problems The inventors of the present invention have developed a glass melting apparatus which has a simple structure with only a throat without using any additional equipment other than the throat, and which has both quality, productivity, and efficiency in changing the glass composition. An apparatus is provided.

【0007】すなわち本発明は、溶解槽と作業槽を区画
する仕切壁の底部に該両槽を連通するパイプ状のスロー
トを介して溶融ガラスを溶解槽から作業槽へ導くガラス
の溶融装置において、該スロートの入口部を溶解槽内に
突出させ、且つ突出させたスロートの開口部を上方に設
けたことを特徴とするガラスの溶融装置に関する。
That is, the present invention relates to a glass melting apparatus for guiding molten glass from a melting tank to a work tank through a pipe-shaped throat which connects the two tanks to a bottom of a partition wall for dividing the melting tank and the work tank. The present invention relates to a glass melting apparatus characterized in that an inlet of the throat protrudes into a melting tank and an opening of the protruded throat is provided above.

【0008】また、突出させたスロートの先端部を上方
に屈曲させて開口部を設けてなることが好ましい。さら
に、該スロートの流路の断面積(Acm2)は、溶解槽
の平面積(Bcm2)に対して次式を満足する寸法の範
囲にすることが好ましい。
It is preferable that the protruding throat is bent upward to provide an opening. Further, it is preferable that the cross-sectional area (Acm 2 ) of the flow path of the throat be within a range satisfying the following expression with respect to the plane area (Bcm 2 ) of the dissolving tank.

【0009】5 ×10-3≦A/B≦5×10-2さらに
また、スロートの出口部を作業槽内に突出させ、且つ突
出させたスロートの開口部を上方に設けることが好まし
い。
5 × 10 −3 ≦ A / B ≦ 5 × 10 −2 Further, it is preferable that the outlet of the throat is projected into the work tank, and the opening of the projected throat is provided above.

【0010】[0010]

【発明の実施の態様】図1(A)はガラス溶融槽の概略
側面断面図、図1(B)はその概略上面図である。ガラ
ス溶融槽1は、溶解槽2と作業槽3とから構成され、そ
れらの両槽は仕切壁4、5により区画されて、互いに温
度・雰囲気等の条件が影響しないようになされている。
溶解槽2は、前壁6、溶解槽側壁7、溶解槽底部8、溶
解槽仕切壁4および天井(図示せず)の各耐火物により
囲まれた槽になっており、作業槽3は作業槽側仕切壁
5、作業槽側壁9、後壁10、作業槽底部11および作
業槽天井12の各耐火物により囲まれた槽になってい
る。なお、作業槽3に接続して槽の深さが浅い構造のカ
ナル13が設けられている。
1A is a schematic side sectional view of a glass melting tank, and FIG. 1B is a schematic top view thereof. The glass melting tank 1 is composed of a melting tank 2 and a work tank 3, both of which are partitioned by partition walls 4, 5, so that conditions such as temperature and atmosphere do not affect each other.
The melting tank 2 is a tank surrounded by refractories such as a front wall 6, a melting tank side wall 7, a melting tank bottom 8, a melting tank partition wall 4, and a ceiling (not shown). The tank is surrounded by the refractory of the tank-side partition wall 5, the work tank side wall 9, the rear wall 10, the work tank bottom 11, and the work tank ceiling 12. In addition, a canal 13 having a structure in which the depth of the tank is shallow is connected to the work tank 3.

【0011】溶解槽2と作業槽3とは、仕切壁4、5の
底部に設けられた連通孔14により連通され、該孔14
には角または丸パイプ状のスロート15が連通孔より突
出して嵌入されている。該スロート15は、両先端部を
上方に開口させ、各先端部には上流側開口部16、およ
び下流側開口部17が設けられている。
The dissolving tank 2 and the working tank 3 are communicated with each other by a communication hole 14 provided at the bottom of the partition walls 4, 5.
A throat 15 in the shape of a square or a round pipe is fitted into and protrudes from the communication hole. The throat 15 has both ends opened upward, and each end is provided with an upstream opening 16 and a downstream opening 17.

