JPH1134176A - Manufacture of resin model - Google Patents

Manufacture of resin model

Info

Publication number
JPH1134176A
JPH1134176A JP18691297A JP18691297A JPH1134176A JP H1134176 A JPH1134176 A JP H1134176A JP 18691297 A JP18691297 A JP 18691297A JP 18691297 A JP18691297 A JP 18691297A JP H1134176 A JPH1134176 A JP H1134176A
Authority
JP
Japan
Prior art keywords
resin
vacuum
welding
plate
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18691297A
Other languages
Japanese (ja)
Inventor
Kazuhiko Okusa
一彦 大草
Yuji Yano
裕司 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP18691297A priority Critical patent/JPH1134176A/en
Publication of JPH1134176A publication Critical patent/JPH1134176A/en
Pending legal-status Critical Current

Links

Landscapes

  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately evaluate the strength by estimating the plate thickness change due to press molding and penetration into weld bead sections. SOLUTION: A manufacturing method comprises a process for manufacturing a vacuum molded product 1 formed by vacuum molding a resin plate composed of thermoplastic resin into the given shape and a process for butting another resin material 2 composed of thermoplastic resin with the vacuum molded product 1 and thermowelding a resin welding bar 3 composed of thermoplastic resin on a butting section. In that case, the reduction of plate thickness at the time of press molding an actual part can be simulated by vacuum molding a resin plate, and also penetration of a welded metal into weld bead sections at the time of welding the actual part can be simulated by using the resin welding bar 3 and carrying out the thermowelding.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は樹脂モデルの製造方
法に関する。
[0001] The present invention relates to a method for manufacturing a resin model.

【0002】[0002]

【従来の技術】一般に、例えばプレス溶接部品を製作す
る場合、実部品を製作する前に樹脂モデルを製作し、こ
の樹脂モデルについて歪みゲージ等を用いた強度試験と
FEM(Finite Element Metho
d、有限要素法)解析とを行って強度や剛性を評価し、
その評価結果が良ければ、実部品を試作して実部品につ
いて実際に強度や剛性を評価することが行われている。
2. Description of the Related Art In general, when manufacturing a press-welded part, for example, a resin model is manufactured before manufacturing an actual part, and a strength test using a strain gauge or the like and a FEM (Fine Element Element Method) are performed on the resin model.
d, finite element method) analysis to evaluate strength and rigidity,
If the evaluation result is good, an actual part is prototyped, and the strength and rigidity of the actual part are actually evaluated.

【0003】このような強度・剛性の評価プロセスに用
いられる樹脂モデルは、従来、光造型方法により製造さ
れていた。この方法は、製造しようとする樹脂モデルの
3次元CAD(Computer Aided Des
ign)データに基づいて、該樹脂モデル水平断面形状
に対応する紫外線硬化樹脂層を順次積層、硬化させるこ
とにより樹脂モデルの立体形状を形成するものである。
A resin model used in such a strength / rigidity evaluation process has conventionally been manufactured by an optical molding method. This method uses a three-dimensional CAD (Computer Aided Des) of a resin model to be manufactured.
(ign) The three-dimensional shape of the resin model is formed by sequentially laminating and curing ultraviolet curing resin layers corresponding to the horizontal cross-sectional shape of the resin model based on the data.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来の光
造型法では、実部品の3次元CADデータを基に樹脂モ
デルを造型することから、プレス溶接部品の樹脂モデル
を製造する場合、以下に示す種々の不都合があった。 (1)プレス成形すると材料の板厚が局部的に減少しそ
の部分の強度が低下する。例えば、絞り加工する際の絞
りが深い場合、角R部が薄肉化され、その部分の強度が
低下する。ところが、上記3次元CADデータを基に光
造型する場合、このような板厚変化を模擬することがで
きない。このため、プレス成形する場合の板厚変化によ
る影響を見込むことができず、板厚減少部の強度を正確
に評価することができない。
However, in the above-mentioned conventional optical molding method, a resin model is formed based on three-dimensional CAD data of an actual part. There were various disadvantages shown. (1) When the press molding is performed, the thickness of the material is locally reduced, and the strength of the portion is reduced. For example, when the drawing at the time of drawing is deep, the corner R portion is thinned, and the strength of that portion is reduced. However, when stereolithography is performed based on the three-dimensional CAD data, such a change in plate thickness cannot be simulated. For this reason, it is not possible to anticipate the influence of the change in the sheet thickness in the case of press forming, and it is impossible to accurately evaluate the strength of the sheet thickness reduced portion.

