JPH11341553A - Spread spectrum communication system - Google Patents

Spread spectrum communication system

Info

Publication number
JPH11341553A
JPH11341553A JP10144191A JP14419198A JPH11341553A JP H11341553 A JPH11341553 A JP H11341553A JP 10144191 A JP10144191 A JP 10144191A JP 14419198 A JP14419198 A JP 14419198A JP H11341553 A JPH11341553 A JP H11341553A
Authority
JP
Japan
Prior art keywords
power
signal
subscriber
base station
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10144191A
Other languages
Japanese (ja)
Inventor
Teruji Ide
輝二 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP10144191A priority Critical patent/JPH11341553A/en
Publication of JPH11341553A publication Critical patent/JPH11341553A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the spread spectrum communication system that ensures a high communication capacity stably by reducing a loss of a communication capacity of a channel through multiplexing processing in this invention different from a conventional spread spectrum communication equipment having a problem of not stably reserving a prescribed communication capacity. SOLUTION: In the spread spectrum communication system, a high frequency circuit 9 amplifies a received signal, an inverse spread circuit 10 applies inverse spread processing to the signal, a signal power measurement circuit 13 measures signal power from the signal that is inversely spread, a noise power measurement circuit 14 measures noise power from the signal that is inversely spread, an Eb/10 calculation circuit 15 and a control circuit 16 generate a command to control transmission power according to the results of measurement and a transmission circuit 17 adjusts the transmission power of an information signal with the command and sends and outputs the information signal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、符号分割多元接続
方式を使用するスペクトラム拡散通信方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spread spectrum communication system using a code division multiple access system.

【0002】[0002]

【従来の技術】符号分割多元接続方式を使用するスペク
トラム拡散通信方式(以下、SSMA方式:スペクトラ
ム拡散多元接続方式)において、回線の利用効率を示す
多重化数(同時通信局数)を代表的な他の多元接続方式
である周波数分割接続(FDMA)方式と比較を行う。
ここで、回線同期は完全にとれている理想状態であり、
各送受信機の特性は同一とする。又、ここで一次変調の
変調方式、符号化方式等の方法と、特性との関係は簡単
のため無視する。
2. Description of the Related Art In a spread spectrum communication system using a code division multiple access system (hereinafter, SSMA system: spread spectrum multiple access system), the number of multiplexes (the number of simultaneous communication stations) indicating line utilization efficiency is a typical example. A comparison is made with another multiple access system, the frequency division access (FDMA) system.
Here, line synchronization is an ideal state that is completely established,
The characteristics of each transceiver are the same. Here, the relationship between the modulation method, the encoding method, etc. of the primary modulation and the characteristics is ignored for simplicity.

【0003】図4にSSMA通信システムの原理的構成
図を、図5にFDMA通信システムの原理的構成図を示
す。図4及び図5に示した構成図の伝送チャネルで使用
できる総合の電力と帯域は、それぞれPr[W]とW[H
z]で、雑音の電力スペクトラム密度をNo/2[W/H
z]とする。
FIG. 4 shows the basic configuration of an SSMA communication system, and FIG. 5 shows the basic configuration of an FDMA communication system. The total power and bandwidth that can be used in the transmission channels of the configuration diagrams shown in FIGS. 4 and 5 are Pr [W] and W [H, respectively.
z], the power spectrum density of the noise is set to No / 2 [W / H].
z].

【0004】伝送チャネルの質を定量化するため、次の
伝送チャネル規格(Transmission Channel Standard :
TCS)を定義すると、以下の式[数1]となる。
In order to quantify the quality of a transmission channel, the following Transmission Channel Standard (Transmission Channel Standard:
When TCS is defined, the following equation (Equation 1) is obtained.

【0005】[0005]

【数1】 (Equation 1)

【0006】また、伝送チャネルの通信路容量は次式
[数2]となる。
The channel capacity of the transmission channel is given by the following equation (Equation 2).

【0007】[0007]

【数2】 (Equation 2)

【0008】1次変調に必要な帯域幅をB、多重化数を
Mとすると、FDMA方式では1チャネルあたりの通信
容量は次式[数3]となる。
Assuming that the bandwidth required for the primary modulation is B and the number of multiplexes is M, the communication capacity per channel in the FDMA system is represented by the following equation (Equation 3).

