JPH11341699A - Solar battery optimum operating point follow-up circuit in power supply equipment using the same - Google Patents

Solar battery optimum operating point follow-up circuit in power supply equipment using the same

Info

Publication number
JPH11341699A
JPH11341699A JP10162774A JP16277498A JPH11341699A JP H11341699 A JPH11341699 A JP H11341699A JP 10162774 A JP10162774 A JP 10162774A JP 16277498 A JP16277498 A JP 16277498A JP H11341699 A JPH11341699 A JP H11341699A
Authority
JP
Japan
Prior art keywords
solar cell
output
voltage
power supply
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10162774A
Other languages
Japanese (ja)
Other versions
JP3949818B2 (en
Inventor
Kimisada Kobayashi
公禎 小林
Yutaka Sekine
豊 関根
Hirobumi Matsuo
博文 松尾
Fujio Kurokawa
不二雄 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP16277498A priority Critical patent/JP3949818B2/en
Publication of JPH11341699A publication Critical patent/JPH11341699A/en
Application granted granted Critical
Publication of JP3949818B2 publication Critical patent/JP3949818B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Photovoltaic Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Electrical Variables (AREA)
  • Dc-Dc Converters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solar battery optimum operating point follow-up circuit which can supply the maximum output power from a solar battery at all times, regardless of the operating temperature of the solar battery or the intensity of light. SOLUTION: This circuit is constituted of a temperature compensating voltage detection circuit, which supplies current to a PN junction diode D1 which is located near a solar battery SB and has nearly the same temperature characteristic as that of the solar battery, and then detects the forward drop voltage VB of the PN junction diode as a temperature compensating voltage; an amplifier #A which amplifies the voltage detected by the temperature compensating voltage detection circuit at a specified amplification rate, and then outputs the temperature compensating voltage V1R for the solar battery; a differential amplifier #D which is inputted with the temperature compensating voltage V1R which is the output of the amplifier #A and the output voltage Vs of the solar battery SB; and a comparator ξf which compares a control signal VR which is the output of the differential amplifier and a control signal Vo for stably controlling the output of a switching power supply 1, and then outputs a signal for driving a switch S for controlling the switching power supply 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池の電力を
スイッチング電源を用いて所要の電力を得る電源装置に
関するもので、特に太陽電池設置場所の外部環境の変
化、即ち温度や光の強度(光量)等の変化が生じた場合
にも、常に太陽電池から最大出力電力を給電できるよう
にする電源装置の太陽電池最適動作点追尾回路に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply device for obtaining required power from a solar cell using a switching power supply. The present invention relates to a solar cell optimal operating point tracking circuit of a power supply device that can always supply the maximum output power from the solar cell even when a change such as a light amount occurs.

【0002】[0002]

【従来の技術】太陽電池から光の強度に応じて、できる
限り大きな電力を取り出すようにした従来の電源装置の
太陽電池最適動作点追尾回路は、電源装置動作時に入力
電源として接続される太陽電池の出力電圧を、予め最大
出力が得られるように予測した任意の固定電圧に設定し
て、太陽電池から出力電流を取り出しスイッチング電源
を介して電力給電を行っていた。
2. Description of the Related Art A solar cell optimum operating point tracking circuit of a conventional power supply device which takes out as much power as possible according to the intensity of light from a solar cell includes a solar cell connected as an input power supply when the power supply device operates. Is set to an arbitrary fixed voltage predicted in advance so that a maximum output can be obtained, an output current is taken out of the solar cell, and power is supplied via a switching power supply.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、スイッ
チング電源に接続された太陽電池の出力電圧を、予め最
大出力となるように予測して任意の固定電圧に設定する
ようにした最適動作点追尾回路では、次のような問題が
ある。即ち、1日の間でも朝,昼,夜、また晴天の日と
雨天の日、更には夏と冬などの季節の移り変わりなどに
より太陽電池の動作温度が変化するが、温度が上昇した
状態で最適動作点を与えると、動作温度が低下した場合
には太陽電池の出力電圧が上昇するために、動作温度変
化に対応した最大出力電力が得られないという問題があ
る。また、光の強度(光量)が変化した場合も動作温度
の変化と同様に、光量が多い状態で最適動作点を与える
と、光量が多い場合は最大電流容量を給電できるが、光
量が少ない状態の場合は最大電流容量よりも少ない電流
容量しか得ることができなくなり、光量の変化に追随し
て最大出力電力が得られなという問題がある。
However, in an optimum operating point tracking circuit in which the output voltage of a solar cell connected to a switching power supply is predicted in advance to be a maximum output and is set to an arbitrary fixed voltage. However, there are the following problems. That is, even during one day, the operating temperature of the solar cell changes due to the change of seasons such as morning, noon, night, sunny day and rainy day, and summer and winter. When the optimum operating point is given, the output voltage of the solar cell increases when the operating temperature decreases, so that there is a problem that the maximum output power corresponding to the change in the operating temperature cannot be obtained. Also, when the light intensity (light amount) changes, as in the case of the change in the operating temperature, if the optimum operating point is given in a state where the light amount is large, the maximum current capacity can be supplied when the light amount is large, but in a state where the light amount is small. In the case of (1), only a current capacity smaller than the maximum current capacity can be obtained, and there is a problem that the maximum output power cannot be obtained following a change in the light amount.

【0004】このように、スイッチング電源に接続され
た太陽電池の出力電圧を予め任意の固定電圧に設定する
最適動作点追尾回路では、太陽電池設置場所の環境変化
による動作温度や光量の変化により、太陽電池の最大電
力を給電することは困難である。本発明は、太陽電池設
置場所の外部環境変化による動作温度や光量の変化に対
しても、常に太陽電池から最大出力電力を給電すること
が可能な、電源装置の太陽電池最適動作点追尾回路を提
案するものである。
As described above, in the optimal operating point tracking circuit that sets the output voltage of the solar cell connected to the switching power supply to an arbitrary fixed voltage in advance, the operating temperature and the light quantity change due to the environmental change of the solar cell installation location. It is difficult to supply the maximum power of the solar cell. The present invention provides a solar cell optimal operating point tracking circuit of a power supply device, which can always supply the maximum output power from the solar cell even when the operating temperature or the light amount changes due to the external environment change of the solar cell installation location. It is a suggestion.