【0005】(2)プレス成形品を溶接する場合、溶接
ビード部においては溶接により母材が溶け込んでおり、
この溶け込み形状や溶け込み深さ等は溶接ビード部にお
ける強度に影響を与える。すなわち、溶接ビード部にお
いては、止端部に応力が集中する他、母材が溶け込んだ
先端部(ルート部)にも応力が集中し、このルート部か
らも破断が発生する場合がある。ところが、上記3次元
CADデータを基に光造型する場合、溶接ビード部の外
形状に従って造型することができても、このような溶け
込み形状や溶け込み深さを模擬することはできずない。
このため、従来の光造型法によって得られた樹脂モデル
では、溶接ビード部における応力集中位置が実際に溶接
した実部品とは相違し、溶接ビード部における強度を正
確に評価することができない。
[0005] (2) When welding a press-formed product, a base material is melted by welding at a weld bead portion.
The penetration shape and penetration depth affect the strength at the weld bead portion. That is, in the weld bead portion, in addition to the concentration of stress at the toe portion, the stress also concentrates at the tip portion (root portion) where the base material has melted, and fracture may occur from this root portion. However, when the optical molding is performed based on the three-dimensional CAD data, even if the molding can be performed according to the outer shape of the weld bead portion, such a penetration shape and a penetration depth cannot be simulated.
For this reason, in the resin model obtained by the conventional optical molding method, the stress concentration position in the weld bead portion is different from that of the actual part actually welded, and the strength in the weld bead portion cannot be accurately evaluated.

【0006】本発明は上記実情に鑑みてなされたもので
あり、プレス溶接部品の樹脂モデルを製造する場合であ
っても、プレス成形による板厚変化や溶接ビード部にお
ける溶け込み形状等を模擬することができ、したがって
板厚減少部や溶接ビード部の強度も正確に評価すること
のできる樹脂モデルの製造方法を提供することを解決す
べき技術課題とするものである。
The present invention has been made in view of the above circumstances, and even when a resin model of a press-welded part is manufactured, it is possible to simulate a change in thickness due to press forming, a penetration shape at a weld bead portion, and the like. Accordingly, it is an object of the present invention to provide a method of manufacturing a resin model capable of accurately evaluating the strength of a reduced thickness portion and a weld bead portion.

【0007】[0007]

【課題を解決するための手段】上記課題を解決する本発
明の樹脂モデルの製造方法は、熱可塑性樹脂よりなる一
の樹脂板を所定形状に真空成形して真空成形品を得る工
程と、上記真空成形品に熱可塑性樹脂よりなる他の樹脂
材を重ね合わせるか又は突き合わせ、熱可塑性樹脂より
なる樹脂溶接棒を該重ね合わせ部又は該突き合わせ部に
熱溶着させる工程とからなることを特徴とするものであ
る。
According to the present invention, there is provided a resin model manufacturing method for solving the above-mentioned problems, comprising: a step of vacuum-forming a resin plate made of a thermoplastic resin into a predetermined shape to obtain a vacuum-formed product; Superimposing or butting another resin material made of a thermoplastic resin on the vacuum molded product, and thermally welding a resin welding rod made of a thermoplastic resin to the overlapped portion or the butted portion. Things.

【0008】[0008]

【発明の実施の形態】本発明の樹脂モデルの製造方法
は、プレス溶接部品の樹脂モデルを製造する場合に好適
に利用することができる。以下、実部品としてのプレス
溶接部品の樹脂モデルを製造する場合の実施形態につい
て説明する。まず、熱可塑性樹脂よりなる一の樹脂板を
所定形状に真空成形して真空成形品を得る。
BEST MODE FOR CARRYING OUT THE INVENTION The resin model manufacturing method of the present invention can be suitably used when manufacturing a resin model of a press-welded part. Hereinafter, an embodiment in which a resin model of a press-welded part as an actual part is manufactured will be described. First, one resin plate made of a thermoplastic resin is vacuum-formed into a predetermined shape to obtain a vacuum-formed product.

【0009】上記樹脂板の熱可塑性樹脂の種類としては
特に限定されず、ポリエチレン、ポリプロピレン、ポリ
スチレン、塩化ビニル樹脂、アクリロニトリル−ブタジ
エンースチレン、ABS樹脂等を用いることができる。
真空成形する前の樹脂板の厚さは、実部品の厚さに応じ
て適宜設定することができる。
The type of the thermoplastic resin of the resin plate is not particularly limited, and polyethylene, polypropylene, polystyrene, vinyl chloride resin, acrylonitrile-butadiene-styrene, ABS resin and the like can be used.
The thickness of the resin plate before vacuum forming can be appropriately set according to the thickness of the actual part.