【0012】溶解槽2の上部に投入されたガラス原料1
8は、図示されていないヒーターにより上部または直接
通電により加熱され徐々に溶解される。溶解された溶融
ガラス19は、槽内の温度分布に伴う対流により槽内を
循環するが、その内温度の低い各壁4、6、7近傍のガ
ラスは下降流を生じ、溶解槽中央部付近には上昇流が生
じ、槽内を循環するうちに、溶融ガラスは除々に脱泡さ
れる。
Glass raw material 1 put in upper part of melting tank 2
8 is heated by a heater (not shown) at the top or by direct energization and is gradually melted. The melted molten glass 19 circulates in the tank by convection due to the temperature distribution in the tank, and the glass near the walls 4, 6, and 7 having a low temperature causes a downward flow, and the vicinity of the central part of the melting tank. As a result, the molten glass is gradually defoamed while circulating in the tank.

【0013】溶融直後の溶融が不十分で、泡を含む溶融
ガラスの一部は仕切壁4、前壁6、側壁7に沿って下降
するが、スロート15が連通孔14より突出させてあ
り、しかも該スロートの上流側開口部16が上方に開口
するようにしてあるので、該下降流は開口部16に直接
流入することなく、泡切れされた溶融ガラスのみが開口
部16より流入し、次工程の作業槽3へ流出される。
Although the melting immediately after the melting is insufficient, a part of the molten glass containing bubbles descends along the partition wall 4, the front wall 6, and the side wall 7, but the throat 15 is projected from the communication hole 14; Moreover, since the upstream opening 16 of the throat is opened upward, the descending flow does not directly flow into the opening 16, but only the molten glass that has been defoamed flows through the opening 16, and It is discharged to the work tank 3 of the process.

【0014】スロートの材質としては、耐熱製で耐食性
のものであれば使用可能であるが、特にモリブデン製と
白金ロジウム合金製は耐食性に優れており好ましい。な
お、スロートの断面形状は、円状、角状等特に限定され
るものではないが、材質の加工性と強度の点から、モリ
ブデンを使用する場合角状のものが、白金、ロジウム合
金を使用する場合円状が好ましい。さらに、スロート1
5が連通孔14より溶解槽2内に突出する程度は、前述
のように仕切壁4に沿って下降する溶融が不十分なガラ
スの下降流が直接該スロート内に流入しない程度に突出
させることが好ましく、特に溶解槽2の中央部(前壁6
と仕切壁4との間のほぼ中央)近傍まで大きく突出させ
ることが好ましいが、これに限定されるものではない。
さらに、スロート15は、底部8、11よりも上方に設
けることは構わないが、ガラスの流れを考慮すると、底
部8、11に接触してスロートを設けることが好まし
い。
As the material of the throat, any material can be used as long as it is heat-resistant and corrosion-resistant. In particular, molybdenum and platinum-rhodium alloys are preferable because they have excellent corrosion resistance. The cross-sectional shape of the throat is not particularly limited, such as a circular shape and a square shape.However, from the viewpoint of workability and strength of the material, when molybdenum is used, the square shape uses platinum or a rhodium alloy. In this case, a circular shape is preferable. In addition, throat 1
The degree of protrusion of 5 from the communication hole 14 into the melting tank 2 should be such that the downward flow of insufficiently molten glass descending along the partition wall 4 does not directly flow into the throat as described above. It is particularly preferable that the center of the melting tank 2 (the front wall 6
It is preferable to protrude largely to the vicinity of (approximately the center between the partition wall 4 and the partition wall 4), but the present invention is not limited to this.
Further, the throat 15 may be provided above the bottoms 8 and 11, but it is preferable to provide the throat in contact with the bottoms 8 and 11 in consideration of the flow of glass.