【0005】[0005]

【課題を解決するための手段】本願の第1の発明による
太陽電池を用いた電源装置における太陽電池最適動作点
追尾回路は、太陽電池の電力を入力とするスイッチング
電源からなる電源装置において、前記太陽電池の近傍に
設けられた該太陽電池の温度特性と略同じ温度特性を有
するPN接合ダイオードに電流を給電して該PN接合ダ
イオードの順方向降下電圧を検出する温度補償電圧検出
回路と、該温度補償電圧検出回路により検出された電圧
を所要増幅率で増幅して前記太陽電池の温度補償電圧を
出力する増幅器と、該増幅器の出力の前記温度補償電圧
と前記太陽電池の出力電圧とを入力とする差動増幅器
と、該差動増幅器の出力の制御信号と前記スイッチング
電源の出力を安定制御するための制御信号とを比較して
前記スイッチング電源の制御用スイッチの駆動信号を出
力する比較器とを備え、前記太陽電池設置場所の温度変
化に追随して該太陽電池の電力出力を最大となすように
したものである。
According to a first aspect of the present invention, there is provided a solar cell optimal operating point tracking circuit in a power supply using a solar cell, wherein the power supply comprises a switching power supply which receives power from the solar cell. A temperature compensation voltage detection circuit for supplying current to a PN junction diode having a temperature characteristic substantially the same as the temperature characteristic of the solar cell provided near the solar cell and detecting a forward drop voltage of the PN junction diode; An amplifier that amplifies the voltage detected by the temperature compensation voltage detection circuit at a required amplification rate and outputs a temperature compensation voltage of the solar cell, and inputs the temperature compensation voltage of the output of the amplifier and the output voltage of the solar cell. And a control signal for stabilizing the output of the switching power supply by comparing a control signal of the output of the differential amplifier with a control signal for stably controlling the output of the switching power supply. And a comparator for outputting a driving signal of the control switch, following the temperature change of the solar cell installation site is obtained by so as to form a maximum power output of the solar cell.

【0006】本願の第2の発明による太陽電池を用いた
電源装置における太陽電池最適動作点追尾回路は、太陽
電池の電力を入力とするスイッチング電源からなる電源
装置において、前記太陽電池の近傍に設けられた該太陽
電池の温度特性と略同じ温度特性を有するPN接合ダイ
オードに電流を給電して該PN接合ダイオードの順方向
降下電圧を検出する温度補償電圧検出回路と、該温度補
償電圧検出回路により検出された電圧を所要増幅率で増
幅して前記太陽電池の温度補償電圧を出力する第1の増
幅器と、前記太陽電池の出力電流を検出する電流検出回
路と、該電流検出回路により検出された電流を電圧に変
換して所要増幅率で増幅して前記太陽電池の電流補償電
圧を出力する第2の増幅器と、前記第1の増幅器の出力
の前記温度補償電圧と前記第2の増幅器の出力の前記電
流補償電圧とを加算し温度・電流補償電圧を出力する加
算器と、該加算器の出力の温度・電流補償電圧と前記太
陽電池の出力電圧とを入力とする差動増幅器と、該差動
増幅器の出力の制御信号と前記スイッチング電源の出力
を安定制御するための制御信号とを比較して前記スイッ
チング電源の制御用スイッチの駆動信号を出力する比較
器とを備え、前記太陽電池設置場所の温度・光量変化に
追随して該太陽電池の電力出力を最大となすようにした
ものである。
A solar cell optimum operating point tracking circuit in a power supply device using a solar cell according to the second invention of the present application is provided in the vicinity of the solar cell in a power supply device comprising a switching power supply to which power of the solar cell is input. A temperature compensation voltage detection circuit for supplying a current to a PN junction diode having substantially the same temperature characteristics as that of the solar cell to detect a forward drop voltage of the PN junction diode, and a temperature compensation voltage detection circuit. A first amplifier that amplifies the detected voltage by a required amplification factor and outputs a temperature compensation voltage of the solar cell, a current detection circuit that detects an output current of the solar cell, and a current detection circuit that detects the current. A second amplifier that converts a current into a voltage, amplifies the voltage with a required amplification factor, and outputs a current compensation voltage of the solar cell, and a temperature compensation voltage output from the first amplifier. And an adder for adding the current compensation voltage of the output of the second amplifier to output a temperature / current compensation voltage, and inputting the temperature / current compensation voltage of the output of the adder and the output voltage of the solar cell. And a comparator that compares a control signal of the output of the differential amplifier with a control signal for stably controlling the output of the switching power supply and outputs a drive signal of a control switch of the switching power supply. And the power output of the solar cell is maximized following changes in temperature and light quantity at the solar cell installation location.

【0007】[0007]

【発明の実施の形態】図1は本発明の太陽電池最適動作
点追尾回路の一実施例を示すもので、太陽電池に接続さ
れるスイッチング電源にDC−DCコンバータを用いた
例として示してある。図1において、1はDC−DCコ
ンバータ、SBはDC−DCコンバータ1の入力に接続
された太陽電池、Rmは太陽電池SBに照射される光の
強度(光量)によって変化する出力電流を電圧として検
出する電流検出器、Icon は定電流給電回路、D0-1 ,
D0-2 ……D0-n はそれぞれPN接合ダイオードで太陽
電池SBとほぼ同じ温度特性を有するように複数個を縦
続接続して構成するか、或いは接続個数を1又は少数の
個数として後述する増幅器により調整するようにしても
よい。VDは各PN接合ダイオードD0 の順方向降下電
圧、VBはPN接合ダイオードDをn個縦続接続したと
きの順方向降下電圧で、定電流給電回路Icon と共に太
陽電池SBの温度補償電圧を検出する回路である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of a solar cell optimum operating point tracking circuit according to the present invention, and shows an example in which a DC-DC converter is used as a switching power supply connected to a solar cell. . In FIG. 1, reference numeral 1 denotes a DC-DC converter, SB denotes a solar cell connected to the input of the DC-DC converter 1, and Rm denotes an output current that changes according to the intensity (light amount) of light applied to the solar cell SB. The current detector to detect, Icon is a constant current feeding circuit, D0-1,
D0-2... D0-n are each constituted by cascade-connecting a plurality of PN junction diodes so as to have substantially the same temperature characteristics as the solar cell SB, or by setting the number of connections to 1 or a small number to be described later. May be adjusted by using VD is a forward drop voltage of each PN junction diode D0, VB is a forward drop voltage when n PN junction diodes D are cascaded, and a circuit for detecting the temperature compensation voltage of the solar cell SB together with the constant current feed circuit Icon. It is.

【0008】#A,#Bはそれぞれ増幅器で、増幅器#
Aは1個又は複数個が縦続接続されたPN接合ダイオー
ドDの順方向降下電圧を所要の温度補償電圧V1Rに増
幅するものである。増幅器#Bは照射される光の強度、
即ち光量に基づく太陽電池SBの出力電流を電圧値とし
て検出し、これを所要の電流(光量)補償電圧V2Rに
増幅するものである。#Cは加算器で温度補償電圧V1
Rと電流補償電圧V2Rとを加算するものである。#D
は差動増幅器で加算器#Cの出力の温度・電流補償電圧
(基準電圧)VRと太陽電池SBの出力電圧Vsとを入
力として、制御信号△VRを出力する。RはDC−DC
コンバータ1の出力に接続された負荷、#Eは負荷Rの
電圧を検出する電圧検出器で制御信号△Voを出力す
る。OSCは鋸歯状(三角)波発振器、#Fはパルス幅
変調比較器で、制御信号△VRと△Vo及び鋸歯状波発
振器OSCとの関係により、DC−DCコンバータ1の
制御用スイッチSをパルス幅変調(PWM)制御する駆
動信号を出力する。なお、EoはDC−DCコンバータ
1の出力電圧、EBは必要に応じて接続される蓄電池で
ある。
#A and #B are amplifiers, respectively.
A amplifies the forward drop voltage of one or more cascaded PN junction diodes D to a required temperature compensation voltage V1R. Amplifier #B is the intensity of the emitted light,
That is, the output current of the solar cell SB based on the light amount is detected as a voltage value, and this is amplified to a required current (light amount) compensation voltage V2R. #C is an adder for temperature compensation voltage V1
R and the current compensation voltage V2R are added. #D
Is a differential amplifier, which inputs a temperature / current compensation voltage (reference voltage) VR of the output of the adder #C and an output voltage Vs of the solar cell SB, and outputs a control signal △ VR. R is DC-DC
The load #E connected to the output of the converter 1 is a voltage detector that detects the voltage of the load R and outputs a control signal △ Vo. OSC is a sawtooth (triangular) wave oscillator, #F is a pulse width modulation comparator, and the control switch S of the DC-DC converter 1 is pulsed by the relationship between the control signals △ VR and △ Vo and the sawtooth oscillator OSC. A drive signal for performing width modulation (PWM) control is output. Eo is an output voltage of the DC-DC converter 1, and EB is a storage battery connected as necessary.