【0010】真空成形に用いる真空成形型は、実部品の
形状に応じた型面を有するものを予め準備する。例え
ば、実部品の3次元CADデータを基に、木材、石膏や
熱硬化性樹脂等から真空成形型を作製しておくことがで
きる。なお、真空成形型は雄型でも雌型でもいずれでも
よい。樹脂板の真空成形は、樹脂が熱変形し、かつ、熱
溶融しない温度に加熱して予め熱軟化させた樹脂板を真
空成形型の上部に配置し、樹脂板の端部をクランプによ
り固定した状態で型内部を真空引きすることにより行う
ことができる。型内部が減圧されるため、樹脂板は大気
圧により型面に沿って押し付けられて型面の形状に成形
される。
[0010] As a vacuum forming die used for vacuum forming, a mold having a die surface corresponding to the shape of an actual part is prepared in advance. For example, a vacuum forming die can be prepared from wood, gypsum, thermosetting resin, or the like based on three-dimensional CAD data of actual parts. The vacuum forming die may be either a male type or a female type. In the vacuum forming of the resin plate, the resin plate was heated to a temperature at which the resin was thermally deformed and did not melt and was previously heat-softened. It can be performed by evacuating the inside of the mold in the state. Since the inside of the mold is decompressed, the resin plate is pressed along the mold surface by the atmospheric pressure to be formed into the shape of the mold surface.

【0011】このような真空成形においては、樹脂板が
延伸して所定の形状に成形されるため、樹脂板は板厚減
少が起こる。この真空成形による板厚減少とプレス成形
による板厚減少とでは、板厚の減少傾向がほぼ一致する
ことが本発明者の実験により確認されている。例えば、
実部品を絞り加工する場合は角R部が薄肉化するが、樹
脂板を雌型の型面に沿って絞り加工形状と同一形状に真
空成形する場合も同様に角R部が薄肉化する。このた
め、真空成形時の樹脂板の板厚減少を制御することによ
り、実部品をプレス成形した場合の板厚変化を模擬する
ことが可能となる。この際、樹脂板の板厚減少の度合は
樹脂板の延伸度合に左右されるが、この延伸度合は樹脂
板の加熱温度を調整することにより制御することができ
る。すなわち、加熱温度を高めに設定すれば樹脂板の延
伸度合、ひいては板厚減少の度合が大きくなる。また、
真空成形時の樹脂板の温度を局部的に異ならせることに
より、その部分の板厚減少の度合を制御することも可能
である。例えば、真空成形時に樹脂板を局部加熱するこ
とにより、樹脂板の板厚減少の度合を局部加熱した部分
で大きくすることができる。さらに、雄型を用いて真空
成形する場合、成形型の高さ(樹脂板のクランプ位置か
ら成形型の型頂面までの高さ)を調整することにより、
成形品の側壁部分の板厚減少の度合を制御することもで
きる。
In such vacuum forming, since the resin plate is stretched and formed into a predetermined shape, the thickness of the resin plate is reduced. It has been confirmed by the present inventor's experiments that the reduction in the thickness of the plate due to the vacuum forming and the reduction in the thickness due to the press forming are almost the same. For example,
When a real part is drawn, the corner R becomes thinner, but when the resin plate is vacuum-formed along the female mold surface into the same shape as the drawing, the corner R becomes thinner in the same manner. For this reason, by controlling the reduction in the thickness of the resin plate during vacuum forming, it is possible to simulate a change in the thickness when an actual part is press-formed. At this time, the degree of reduction in the thickness of the resin plate depends on the degree of stretching of the resin plate, and the degree of stretching can be controlled by adjusting the heating temperature of the resin plate. That is, if the heating temperature is set to be higher, the degree of stretching of the resin plate and, consequently, the degree of reduction of the plate thickness increase. Also,
By locally varying the temperature of the resin plate during vacuum forming, it is also possible to control the degree of reduction in the thickness of that portion. For example, by locally heating the resin plate during vacuum forming, the degree of reduction in the thickness of the resin plate can be increased at the locally heated portion. Furthermore, when performing vacuum molding using a male mold, by adjusting the height of the mold (the height from the clamping position of the resin plate to the top surface of the mold),
It is also possible to control the degree of reduction in the thickness of the side wall portion of the molded product.

【0012】次ぎに、上記真空成形品に、熱可塑性樹脂
よりなる他の樹脂材を重ね合わせるか又は突き合わせ、
熱可塑性樹脂よりなる樹脂溶接棒を該重ね合わせ部又は
該突き合わせ部に熱溶着させる。上記他の樹脂材の熱可
塑性樹脂の種類としては特に限定されず、ポリエチレ
ン、ポリプロピレン、ポリスチレン、塩化ビニル樹脂、
アクリロニトリル−ブタジエンースチレン、ABS樹脂
等を用いることができる。なお、樹脂板に用いた樹脂と
同種の樹脂でも異種の樹脂でもよい。
Next, another resin material made of a thermoplastic resin is overlapped or butted on the vacuum molded product,
A resin welding rod made of a thermoplastic resin is thermally welded to the overlapping portion or the butt portion. The type of the thermoplastic resin of the other resin material is not particularly limited, polyethylene, polypropylene, polystyrene, vinyl chloride resin,
Acrylonitrile-butadiene-styrene, ABS resin and the like can be used. The resin may be the same or different from the resin used for the resin plate.