【0015】次に、突出させたスロートの先端を屈曲さ
せた場合と屈曲させない場合の比較について、溶解槽に
設置されたスロートで説明する。図2、図3は溶解槽2
内に突出させたスロート15内に流入する仕切壁4、前
壁6、側壁7近傍の下降流20の、該スロートに流入す
る流れ状況を示したものであり、図2は、スロート15
の先端部を溶解槽2の中央部まで突出させ、且つその先
端部を屈曲させ開口部16を上方へ向けた構造を有する
スロートであり、図3は図2と同じに溶解槽の中央部ま
でスロートを突出させてあるが、その先端部は屈曲させ
ず、その開口部16を側方へ向けた構造を有するスロー
トを示す。
Next, a comparison between a case where the tip of the protruded throat is bent and a case where it is not bent will be described for a throat installed in a melting tank. 2 and 3 show the dissolving tank 2
FIG. 2 shows the flow of the descending flow 20 near the partition wall 4, the front wall 6, and the side wall 7 flowing into the throat 15 protruding into the throat 15, and FIG.
Is a throat having a structure in which the front end portion protrudes to the center portion of the dissolving tank 2 and the front end portion is bent so that the opening 16 is directed upward. FIG. The throat has a structure in which the throat is protruded, but its tip end is not bent, and its opening 16 is directed to the side.

【0016】図2に示すようにスロートの開口部16を
上方に向けた場合には、仕切壁4、前壁6、側壁7に沿
って流下した下降流20は、一旦溶解槽底部8に達した
のち、上方流21に伴って上昇し、槽内中央部の温度の
高い領域まで循環し溶融ガラスの泡切れがされたあと、
該スロートの上部近傍から、屈曲させた上方に向いた開
口部16より図示のようにスロート内に流入する。スロ
ートに流入した溶融ガラスは作業槽3内につながってい
る下流側開口部17より作業槽3内に流出する。
When the throat opening 16 is directed upward as shown in FIG. 2, the downward flow 20 flowing down along the partition wall 4, the front wall 6, and the side wall 7 once reaches the bottom 8 of the melting tank. After that, it rises with the upward flow 21, circulates to a high temperature region in the center of the tank, and after the bubbles of the molten glass are exhausted,
From the vicinity of the upper part of the throat, it flows into the throat as shown in FIG. The molten glass that has flowed into the throat flows out of the work tank 3 through the downstream opening 17 connected to the work tank 3.

【0017】一方、図3に示すようにスロートの先端部
を屈曲させず、開口部を側方に設けた場合には、仕切壁
4、前壁6、側壁7に沿って流下した下方流20は、溶
解槽底部8に達した後、特に前壁6に沿って下降した下
降流20の一部は該底部8に沿って流れたのち、スロー
トの側部開口部16より該スロート内に流入する。この
場合、スロートに流入する溶融ガラスは、未だ泡切れさ
れておらず、その泡切れされていないガラスが作業槽へ
流入し、好ましくない。なお、屈曲させた部分の高さ
は、該スロート径の2倍程度が好ましいが、これに限定
されるものではない。
On the other hand, as shown in FIG. 3, when the throat tip is not bent and the opening is provided on the side, the downward flow 20 flowing down along the partition wall 4, the front wall 6, and the side wall 7 can be obtained. After reaching the bottom 8 of the dissolving tank, a part of the downward flow 20 descending particularly along the front wall 6 flows along the bottom 8 and then flows into the throat through the side opening 16 of the throat. I do. In this case, the molten glass flowing into the throat has not yet been defoamed, and the non-defoamed glass flows into the work tank, which is not preferable. The height of the bent portion is preferably about twice the throat diameter, but is not limited to this.

【0018】また、スロートの断面の寸法は、溶解槽2
の平面積(溶解槽を水平に切断した時の断面積)をBc
2とし、スロート15の流路の垂直断面積をAcm2
した場合に、次式を満足するような寸法にするのが好適
である。
The dimensions of the cross-section of the throat are
Is the plane area (cross-sectional area when the dissolution tank is cut horizontally) of Bc
and m 2, if the vertical sectional area of the flow path of the throat 15 was Acm 2, it is preferable to dimensioned to satisfy the following equation.