【0009】[0009]

【数3】 (Equation 3)

【0010】ここで、CT =M・CF (W=MB)なの
でFDMA方式は多重化により通信容量の損失は発生し
ないことがわかる。SSMA方式はWとBの関係が簡単
に結びつかず処理利得GP として関係する。SSMA方
式の1チャネルあたりの1次復調段におけるCN比と通
信容量は、1チャネル当たりの平均電力をP、拡散符号
周波数をfPNとすると、次式[数4][数5]となる。
Here, since C T = M · C F (W = MB), it is understood that the FDMA system does not cause a loss in communication capacity due to multiplexing. In the SSMA system, the relationship between W and B is not easily linked, and is related as the processing gain GP . Communication capacity and the CN ratio at the primary demodulation stage per channel of SSMA system, when the average power per channel P, and spreading code frequency is f PN, the following equation [Expression 4] [Formula 5].

【0011】[0011]

【数4】 (Equation 4)

【0012】[0012]

【数5】 (Equation 5)

【0013】Ecは回線利用効率を示すもので次式[数
6]の定義とする。
Ec indicates the line utilization efficiency and is defined by the following equation [Equation 6].

【0014】[0014]

【数6】 (Equation 6)

【0015】ただし、式[数6]のEcはFDMA方式
で多重化できるチャネルの最大値GP に対し、SSMA
方式で多重化したチャネル数との割合を示している。式
[数2]と式[数4]の比較により、SSMA方式では
多重化により通信容量に損失が発生している。その原因
は、1次復調段におけるCN比の減少である。回線のこ
のような損失がないと仮定し、SSMA方式のCN比、
(C/N)S 、とFDMA方式のCN比、(C/N)F
が等しいとした場合の回線利用効率Ec と伝送チャネル
規格(TCS)との関係を求める。
Here, Ec in the equation [Equation 6] is SSMA to the maximum value GP of the channels that can be multiplexed in the FDMA system.
It shows the ratio with the number of channels multiplexed by the method. According to the comparison between Equations (2) and (4), multiplexing causes a loss in communication capacity in the SSMA system. The cause is a decrease in the CN ratio in the primary demodulation stage. Assuming that there is no such loss in the line, CN ratio of SSMA method,
(C / N) S and CN ratio of FDMA system, (C / N) F
Are determined, the relationship between the line utilization efficiency Ec and the transmission channel standard (TCS) is determined.

【0016】1次復調段入力のCN比を6dB(=TC
S)とすると、GP ≧20dBの時Ec は約10%とな
り、SSMA方式における多重化数、すなわち同時通信
局数は、FDMA方式の約1/10である。
The CN ratio of the primary demodulation stage input is set to 6 dB (= TC
Assuming that S), when GP ≧ 20 dB, Ec is about 10%, and the multiplexing number in the SSMA system, that is, the number of simultaneous communication stations is about 1/10 of the FDMA system.

【0017】[0017]

【発明が解決しようとする課題】上記に示した結果か
ら、SSMA方式には多元接続としては、他のFDM
A,TDMA方式に比べて原理的に大きな欠点がある。
From the results shown above, the SSMA system has other FDM as a multiple access.
A, there is a major disadvantage in principle compared to the TDMA system.

【0018】本発明は上記実情に鑑みて為されたもの
で、従来技術の問題点のSSMA方式の多重化数(同時
通信局数)が他のFDMA,TDMA方式等の多元接続
方式に比べて原理的に少ないという欠点を解決し、多元
接続方式として多重化による回線の通信容量の損失がほ
とんど実用的に皆無となるような通信方式を提供するこ
とを目的とする。
The present invention has been made in view of the above circumstances, and the number of multiplexing (number of simultaneous communication stations) of the SSMA system, which is a problem of the prior art, is smaller than that of other multiple access systems such as the FDMA and TDMA systems. It is an object of the present invention to provide a communication system in which the disadvantage of being small in principle is solved, and as a multiple access system, there is almost no practical loss of communication capacity of a line due to multiplexing.

【0019】[0019]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係る通信方式は、多元接続の加入者及び基
地局で各々に独立に、送信された特定の局の電力とその
他の加入者及び基地局による雑音状の電力及び雑音電力
を測定し、それらの電力比により、送信電力と雑音電力
との比、すなわち実効的な信号対雑音比を測定すること
により、その送信された局に適切な送信電力の値をデー
タとして送り、送信電力の制御を行うものである。
SUMMARY OF THE INVENTION To achieve the above object, a communication system according to the present invention comprises a plurality of subscribers and a base station which transmit power of a specific station and other subscriptions independently of each other. By measuring the noise-like power and the noise power of the transmitter and the base station, and measuring the ratio of the transmission power to the noise power, that is, the effective signal-to-noise ratio by the power ratio, the transmitted station is measured. In this case, an appropriate transmission power value is transmitted as data to control the transmission power.