【0013】上記他の樹脂材の形状は特に限定されず、
例えば板材でも角材でもよい。また、板状の熱可塑性樹
脂を真空成形した真空成形品であってもよい。上記重ね
合わせについては、一の真空成形品に他の樹脂材を部分
的に重ね合わせてもよいし、同一形状の複数の真空成形
品を全面的に重ね合わせてもよい。また上記突き合わせ
については、複数の真空成形品を平行に配置し、各々の
側端面同士を対向させて突き合わせてもよいし、一の真
空成形品の上面に他の樹脂材の側端面を対向させてT字
状に突き合わせてもよい。
The shape of the other resin material is not particularly limited.
For example, a plate material or a square material may be used. Further, a vacuum molded product obtained by vacuum molding a plate-like thermoplastic resin may be used. As for the above-mentioned superposition, another resin material may be partially superposed on one vacuum-formed product, or a plurality of vacuum-formed products of the same shape may be entirely superposed. For the butting, a plurality of vacuum molded products may be arranged in parallel, and their side end surfaces may be opposed to each other, or the side end surfaces of another resin material may be opposed to the upper surface of one vacuum molded product. May be abutted in a T-shape.

【0014】上記樹脂溶接棒の熱可塑性樹脂の種類とし
ては特に限定されず、ポリエチレン、ポリプロピレン、
ポリスチレン、塩化ビニル樹脂、アクリロニトリル−ブ
タジエンースチレン、ABS樹脂等を用いることができ
る。なお、樹脂板に用いた樹脂と同種の樹脂でも異種の
樹脂でもよい。樹脂溶接棒の断面形状も特に限定され
ず、角形や円形等とすることができる。また、樹脂溶接
棒の太さは、実部品における溶接ビード部の外形状等に
応じて適宜設定可能である。
The type of the thermoplastic resin of the resin welding rod is not particularly limited, and may be polyethylene, polypropylene, or the like.
Polystyrene, vinyl chloride resin, acrylonitrile-butadiene-styrene, ABS resin and the like can be used. The resin may be the same or different from the resin used for the resin plate. The cross-sectional shape of the resin welding rod is not particularly limited, and may be square or circular. In addition, the thickness of the resin welding rod can be appropriately set according to the outer shape of the weld bead portion in the actual part.

【0015】樹脂溶接棒による熱溶着は、真空成形品の
重ね合わせ部又は突き合わせ部に樹脂溶接棒を配置し、
樹脂溶接棒の樹脂及び樹脂板の樹脂が溶融し、かつ、こ
れらの樹脂が熱分解しない温度で樹脂溶接棒及び重ね合
わせ部等を加熱することにより行うことができる。真空
成形品の重ね合わせ部等に樹脂溶接棒を熱溶着すると、
樹脂溶接棒及び真空成形品自身も溶融して冷却後に固ま
る。このように樹脂溶接棒を用いた熱溶着においても、
実部品で溶接ワイヤを用いて溶接する場合に溶接金属が
溶け込むのと同様、溶接樹脂(樹脂溶接棒及び母材たる
真空成形品)が溶け込む。このため、樹脂溶接棒を用い
た熱溶着時の溶接樹脂の溶け込みを制御することによ
り、実部品を溶接した場合の溶接ビード部における溶接
金属の溶け込みを模擬することが可能となる。この際、
溶接樹脂の溶け込みの度合は樹脂の種類や加熱条件に左
右されるが、樹脂の種類や加熱条件は実部品における溶
け込みに応じて自由に選択、制御することができる。
[0015] The thermal welding by the resin welding rod is performed by disposing the resin welding rod at the overlapping portion or the butt portion of the vacuum formed product,
It can be carried out by heating the resin welding rod and the overlapped portion at a temperature at which the resin of the resin welding rod and the resin of the resin plate are melted and these resins are not thermally decomposed. When a resin welding rod is heat-welded to the overlapping part of a vacuum formed product,
The resin welding rod and the vacuum formed product themselves melt and solidify after cooling. Thus, even in heat welding using a resin welding rod,
In the same way as welding metal melts when welding with actual parts using a welding wire, welding resin (a resin welding rod and a vacuum formed product as a base material) melts. For this reason, by controlling the penetration of the welding resin at the time of thermal welding using the resin welding rod, it is possible to simulate the penetration of the welding metal in the weld bead portion when an actual part is welded. On this occasion,
The degree of penetration of the welding resin depends on the type of resin and the heating conditions, but the type and heating conditions of the resin can be freely selected and controlled according to the penetration in the actual part.