【0019】5×10-3≦A/B≦5×10-2 A/Bの比が5×10-3より小さいと、流入するガラス
の速度が早くなり、溶解槽の上層の溶融が不十分のガラ
スをスロートに吸い込んでしまう。また、浸食を促進し
たりあるいは作業槽の対流に影響を与え好ましくなく、
A/Bの比が5×10-2より大きいと、該スロート15
に流入した溶融ガラスが該スロート内で問題を生じるバ
ックカレントと呼ばれる逆流が発生し、溶解槽と作業槽
の流れが不安定になり、生産性もダウンするので好まし
くない。なお、A/Bの範囲は6×10-3〜9×10-3
がより好ましい。
If the ratio of 5 × 10 −3 ≦ A / B ≦ 5 × 10 −2 A / B is less than 5 × 10 −3 , the speed of the glass flowing in becomes high, and the melting of the upper layer of the melting tank becomes difficult. Insufficient glass is sucked into the throat. In addition, it promotes erosion or affects the convection of the work tank, which is not preferable.
If the A / B ratio is greater than 5 × 10 -2 , the throat 15
The molten glass that has flowed into the throat generates a backflow called back current that causes a problem in the throat, so that the flows in the melting tank and the working tank become unstable, and the productivity is lowered, which is not preferable. The range of A / B is from 6 × 10 −3 to 9 × 10 −3.
Is more preferred.

【0020】作業槽3は、溶解槽2で泡を含まない状態
に溶融されたガラスを、所定の温度で降温し、均質なガ
ラスに清澄させる領域であり、該開口部17より該作業
槽に流入したガラスは該槽3に形成された上方流に伴わ
れて上昇し、その過程で徐々に清澄作用が行われ、さら
に均質なガラスとなり、カナル13を通って最終工程で
ある成形工程へ運ばれる。
The work tank 3 is an area for lowering the temperature of the glass melted in the melting tank 2 so as not to contain bubbles at a predetermined temperature to clarify the glass into a homogeneous glass. The inflowing glass rises with the upward flow formed in the tank 3, and in the process, the glass is gradually refined, becomes more homogeneous glass, and is transported through the canal 13 to the final forming step. It is.

【0021】次に、スロートの先端部を槽内に突出させ
た場合とさせない場合の比較について、作業槽に設置さ
れたスロートで説明する。図4、図5は作業槽3側のス
ロートを示した図であり、図4は作業槽側3のスロート
15をその略中央部まで突出させ、その先端部を上方に
屈曲させ、開口部17を上方に向けたものであり、図5
はスロートの先端部を作業槽内に突出させないものであ
る。
Next, a comparison between a case where the tip of the throat protrudes into the tank and a case where it is not made will be described with reference to the throat installed in the work tank. 4 and 5 are views showing the throat on the work tub 3 side. FIG. 4 shows that the throat 15 on the work tub side 3 is protruded to substantially the center thereof, the tip thereof is bent upward, and the opening 17 is formed. 5 is directed upward, and FIG.
No. does not allow the tip of the throat to protrude into the work tank.

【0022】作業槽内のスロートを該槽内に突出させ、
且つその先端部を屈曲して開口部17を上方に向けた図
4の場合には、該スロートから流出したガラスの流れを
破線で示すように、スロートから流出したガラスの大部
分はそのまま上方流22として上昇したのち清澄されカ
ナル13へ運ばれる。一方、スロートを突出させない図
5の場合には、作業槽3に流出した溶融ガラスは上昇流
で上昇するが、作業槽仕切壁5および後壁10に沿った
下方流を生成する部分も多く、作業槽へ流入したガラス
は上昇流と下方流に二分され、カナル13へ直接運ばれ
るガラスが少なく、スロートを突出させ且つその出口を
屈曲させた場合よりも効率が悪くなる。
The throat in the working tank is projected into the tank,
In addition, in the case of FIG. 4 in which the opening 17 is directed upward by bending the tip end thereof, most of the glass flowing out of the throat flows upward as it is, as indicated by the broken line of the flow of the glass flowing out of the throat. After rising as 22, it is cleared and carried to the canal 13. On the other hand, in the case of FIG. 5 in which the throat does not protrude, the molten glass that has flowed into the work tank 3 rises by the upward flow, but there are many portions that generate a downward flow along the work tank partition wall 5 and the rear wall 10, The glass that has flowed into the work tank is divided into an upward flow and a downward flow, and less glass is directly conveyed to the canal 13, and the efficiency is lower than when the throat is protruded and its outlet is bent.