【0009】次に、図1の本発明の一実施例回路図、図
2の光量変化に基づく太陽電池SBの出力電流,電圧,
電力特性図、図3の温度変化に基づく太陽電池SBの出
力電流,電圧,電力特性図、図4のDC−DCコンバー
タ1の出力定電圧制御領域と太陽電池最適動作点追尾動
作領域との関係を示す電流,電圧,電力特性図に基づい
て、本発明の太陽電池最適動作点追尾回路の動作を説明
する。先ず、図1の太陽電池最適動作点追尾回路の、順
方向降下電圧VDを有するPN接合ダイオードDをn個
を縦続接続し、これに定電流給電回路Icon より一定電
流を流すことにより得られる順方向降下電圧VB(VD
×n)を増幅器#AにてK1倍に増幅し、これを温度補
償電圧V1R(VB×K1)とし加算器#Cの一方に入
力する。また、DC−DCコンバータ1の動作時の太陽
電池SBの出力電流Isは電流検出器Rmを介し検出さ
れ、増幅器#BにてK2倍に増幅されて電流補償電圧V
2R(Is×Rm×K2)として加算器#Cの他方に入
力される。
Next, FIG. 1 is a circuit diagram of one embodiment of the present invention, and FIG. 2 shows the output current, voltage,
Power characteristic diagram, output current, voltage, and power characteristic diagram of solar cell SB based on temperature change in FIG. 3, relationship between output constant voltage control region of DC-DC converter 1 in FIG. 4 and solar cell optimal operating point tracking operation region The operation of the solar cell optimum operating point tracking circuit according to the present invention will be described based on the current, voltage, and power characteristic diagrams shown in FIG. First, in the solar cell optimum operating point tracking circuit of FIG. 1, n PN junction diodes D having a forward drop voltage VD are connected in cascade, and a constant current is supplied from the constant current feeding circuit Icon to the PN junction diodes D. Direction drop voltage VB (VD
× n) is amplified by a factor of K1 by the amplifier #A, and this is amplified as a temperature compensation voltage V1R (VB × K1) and input to one of the adders #C. Further, the output current Is of the solar cell SB during the operation of the DC-DC converter 1 is detected via the current detector Rm, and is amplified by K2 times by the amplifier #B to obtain the current compensation voltage V
2R (Is × Rm × K2) is input to the other end of the adder #C.

【0010】従って、加算器#Cの出力に現れる温度・
電流補償電圧VRは、
Therefore, the temperature appearing at the output of adder #C
The current compensation voltage VR is

【数1】 VR=V1R+V2R=VB×K1+Is×Rm×K2 ……(1) であり、温度に対してのみ変化する温度補償電圧V1R
と、光量の変化に基づく電流に対して電圧変化する電流
の一次関数である電流補償電圧V2Rとの和の形で与え
られる
VR = V1R + V2R = VB × K1 + Is × Rm × K2 (1), and a temperature compensation voltage V1R that changes only with temperature.
And a current compensation voltage V2R, which is a linear function of the current that changes in voltage with respect to the current based on the change in the light amount.

【0011】ここで、上記(1)式の温度・電流補償電
圧VRの妥当性について、図2,図3により説明する。
図2は光の強度が変化した場合で、光の強度が小さくな
るに従い太陽電池電力Psが減少するため、最大電力点
は太陽電池電流の下方向へ移動する。当然、太陽電池電
圧VsもVs1からVs2へ変化する。この時、温度・
電流補償電圧VRの一構成要素である電流補償電圧V2
Rが電流Isの1次関数であるので、最適動作点追尾動
作が実現できる。
Here, the validity of the temperature / current compensation voltage VR in the above equation (1) will be described with reference to FIGS.
FIG. 2 shows a case in which the light intensity changes. Since the solar cell power Ps decreases as the light intensity decreases, the maximum power point moves downward in the solar cell current. Naturally, the solar cell voltage Vs also changes from Vs1 to Vs2. At this time,
The current compensation voltage V2 which is a component of the current compensation voltage VR
Since R is a linear function of the current Is, the optimum operating point tracking operation can be realized.

【0012】また、図3は太陽電池の動作温度が変化し
た場合で、動作温度が上昇するに伴い太陽電池電圧Vs
がVs1からVs2へ変化するが、最大電力点は太陽電
池電流に対して変化しない。この時、温度・電流補償電
圧VRの一構成要素である温度補償電圧V1Rは、動作
温度に対してのみ電圧変化する要素であり、温度・電流
補償電圧VRは動作温度の上昇によりVR-aからVR-b
へ変化して、最適動作点追尾動作が実現できる。このよ
うに、最適動作点追尾動作の基準電圧を、温度・電流補
償電圧VRとすることで、温度及び光量の変化に追随し
て太陽電池の最大電力点を与える電圧を追尾動作できる
もので、外部環境変化に対応してより高精度の最適動作
点追尾動作が可能となる。
FIG. 3 shows a case where the operating temperature of the solar cell changes, and as the operating temperature rises, the solar cell voltage Vs
Changes from Vs1 to Vs2, but the maximum power point does not change with respect to the solar cell current. At this time, the temperature compensation voltage V1R, which is a component of the temperature / current compensation voltage VR, is an element that changes its voltage only with respect to the operating temperature, and the temperature / current compensation voltage VR changes from VR-a due to an increase in the operating temperature. VR-b
And the optimum operation point tracking operation can be realized. In this way, by setting the reference voltage for the optimum operating point tracking operation as the temperature / current compensation voltage VR, it is possible to track the voltage that gives the maximum power point of the solar cell following changes in temperature and light amount, A more accurate optimum operating point tracking operation can be performed in response to changes in the external environment.

【0013】なお、温度・電流補償電圧VRを温度補償
電圧V1Rのみで構成としても、ほぼ最大電力点で動作
し最適動作点追尾は可能であるが、電流補償電圧V2R
を加えることでより高精度化を図ることができる。ま
た、前記(1)式中の増幅器#Aの増幅率K1は、太陽
電池出力電流Is=0のときに、K1×VBを太陽電池
出力電圧Vsの最小値であるVsmin に設定すればよ
く、また、増幅器#Bの増幅率K2は、太陽電池出力電
圧Vsの最大値Vsmax と最小値Vsmin 、さらに太陽
電池出力電流Isより与えられる導出式を(2),
(3)に示す。
Although the temperature / current compensating voltage VR is constituted only by the temperature compensating voltage V1R, it operates at almost the maximum power point and can track the optimum operating point, but the current compensating voltage V2R
, It is possible to achieve higher accuracy. Further, the amplification factor K1 of the amplifier #A in the equation (1) may be obtained by setting K1 × VB to Vsmin, which is the minimum value of the solar cell output voltage Vs, when the solar cell output current Is = 0, Further, the amplification factor K2 of the amplifier #B is derived from the maximum value Vsmax and the minimum value Vsmin of the solar cell output voltage Vs, and a derivation formula given by the solar cell output current Is as follows:
It is shown in (3).