【0016】熱溶着するための加熱手段としては特に限
定されないが、操作の容易性等からドライヤ等の熱風発
生器を用いることが好ましい。このように本発明方法に
よれば、樹脂板を真空成形することにより、実部品をプ
レス成形する際の板厚減少を模擬することができるとと
もに、樹脂溶接棒を用いて熱溶着することにより、実部
品を溶接する際の溶接ビード部における溶接金属の溶け
込みを模擬することができる。このため、本発明方法に
より得られた樹脂モデルについて強度試験等を行えば、
プレス成形時の板厚変化や溶接ビード部の溶け込みを見
込んだ正確な評価が可能となる。
The heating means for heat welding is not particularly limited, but it is preferable to use a hot air generator such as a dryer in terms of easiness of operation. As described above, according to the method of the present invention, by vacuum forming a resin plate, it is possible to simulate a reduction in the thickness of a real part when press forming the same, and by heat welding using a resin welding rod, It is possible to simulate penetration of a weld metal in a weld bead portion when welding an actual part. Therefore, if a strength test or the like is performed on the resin model obtained by the method of the present invention,
Accurate evaluation can be made in consideration of changes in the thickness of the plate during press forming and penetration of the weld bead.

【0017】[0017]

【実施例】以下、実施例により本発明を具体的に説明す
る。 (実施例1)本実施例は、溶接プレス部品としての簡易
ブラケットの樹脂モデルを製造するものである。
The present invention will be described below in detail with reference to examples. (Embodiment 1) In this embodiment, a resin model of a simple bracket as a welding press part is manufactured.

【0018】熱可塑性樹脂としてのポリ塩化ビニルより
なる一の樹脂板(板厚:3mm)を準備した。この樹脂
板を190℃に加熱して熱軟化させ、所定の型面形状を
有する真空成形型(雄型)を用いて真空成形し、真空成
形品1を得た。なお、真空成形型は、実部品の3次元C
ADデータを基に製作したものである。一方、他の樹脂
材として、ポリ塩化ビニルよりなる樹脂板(板厚:3m
m)2を準備した。
One resin plate (thickness: 3 mm) made of polyvinyl chloride as a thermoplastic resin was prepared. This resin plate was heated to 190 ° C. to be thermally softened, and vacuum-formed using a vacuum forming die (male type) having a predetermined mold surface shape, to obtain a vacuum-formed product 1. In addition, the vacuum forming die is a three-dimensional C
It was produced based on AD data. On the other hand, as another resin material, a resin plate made of polyvinyl chloride (plate thickness: 3 m
m) 2 was prepared.

【0019】上記真空成形品1にこの樹脂板2の端面を
突き合わせ、この突き合わせ部にポリ塩化ビニルよりな
る断面円形の樹脂溶接棒(太さ:2mm)3を配置し
た。そして、樹脂溶接棒3を配設した突き合わせ部にド
ライヤ4で熱風を当てて加熱し熱溶着させた。なお、こ
の時の加熱温度は150℃である。これにより、図2の
斜視図に示す簡易ブラケットの樹脂モデル5を製造し
た。
An end face of the resin plate 2 was butted against the vacuum molded product 1, and a resin welding rod (thickness: 2 mm) made of polyvinyl chloride and having a circular cross section was arranged at the butted portion. Then, hot air was applied to the butted portion where the resin welding rod 3 was disposed by using a dryer 4 to heat and heat weld. The heating temperature at this time is 150 ° C. Thus, the resin model 5 of the simple bracket shown in the perspective view of FIG. 2 was manufactured.

【0020】(強度測定評価)図3に示すように、上記
樹脂モデル5のg1〜g9の各部位に歪みゲージを装着
し、30kg、60kgの荷重を負荷した際の歪みεを
測定した。30kg負荷の結果を図4に、60kg負荷
の結果を図5に示す。比較のため、上記樹脂モデル5と
同一形状の溶接プレス部品としての実部品についても同
様に歪みを測定した。その結果を図4及び図5に併せて
示す。
(Evaluation of Strength Measurement) As shown in FIG. 3, a strain gauge was attached to each of the parts g1 to g9 of the resin model 5, and the strain ε when a load of 30 kg and 60 kg was applied was measured. The results for a 30 kg load are shown in FIG. 4 and the results for a 60 kg load are shown in FIG. For comparison, the distortion was measured in the same manner for the actual part as the welding press part having the same shape as the resin model 5. The results are shown in FIGS. 4 and 5.