【0020】すなわち、SSMA方式の多重化数が少な
いという結果は全ての送信する局の電力が等しいという
仮定に基づいている。また、リバースリンク(加入者か
ら基地局への送信)とフォワードリンク(基地局から加
入者への送信)によっても物理的条件、ハードウェアの
装置構成等が異なるため、送信制御の方式、構成を条件
によって変える必要がある。
That is, the result that the number of multiplexes in the SSMA system is small is based on the assumption that the powers of all transmitting stations are equal. Also, physical conditions and hardware device configurations are different depending on the reverse link (transmission from the subscriber to the base station) and the forward link (transmission from the base station to the subscriber). It needs to be changed depending on the conditions.

【0021】このような送信電力を制御するために信号
電力ES =N・Ec (ES :信号電力、N:拡散符号
長、Ec :1チップ当たりの信号電力)とIo =I/W
(I:無相関な他の加入者による雑音電力、W:拡散帯
域幅)を測定し、例えば、リバースリンクのためには、
基地局から加入者へ送信を制御するコマンドを送ること
により、加入者から基地局への送信の制御を行うことが
可能となる。
The signal power in order to control the transmission power E S = N · Ec (E S: signal power, N: the spreading code length, Ec: 1 signal power per chip) and Io = I / W
(I: noise power from other uncorrelated subscribers, W: spreading bandwidth), for example, for the reverse link:
By transmitting a command for controlling transmission from the base station to the subscriber, it is possible to control transmission from the subscriber to the base station.

【0022】従来行われてきた方法は信号電力のみを測
定することにより、送信制御を行っていたが、この方法
では、加入者の使用状況がわからず、また所定の通信容
量を達成することができないという欠点をもつ。
In the conventional method, transmission control is performed by measuring only the signal power. However, in this method, the usage status of the subscriber is not known and a predetermined communication capacity can be achieved. It has the disadvantage of not being able to.

【0023】[0023]

【発明の実施の形態】本発明の実施の形態について図面
を参照しながら説明する。図1は、本発明の実施の形態
に係るSSMA方式の送信制御を行う構成図である。図
1においては基地局における送信制御を示している。空
中線から入力した受信入力は高周波回線9により、所定
の増幅あるいは周波数変換を行い逆拡散回路10へ出力
する。逆拡散回路10では拡散符号のタイミング抽出等
の制御及び逆拡散を行い、当該加入者用の情報変調され
た信号が出力される。この出力は、電力測定・計算部1
2に入力される。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram for performing SSMA transmission control according to an embodiment of the present invention. FIG. 1 shows transmission control in the base station. The reception input from the antenna is subjected to predetermined amplification or frequency conversion by the high frequency line 9 and output to the despreading circuit 10. The despreading circuit 10 performs control such as timing extraction of a spreading code and despreading, and outputs an information-modulated signal for the subscriber. This output is output to the power measurement / calculation unit 1
2 is input.

【0024】入力された逆拡散出力は信号電力測定回路
13及び雑音電力測定回路14に入力され、各々当該加
入者用の信号電力及び雑音が測定(演算)され、Eb /
Io計算回路15に入力される。Eb /Io 計算回路1
5では信号電力測定回路13及び雑音電力測定回路14
からの値の比をEb /Io の値に正規化し、計算する。
この出力は制御回路16に入力され、加入者側の送信出
力を制御するコマンドを生成し、定められたフォーマッ
トとして送信装置17に出力される。
The input despread output is input to a signal power measurement circuit 13 and a noise power measurement circuit 14, where the signal power and noise for the subscriber are measured (calculated), and Eb /
It is input to the Io calculation circuit 15. Eb / Io calculation circuit 1
5, the signal power measurement circuit 13 and the noise power measurement circuit 14
Are normalized to the value of Eb / Io and calculated.
This output is input to the control circuit 16, generates a command for controlling the transmission output on the subscriber side, and is output to the transmission device 17 in a predetermined format.

【0025】図4は、本発明の実施の形態に係るSSM
A方式の送信制御を行う構成図である。図4において、
入力された高周波回路9からの受信高周波数(中間周
波)信号は第1の乗算器18及び第2の乗算器19に入
力され、搬送波発振器25からの搬送波の同相成分と9
0°移相器24により90°移相された成分とがそれぞ
れ乗算され、ベースバンド信号あるいは中間周波信号と
なり第1のフィルタ(LPF(BPF))20及び第2
のフィルタ(LPF(BPF))21にそれぞれ出力さ
れる。
FIG. 4 shows an SSM according to an embodiment of the present invention.
FIG. 2 is a configuration diagram for performing transmission control of the A system. In FIG.
The input high-frequency (intermediate frequency) signal from the high-frequency circuit 9 is input to the first multiplier 18 and the second multiplier 19, and the in-phase component of the carrier wave from the carrier oscillator 25 and 9
The components shifted by 90 ° by the 0 ° phase shifter 24 are respectively multiplied to form a baseband signal or an intermediate frequency signal. The first filter (LPF (BPF)) 20 and the second filter
(LPF (BPF)) 21 is output.

【0026】LPF(BPF)20及び21ではそれぞ
れの信号が低域(帯域)ろ波され、所要の帯域の信号と
なる。これらの信号はパラレル(L個)復調器22でL
個の独立したマルチパス通信路からの信号が分離され、
復調される。この信号は最大比合成器23に入力され、
各パスに相当する信号の位相を同相に制御し、信頼度に
応じた重み付けを行って合成が行われる。
In the LPFs (BPFs) 20 and 21, the respective signals are low-pass (band) -filtered to become signals in a required band. These signals are converted into L signals by a parallel (L) demodulator 22.
Signals from independent multipath channels are separated,
Demodulated. This signal is input to the maximum ratio combiner 23,
The phases of the signals corresponding to the respective paths are controlled to be in-phase, and weighting is performed in accordance with the reliability to perform the synthesis.

【0027】この出力は情報信号の復調用の信号と電力
測定・計算部12への入力と分けられ、出力される。電
力測定・計算部12及び制御回路16及び送信装置17
の動作は図1で説明したのと同様である。
This output is separated from the signal for demodulating the information signal and the input to the power measurement / calculation unit 12 and output. Power measurement / calculation unit 12, control circuit 16, and transmission device 17
Is the same as that described with reference to FIG.

【0028】図3は、パラレル(L個)の復調器の構成
図である。LPF(BPF)20及びLPF(BPF)
21からの信号は進み−遅れゲートトラッキングループ
26からのタイミング同期の確立した拡散信号がそれぞ
れ同相成分、90°移相成分として乗算器27及び乗算
器28で乗算され、アダマール系列(M個)相関器29
でM個の直交したアダマール系列の相関出力が得られ、
出力される。
FIG. 3 is a configuration diagram of a parallel (L) demodulator. LPF (BPF) 20 and LPF (BPF)
21 is multiplied by a multiplier 27 and a multiplier 28 as an in-phase component and a 90 ° phase-shift component, respectively, with a spread signal having a timing synchronization established from a lead-lag gate tracking loop 26, and a Hadamard sequence (M) correlation is obtained. Container 29
Gives a correlation output of M orthogonal Hadamard sequences,
Is output.

【0029】[0029]

【発明の効果】本発明のSSMA方式の送信電力制御方
式によれば、従来方式の他のFDMA方式あるいはTD
MA方式に比べて、多重化による損失が生ずるという欠
点を無くし、例えばFDMA方式に比べて同時通信局数
は適切な送信電力制御方法を施すことにより、約0.8
〜1.0近くに達することが実施例により確かめられて
いる。
According to the transmission power control system of the SSMA system according to the present invention, another FDMA system or TD
Eliminating the drawback of multiplexing loss compared to the MA system, the number of simultaneous communication stations can be reduced to about 0.8 by applying an appropriate transmission power control method, for example, compared to the FDMA system.
It has been confirmed by the examples that the value reaches about 1.0.

【0030】また、ライスフェージングを生じるような
マルチパス通信路においても、信号電力及び雑音電力と
その比を測定することが可能となり、これによりSSM
A方式の多重化を容易に、しかも実用的に実現すること
ができるようになったものである。
Further, even in a multipath communication path in which rice fading occurs, it is possible to measure the signal power and the noise power and their ratios.
The multiplexing of the A method can be realized easily and practically.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係るSSMA方式の送信
制御を示す構成図である。
FIG. 1 is a configuration diagram showing SSMA transmission control according to an embodiment of the present invention.