【0023】以上のように、スロート15は溶解槽ある
いは作業槽の何れか一方の槽内に突出させることが好ま
しく、該スロートの両端部を両槽2、3内に突出させれ
ばなお好ましい。
As described above, it is preferable that the throat 15 protrudes into one of the dissolving tank and the working tank, and it is more preferable that both ends of the throat protrude into both the tanks 2 and 3.

【0024】[0024]

【発明の効果】本発明の溶融装置によれば、スロート内
にバックカレント(逆流)が発生することがなく、溶解
槽仕切壁付近の素地が該壁に沿って下降し直接スロート
内へ流入する、いわゆるショートパス、の発生を防止
し、溶解槽におけるガラス素地の滞在時間不足によるガ
ラス品質の悪化を防止し、泡を含まない均質なガラスを
生産性良く生産できる効果を奏する。
According to the melting apparatus of the present invention, the back current (backflow) does not occur in the throat, and the base material near the partition wall of the melting tank descends along the wall and flows directly into the throat. This prevents the occurrence of a so-called short path, prevents deterioration of glass quality due to shortage of staying time of the glass substrate in the melting tank, and has the effect of producing homogeneous glass containing no bubbles with high productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(A)は、本発明の実施例に係わるガラス溶融
槽の側面断面図であり、(B)は、その上方断面図。
FIG. 1A is a side sectional view of a glass melting tank according to an embodiment of the present invention, and FIG. 1B is an upper sectional view thereof.

【図2】溶解槽側入口部を屈曲させたスロートの一部側
面断面図。
FIG. 2 is a partial side cross-sectional view of a throat in which a melting tank side entrance is bent.

【図3】溶解槽側入口部を屈曲させていないスロートの
一部側面断面図。
FIG. 3 is a partial side sectional view of a throat in which a melting tank side entrance is not bent.

【図4】作業槽側出口部を屈曲させたスロートの一部側
面断面図。
FIG. 4 is a partial side sectional view of a throat in which a work tank side outlet is bent.

【図5】作業槽側出口部を突出させないスロートの一部
側面断面図。
FIG. 5 is a partial side sectional view of a throat in which a work tank side outlet is not projected.

【符号の説明】[Explanation of symbols]

1 ガラス溶融槽 2 溶解槽 3 作業槽 13 カナル 14 連通孔 15 スロート 16 上流側開口部 17 下流側開口部 18 ガラス原料 19 溶融ガラス 20 下降流 21 上方流 22 上方流 DESCRIPTION OF SYMBOLS 1 Glass melting tank 2 Melting tank 3 Working tank 13 Canal 14 Communication hole 15 Throat 16 Upstream opening 17 Downstream opening 18 Glass raw material 19 Molten glass 20 Downflow 21 Upstream 22 Upstream

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】溶解槽と作業槽を区画する仕切壁の底部に
該両槽を連通するパイプ状のスロートを介して溶融ガラ
スを溶解槽から作業槽へ導くガラスの溶融装置におい
て、該スロートの入口部を溶解槽内に突出させ、且つ突
出させたスロートの開口部を上方に設けたことを特徴と
するガラスの溶融装置。
1. A glass melting apparatus for guiding molten glass from a melting tank to a work tank through a pipe-shaped throat communicating the two tanks with a bottom of a partition wall for dividing the throat into the work tank. A glass melting apparatus characterized in that an inlet portion protrudes into a melting tank and an opening of a protruding throat is provided above.
【請求項2】突出させたスロートの先端部を上方に屈曲
させて開口部を設けてなることを特徴とする請求項1記
載のガラスの溶融装置。
2. The glass melting apparatus according to claim 1, wherein an opening is provided by bending a tip end of the protruded throat upward.
【請求項3】スロートの流路の断面積(Acm2)が溶
解槽の平面積(Bcm2)に対して次式を満足する寸法
の範囲にあることを特徴とする請求項1または2記載の
ガラスの溶融装置。 5×10-3≦A/B≦5×10-2
3. The method according to claim 1, wherein the cross-sectional area (Acm 2 ) of the throat flow path is within a range satisfying the following expression with respect to the plane area (Bcm 2 ) of the melting tank. Glass melting equipment. 5 × 10 −3 ≦ A / B ≦ 5 × 10 −2
【請求項4】スロートの出口部を作業槽内に突出させ、
且つ突出させたスロートの開口部を上方に設けたことを
特徴とする請求項1乃至3記載のガラスの溶融装置。
4. An outlet portion of the throat is projected into a work tank,
4. The glass melting apparatus according to claim 1, wherein an opening of the protruded throat is provided above.
JP14856998A 1998-05-29 1998-05-29 Glass melting vessel Pending JPH11343124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14856998A JPH11343124A (en) 1998-05-29 1998-05-29 Glass melting vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14856998A JPH11343124A (en) 1998-05-29 1998-05-29 Glass melting vessel