【0014】[0014]

【数2】 K1=Vsmin /VB ………(2) K2=(Vsmax −Vsmin )/(Rm×Is) ………(3)K1 = Vsmin / VB (2) K2 = (Vsmax-Vsmin) / (Rm × Is) (3)

【0015】次に、上記で得られた温度・電流補償電圧
VRは、一方に太陽電池出力電圧Vsの入力された増幅
器#Dの他方に入力され、太陽電池出力電圧Vsを温度
・電流補償電圧VRに制御するよう動作し、増幅器#D
の出力にはそれに必要な制御信号ΔVRが現れる。そし
て、この制御信号ΔVRと、DC−DCコンバータ1の
出力Eoに接続された負荷Rの出力電圧を電圧検出器#
Eで検出し、DC−DCコンバータ1を定電圧制御する
制御信号ΔVoとは、例えば、鋸歯状(三角)波発振器
OSCの出力を一方の入力とするパルス幅変調比較器#
Fの他方にそれぞれ入力され、パルス幅変調比較器#F
の出力にパルス幅変調用の出力パルス波形が得られ、D
C−DCコンバータ1の制御用スイッチSを制御する。
従って、太陽電池最適動作点追尾動作が行われると共
に、DC−DCコンバータ1の出力定電圧制御が行われ
る。
Next, the temperature / current compensation voltage VR obtained above is inputted to the other side of the amplifier #D, to which the solar cell output voltage Vs is inputted, and the solar cell output voltage Vs is inputted to the temperature / current compensation voltage. VR to operate the amplifier #D
The control signal .DELTA.VR required for this appears at the output of. Then, the control signal ΔVR and the output voltage of the load R connected to the output Eo of the DC-DC converter 1 are used as a voltage detector #
The control signal ΔVo, which is detected by E and controls the DC-DC converter 1 at a constant voltage, is, for example, a pulse width modulation comparator # having the output of a sawtooth (triangular) wave oscillator OSC as one input.
F, each of which is input to the other of the pulse width modulation comparators #F
An output pulse waveform for pulse width modulation is obtained at the output of
The control switch S of the C-DC converter 1 is controlled.
Therefore, the solar cell optimal operating point tracking operation is performed, and the output constant voltage control of the DC-DC converter 1 is performed.

【0016】次に、図4にDC−DCコンバータ1の動
作時のコンバータ出力電流と出力電圧及び太陽電池電圧
の関係から、DC−DCコンバータの出力定電圧制御領
域と太陽電池最適動作点追尾動作領域の一例について示
す。即ち、DC−DCコンバータ1の出力定電圧制御領
域は出力電流0.2A以下の領域であり、DC−DCコ
ンバータ1の出力電力Poと太陽電池SBの供給電力P
sは、〔Po<Ps〕なる関係となる。従って、DC−
DCコンバータ1の出力電圧Eoは安定化されるが、太
陽電池最適動作点追尾動作は行われないため動作時の太
陽電池電圧Vsは変化する。次に、太陽電池最適動作点
追尾動作領域は、出力電流0.2A以上の領域となる。
この領域では、〔Po>Ps〕なる関係となり、図4か
ら明らかなように太陽電池電圧Vsは、最適動作点追尾
動作により一定電圧に制御されることになり、この領域
では常時、太陽電池SBの最大電力が得られる。
Next, FIG. 4 shows the relationship between the converter output current, the output voltage, and the solar cell voltage during the operation of the DC-DC converter 1, and the output constant voltage control region of the DC-DC converter and the solar cell optimum operating point tracking operation. An example of the region will be described. That is, the output constant voltage control region of the DC-DC converter 1 is a region where the output current is 0.2 A or less, and the output power Po of the DC-DC converter 1 and the supply power P of the solar cell SB.
s has a relationship of [Po <Ps]. Therefore, DC-
The output voltage Eo of the DC converter 1 is stabilized, but the solar cell optimal operating point tracking operation is not performed, so that the solar cell voltage Vs during operation changes. Next, the solar cell optimal operating point tracking operation area is an area where the output current is 0.2 A or more.
In this region, the relationship [Po> Ps] is established, and as is clear from FIG. 4, the solar cell voltage Vs is controlled to a constant voltage by the optimum operating point tracking operation. Is obtained.

【0017】また、太陽電池SBの設置場所の温度,光
量変化によってDC−DCコンバータ1の出力電圧は安
定化さない、いわゆる垂下状態となった場合は、DC−
DCコンバータ1の出力Eoに蓄電池EBを接続すれ
ば、蓄電池EB自身の持つ定電圧値によりコンバータ出
力は安定化される。この場合、太陽電池SBの出力電力
が負荷消費電力を上回る環境に変化したときは、太陽電
池SBの最大電力を蓄電池EBに給電する充電器として
構成できる。また、図5に示すような2つの入力電源E
1,E2と、それに対応するスイッチS1,S2、磁気
結合するインダクタLの巻線N1,N2と出力用巻線N
0により構成された2入力DC−DCコンバータにおい
て、例えば、入力電源として、E1を太陽電池、E2を
商用電源入力を整流することで得られる直流電源とし、
太陽電池E1に本発明による最適動作点追尾動作を適用
し、直流電源E2からの給電を太陽電池E1の給電不足
分を補うように給電させることもできる。
In addition, when the output voltage of the DC-DC converter 1 is not stabilized due to a change in the temperature and the amount of light at the installation location of the solar cell SB, that is, when a so-called drooping state occurs,
If the storage battery EB is connected to the output Eo of the DC converter 1, the converter output is stabilized by the constant voltage value of the storage battery EB itself. In this case, when the output power of the solar cell SB changes to an environment that exceeds the load power consumption, the battery can be configured to supply the maximum power of the solar cell SB to the storage battery EB. Further, two input power supplies E as shown in FIG.
1, E2, the corresponding switches S1, S2, the windings N1, N2 of the inductor L and the output winding N, which are magnetically coupled.
In the two-input DC-DC converter constituted by 0, for example, as an input power source, E1 is a solar cell, E2 is a DC power source obtained by rectifying a commercial power source input,
The optimal operation point tracking operation according to the present invention can be applied to the solar cell E1 to supply power from the DC power supply E2 so as to compensate for the shortage of power supply of the solar cell E1.