【0021】図4及び図5から明らかなように、実部品
と樹脂モデル5との歪み測定結果は定性的によく一致し
ており、樹脂モデル5による歪み測定結果は、実部品の
強度評価に十分に利用できることが明らかである。 (実施例2)本実施例は、溶接プレス部品たる自動車用
サスペンション部品としてのロアアームの樹脂モデルを
製造するものである。
As is clear from FIGS. 4 and 5, the strain measurement results of the actual part and the resin model 5 agree qualitatively well, and the strain measurement result of the resin model 5 is used for evaluating the strength of the actual part. It is clear that it is fully available. (Embodiment 2) This embodiment is to manufacture a resin model of a lower arm as a suspension part for an automobile, which is a welding press part.

【0022】ポリ塩化ビニルよりなる樹脂板(板厚:
2.5mm)を所定形状に真空成形して複数の真空成形
品を得た。なお、この時の樹脂板の加熱温度は190℃
であり、また真空成形型は実部品の3次元CADデータ
を基に製作したものである。そして、複数の真空成形品
を部分的に重ね合わせ、該重ね合わせ部にポリ塩化ビニ
ル樹脂よりなる断面円形の樹脂溶接棒(太さ:2mm)
を配置してドライヤを用いて熱溶着させた。なお、この
時の加熱温度は150℃である。その後、穴抜き、切断
等の後加工をして図6の平面図に示す樹脂モデル6を製
造した。
A resin plate made of polyvinyl chloride (plate thickness:
(2.5 mm) was vacuum-formed into a predetermined shape to obtain a plurality of vacuum-formed products. The heating temperature of the resin plate at this time was 190 ° C.
The vacuum mold is manufactured based on three-dimensional CAD data of actual parts. Then, a plurality of vacuum formed products are partially overlapped, and a resin welding rod (thickness: 2 mm) having a circular cross section made of polyvinyl chloride resin is overlapped on the overlapped portion.
And heat-welded using a dryer. The heating temperature at this time is 150 ° C. Thereafter, post-processing such as punching and cutting was performed to produce a resin model 6 shown in the plan view of FIG.

【0023】(板厚分布測定)上記樹脂モデル6につい
て、複数箇所で板厚分布を測定した。図6のA−A線の
矢印方向の板厚分布を図7に、図6のB−B線の矢印方
向の板厚分布を図8に、図6のC−C線の矢印方向の板
厚分布を図9にそれぞれ示す。比較のため、上記樹脂モ
デル6と同一形状の溶接プレス部品としての実部品につ
いても同様に板厚分布を測定した。その結果を図7〜図
9に併せて示す。
(Measurement of Thickness Distribution) The thickness distribution of the resin model 6 was measured at a plurality of locations. The thickness distribution in the direction of the arrow AA in FIG. 6 is shown in FIG. 7, the thickness distribution in the direction of the arrow BB in FIG. 6 is shown in FIG. 8, and the thickness in the direction of the arrow CC in FIG. The thickness distribution is shown in FIG. For comparison, the sheet thickness distribution was similarly measured for an actual part as a welding press part having the same shape as the resin model 6. The results are also shown in FIGS.

【0024】図7〜図9から明らかなように、プレス成
形した実部品と真空成形した樹脂モデル6との板厚分布
の傾向は一致していることがわかる。 (強度測定評価)上記樹脂モデル6について、図10に
示すように、g1〜g8の各部位に歪みゲージを装着
し、100kg、200kgの荷重を負荷した際の歪み
εを測定した。100kg負荷の結果を図11に、20
0kg負荷の結果を図12示す。
As is apparent from FIGS. 7 to 9, it can be seen that the tendency of the thickness distribution of the real part press-molded and the resin model 6 vacuum-formed coincide with each other. (Strength Measurement Evaluation) As shown in FIG. 10, strain g was attached to each of the parts g1 to g8 for the resin model 6, and the strain ε when a load of 100 kg and 200 kg was applied was measured. The results of the 100 kg load are shown in FIG.
FIG. 12 shows the result of the 0 kg load.

【0025】比較のため、上記樹脂モデル6と同一形状
の溶接プレス部品としての実部品についても同様に歪み
を測定した。その結果を図11及び図12に併せて示
す。図11及び図12から明らかなように、実部品と樹
脂モデル6との歪み測定結果は定性的によく一致してお
り、樹脂モデル6による歪み測定結果は、実部品の強度
評価に十分に利用できることが明らかである。
For comparison, distortion was measured in the same manner for actual parts as welding press parts having the same shape as that of the resin model 6. The results are shown in FIGS. 11 and 12. As is clear from FIGS. 11 and 12, the strain measurement results of the real part and the resin model 6 are qualitatively well matched, and the strain measurement result of the resin model 6 is sufficiently used for evaluating the strength of the real part. It's clear what you can do.