Publications (1)

Publication Number Publication Date
JPH11343124A true JPH11343124A (en) 1999-12-14

Family

ID=15455687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14856998A Pending JPH11343124A (en) 1998-05-29 1998-05-29 Glass melting vessel

Country Status (1)

Country Link
JP (1) JPH11343124A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001077034A3 (en) * 2000-04-05 2002-06-20 Schott Glas Device for producing a glass melt
EP1285886A3 (en) * 2001-08-20 2004-03-10 Schott Glas Process and apparatus for producing a glass melt
JP2013193906A (en) * 2012-03-19 2013-09-30 Nippon Electric Glass Co Ltd Glass melting apparatus, method for feeding molten glass, and effluent passage for melting furnace
JP2014231473A (en) * 2008-11-26 2014-12-11 コーニング インコーポレイテッド Device and method for manufacturing glass

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001077034A3 (en) * 2000-04-05 2002-06-20 Schott Glas Device for producing a glass melt
EP1285886A3 (en) * 2001-08-20 2004-03-10 Schott Glas Process and apparatus for producing a glass melt
EP1557399A3 (en) * 2001-08-20 2005-10-26 Schott AG Process and apparatus for producing a glass melt
US7040122B2 (en) * 2001-08-20 2006-05-09 Schott Ag Process for production of molten glass
JP2014231473A (en) * 2008-11-26 2014-12-11 コーニング インコーポレイテッド Device and method for manufacturing glass
JP2013193906A (en) * 2012-03-19 2013-09-30 Nippon Electric Glass Co Ltd Glass melting apparatus, method for feeding molten glass, and effluent passage for melting furnace

Similar Documents

Publication Publication Date Title
JP5139320B2 (en) Method for forming a glass melt
JP2003095662A (en) Method to manufacture molten glass and equipment
JP6463384B2 (en) Equipment for use in direct resistance heating of platinum containing containers
RU2477258C2 (en) Device for making glass bath and method of making said bath exploiting said device
US5078777A (en) Glass-melting furnace
CA1060655A (en) Manufacture of glass
JP5456895B2 (en) Glass plate manufacturing method
CN105246843B (en) The method and apparatus of glass for refined melting
JP2000128548A (en) Glass melting furnace
EP2248774B1 (en) Vacuum degassing apparatus and vacuum degassing method for molten glass
JP2018008878A (en) Glass clarification method using physical bubbler
US4504302A (en) Homogenizing apparatus glass making furnace and method of homogenizing glass
JPH11236237A (en) Producing device of glass fiber
JPH11343124A (en) Glass melting vessel
JP7136015B2 (en) glass transfer device
JPS638226A (en) Stirrer for molten glass
JP4183202B2 (en) Glass product manufacturing method and apparatus
US4317669A (en) Glass melting furnace having a submerged weir
US3359090A (en) Homogenisation of molten glass with a flow separator
EP4051645B1 (en) Glass fining using an objective and molten metal
CS214890B2 (en) Method of making the parison and glass melting tank furnace for executing the same
JP2007161566A (en) Transporting method and transporting device of molten glass
KR20210054015A (en) Apparatus and method for mitigating electrochemical attack of precious metal components in glass manufacturing process
JP2003192354A (en) Glass fusing furnace and method for heating fused glass
KR102581636B1 (en) Glass refinement device