【0018】即ち、DC−DCコンバータ全体の負荷給
電量と太陽電池E1の給電量の差分を直流電源E2から
給電するように構成すれば、太陽電池E1は常に最適動
作点追尾動作を行い、また、直流電源E2の作用により
DC−DCコンバータ出力は蓄電池なしで定電圧制御さ
れ、太陽電池最適動作点追尾と出力定電圧制御が同時に
実現でき、高効率でしかも安定なものとなる。更に、パ
ルス幅変調比較器#Fを有しない自励型フライバックタ
イプ等のDC−DCコンバータの場合には、出力定電圧
制御信号ΔVoを出力する制御回路に、前記制御信号Δ
VRを入力することで実現可能である。また、前述した
実施例は、スイッチング電源をDC−DCコンバータを
用いた例で説明したが、スイッチング電源としてDC−
ACインバータを用いる場合にも本発明を適用すること
ができる。
That is, if the difference between the power supply amount of the entire DC-DC converter and the power supply amount of the solar cell E1 is configured to be supplied from the DC power supply E2, the solar cell E1 always performs the optimum operation point tracking operation. By the action of the DC power supply E2, the output of the DC-DC converter is controlled at a constant voltage without a storage battery, so that the optimum operating point tracking of the solar cell and the output constant voltage control can be realized at the same time, resulting in high efficiency and stability. Further, in the case of a DC-DC converter such as a self-excited flyback type that does not have the pulse width modulation comparator #F, the control signal ΔVo is output to a control circuit that outputs an output constant voltage control signal ΔVo.
This can be realized by inputting VR. In the above-described embodiment, the switching power supply is described as an example using a DC-DC converter.
The present invention can be applied to a case where an AC inverter is used.

【0019】次に、太陽電池を用いた電源装置において
は、光の照射が確実に行われている昼間と、光の照射が
殆ど行われない夜間との変り目である朝,夕等の光量が
著しく変化する場合の問題と、その改善策について説明
する。前述した電源装置の太陽電池最適動作点追尾回路
の基本原理としては、太陽電池の外部環境(温度,光
量)変化に伴う動作電圧を、太陽電池の温度特性と略同
一のPN接合ダイオードの順方向降下電圧による温度補
償電圧、又は光量の変化による太陽電池の出力電流の変
化を電流補償電圧として検出し、この変化量をスイッチ
ング電源の制御駆動用スイッチのPWMに関係させて制
御するようにしているものであり、この制御に必要な制
御量をスイッチング電源の制御用スイッチにパルス信号
の形で与えている。
Next, in a power supply device using a solar cell, the amount of light in the morning or evening, which is a transition between daytime during which light irradiation is performed reliably and nighttime during which light irradiation is hardly performed, is reduced. The problem in the case of a remarkable change and the remedy will be described. The basic principle of the solar cell optimal operating point tracking circuit of the power supply device described above is that the operating voltage accompanying the change in the external environment (temperature, light amount) of the solar cell is determined by changing the forward voltage of the PN junction diode having substantially the same temperature characteristics as the solar cell. A change in the temperature compensation voltage due to the drop voltage or a change in the output current of the solar cell due to a change in the amount of light is detected as a current compensation voltage, and the amount of change is controlled in relation to the PWM of the control drive switch of the switching power supply. The control amount required for this control is given to the control switch of the switching power supply in the form of a pulse signal.

【0020】従って、太陽電池の検出する電圧が温度補
償電圧又は温度・電流補償電圧(基準電圧)と比較し高
いほど制御用スイッチのパルス幅は広がり、基準電圧に
近づくほどパルス幅は狭くなる。また、夜間等の太陽電
池の検出する電圧が基準電圧を下回る時間帯は、制御用
スイッチへの制御パルスは発生せずに、太陽電池の使用
は禁止される。この時、問題となるのは、光の照射量
(光量)が極端に減少する、例えば、朝,夕等の時間帯
である。この時間帯においては、夜間と昼間の2つの時
間帯の動作、つまり制御用スイッチの動作はパルス発生
−停止という状態をランダムに繰り返される。そして、
このパルスのランダム発生により電源装置から不快な動
作音やノイズが発生し、電源装置は不安定動作を繰り返
す。
Therefore, the higher the voltage detected by the solar cell is compared to the temperature compensation voltage or the temperature / current compensation voltage (reference voltage), the wider the pulse width of the control switch becomes, and the closer the reference voltage is, the narrower the pulse width becomes. Further, during a time period such as at night when the voltage detected by the solar cell is lower than the reference voltage, no control pulse is generated to the control switch, and the use of the solar cell is prohibited. At this time, a problem occurs in a time zone, for example, in the morning or evening, when the light irradiation amount (light amount) is extremely reduced. In this time period, the operation in the two time periods of night and day, that is, the operation of the control switch repeats a state of pulse generation and stop at random. And
Due to the random generation of the pulse, an unpleasant operation sound or noise is generated from the power supply, and the power supply repeats unstable operation.

【0021】このランダム動作は、図6に示すように太
陽電池の特性から生じ、太陽電池を電源装置の入力源と
して使用する際には避けられない特性である。即ち、
朝,夕のような若干の照射がある時の太陽電池は、電池
出力電流Isが零の場合には、自身の出力電圧Vsは開
放電圧まで上昇する。従って、基準電圧より高いために
見掛上では太陽電池の使用は可能な状態にある。しか
し、電流を給電し始めると、通常動作時に比較して急激
に電圧が低下してしまうため、基準電圧より低くなり太
陽電池の使用は不可能な状態にある。従って、このよう
な状況で太陽電池をスイッチング電源の入力源として接
続すれば、当然、上記のようなランダム動作となってし
まう。
This random operation is caused by the characteristics of the solar cell as shown in FIG. 6, and is an unavoidable characteristic when the solar cell is used as an input source of a power supply device. That is,
When the battery output current Is is zero, the output voltage Vs of the solar cell when there is slight irradiation such as in the morning or evening rises to the open-circuit voltage. Therefore, the use of the solar cell is apparently possible because the voltage is higher than the reference voltage. However, when current supply is started, the voltage drops sharply as compared with the normal operation, so that the voltage becomes lower than the reference voltage and the use of the solar cell is impossible. Therefore, if a solar cell is connected as an input source of a switching power supply in such a situation, the above-described random operation naturally occurs.

【0022】そこで、照射量が極端に減少した場合に
は、スイッチング電源を別に設定する長い周期で動作−
停止の繰り返しを行う太陽電池の動作状態検出回路を提
供するもので、図7に動作状態検出回路の一実施例を示
すと共に、制御タイムチャートを図8に示し、その回路
動作を説明する。フリップフロップ#IのCKに入力さ
れるスイッチング電源の制御スイッチ信号である図8
(a)のPWM出力のLエッジ(スイッチOFF命令)
によりフリップフロップ#Iの出力バーQ(図8
(c))はLとなり、抵抗R1 、コンデンサC1 の時定
数からなる周期設定用のタイマー回路#Mを起動する。
そして徐々に上昇する図8(b)のコンデンサC1 の電
圧Vcと、例えば、抵抗R2 ,R3の分圧等で構成され
た零電圧付近の零電圧基準電圧Vref0を比較器#Kにて
比較し、Vc>Vref0なる期間にフリップフロップ#I
のCLをLとして、フリップフロップ#Iの出力バーQ
をHに固定する。この状態は、タイマー回路#Mが設定
周期によりリセットするまで継続しこの間フリップフロ
ップ#IはCK入力を受け付けない。
Therefore, when the irradiation amount is extremely reduced, the switching power supply is operated for a long period to be set separately.
FIG. 7 shows an embodiment of an operation state detection circuit for providing a solar cell operation state detection circuit that repeats stoppage, and FIG. 8 shows a control time chart, and the circuit operation will be described. FIG. 8 showing a control switch signal of a switching power supply input to CK of flip-flop #I
(A) L edge of PWM output (switch OFF command)
The output bar Q of the flip-flop #I (FIG. 8)
(C)) becomes L, and the timer circuit #M for setting the period, which is composed of the time constants of the resistor R1 and the capacitor C1, is started.
Then, the voltage Vc of the capacitor C1 in FIG. 8B, which gradually rises, is compared with a zero voltage reference voltage Vref0 near zero voltage constituted by, for example, the voltage division of the resistors R2 and R3 by the comparator #K. , Vc> Vref0, the flip-flop #I
Is set to L, the output bar Q of the flip-flop #I
Is fixed to H. This state continues until the timer circuit #M is reset at the set cycle, during which the flip-flop #I does not accept the CK input.