【0026】(実施例3)この実施例は、本発明方法に
より得られた樹脂モデルを利用した強度評価と、簡易な
FEM解析とを併用した強度・剛性評価プロセスの一例
を示すものである。図13に示すように、まず実部品の
3次元CADに基づいて、従来の光造型法により樹脂モ
デルを製造する。この樹脂モデルでの試験と簡易なFE
M解析を行う。すなわち、板厚減少部や溶接ビード部等
の詳細な解析データは作成せず、部品の断面形状・寸法
で支配される剛性評価(変形解析)を行う。そして、こ
の剛性評価が良好なら、本発明方法を利用した樹脂モデ
ルを製造し、板厚減少部や溶接ビード部の局所的な形状
で支配される強度評価(応力、歪み測定)を行う。
(Embodiment 3) This embodiment shows an example of a strength / rigidity evaluation process using both a strength evaluation using a resin model obtained by the method of the present invention and a simple FEM analysis. As shown in FIG. 13, first, a resin model is manufactured by a conventional optical molding method based on three-dimensional CAD of an actual part. Testing with this resin model and simple FE
Perform M analysis. That is, detailed analysis data of a reduced thickness portion, a weld bead portion, and the like are not created, and a rigidity evaluation (deformation analysis) governed by the cross-sectional shape and dimensions of the component is performed. Then, if the rigidity evaluation is good, a resin model using the method of the present invention is manufactured, and strength evaluation (stress and strain measurement) governed by local shapes of the sheet thickness reduced portion and the weld bead portion is performed.

【0027】このように、簡易なFEM解析による剛性
評価と、本発明に係る樹脂モデルを利用した局所的な強
度評価とを併用することにより、短期間で多くの強度・
剛性評価を行うことが可能となる。
As described above, by combining the rigidity evaluation by the simple FEM analysis and the local strength evaluation using the resin model according to the present invention, a large strength and
Stiffness evaluation can be performed.

【0028】[0028]

【発明の効果】以上詳述したように本発明の樹脂モデル
の製造方法によれば、実部品をプレス成形する際の板厚
減少や溶接ビード部における溶け込みをも模擬すること
ができるため、本発明方法により得られた樹脂モデルに
ついて強度試験等を行えば、プレス成形時の板厚変化や
溶接ビード部の溶け込みを見込んだ正確な強度評価が可
能となる。
As described above in detail, according to the method for manufacturing a resin model of the present invention, it is possible to simulate the reduction in the thickness of a real part when press-forming an actual part and the penetration at a weld bead portion. If a strength test or the like is performed on the resin model obtained by the method of the present invention, accurate strength evaluation can be performed in consideration of a change in plate thickness during press molding and penetration of a weld bead portion.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1に係り、樹脂溶接棒を用いて熱溶着す
る様子を示す断面図である。
FIG. 1 is a cross-sectional view showing a state of heat welding using a resin welding rod according to Example 1.

【図2】実施例1に係り、樹脂モデルの斜視図である。FIG. 2 is a perspective view of a resin model according to the first embodiment.

【図3】実施例1に係り、歪みゲージを用いた強度評価
の様子を示す正面図である。
FIG. 3 is a front view showing a state of strength evaluation using a strain gauge according to the first embodiment.

【図4】実施例1に係り、実部品と樹脂モデルとのにつ
いて歪み測定の結果を示すグラフである。
FIG. 4 is a graph showing a result of strain measurement for an actual part and a resin model according to the first embodiment.

【図5】実施例1に係り、実部品と樹脂モデルとのつい
て歪み測定の結果を示すグラフである。
FIG. 5 is a graph showing a result of strain measurement on an actual part and a resin model according to the first embodiment.

【図6】実施例2に係り、樹脂モデルの平面図である。FIG. 6 is a plan view of a resin model according to the second embodiment.

【図7】実施例2に係り、実部品と樹脂モデルとのつい
て、図6のA−A線における板厚分布の測定結果を示す
グラフである。
FIG. 7 is a graph showing a measurement result of a plate thickness distribution along a line AA in FIG. 6 for an actual part and a resin model according to Example 2.

【図8】実施例2に係り、実部品と樹脂モデルとのつい
て、図6のB−B線における板厚分布の測定結果を示す
グラフである。
FIG. 8 is a graph showing a measurement result of a plate thickness distribution along a line BB in FIG. 6 for an actual part and a resin model according to Example 2.

【図9】実施例2に係り、実部品と樹脂モデルとのつい
て、図6のC−C線における板厚分布の測定結果を示す
グラフである。
FIG. 9 is a graph showing a measurement result of a thickness distribution on the line CC of FIG. 6 for the actual part and the resin model according to the second embodiment.