【図2】本発明の実施の形態に係るSSMA方式の送信
制御を示す構成図である。
FIG. 2 is a configuration diagram showing transmission control of the SSMA scheme according to the embodiment of the present invention.

【図3】本発明の実施の形態に係るパラレル復調器の構
成図である。
FIG. 3 is a configuration diagram of a parallel demodulator according to the embodiment of the present invention.

【図4】SSMA通信システムを示す原理的構成図であ
る。
FIG. 4 is a principle configuration diagram showing an SSMA communication system.

【図5】FDMA通信システムを示す原理的構成図であ
る。
FIG. 5 is a principle configuration diagram showing an FDMA communication system.

【符号の説明】[Explanation of symbols]

1…一次変調器、 2…拡散変調器、 3…加算器、
4…拡散復調器、 5…一次復調器、 6…FDMA多
重化器、 7…加算器、 8…FDMA多重分離器、
9…高周波回路、 10…逆拡散回路、 11…情報変
調復調回路、12…電力測定・計算部、 13…信号電
力測定回路、 14…雑音電力測定回路、 15…Eb
/Io 計算回路、 16…制御回路、 17…送信装
置、 18…第1の乗算器、 19…第2の乗算器、
20…第1のフィルタ(LPF(BPF))、 21…
第2のフィルタ(LPF(BPF))、 22…パラレ
ル(L個)復調器、 23…最大比合成器、 24…9
0°移相器、 25…搬送波発振器、 26…進み−遅
れゲートトラッキングループ、 27,28…乗算器、
29…アダマール(M個)系列相関器
1: Primary modulator, 2: Spread modulator, 3: Adder,
4 ... spread demodulator, 5 ... primary demodulator, 6 ... FDMA multiplexer, 7 ... adder, 8 ... FDMA demultiplexer,
9: High frequency circuit, 10: Despreading circuit, 11: Information modulation / demodulation circuit, 12: Power measurement / calculation unit, 13: Signal power measurement circuit, 14: Noise power measurement circuit, 15: Eb
/ Io calculation circuit, 16: control circuit, 17: transmission device, 18: first multiplier, 19: second multiplier,
20 ... first filter (LPF (BPF)), 21 ...
Second filter (LPF (BPF)), 22: parallel (L) demodulator, 23: maximum ratio combiner, 24: 9
0 ° phase shifter, 25 carrier oscillator, 26 lead-lag gate tracking loop, 27, 28 multiplier,
29 ... Hadamard (M) sequence correlator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 情報伝送に使用する帯域幅よりも広い帯
域を使用する伝送方式における前記帯域幅を拡散するた
めの情報変調とは異なる変調により多元接続を行う伝送
方式を用い、移動又は固定通信を行う加入者が、空中線
と受信機及び送信機を有し、前記各加入者の統制、制
御、交換を行う基地局が空中線と受信機と送信機を有
し、前記基地局を経由して各加入者相互の情報信号の伝
送を行う通信方式において、通信を行う加入者の有する
受信機において、前記加入者が受信した多元接続用の当
該加入者に対する対応する基地局から送信された信号電
力を測定する第1の信号電力を測定する手段と、前記電
力以外の符号分割に使用した当該加入者以外の加入者及
び基地局に対する信号電力及びその他の雑音電力を測定
する第1の雑音電力を測定する手段と、前記第1の信号
電力を測定する手段と、前記第1の雑音電力を測定する
手段の結果により、当該加入者の送信電力を減少あるい
は増加するための第1の電力調節手段と、 通信を行う基地局の有する受信機において、前記基地局
が受信した多元接続用の当該基地局に対する対応する加
入者から送信された信号電力を測定する第2の信号電力
を測定する手段と、前記電力以外の符号分割に使用した
当該基地局及び加入者以外の加入者及び基地局に対する
信号電力及びその他の雑音電力を測定する第2の雑音電
力を測定する手段と、 前記第2の信号電力を測定する手段と、前記第2の雑音
電力を測定する手段の結果により、当該基地局の送信電
力を減少あるいは増加するための第2の電力の調節手段
を備えたことを特徴とするスペクトラム拡散通信方式。
1. A mobile or fixed communication system using a transmission system in which multiple access is performed by modulation different from information modulation for spreading the bandwidth in a transmission system using a band wider than the bandwidth used for information transmission. A subscriber having an antenna, a receiver and a transmitter, and controlling, controlling, and exchanging each subscriber the base station having an antenna, a receiver and a transmitter, via the base station In a communication system in which information signals are transmitted between subscribers, in a receiver of a communicating subscriber, a signal power transmitted from a corresponding base station for the multiple subscriber received by the subscriber for the multiple access. And a first noise power for measuring signal power and other noise power for a subscriber and a base station other than the subscriber used for code division other than the power. Measurement Means for measuring the first signal power, and first power adjusting means for decreasing or increasing the transmission power of the subscriber according to the result of the means for measuring the first noise power. Means for measuring a second signal power for measuring a signal power transmitted from a corresponding subscriber to the base station for multiple access received by the base station at a receiver of the base station which performs communication; Means for measuring signal power and other noise power for the base station and subscribers other than the base station and subscriber used for code division other than the power, and a second noise power measuring means; A second power adjusting means for reducing or increasing the transmission power of the base station according to the result of the means for measuring the power and the means for measuring the second noise power. Tram spread communication system.
JP10144191A 1998-05-26 1998-05-26 Spread spectrum communication system Pending JPH11341553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10144191A JPH11341553A (en) 1998-05-26 1998-05-26 Spread spectrum communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10144191A JPH11341553A (en) 1998-05-26 1998-05-26 Spread spectrum communication system

Publications (1)

Publication Number Publication Date
JPH11341553A true JPH11341553A (en) 1999-12-10

Family

ID=15356332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10144191A Pending JPH11341553A (en) 1998-05-26 1998-05-26 Spread spectrum communication system

Country Status (1)

Country Link
JP (1) JPH11341553A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7218667B2 (en) 2001-03-29 2007-05-15 Matsushita Electric Industrial Co., Ltd. Radio reception apparatus and radio reception method
JP2009527197A (en) * 2006-02-17 2009-07-23 アルカテル−ルーセント ユーエスエー インコーポレーテッド Reverse link power control method
WO2015163013A1 (en) * 2014-04-25 2015-10-29 ソニー株式会社 Wireless communication device, wireless communication method, and wireless communication system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7218667B2 (en) 2001-03-29 2007-05-15 Matsushita Electric Industrial Co., Ltd. Radio reception apparatus and radio reception method
JP2009527197A (en) * 2006-02-17 2009-07-23 アルカテル−ルーセント ユーエスエー インコーポレーテッド Reverse link power control method
WO2015163013A1 (en) * 2014-04-25 2015-10-29 ソニー株式会社 Wireless communication device, wireless communication method, and wireless communication system
US10165510B2 (en) 2014-04-25 2018-12-25 Sony Corporation Wireless communication device, wireless communication method, and wireless communication system

Similar Documents

Publication Publication Date Title
US6400700B1 (en) CDMA cellular radio transmission system
KR100421139B1 (en) Tstd apparatus and method for a tdd cdma mobile communication system
KR100574219B1 (en) A subscriber unit and method for use in a wireless communication system
EP1021882B1 (en) Device and method for cancelling code interference in a cdma communication system
US7123645B2 (en) Spread-spectrum signal receiver
US6507603B1 (en) CDMA receiver
US6920173B2 (en) Spread-spectrum signal receiver apparatus and interference cancellation apparatus
US20090245210A1 (en) Cdma communication system and method
US6104746A (en) Spread spectrum communication system
EP0794627B1 (en) Spread spectrum communication apparatus
JP2982856B2 (en) Transmission power control method and communication device using the transmission power control method
KR100288753B1 (en) Multicarrier cdma receiver apparatus
EP1247372A1 (en) Selective multi-carrier direct sequence spread spectrum communication systems and methods
JP2000151465A (en) Radio communication equipment and radio communication method
EP1053648A1 (en) Channel spreading device and method in cdma communication system
JPH08168075A (en) Mobile radio equipment
JP2000091952A (en) Spread spectrum communication method and spread spectrum communication system
JPH11341553A (en) Spread spectrum communication system
JP3300324B2 (en) Signal to noise interference power ratio estimator
US6198731B1 (en) Radiocommunication apparatus, and radiocommunication system
EP1146668A1 (en) Communication terminal, base station system, and method of controlling transmission power
JP3150312B2 (en) CDMA cellular radio base station apparatus, mobile station apparatus, transmission method and reception method
JP3512779B2 (en) Communication terminal device and wireless communication method
JP2724949B2 (en) Spread spectrum communication system
JPH08251077A (en) Spread spectrum communication system