【0023】また、同時に先のPWM出力のLエッジ
(スイッチOFF命令)により生じたフリップフロップ
#Iの出力バーQ(図8(c))のL信号はフリップフ
ロップ#HのCKに入力され、太陽電池電圧Vsと温度
補償電圧V1Rの2つの入力により構成される比較器#
Gの図8(d)に示す出力が、同図左側に示すようにH
の時には太陽電池SBを使用停止として、フリップフロ
ップ#Hの出力バーQ(図8(e))をLとし、更にア
ンド回路#Lの一方の入力をLとする。このアンド回路
#Lの他方の入力にはPWM出力信号が入力されるが、
太陽電池が使用不能状態の際には、PWMに同期する制
御用スイッチSの制御信号であるアンド回路#Lの信号
Psw(図8(f))をLとし、スイッチング電源を停
止状態とする。
At the same time, the L signal of the output bar Q (FIG. 8C) of the flip-flop #I generated by the L edge (switch OFF command) of the PWM output is input to the CK of the flip-flop #H. Comparator # constituted by two inputs of solar cell voltage Vs and temperature compensation voltage V1R
The output of G shown in FIG. 8D is changed to H as shown on the left side of FIG.
At this time, the use of the solar cell SB is stopped, the output bar Q of the flip-flop #H (FIG. 8E) is set to L, and one input of the AND circuit #L is set to L. A PWM output signal is input to the other input of the AND circuit #L.
When the solar cell is in the unusable state, the signal Psw (FIG. 8 (f)) of the AND circuit #L, which is the control signal of the control switch S synchronized with PWM, is set to L, and the switching power supply is stopped.

【0024】同様に、図8の右側に示すように比較器#
G出力の図8(d)がLの時にはフリップフロップ#H
の出力バーQ(図8(e))はHとなり、アンド回路#
L出力はPWM出力に同期した制御パルスPsw(図8
(f))を制御用駆動スイッチSに与えることになる。
従って、上記のように照射量が極端に減少する時の太陽
電池の動作状態検出は、設定するタイマー#Mの動作周
期に同期して行われ、スイッチング電源の動作も常に一
定周期となるため、例えば、タイマー#Mの動作を1s
ecに設定したとすれば、周波数は1Hzとなり可聴音
とならず、ノイズ的に低周波数であり問題とならない。
この太陽電池状態検出機能を盛り込んだ電源装置の太陽
電池最適動作点追尾回路の構成例を図9に示してある。
Similarly, as shown on the right side of FIG.
When the G output shown in FIG. 8D is L, the flip-flop #H
Output bar Q (FIG. 8 (e)) becomes H, and the AND circuit #
The L output is a control pulse Psw synchronized with the PWM output (FIG. 8
(F)) is applied to the control drive switch S.
Therefore, the operation state detection of the solar cell when the irradiation amount is extremely reduced as described above is performed in synchronization with the operation cycle of the timer #M to be set, and the operation of the switching power supply always has a constant cycle. For example, the operation of the timer #M is 1 s
If it is set to ec, the frequency is 1 Hz, which is not an audible sound, and is a low frequency in terms of noise.
FIG. 9 shows a configuration example of a solar cell optimum operating point tracking circuit of a power supply device incorporating the solar cell state detection function.

【0025】[0025]

【発明の効果】本発明は、以上詳細に説明したように太
陽電池をスイッチング電源の直流入力電源として使用す
る際、温度補償や電流補償を考慮した電源装置の太陽電
池最適動作点追尾回路であるので、太陽電池設置場所の
環境変化による太陽電池の動作温度や光の強度に対して
も、常に太陽電池から最大出力電力の給電が実現できる
もので、太陽電池を用いた電源装置の安定で高効率,高
精度な動作が可能となる。
As described in detail above, the present invention is a solar cell optimum operating point tracking circuit of a power supply device in consideration of temperature compensation and current compensation when a solar cell is used as a DC input power supply of a switching power supply. Therefore, it is possible to always supply the maximum output power from the solar cell with respect to the operating temperature and light intensity of the solar cell due to environmental changes in the installation location of the solar cell. Efficient and highly accurate operation is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の太陽電池最適動作点追尾回路の一実施
例を用いた電源装置のブロック回路図である。
FIG. 1 is a block circuit diagram of a power supply device using an embodiment of a solar cell optimum operating point tracking circuit according to the present invention.

【図2】太陽電池の光量変化による出力電流,電圧,電
力特性と最適動作点追尾基準電圧との関係を示す特性図
である。
FIG. 2 is a characteristic diagram showing a relationship between output current, voltage, and power characteristics due to a change in light amount of a solar cell and an optimum operating point tracking reference voltage.

【図3】太陽電池の温度変化による出力電流,電圧,電
力特性と最適動作点追尾基準電圧との関係を示す特性図
である。
FIG. 3 is a characteristic diagram showing a relationship between output current, voltage, and power characteristics due to a temperature change of a solar cell and an optimum operating point tracking reference voltage.

【図4】本発明におけるDC−DCコンバータの出力定
電圧制御領域と太陽電池最適動作点追尾動作領域を示す
特性図である。
FIG. 4 is a characteristic diagram showing an output constant voltage control region and a solar cell optimum operating point tracking operation region of the DC-DC converter according to the present invention.

【図5】本発明を2入力コンバータに適用する場合の簡
略した回路図である。
FIG. 5 is a simplified circuit diagram when the present invention is applied to a two-input converter.

【図6】太陽電池の光量減少時の出力電流と出力電圧の
関係を示す特性図である。
FIG. 6 is a characteristic diagram showing a relationship between output current and output voltage when the amount of light of the solar cell is reduced.

【図7】本発明の太陽電池最適動作点追尾回路に付加し
て用いる太陽電池の動作状態検出回路の一実施例ブロッ
ク回路図である。
FIG. 7 is a block diagram of an embodiment of a solar cell operation state detecting circuit used in addition to the solar cell optimal operating point tracking circuit of the present invention.

【図8】本発明に係る太陽電池の動作状態検出回路の動
作を示す制御タイムチャートである。
FIG. 8 is a control time chart showing the operation of the operation state detection circuit for a solar cell according to the present invention.