【図10】実施例2に係り、歪みゲージを用いた強度評
価の様子を示す平面図である。
FIG. 10 is a plan view showing a state of strength evaluation using a strain gauge according to Example 2.

【図11】実施例2に係り、実部品と樹脂モデルとのに
ついて歪み測定の結果を示すグラフである。
FIG. 11 is a graph showing a result of strain measurement for an actual part and a resin model according to the second embodiment.

【図12】実施例2に係り、実部品と樹脂モデルとのつ
いて歪み測定の結果を示すグラフである。
FIG. 12 is a graph showing a result of strain measurement for an actual part and a resin model according to Example 2.

【図13】実施例3に係り、本発明方法により得られた
樹脂モデルを利用した強度評価と、簡易なFEM解析と
を併用した強度・剛性評価プロセスを示すフローチャー
トである。
FIG. 13 is a flowchart illustrating a strength / rigidity evaluation process using a resin model obtained by the method of the present invention and a simple FEM analysis in accordance with the third embodiment.

【符号の説明】 1…真空成形品、2…樹脂材、3…樹脂溶接棒、5,6
…樹脂モデル
[Description of Signs] 1 ... Vacuum molded product, 2 ... Resin material, 3 ... Resin welding rod, 5, 6
… Resin model

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂よりなる一の樹脂板を所定
形状に真空成形して真空成形品を得る工程と、 上記真空成形品に熱可塑性樹脂よりなる他の樹脂材を重
ね合わせるか又は突き合わせ、熱可塑性樹脂よりなる樹
脂溶接棒を該重ね合わせ部又は該突き合わせ部に熱溶着
させる工程とからなることを特徴とする樹脂モデルの製
造方法。
1. A step of vacuum-forming one resin plate made of a thermoplastic resin into a predetermined shape to obtain a vacuum-formed product, and laminating or butting another resin material made of a thermoplastic resin on the vacuum-formed product. And thermally welding a resin welding rod made of a thermoplastic resin to the overlapped portion or the butt portion.
JP18691297A 1997-07-11 1997-07-11 Manufacture of resin model Pending JPH1134176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18691297A JPH1134176A (en) 1997-07-11 1997-07-11 Manufacture of resin model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18691297A JPH1134176A (en) 1997-07-11 1997-07-11 Manufacture of resin model

Publications (1)

Publication Number Publication Date
JPH1134176A true JPH1134176A (en) 1999-02-09

Family

ID=16196871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18691297A Pending JPH1134176A (en) 1997-07-11 1997-07-11 Manufacture of resin model

Country Status (1)

Country Link
JP (1) JPH1134176A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003181930A (en) * 2001-12-18 2003-07-03 Suzuka Fuji Xerox Co Ltd Composite resin molded article and method for recycling the same
JP2014051053A (en) * 2012-09-07 2014-03-20 Gifu Plast Ind Co Ltd Junction structure of hollow structure boards

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003181930A (en) * 2001-12-18 2003-07-03 Suzuka Fuji Xerox Co Ltd Composite resin molded article and method for recycling the same
JP2014051053A (en) * 2012-09-07 2014-03-20 Gifu Plast Ind Co Ltd Junction structure of hollow structure boards

Similar Documents

Publication Publication Date Title
JP3832927B2 (en) Axle case manufacturing method
JPH02120027A (en) Method and apparatus for manufacturing lined panel
JPH03262607A (en) Molding tool of composite part
JP4989206B2 (en) Laminate terminal processing method
US5525283A (en) Method for producing flat, laminated moldings by back-embossing according to the preform method
JPS61144223A (en) Manufacture of composite curved shape
JPH1134176A (en) Manufacture of resin model
TW202023799A (en) Shaping method of thermoplastic composite frame members of bicycle and finished products thereof suitable for mass production and achieving robust structure and stable shaping quality
JPS6253811A (en) Manufacture of laminated material
JP6667922B1 (en) Manufacturing method of hollow thermoplastic resin products
JP4278849B2 (en) Molding method of resin panel
JPS6099635A (en) Manufacture of decorative molding
JP2006182093A (en) Fuel tank for automobile
JPS59191541A (en) Manufacture of consumable casting pattern
JP3590771B2 (en) Blow molded article having welding flange
JPS646054B2 (en)
JPH0780237B2 (en) Bending method and folding device for thermoplastic resin sheet
JP3575188B2 (en) Molding method and molding die for interior parts
JP3668840B2 (en) Product model checking fixture design method
JP3372974B2 (en) End joining method of molding with different cross section
JPH03262635A (en) Manufacture of curved surface panel
JPH0518694B2 (en)
JPH07205306A (en) Method and apparatus for processing synthetic resin molding
JP2000334826A (en) Reinforcer holding structure of molding mold
JP2552642B2 (en) Vehicle headrest frame molding method