【図9】本発明の太陽電池最適動作点追尾回路に動作状
態検出回路を適用した全体的ブロック回路図である。
FIG. 9 is an overall block circuit diagram in which an operation state detection circuit is applied to the solar cell optimum operation point tracking circuit of the present invention.

【符号の説明】[Explanation of symbols]

1 DC−DCコンバータ SB 太陽電池 Rm 電流検出器 Icon 定電流給電回路 D0-1 ,D0-2 〜D0-n PN接合ダイオード VD PN接合ダイオードDの順方向降下電圧 VB PN接合ダイオードn個を縦続接続したときの順
方向降下電圧 #A,#B 増幅器 #C 加算器 #D 差動増幅器 #E 電圧検出器 #F パルス幅変調比較器 #G,#K 比較器 #H,#I フリップフロップ #J ノット回路 #L アンド回路 #M タイマー V1R 温度補償電圧 V2R 電流補償電圧 VR 温度・電流補償電圧 Is 太陽電池出力電流 Vs 太陽電池出力電圧 ΔVR,ΔVo 制御信号 Eo DC−DCコンバータ出力電圧 R 負荷 OSC 鋸歯状波発振器 PWM パルス幅変調信号 S DC−DCコンバータの制御用駆動スイッチ E1 ,E2 入力電源 D1 ,D2 ,D3 ダイオード S1 ,S2 スイッチ L インダクタ N1 ,N2 一次巻線 N3 出力巻線 Vc コンデンサ電圧 Vref0 零電圧基準電圧 EB 蓄電池
Reference Signs List 1 DC-DC converter SB Solar cell Rm Current detector Icon Constant current supply circuit D0-1, D0-2 to D0-n PN junction diode VD Forward drop voltage of PN junction diode D VB PN junction diode n cascade connection #A, #B amplifier #C adder #D differential amplifier #E voltage detector #F pulse width modulation comparator #G, #K comparator #H, #I flip-flop #J Knot circuit #L AND circuit #M Timer V1R Temperature compensation voltage V2R Current compensation voltage VR Temperature / current compensation voltage Is Solar cell output current Vs Solar cell output voltage ΔVR, ΔVo Control signal Eo DC-DC converter output voltage R Load OSC sawtooth Wave oscillator PWM pulse width modulation signal S DC-DC converter control drive switch E1, E2 input power supply D1, D2, 3 diode S1, S2 switch L inductor N1, N2 primary winding N3 output winding Vc capacitor voltage Vref0 zero voltage reference voltage EB battery

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 太陽電池の電力を入力とするスイッチン
グ電源からなる電源装置において、 前記太陽電池の近傍に設けられた該太陽電池の温度特性
と略同じ温度特性を有するPN接合ダイオードに電流を
給電して該PN接合ダイオードの順方向降下電圧を検出
する温度補償電圧検出回路と、 該温度補償電圧検出回路により検出された電圧を所要増
幅率で増幅して前記太陽電池の温度補償電圧を出力する
増幅器と、 該増幅器の出力の前記温度補償電圧と前記太陽電池の出
力電圧とを入力とする差動増幅器と、 該差動増幅器の出力の制御信号と前記スイッチング電源
の出力を安定制御するための制御信号とを比較して前記
スイッチング電源の制御用スイッチの駆動信号を出力す
る比較器とを備え、 前記太陽電池設置場所の温度変化に追随して該太陽電池
の電力出力を最大となすようにしたことを特徴とする太
陽電池を用いた電源装置における太陽電池最適動作点追
尾回路。
1. A power supply device comprising a switching power supply to which power of a solar cell is input, wherein current is supplied to a PN junction diode provided near the solar cell and having substantially the same temperature characteristics as that of the solar cell. A temperature compensation voltage detection circuit for detecting a forward drop voltage of the PN junction diode; and amplifying a voltage detected by the temperature compensation voltage detection circuit at a required amplification factor to output a temperature compensation voltage of the solar cell. An amplifier, a differential amplifier having the temperature compensation voltage of the output of the amplifier and the output voltage of the solar cell as inputs, and a control signal for the output of the differential amplifier and an output for stably controlling the output of the switching power supply. A comparator that compares the control signal with a control signal and outputs a drive signal of a control switch of the switching power supply. Solar cell optimum operating point tracking circuit in the power supply device using a solar cell, characterized in that it has so as to form a maximum power output of the solar cell.
【請求項2】 太陽電池の電力を入力とするスイッチン
グ電源からなる電源装置において、 前記太陽電池の近傍に設けられた該太陽電池の温度特性
と略同じ温度特性を有するPN接合ダイオードに電流を
給電して該PN接合ダイオードの順方向降下電圧を検出
する温度補償電圧検出回路と、 該温度補償電圧検出回路により検出された電圧を所要増
幅率で増幅して前記太陽電池の温度補償電圧を出力する
第1の増幅器と、 前記太陽電池の出力電流を検出する電流検出回路と、 該電流検出回路により検出された電流を電圧に変換して
所要増幅率で増幅して前記太陽電池の電流補償電圧を出
力する第2の増幅器と、 前記第1の増幅器の出力の前記温度補償電圧と前記第2
の増幅器の出力の前記電流補償電圧とを加算し温度・電
流補償電圧を出力する加算器と、 該加算器の出力の温度・電流補償電圧と前記太陽電池の
出力電圧とを入力とする差動増幅器と、 該差動増幅器の出力の制御信号と前記スイッチング電源
の出力を安定制御するための制御信号とを比較して前記
スイッチング電源の制御用スイッチの駆動信号を出力す
る比較器とを備え、 前記太陽電池設置場所の温度・光量変化に追随して該太
陽電池の電力出力を最大となすようにしたことを特徴と
する太陽電池を用いた電源装置における太陽電池最適動
作点追尾回路。
2. A power supply device comprising a switching power supply to which power of a solar cell is input, wherein current is supplied to a PN junction diode provided near the solar cell and having substantially the same temperature characteristics as the solar cell. A temperature compensation voltage detection circuit for detecting a forward drop voltage of the PN junction diode; and amplifying a voltage detected by the temperature compensation voltage detection circuit at a required amplification factor to output a temperature compensation voltage of the solar cell. A first amplifier; a current detection circuit for detecting an output current of the solar cell; a current detected by the current detection circuit, which is converted into a voltage, amplified at a required amplification factor, and a current compensation voltage of the solar cell is calculated. A second amplifier for outputting the temperature compensation voltage of the output of the first amplifier and the second amplifier.
An adder that adds the current compensation voltage of the output of the amplifier to output a temperature / current compensation voltage, and a differential that receives the temperature / current compensation voltage of the output of the adder and the output voltage of the solar cell as inputs. An amplifier, and a comparator that compares a control signal of an output of the differential amplifier and a control signal for stably controlling the output of the switching power supply and outputs a drive signal of a control switch of the switching power supply. A solar cell optimal operating point tracking circuit in a power supply device using a solar cell, wherein the power output of the solar cell is maximized following changes in temperature and light amount at the solar cell installation location.
【請求項3】 前記温度補償電圧と前記太陽電池の出力
電圧とを所定時間毎に比較し、前記太陽電池の出力電圧
が前記温度補償電圧を下回ったとき、前記スイッチング
電源の制御用スイッチの動作を停止せしめ、前記太陽電
池の出力電圧が前記温度補償電圧を上回ったとき、前記
スイッチング電源の制御用スイッチを正常に動作せしめ
るようにした請求項1記載の太陽電池を用いた電源装置
における太陽電池最適動作点追尾回路。
3. The operation of the control switch of the switching power supply when the temperature compensation voltage is compared with the output voltage of the solar cell at predetermined time intervals, and when the output voltage of the solar cell falls below the temperature compensation voltage. 2. A solar cell in a power supply device using a solar cell according to claim 1, wherein when the output voltage of the solar cell exceeds the temperature compensation voltage, the control switch of the switching power supply is operated normally. Optimal operating point tracking circuit.
【請求項4】 前記温度・電流補償電圧と前記太陽電池
の出力電圧とを所定時間毎に比較し、前記太陽電池の出
力電圧が前記温度・電流補償電圧を下回ったとき、前記
スイッチング電源の制御用スイッチの動作を停止せし
め、前記太陽電池の出力電圧が前記温度・電流補償電圧
を上回ったとき、前記スイッチング電源の制御用スイッ
チを正常に動作せしめるようにした請求項2記載の太陽
電池を用いた電源装置における太陽電池最適動作点追尾
回路。
4. A method for controlling the switching power supply, comprising: comparing the temperature / current compensation voltage with an output voltage of the solar cell every predetermined time; and when the output voltage of the solar cell falls below the temperature / current compensation voltage. 3. The use of the solar cell according to claim 2, wherein the operation of the switch is stopped, and when the output voltage of the solar cell exceeds the temperature / current compensation voltage, the control switch of the switching power supply is operated normally. Solar cell optimal operating point tracking circuit in the power supply unit.
【請求項5】 前記温度補償電圧検出回路を構成する前
記PN接合ダイオードを複数個縦続接続して構成するよ
うにした請求項1,2,3又は4記載の太陽電池を用い
た電源装置における太陽電池最適動作点追尾回路。
5. The solar cell according to claim 1, wherein the plurality of PN junction diodes constituting the temperature compensation voltage detection circuit are cascaded. Battery optimal operating point tracking circuit.
JP16277498A 1998-05-28 1998-05-28 Solar cell optimum operating point tracking circuit in a power supply using solar cells Expired - Fee Related JP3949818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16277498A JP3949818B2 (en) 1998-05-28 1998-05-28 Solar cell optimum operating point tracking circuit in a power supply using solar cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16277498A JP3949818B2 (en) 1998-05-28 1998-05-28 Solar cell optimum operating point tracking circuit in a power supply using solar cells

Publications (2)

Publication Number Publication Date
JPH11341699A true JPH11341699A (en) 1999-12-10
JP3949818B2 JP3949818B2 (en) 2007-07-25

Family

ID=15760975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16277498A Expired - Fee Related JP3949818B2 (en) 1998-05-28 1998-05-28 Solar cell optimum operating point tracking circuit in a power supply using solar cells

Country Status (1)

Country Link
JP (1) JP3949818B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005050813A1 (en) 2003-11-19 2005-06-02 Shindengen Electric Manufacturing Co.,Ltd. Charger, and dc/dc converter having this charger
US7521898B2 (en) 2004-02-27 2009-04-21 Shindengen Electric Manufacturing Co., Ltd. Charger, DC/DC converter including that charger, and control circuit thereof
US7821225B2 (en) 2005-03-04 2010-10-26 Industrial Technology Research Institute Hybrid power supply and power management method thereof
US7880441B2 (en) 2005-05-12 2011-02-01 Shindengen Electric Manufacturing Co., Ltd. DC-DC converter for carrying out constant output power control and maintaining a secondary battery at a set drooping voltage
CN102353458A (en) * 2011-07-08 2012-02-15 凯迈(洛阳)测控有限公司 Temperature signal acquisition circuit and application thereof, and infrared detector
CN107139769A (en) * 2017-07-07 2017-09-08 杭州快电新能源科技有限公司 It is a kind of based on solar powered intelligent charging stake

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005050813A1 (en) 2003-11-19 2005-06-02 Shindengen Electric Manufacturing Co.,Ltd. Charger, and dc/dc converter having this charger
US7372236B2 (en) 2003-11-19 2008-05-13 Shindengen Electric Manufacturing Co., Ltd Charger and DC-DC converter
US7521898B2 (en) 2004-02-27 2009-04-21 Shindengen Electric Manufacturing Co., Ltd. Charger, DC/DC converter including that charger, and control circuit thereof
US7821225B2 (en) 2005-03-04 2010-10-26 Industrial Technology Research Institute Hybrid power supply and power management method thereof
US7880441B2 (en) 2005-05-12 2011-02-01 Shindengen Electric Manufacturing Co., Ltd. DC-DC converter for carrying out constant output power control and maintaining a secondary battery at a set drooping voltage
EP1881580A4 (en) * 2005-05-12 2015-08-26 Shindengen Electric Mfg Dc/dc converter
CN102353458A (en) * 2011-07-08 2012-02-15 凯迈(洛阳)测控有限公司 Temperature signal acquisition circuit and application thereof, and infrared detector
CN107139769A (en) * 2017-07-07 2017-09-08 杭州快电新能源科技有限公司 It is a kind of based on solar powered intelligent charging stake
CN107139769B (en) * 2017-07-07 2023-08-08 深圳市皇驰科技有限公司 Intelligent charging pile based on solar power supply

Also Published As

Publication number Publication date
JP3949818B2 (en) 2007-07-25

Similar Documents

Publication Publication Date Title
TWI463777B (en) Non-inverting buck boost voltage converter and method for controlling the same
KR101357006B1 (en) Converter and the driving method thereof
US6100675A (en) Switching regulator capable of increasing regulator efficiency under light load
KR100737793B1 (en) Controller and control method for dc-dc converter
KR100205229B1 (en) The source for solar cells
JP3394996B2 (en) Maximum power operating point tracking method and device
US6429621B1 (en) Solar power charging system
US7733074B2 (en) Control circuit of current mode DC-DC converter and control method of current mode DC-DC converter
TWI593224B (en) Buck-boost power converter and associated control circuit
KR100744592B1 (en) Dc-dc converter, dc-dc converter control circuit, and dc-dc converter control method
US10158289B2 (en) DC/DC converter
US20070085519A1 (en) Switching regulator with automatic multi mode conversion
KR101877552B1 (en) DC-DC Converter
US9041371B2 (en) Switching regulator
JP2000020150A (en) Solar power generation inverter device
US20160164411A1 (en) Peak-buck peak-boost current-mode control for switched step-up step-down regulators
JPH10225105A (en) Dc-dc converter
JP2007252113A (en) Switching regulator
EP3002860B1 (en) Peak-buck peak-boost current-mode control for switched step-up step-down regulators
EP1187303B1 (en) PWM Control circuit for DC-DC converter
US11018581B2 (en) Methods and devices for operating converters
JP3949818B2 (en) Solar cell optimum operating point tracking circuit in a power supply using solar cells
JP2006166667A (en) Switching regulator
JP2012110153A (en) Step-up/down circuit and step-up/down circuit control method
JP3862320B2 (en) Grid-connected inverter device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061101

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061102

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees