JPH11340173A - Slurry for metal film cmp and cmp method using the same - Google Patents

Slurry for metal film cmp and cmp method using the same

Info

Publication number
JPH11340173A
JPH11340173A JP628499A JP628499A JPH11340173A JP H11340173 A JPH11340173 A JP H11340173A JP 628499 A JP628499 A JP 628499A JP 628499 A JP628499 A JP 628499A JP H11340173 A JPH11340173 A JP H11340173A
Authority
JP
Japan
Prior art keywords
slurry
metal film
cmp
weight
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP628499A
Other languages
Japanese (ja)
Inventor
Danju Kin
男壽 金
Shoshoku Sai
晶植 崔
Sung Pil Choi
盛弼 崔
Je-Eung Park
濟應 朴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JPH11340173A publication Critical patent/JPH11340173A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide slurry for metal film CMP to be used for a semiconductor device production process and a CMP method using the same. SOLUTION: The slurry for metal film CMP contains an oxidizing agent H5 IO6 , abrasive grains and deionized water. Further in details, the slurry contains the H5 IO6 in 2 to 10 wt.%, abrasive grains in 2 to 10 wt.%, acid in 0.01 to 1.0 wt.% and deionized water for the remaining quantity. The concentration of the oxidizing agent H5 IO6 is from 0.01 to 1 mole. The slurry can use not only the specified abrasive grains but also generally well known alumina, silica or cerium oxide. As acid, nitrogenous acid in 0.1 to 0.5 wt.%, sulfuric acid in 0.01 to 0.5 wt.% or the mixture of sulfuric acid and nitrogenous acid in 0.02 to 1.0 wt.% can be used. Thus, there are effects to prevent surface flaw and metal contamination, while having abrasive speed and flatness usable for a metal film sanding process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体素子製造工程
に関し、より詳しくは半導体素子製造工程に使われる金
属膜CMP(Chemical Mechanical Polishing)用スラリ
ー及びこれを用いたCMP方法に関する。
The present invention relates to a semiconductor device manufacturing process, and more particularly, to a slurry for a metal film CMP (Chemical Mechanical Polishing) used in a semiconductor device manufacturing process and a CMP method using the same.

【0002】[0002]

【従来の技術】現在、半導体素子は高集積化、高密度化
によってさらに微細なパターン形成技術を必要とし、配
線の多層化構造を要求する領域も広まっている。これは
半導体素子の表面構造が複雑になり層間膜の段差の程度
が甚だしくなりコンタクトホールの縦横比(Aspect Rati
o)が増えることを意味する。この縦横比の増加はコンタ
クトホール内を望みの膜質で正確に埋没させることを難
しくする。また層間膜の段差は、半導体素子製造工程
中、写真工程で工程不良を発生させる原因になってい
る。
2. Description of the Related Art At present, semiconductor devices require finer pattern forming technology due to higher integration and higher density, and the area requiring a multilayered wiring structure is also increasing. This is because the surface structure of the semiconductor device becomes complicated, the level of the interlayer film becomes extremely large, and the aspect ratio of the contact hole (Aspect Rati
o) means to increase. This increase in aspect ratio makes it difficult to accurately bury the inside of the contact hole with the desired film quality. In addition, the step of the interlayer film causes a process defect in a photographic process during a semiconductor device manufacturing process.

【0003】写真工程はウェーハ上にフォトレジストを
塗布した後、フォトレジスト上に特定回路が形成された
マスクを整列させ、光にマスクを通過させてフォトレジ
ストを露光及び現像することによってウェーハ上にフォ
トレジストパターンを形成させる工程である。写真工程
は、従来のように線幅が広く、低層構造を有する素子の
製造時には問題がなかったが、現在のように微細パター
ンと多層構造により段差が増えることによって、この段
差の上層と下層の露光フォーカスを合わせ難く、正確な
線幅と垂直なプロファイルを有するフォトレジストパタ
ーンを形成するのが難しくなっている。
In the photographic process, after a photoresist is coated on a wafer, a mask having a specific circuit formed thereon is aligned on the photoresist, and the photoresist is exposed to light and developed by passing the mask through light. This is a step of forming a photoresist pattern. In the photographic process, there was no problem at the time of manufacturing a device having a wide line width and a low-layer structure as in the past, but as the current step increases due to the fine pattern and the multilayer structure, the upper layer and the lower layer of the step are increased. It is difficult to adjust the exposure focus, and it is difficult to form a photoresist pattern having an accurate line width and a vertical profile.

【0004】したがって、コンタクトホールの縦横比増
加と段差の発生による工程問題点を解決するためにウェ
ーハの平坦化技術の重要性が台頭された。すなわち、望
みの膜質をコンタクトホール内に埋没させコンタクトホ
ール上部に所定厚さで形成した後、上部に形成された膜
質を平坦化してコンタクトホール内にのみ膜質が存在す
るようにし、段差を人為的に除去するウェーハ全表面に
わたった平坦化、すなわち広域平坦化(Global Planariz
ation)が可能なCMP技術が開発された。
[0004] Therefore, the importance of wafer flattening technology has been increasing in order to solve the process problems caused by the increase in the aspect ratio of contact holes and the occurrence of steps. That is, after a desired film quality is buried in the contact hole and formed at a predetermined thickness on the contact hole, the film quality formed on the upper portion is flattened so that the film quality exists only in the contact hole, and the step is artificially formed. Flattening across the entire surface of the wafer to be removed, that is, global planarization (Global Planariz
)) has been developed.

【0005】CMPとは化学的反応と物理的な力を通じ
てウェーハ表面を平坦化する技術である。CMP工程の
原理は、素子パターンが形成されているウェーハの全表
面を研磨パッド表面に接触するようにした状態でスラリ
ーを供給し、スラリーとウェーハの全表面を化学的に反
応させながら、同時にウェーハと研磨パッドを相互反対
方向に回転運動させて物理的にウェーハ全表面の凹凸部
分を研磨して平坦化することである。
[0005] CMP is a technique for planarizing a wafer surface through chemical reaction and physical force. The principle of the CMP process is that the slurry is supplied while the entire surface of the wafer on which the element pattern is formed is in contact with the polishing pad surface, and the slurry and the entire surface of the wafer are chemically reacted while the wafer is simultaneously And the polishing pad are rotated in opposite directions to physically polish and flatten the uneven portions on the entire surface of the wafer.

【0006】CMP工程は研磨速度(Removal Rate)と平
坦度(Uniformity)が重要であり、これらはCMP装備の
工程条件、スラリー種類及び研磨パッド種類などにより
決定される。特に、CMP工程を遂行する時スラリーの
構成成分、pH及びイオン濃度などは薄膜との化学的反
応に相当な影響を与える。スラリーは大別して2種類あ
り、酸化膜スラリーと金属膜スラリーに分けられる。酸
化膜スラリーはアルカリ性であり、金属膜スラリーは酸
性を表す。
In the CMP process, a polishing rate (Removal Rate) and a flatness (Uniformity) are important, and these are determined by a process condition of the CMP equipment, a kind of slurry and a kind of polishing pad. In particular, when performing the CMP process, components of the slurry, pH, ion concentration, etc., have a considerable effect on the chemical reaction with the thin film. Slurries are roughly classified into two types, and are classified into oxide film slurries and metal film slurries. The oxide film slurry is alkaline, and the metal film slurry is acidic.

【0007】酸化膜CMP工程のメカニズムは、一例で
シリコン酸化膜(SiO2)の場合、シリコン酸化膜の表面が
アルカリ性である酸化膜スラリーとの反応により水分が
浸透し易い水溶性材質に変質される。この変質されたシ
リコン酸化膜に水分が浸透してシリコン酸化膜のシリコ
ンと酸素の連結輪を切る。このように反応が行われたシ
リコン酸化膜層はスラリーに内在された研磨粒子との摩
擦により除去される。
The mechanism of the oxide film CMP process is, for example, in the case of a silicon oxide film (SiO 2 ), the surface of the silicon oxide film is transformed into a water-soluble material through which moisture easily penetrates by reaction with an alkaline oxide film slurry. You. Moisture penetrates into the altered silicon oxide film and cuts the connecting ring between silicon and oxygen in the silicon oxide film. The silicon oxide film layer reacted as described above is removed by friction with abrasive particles contained in the slurry.

【0008】金属膜CMPのメカニズムはスラリー内の
酸化剤によって金属膜表面上に化学反応がおきて金属酸
化膜を形成させ、このような金属酸化膜はパターン凹凸
部の最も上部からスラリーに内在された研磨粒子との摩
擦により機械的に除去される。
The mechanism of the metal film CMP is such that a chemical reaction occurs on the surface of the metal film by an oxidizing agent in the slurry to form a metal oxide film. Such a metal oxide film is included in the slurry from the uppermost portion of the pattern uneven portion. Is mechanically removed by friction with the abrasive particles.

【0009】金属膜スラリーの構成要素は酸化剤、研磨
粒子、脱イオン水及び酸で構成される。現在、金属膜ス
ラリーに使われる酸化剤としてはFe(NO3)3、KIO3及びH2
O2などがある。
The components of the metal film slurry are composed of an oxidizing agent, abrasive particles, deionized water and an acid. At present, oxidizing agents used in metal film slurries include Fe (NO 3 ) 3 , KIO 3 and H 2
O 2 and the like.

【0010】[0010]

【発明が解決しようとする課題】しかし、KIO3は水に対
する溶解度に制限があり、アルカリ性カリウムによる汚
染を発生させ、Fe(NO3)3は研磨速度が速いが、過度な酸
化作用が発生して鉄の汚染を発生させ、H2O2は研磨速度
が速いが、過度なエッチングによるコンタクトホール上
の金属膜にプラグ凹み(Recess)を発生させるという問題
点があった。
However, KIO 3 has a limited solubility in water, causing contamination with alkaline potassium, and Fe (NO 3 ) 3 has a high polishing rate but has an excessive oxidizing effect. However, although H 2 O 2 has a high polishing rate, it has a problem that a recess is formed in a metal film on a contact hole due to excessive etching.

【0011】本発明の目的は、上述の問題点を克服し、
効果的に半導体素子製造用金属膜を平坦化させる新しい
酸化剤を添加した金属膜CMP用スラリー及びこれを用
いたCMP方法を提供するところにある。
An object of the present invention is to overcome the above-mentioned problems,
An object of the present invention is to provide a metal film CMP slurry to which a new oxidizing agent is added to effectively planarize a metal film for manufacturing a semiconductor device, and a CMP method using the same.

【0012】[0012]

【課題を解決するための手段】本発明の請求1記載の金
属膜CMP用スラリーによると、酸化剤H5IO6、研磨粒
子、酸及び脱イオン水を含む。本発明の請求2記載の金
属膜CMP用スラリーによると、スラリーは、2〜10
重量%のH5IO6、2〜10重量%の研磨粒子、0.01
〜1.0重量%の酸及び残量として脱イオン水を含んで
なる。本発明の請求3記載の金属膜CMP用スラリーに
よると、スラリーに使われるH5IO6の濃度は、0.01
〜1moleである。
According to the first aspect of the present invention, the slurry for metal film CMP includes an oxidizing agent H 5 IO 6 , abrasive particles, an acid and deionized water. According to the slurry for metal film CMP according to claim 2 of the present invention, the slurry is 2 to 10%.
Wt% of H 5 IO 6, 2 to 10 wt% of the abrasive particles, 0.01
~ 1.0% by weight of acid and the balance deionized water. According to the slurry for metal film CMP according to claim 3 of the present invention, the concentration of H 5 IO 6 used in the slurry is 0.01%.
11 mole.

【0013】本発明の請求4記載の金属膜CMP用スラ
リーによると、H5IO6の濃度は、0.1〜0.5mol
eである。本発明の請求5記載の金属膜CMP用スラリ
ーによると、研磨粒子は、その粒径が100〜300n
mであるアルミナである。本発明の請求6記載の金属膜
CMP用スラリーによると、研磨粒子は、その粒径が4
0〜250nmであるシリカである。本発明の請求7記
載の金属膜CMP用スラリーによると、研磨粒子は、そ
の粒径が100〜300nmであるセリウムオキサイド
である。
According to the slurry for metal film CMP according to claim 4 of the present invention, the concentration of H 5 IO 6 is 0.1 to 0.5 mol.
e. According to the slurry for metal film CMP according to claim 5 of the present invention, the abrasive particles have a particle diameter of 100 to 300 n.
m is alumina. According to the slurry for metal film CMP according to claim 6 of the present invention, the abrasive particles have a particle size of 4
It is silica having a thickness of 0 to 250 nm. According to the metal film CMP slurry of the present invention, the abrasive particles are cerium oxide having a particle size of 100 to 300 nm.

【0014】本発明の請求8記載の金属膜CMP用スラ
リーによると、酸は、0.01〜0.5重量%の窒酸を
含む。本発明の請求9記載の金属膜CMP用スラリーに
よると、酸は、0.01〜0.5重量%の硫酸を含む。
本発明の請求10記載の金属膜CMP用スラリーによる
と、酸は、0.02〜1.0重量%の硫酸と窒酸の混合
物である。本発明の請求11記載の金属膜CMP用スラ
リーによると、スラリーのpHは、1〜4である。
According to the metal film CMP slurry of the present invention, the acid contains 0.01 to 0.5% by weight of nitric acid. According to the slurry for metal film CMP of the ninth aspect of the present invention, the acid contains 0.01 to 0.5% by weight of sulfuric acid.
According to the slurry for metal film CMP according to claim 10 of the present invention, the acid is a mixture of sulfuric acid and nitric acid of 0.02 to 1.0% by weight. According to the slurry for metal film CMP according to claim 11 of the present invention, the pH of the slurry is 1 to 4.

【0015】本発明の請求12記載の金属膜CMP用ス
ラリーによると、スラリーに0〜3重量%の水酸化アン
モニウムがさらに添加される。本発明の請求13記載の
金属膜CMP用スラリーによると、金属膜は、アルミニ
ウム、タングステン、チタン、銅またはこれらの合金か
らなる。本発明の請求14記載の金属膜CMP用スラリ
ーによると、スラリーのH5IO6は4重量%、研磨粒子は
4重量%である。本発明の請求15記載の金属膜CMP
方法によると、CMPを遂行する金属膜に酸化剤H5I
O6、研磨粒子、酸及び脱イオン水を含むスラリーを供給
する段階と、スラリーと共に金属膜の表面を化学的及び
機械的に研磨する段階とを含む。
According to the metal film CMP slurry of the present invention, 0 to 3% by weight of ammonium hydroxide is further added to the slurry. According to the metal film CMP slurry of the present invention, the metal film is made of aluminum, tungsten, titanium, copper or an alloy thereof. According to the metal film CMP slurry according 14, wherein the present invention, H 5 IO 6 4 wt% of the slurry, the abrasive particles is 4% by weight. The metal film CMP according to claim 15 of the present invention.
According to the method, the oxidizing agent H 5 I is added to the metal film performing the CMP.
Supplying a slurry containing O 6 , abrasive particles, acid and deionized water; and chemically and mechanically polishing the surface of the metal film together with the slurry.

【0016】本発明の請求16記載の金属膜CMP方法
によると、スラリーは、2〜10重量%のH5IO6、2〜
10重量%の研磨粒子、0.01〜1.0重量%の酸、
及び残量として脱イオン水を含んでなる。本発明の請求
17記載の金属膜CMP方法によると、スラリーに使わ
れるH5IO 6の濃度は、0.01〜1moleである。
The metal film CMP method according to claim 16 of the present invention.
According to the slurry, 2 to 10% by weight of HFiveIO6, 2
10% by weight of abrasive particles, 0.01-1.0% by weight of acid,
And deionized water as the remaining amount. Claim of the invention
According to the metal film CMP method described in 17, it is used for slurry
HFiveIO 6Is 0.01 to 1 mole.

【0017】本発明の請求18記載の金属膜CMP方法
によると、H5IO6の濃度は、0.1〜0.5moleで
ある。本発明の請求19記載の金属膜CMP方法による
と、スラリーのpHは、1〜4である。本発明の請求2
0記載の金属膜CMP方法によると、スラリーに0〜3
重量%の水酸化アンモニウムがさらに添加される。本発
明の請求21記載の金属膜CMP方法によると、金属膜
はアルミニウム、タングステン、チタン、銅またはこれ
らの合金からなる。
According to the metal film CMP method of the present invention, the concentration of H 5 IO 6 is 0.1 to 0.5 mole. According to the metal film CMP method of the nineteenth aspect of the present invention, the slurry has a pH of 1 to 4. Claim 2 of the present invention
According to the metal film CMP method described in No. 0, the slurry
% By weight of ammonium hydroxide is further added. According to the metal film CMP method of the present invention, the metal film is made of aluminum, tungsten, titanium, copper or an alloy thereof.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態を示す
実施例について説明する。本発明は半導体装置製造過程
において半導体基板上の導電層として使用する金属膜の
CMP工程のためのスラリー及びこれを用いたCMP方
法に関し実施される。
Embodiments of the present invention will be described below. The present invention is embodied in a slurry for a CMP process of a metal film used as a conductive layer on a semiconductor substrate in a semiconductor device manufacturing process, and a CMP method using the slurry.

【0019】金属膜CMP工程のメカニズムはスラリー
に含まれた酸化剤によって金属膜表面上に化学反応がお
きて金属酸化膜が形成され、このような金属酸化膜はパ
ターン凹凸部の最も上部から研磨粒子との摩擦により機
械的に除去される過程でなされる。
The mechanism of the metal film CMP process is such that a chemical reaction occurs on the surface of the metal film by the oxidizing agent contained in the slurry to form a metal oxide film, and such a metal oxide film is polished from the uppermost portion of the pattern uneven portion. This is done during the process of mechanical removal by friction with the particles.

【0020】本発明による金属膜CMP用スラリーは酸
化剤H5IO6、研磨粒子、酸及び脱イオン水を含んでな
り、スラリーは2〜10重量%のH5IO6、2〜10重量
%の研磨粒子、0.01〜1.0重量%の酸及び残量と
して脱イオン水を含む。酸化剤はCMPが遂行される金
属膜の全表面を酸化させる程の濃度を持つべきであり、
本発明に使われた酸化剤H5IO6の濃度は0.01〜1m
oleであって、望ましくは0.1〜0.5moleで
ある。
The slurry for metal film CMP according to the present invention comprises oxidizing agent H 5 IO 6 , abrasive particles, acid and deionized water, and the slurry comprises 2-10% by weight of H 5 IO 6 , 2-10% by weight. Abrasive particles, from 0.01 to 1.0% by weight of acid and the balance deionized water. The oxidizing agent should have a concentration sufficient to oxidize the entire surface of the metal film on which CMP is performed,
The concentration of the oxidizing agent H 5 IO 6 used in the present invention is 0.01 to 1 m.
ole, desirably 0.1 to 0.5 mole.

【0021】研磨粒子はCMP工程時金属膜表面にスク
ラッチを誘発しないべきである。したがって、研磨粒子
の粒径は適正な大きさを有しなければならない。スラリ
ーは特定研磨粒子に限定されず、一般的によく知られた
アルミナ、シリカまたはセリウムオキサイドを使用でき
る。すなわち、粒径が100〜300nmであるアルミ
ナ、粒径が40〜250nmであるシリカまたは粒径が
100〜300nmであるセリウムオキサイドを選択し
て使用できる。
The abrasive particles should not induce scratches on the metal film surface during the CMP process. Therefore, the particle size of the abrasive particles must have an appropriate size. The slurry is not limited to specific abrasive particles, and may use generally well-known alumina, silica or cerium oxide. That is, alumina having a particle size of 100 to 300 nm, silica having a particle size of 40 to 250 nm, or cerium oxide having a particle size of 100 to 300 nm can be selected and used.

【0022】スラリーに含まれる酸のpHは研磨速度に
影響を及ぼすことと知られているので、適正な値を有し
なければならない。酸は0.01〜0.5重量%の窒酸
(HNO3)、0.01〜0.5重量%の硫酸(H 2SO4)または
0.02〜1.0重量%の硫酸(H2SO4)と窒酸(HNO3)の
混合物を使用し、スラリーのpHは1〜4が望ましい。
スラリーには0〜3重量%の水酸化アンモニウム(NH4O
H)がさらに添加することができ、水酸化アンモニウム
はスラリーのpH調節をするために使われる。
The pH of the acid contained in the slurry depends on the polishing rate.
Has the right value because it is known to affect
There must be. The acid is 0.01-0.5% by weight nitric acid
(HNOThree), 0.01-0.5% by weight sulfuric acid (H TwoSOFour) Or
0.02-1.0% by weight sulfuric acid (HTwoSOFour) And nitric acid (HNOThree)of
A mixture is used, and the pH of the slurry is preferably 1 to 4.
The slurry contains 0-3% by weight of ammonium hydroxide (NHFourO
H) can be further added, ammonium hydroxide
Is used to adjust the pH of the slurry.

【0023】通常、金属膜CMP用スラリーに添加され
る酸化剤の評価は大別して二つの側面で見ることができ
る。第一に、いかほど多量の金属を酸化させるのか、第
二に、いかほど速く金属を酸化させるのか、である。金
属膜CMP用スラリーが金属膜を酸化させる能力は、酸
化剤により金属膜が酸化される時、金属膜表面の電子の
移動を観察すると分かる。金属膜表面の電子の移動がわ
かるテストとしては分極曲線(Polarization Curve)の
測定を通じた腐蝕電流密度(Corrosion CurrentDensit
y)の比較とポテンチオダイナミックテスト(Potentiody
namic Test)の2種があり、腐蝕電流密度値から金属膜
表面に生成される表面酸化量がわかって、ポテンチオダ
イナミックテストからは金属膜表面の酸化速度が分か
る。
Generally, the evaluation of the oxidizing agent added to the slurry for metal film CMP can be roughly classified into two aspects. First, how much of the metal to oxidize, and second, how fast to oxidize the metal. The ability of the slurry for metal film CMP to oxidize the metal film can be understood by observing the movement of electrons on the surface of the metal film when the metal film is oxidized by the oxidizing agent. As a test to determine the electron transfer on the metal film surface, the corrosion current density (Corrosion Current Densit) through the measurement of the polarization curve (Polarization Curve)
y) comparison and potentiodynamic test (Potentiody
The surface oxidation amount generated on the surface of the metal film is known from the corrosion current density value, and the oxidation speed on the surface of the metal film is known from the potentiodynamic test.

【0024】腐蝕電流密度値は、酸化剤と金属膜が一定
な電位を表し電気化学的に平衡をなす状態で金属膜表面
に現れる電流値である。ポテンチオダイナミックテスト
は、金属膜が酸化剤と接触し始める時から現れる電流の
強さを時間によって測定することである。電流の値が時
間によって急激に減少する場合は金属膜が酸化剤により
急激に金属酸化の形態に変わったりイオン形態に溶ける
ために電流が金属表面から発生されたことと見ることが
でき、電流の値が緩慢に減少する場合は金属と酸化剤の
反応速度が遅い場合と見ることができる。
The corrosion current density value is a current value that appears on the surface of the metal film in a state where the oxidizing agent and the metal film have a constant potential and are in an electrochemically balanced state. The potentiodynamic test measures the intensity of a current appearing from the time when a metal film starts to come into contact with an oxidizing agent by time. If the value of the current decreases rapidly with time, it can be considered that the current is generated from the metal surface because the metal film is rapidly changed to the form of metal oxidation or dissolved in the ionic form by the oxidizing agent. If the value decreases slowly, it can be considered that the reaction rate between the metal and the oxidizing agent is low.

【0025】本発明の金属膜CMP用スラリーに適用し
ようとする酸化剤の選択において、初めには、文献から
標準還元電位が高いものを選択し、一次的にK2S2O8、Tl
(NO3)3、Ce(NO3)3及びH5IO6などがあった。この中でK2S
2O8は水に対する溶解度の制限で適用が不可能であっ
て、Tl(NO3)3は安全上の問題で適用が不可能なことにな
った。最終的に適用可能な酸化剤はH5IO6と定め、酸化
剤H5IO6の金属膜に対する酸化能力を調べて見るため従
来に商用化されて金属膜CMP用スラリーとして使われ
ているFe(NO3)3、KIO3と酸化剤H5IO6の分極曲線の測定
とポテンチオダイナミックテストを実施して比較した。
In selecting an oxidizing agent to be applied to the slurry for metal film CMP of the present invention, one having a high standard reduction potential is selected from the literature, and K 2 S 2 O 8 , Tl
(NO 3 ) 3 , Ce (NO 3 ) 3 and H 5 IO 6 . Where K 2 S
2 O 8 was not applicable due to water solubility limitations and Tl (NO 3 ) 3 was not applicable due to safety concerns. Finally applicable oxidant defined as H 5 IO 6, Fe being used as commercialized by slurry for a metal film CMP in conventional to see by examining the oxidative capacity with respect to the metal film of oxidizing agent H 5 IO 6 The polarization curves of (NO 3 ) 3 , KIO 3 and the oxidizing agent H 5 IO 6 were measured and compared by performing a potentiodynamic test.

【0026】図1を参照すると、X軸は金属膜で現れる
単位面積当りの電流を表し、Y軸は外部から与える電位
である。分極曲線から分極抵抗法を用いて腐蝕電流密度
を計算して比較すると、H5IO6が腐蝕電流密度が最も高
く、次にFe(NO3)3、KIO3の順に表われた。すなわち、H5
IO6が金属膜に対してFe(NO3)3、KIO3より多量の金属酸
化量を形成させることが分かった。
Referring to FIG. 1, the X-axis represents a current per unit area appearing in the metal film, and the Y-axis represents an externally applied potential. When the corrosion current density was calculated from the polarization curve using the polarization resistance method and compared, H 5 IO 6 had the highest corrosion current density, followed by Fe (NO 3 ) 3 and KIO 3 . That is, H 5
It was found that IO 6 caused the metal film to form a larger amount of metal oxide than Fe (NO 3 ) 3 and KIO 3 .

【0027】次に酸化速度を比較するためにポテンチオ
ダイナミックテストを実施して比較した。図2を参照す
ると、時間の経過によってFe(NO3)3電流密度の減少位置
がさらに早く現れることが分かる。その結果Fe(NO3)3
酸化速度が最も速く、次にH5IO6、KIO3の順に表われ
た。したがって、本発明に使われる酸化剤H5IO6は結果
的に金属膜の酸化側面では実用化されているKIO3より優
秀なことが分かった。図3は比較例のスラリーと酸化剤
としてH5IO6を含めた本発明の実施例であるスラリーを
使用して所定のタングステン薄膜が蒸着されたウェーハ
をCMP工程を遂行した後、各々のスラリーに対する研
磨速度と平坦度を測定したことを表すグラフである。
Next, a potentiodynamic test was performed to compare the oxidation rates. Referring to FIG. 2, it can be seen that the position where the Fe (NO 3 ) 3 current density decreases appears earlier with the passage of time. As a result, the oxidation rate of Fe (NO 3 ) 3 was the highest, followed by H 5 IO 6 and KIO 3 . Thus, oxidant H 5 IO 6 used in the present invention has consequently found that excellent than KIO 3 in practical use in the oxidation side of the metal film. FIG. 3 illustrates a CMP process using a slurry of a comparative example and a slurry according to an embodiment of the present invention including H 5 IO 6 as an oxidizing agent. 4 is a graph showing that a polishing rate and flatness of the sample were measured.

【表1】 [Table 1]

【0028】表1を参照すると、比較例Aは酸化剤を含
まず、比較例Bは実用化されているKIO3を酸化剤として
使用するスラリーであり、比較例Cは実用化されているF
e(NO3) 3を酸化剤として使用するスラリーである。実施
例は2〜10重量%の0.1〜0.5mole濃度を有
するH5IO6、2〜10重量%の粒径が100〜300n
mであるアルミナ、0.01〜0.5重量%の窒酸、
0.01〜0.5重量%の硫酸、0.01〜1.0重量
%の酸及び残量として脱イオン水を含む。H5IO6は4重
量%であることが望ましく、アルミナは4重量%が含ま
れていることが望ましい。また、スラリーにはpH調節
用で0〜3重量%の水酸化アンモニウムを含めた。スラ
リーのpHは1〜4を表す。
Referring to Table 1, Comparative Example A contained an oxidizing agent.
First, Comparative Example B is a commercially available KIOThreeAs oxidant
Comparative Example C is a slurry to be used, and
e (NOThree) ThreeIs a slurry using as an oxidizing agent. Implementation
Examples have 0.1 to 0.5 mole concentration of 2 to 10% by weight.
HFiveIO62 to 10% by weight particle size 100 to 300n
alumina, 0.01-0.5% by weight nitric acid,
0.01-0.5% by weight sulfuric acid, 0.01-1.0% by weight
% Acid and the balance as deionized water. HFiveIO6Is fourfold
%, Preferably 4% by weight alumina
Is desirable. In addition, pH adjustment for slurry
0 to 3% by weight of ammonium hydroxide. Sura
The pH of Lee represents 1-4.

【0029】図3を参照すると、酸化剤を含まない比較
例Aは研磨速度があまりにも遅く、Fe(NO3)3を基本酸化
剤とする比較例Cは研磨速度が速いが、平坦度の調節が
難しい程に悪いことが分かった。通常、CMP工程時金
属膜の研磨速度は2000〜4000Å/minを有す
る。H5IO6を酸化剤として含めて製造した実施例を使用
した場合、KIO3酸化剤を使用した比較例Bの結果と類似
な値が出てくることがわかった。それゆえに酸化剤とし
てH5IO6を使用するスラリーは実用化されているスラリ
ーを代替して工程に使用できる研磨速度と平板度を有す
る。
Referring to FIG. 3, Comparative Example A containing no oxidizing agent has a too low polishing rate, and Comparative Example C using Fe (NO 3 ) 3 as the basic oxidizing agent has a high polishing rate, but has a low flatness. It turned out to be too bad to adjust. Usually, the polishing rate of the metal film at the time of the CMP process is 2000 to 4000 ° / min. It was found that when an example in which H 5 IO 6 was used as an oxidizing agent was used, a value similar to the result of Comparative Example B using a KIO 3 oxidizing agent was obtained. Therefore, the slurry using H 5 IO 6 as the oxidizing agent has a polishing rate and flatness that can be used in the process instead of the slurry that has been practically used.

【0030】本発明による金属膜CMP方法は図5を参
照すると、まず酸化剤H5IO6、研磨粒子、酸及び脱イオ
ン水を含むスラリーをCMP工程を遂行する金属膜に供
給する段階を実施する。次に、図4を参照すると、ポリ
ウレタン材質の研磨パッド12が取り付けられた研磨テ
ーブル10、研磨液14が供給される研磨パッド12上
でウェーハ16を固定させて回転させるウェーハキャリ
ア20、ウェーハキャリア20によりCMP工程が構成
される反対側に位置し、研磨パッド12をコンディショ
ニングさせるコンディショニングディスク24が取り付
けられたコンディショナ22を含んで構成されるCMP
装置1にCMP工程を遂行する金属膜18が形成された
ウェーハ16を研磨パッド12と接触するようにウェー
ハキャリア20に固定させた後、研磨パッド12上にス
ラリー14を供給する。
Referring to FIG. 5, the metal film CMP method according to the present invention includes a step of supplying a slurry containing an oxidizing agent H 5 IO 6 , abrasive particles, acid and deionized water to a metal film for performing a CMP process. I do. Next, referring to FIG. 4, a polishing table 10 on which a polishing pad 12 made of polyurethane material is mounted, a wafer carrier 20 for fixing and rotating a wafer 16 on the polishing pad 12 to which a polishing liquid 14 is supplied, and a wafer carrier 20 , A CMP step including a conditioner 22 to which a conditioning disk 24 for conditioning the polishing pad 12 is attached.
After the wafer 16 on which the metal film 18 for performing the CMP process is formed is fixed to the wafer carrier 20 so as to be in contact with the polishing pad 12, the slurry 14 is supplied onto the polishing pad 12.

【0031】スラリーは2〜10重量%のH5IO6、2〜
10重量%の研磨粒子、0.01〜1.0重量%の酸及
び残量として脱イオン水を含んでなされる。スラリーに
使われるH5IO6の濃度は0.01〜1moleであり、
望ましくは0.1〜0.5moleである。
The slurry contains 2 to 10% by weight of H 5 IO 6 ,
It comprises 10% by weight of abrasive particles, 0.01 to 1.0% by weight of acid and the balance deionized water. The concentration of H 5 IO 6 used in the slurry is 0.01 to 1 mole,
Desirably, it is 0.1 to 0.5 mole.

【0032】スラリーは特定研磨粒子に限定されず、一
般的によく知られたアルミナ、シリカまたはセリウムオ
キサイド(CeO2)が使用できる。すなわち、粒径が100
〜300nmであるアルミナ(Al2O3)、粒径が40〜2
50nmであるシリカ(SiO2)または粒径が100〜30
0nmであるセリウムオキサイド(CeO2)を選択して使用
できる。酸は0.01〜0.5重量%の窒酸(HNO3)、
0.01〜0.5重量%の硫酸(H2SO4)または0.02
〜1.0重量%の硫酸(H2SO4)と窒酸(HNO3)の混合物が
使用できる。スラリー14のpHは1〜4が望ましい。
スラリー14にはpHの調節のために0〜3重量%の水
酸化アンモニウム(NH4OH)をさらに添加することができ
る。
The slurry is not limited to specific abrasive particles, and generally well-known alumina, silica or cerium oxide (CeO 2 ) can be used. That is, when the particle size is 100
Alumina (Al 2 O 3 ) having a particle size of 40 to 2 nm
Silica (SiO 2 ) of 50 nm or particle size of 100 to 30
Cerium oxide (CeO 2 ) having a thickness of 0 nm can be selectively used. The acid is 0.01-0.5% by weight of nitric acid (HNO 3 ),
0.01-0.5 wt% of sulfuric acid (H 2 SO 4) or 0.02
Mixture of 1.0% by weight of nitric acid and sulfuric acid (H 2 SO 4) (HNO 3) can be used. The pH of the slurry 14 is desirably 1 to 4.
To the slurry 14, 0 to 3% by weight of ammonium hydroxide (NH 4 OH) may be further added to adjust the pH.

【0033】引続きスラリーと共に金属膜の表面をCM
Pする段階として、所定の回転速度でウェーハキャリア
20と研磨パッド12を相互反対方向に回転させて金属
膜18をCMPする。CMP工程により金属膜18は平
坦化されて後続工程中、写真工程でウェーハ全表面に同
一な焦点を整列させることができ、均一度が向上された
プロファイルを有するフォトレジストパターンを得るこ
とができる。また縦横比が高い金属膜プラグを形成する
ことができる。金属膜はアルミニウム、タングステン、
チタン、銅またはこれらの合金であり得るし、単にこれ
らに限定されないことは当然である。
Subsequently, the surface of the metal film was mixed with the slurry using CM.
In the step of performing P, the metal film 18 is subjected to CMP by rotating the wafer carrier 20 and the polishing pad 12 at opposite directions at a predetermined rotation speed. The metal layer 18 is planarized by the CMP process, so that the same focus can be aligned on the entire surface of the wafer in the photographic process during the subsequent process, and a photoresist pattern having a profile with improved uniformity can be obtained. Further, a metal film plug having a high aspect ratio can be formed. Metal film is aluminum, tungsten,
Of course, it can be, but is not limited to, titanium, copper or alloys thereof.

【0034】[0034]

【発明の効果】以上述べたように、本発明のスラリーは
金属膜CMP工程に使用できる研磨速度と平坦度を有
し、表面欠点と金属汚染を防止できる効果がある。以上
で本発明は記載された具体例についてだけ詳しく説明し
たが、本発明の技術思想の範囲内で多様な変形及び修正
が可能なのは当業者にとって明白なことであり、このよ
うな変形及び修正が特許請求範囲に属することは当然な
ことである。
As described above, the slurry of the present invention has a polishing rate and flatness that can be used in the metal film CMP process, and has the effect of preventing surface defects and metal contamination. Although the present invention has been described in detail with reference only to the specific examples described above, it is apparent to those skilled in the art that various changes and modifications can be made within the scope of the technical idea of the present invention. Naturally, it belongs to the claims.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に使用した酸化剤と従来使用中の酸化剤
の分極曲線を表すグラフである。
FIG. 1 is a graph showing polarization curves of an oxidizing agent used in the present invention and an oxidizing agent conventionally used.

【図2】本発明に使用した酸化剤と従来使用中の酸化剤
のポテンチオダイナミックテストを表すグラフである。
FIG. 2 is a graph showing a potentiodynamic test of an oxidizing agent used in the present invention and an oxidizing agent conventionally used.

【図3】従来に使用中のスラリーと、酸化剤としてH5IO
6を含めた本発明のスラリーの研磨速度と平坦度を表す
グラフである。
FIG. 3 shows a slurry currently used and H 5 IO as an oxidizing agent.
6 is a graph showing the polishing rate and flatness of the slurry of the present invention including No. 6 .

【図4】CMP装置を表す模式図である。FIG. 4 is a schematic diagram illustrating a CMP apparatus.

【図5】本発明によるCMP方法を表す工程順序図であ
る。
FIG. 5 is a process sequence diagram illustrating a CMP method according to the present invention.

【符号の説明】[Explanation of symbols]

1 CMP装置 10 研磨テーブル 12 研磨パッド 14 研磨液 16 ウェーハ 18 金属膜 20 ウェーハキャリア 22 コンディショナ 24 コンディショニングディスク DESCRIPTION OF SYMBOLS 1 CMP apparatus 10 Polishing table 12 Polishing pad 14 Polishing liquid 16 Wafer 18 Metal film 20 Wafer carrier 22 Conditioner 24 Conditioning disk

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年5月7日[Submission date] May 7, 1999

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0028[Correction target item name] 0028

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0028】表1を参照すると、比較例Aは酸化剤を含
まず、比較例Bは実用化されているKIO3を酸化剤として
使用するスラリーであり、比較例Cは実用化されているF
e(NO3) 3を酸化剤として使用するスラリーである。実施
例は2〜10重量%の0.1〜0.5mole濃度を有
するH5IO62〜10重量%の粒径が100〜300n
mであるアルミナ、0.01〜1.0重量%の酸及び残
量として脱イオン水を含む。H5IO6は4重量%であるこ
とが望ましく、アルミナは4重量%であることが望まし
く、酸は0.01〜0.5重量%の窒酸または0.01
〜0.5重量%の硫酸または0.01〜1.0重量%の
硫酸と窒酸の混合物であることが望ましい。また、スラ
リーにはpH調節用で0〜3重量%の水酸化アンモニウ
ムを含めた。スラリーのpHは1〜4を表す。
Referring to Table 1, Comparative Example A contained an oxidizing agent.
First, Comparative Example B is a commercially available KIOThreeAs oxidant
Comparative Example C is a slurry to be used, and
e (NOThree) ThreeIs a slurry using as an oxidizing agent. Implementation
Examples have 0.1 to 0.5 mole concentration of 2 to 10% by weight.
HFiveIO6,Particle size of 2-10% by weight is 100-300n
alumina, 0.01 to 1.0% by weight of acidAnd the rest
Includes deionized water as quantity. HFiveIO6Is 4% by weight
And preferablyAlumina is preferably 4% by weight.
The acid is 0.01 to 0.5% by weight of nitric acid or 0.01% by weight.
~ 0.5 wt% sulfuric acid or 0.01-1.0 wt%
Desirably, it is a mixture of sulfuric acid and nitric acid.Also,
Lee has 0 to 3% by weight of ammonium hydroxide for pH adjustment.
Included. The pH of the slurry represents 1-4.

フロントページの続き (72)発明者 朴 濟應 大韓民国京畿道水原市勸善區勸善洞寳星ア パート609−1102号Continuing on the front page (72) Inventor Park Jae-seo, Korea

Claims (21)

【特許請求の範囲】[Claims] 【請求項1】 酸化剤H5IO6、研磨粒子、酸及び脱イオ
ン水を含む金属膜CMP用スラリー。
1. A slurry for metal film CMP comprising an oxidizing agent H 5 IO 6 , abrasive particles, acid and deionized water.
【請求項2】 前記スラリーは、2〜10重量%のH5IO
6、2〜10重量%の研磨粒子、0.01〜1.0重量
%の酸及び残量として脱イオン水を含んでなることを特
徴とする請求項1に記載の金属膜CMP用スラリー。
2. The slurry comprises 2 to 10% by weight of H 5 IO
6. The slurry for metal film CMP according to claim 1, comprising 2 to 10% by weight of abrasive particles, 0.01 to 1.0% by weight of acid, and deionized water as a remaining amount.
【請求項3】 前記スラリーに使われるH5IO6の濃度
は、0.01〜1moleであることを特徴とする請求
項1に記載の金属膜CMP用スラリー。
3. The slurry according to claim 1, wherein the concentration of H 5 IO 6 used in the slurry is 0.01 to 1 mole.
【請求項4】 前記H5IO6の濃度は、0.1〜0.5m
oleであることを特徴とする請求項3に記載の金属膜
CMP用スラリー。
4. The concentration of H 5 IO 6 is 0.1 to 0.5 m
The slurry for metal film CMP according to claim 3, wherein the slurry is ole.
【請求項5】 前記研磨粒子は、その粒径が100〜3
00nmであるアルミナであることを特徴とする請求項
1に記載の金属膜CMP用スラリー。
5. The abrasive particles have a particle size of 100 to 3
The slurry for metal film CMP according to claim 1, wherein the slurry is alumina having a thickness of 00 nm.
【請求項6】 前記研磨粒子は、その粒径が40〜25
0nmであるシリカであることを特徴とする請求項1に
記載の金属膜CMP用スラリー。
6. The abrasive particles have a particle size of 40 to 25.
The slurry for metal film CMP according to claim 1, wherein the slurry is 0 nm silica.
【請求項7】 前記研磨粒子は、その粒径が100〜3
00nmであるセリウムオキサイドであることを特徴と
する請求項1に記載の金属膜CMP用スラリー。
7. The abrasive particles have a particle size of 100 to 3
The slurry for metal film CMP according to claim 1, wherein the slurry is cerium oxide having a thickness of 00 nm.
【請求項8】 前記酸は、0.01〜0.5重量%の窒
酸を含むことを特徴とする請求項2に記載の金属膜CM
P用スラリー。
8. The metal film CM according to claim 2, wherein the acid contains 0.01 to 0.5% by weight of nitric acid.
Slurry for P.
【請求項9】 前記酸は、0.01〜0.5重量%の硫
酸を含むことを特徴とする請求項2に記載の金属膜CM
P用スラリー。
9. The metal film CM according to claim 2, wherein the acid contains 0.01 to 0.5% by weight of sulfuric acid.
Slurry for P.
【請求項10】 前記酸は、0.02〜1.0重量%の
硫酸と窒酸の混合物であることを特徴とする請求項2に
記載の金属膜CMP用スラリー。
10. The slurry according to claim 2, wherein the acid is a mixture of sulfuric acid and nitric acid of 0.02 to 1.0% by weight.
【請求項11】 前記スラリーのpHは、1〜4である
ことを特徴とする請求項1に記載の金属膜CMP用スラ
リー。
11. The slurry according to claim 1, wherein the slurry has a pH of 1 to 4.
【請求項12】 前記スラリーに0〜3重量%の水酸化
アンモニウムがさらに添加されることを特徴とする請求
項11に記載の金属膜CMP用スラリー。
12. The slurry according to claim 11, wherein 0 to 3% by weight of ammonium hydroxide is further added to the slurry.
【請求項13】 前記金属膜は、アルミニウム、タング
ステン、チタン、銅またはこれらの合金からなることを
特徴とする請求項1に記載の金属膜CMP用スラリー。
13. The slurry according to claim 1, wherein the metal film is made of aluminum, tungsten, titanium, copper, or an alloy thereof.
【請求項14】 前記スラリーのH5IO6は4重量%、研
磨粒子は4重量%であることを特徴とする請求項2に記
載の金属膜CMP用スラリー。
14. The slurry for metal film CMP according to claim 2, wherein H 5 IO 6 of the slurry is 4% by weight and abrasive particles are 4% by weight.
【請求項15】 CMPを遂行する金属膜に酸化剤H5IO
6、研磨粒子、酸及び脱イオン水を含むスラリーを供給
する段階と、 前記スラリーと共に金属膜の表面を化学的及び機械的に
研磨する段階と、 を含むことを特徴とする金属膜CMP方法。
15. An oxidizing agent H 5 IO is applied to a metal film performing CMP.
6. A metal film CMP method, comprising: supplying a slurry containing abrasive particles, acid and deionized water; and chemically and mechanically polishing the surface of the metal film together with the slurry.
【請求項16】 前記スラリーは、2〜10重量%のH5
IO6、2〜10重量%の研磨粒子、0.01〜1.0重
量%の酸、及び残量として脱イオン水を含んでなること
を特徴とする請求項15に記載の金属膜CMP方法。
16. The slurry comprises 2 to 10% by weight of H 5.
IO 6, 2 to 10 wt% of the abrasive particles, 0.01 to 1.0 wt% acid, and the metal film CMP method according to claim 15, characterized in that it comprises deionized water as the remaining amount .
【請求項17】 前記スラリーに使われるH5IO6の濃度
は、0.01〜1moleであることを特徴とする請求
項15に記載の金属膜CMP方法。
17. The metal film CMP method according to claim 15, wherein the concentration of H 5 IO 6 used in the slurry is 0.01 to 1 mole.
【請求項18】 前記H5IO6の濃度は、0.1〜0.5
moleであることを特徴とする請求項17に記載の金
属膜CMP方法。
18. The concentration of the H 5 IO 6 is 0.1 to 0.5.
18. The metal film CMP method according to claim 17, wherein the method is mole.
【請求項19】 前記スラリーのpHは、1〜4である
ことを特徴とする請求項15に記載の金属膜CMP方
法。
19. The metal film CMP method according to claim 15, wherein the slurry has a pH of 1 to 4.
【請求項20】 前記スラリーに0〜3重量%の水酸化
アンモニウムがさらに添加されることを特徴とする請求
項19に記載の金属膜CMP方法。
20. The method according to claim 19, wherein 0 to 3% by weight of ammonium hydroxide is further added to the slurry.
【請求項21】 前記金属膜はアルミニウム、タングス
テン、チタン、銅またはこれらの合金からなることを特
徴とする請求項15に記載の金属膜CMP方法。
21. The metal film CMP method according to claim 15, wherein the metal film is made of aluminum, tungsten, titanium, copper, or an alloy thereof.
JP628499A 1998-05-13 1999-01-13 Slurry for metal film cmp and cmp method using the same Pending JPH11340173A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019980017255A KR19990085105A (en) 1998-05-13 1998-05-13 Slurry for metal film CMP and CMP method using the same
KR1998P17255 1998-05-13

Publications (1)

Publication Number Publication Date
JPH11340173A true JPH11340173A (en) 1999-12-10

Family

ID=19537313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP628499A Pending JPH11340173A (en) 1998-05-13 1999-01-13 Slurry for metal film cmp and cmp method using the same

Country Status (2)

Country Link
JP (1) JPH11340173A (en)
KR (1) KR19990085105A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000233361A (en) * 1998-12-14 2000-08-29 Matsushita Electronics Industry Corp Polishing liquid for chemicomechanical polishing and polishing method therefor
US7101801B2 (en) * 2002-11-12 2006-09-05 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor device using chemical mechanical polishing

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100370873B1 (en) * 2000-04-28 2003-02-05 미츠이 긴조쿠 고교 가부시키가이샤 Process for preparing glass substrate for self-recording medium
KR100407296B1 (en) * 2000-12-18 2003-11-28 주식회사 하이닉스반도체 Method for chemical mechanical polishing of titanium-aluminium-nitride
KR100444307B1 (en) * 2001-12-28 2004-08-16 주식회사 하이닉스반도체 Method for manufacturing of metal line contact plug of semiconductor device
KR100570122B1 (en) * 2003-05-12 2006-04-11 학교법인 한양학원 Slurry composition for chemical mechanical polishing capable of compensating nanotopography effect and method of planarizing surface of semiconductor device using the same
KR100641348B1 (en) 2005-06-03 2006-11-03 주식회사 케이씨텍 Slurry for cmp and method of fabricating the same and method of polishing substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000233361A (en) * 1998-12-14 2000-08-29 Matsushita Electronics Industry Corp Polishing liquid for chemicomechanical polishing and polishing method therefor
US7101801B2 (en) * 2002-11-12 2006-09-05 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor device using chemical mechanical polishing

Also Published As

Publication number Publication date
KR19990085105A (en) 1999-12-06

Similar Documents

Publication Publication Date Title
JP4074434B2 (en) Processing fluid and method for modifying a structured wafer suitable for semiconductor manufacturing
US6602117B1 (en) Slurry for use with fixed-abrasive polishing pads in polishing semiconductor device conductive structures that include copper and tungsten and polishing methods
JP3899456B2 (en) Polishing composition and polishing method using the same
JP4095731B2 (en) Semiconductor device manufacturing method and semiconductor device
JP4489191B2 (en) Planarizing composition for metal film removal
JP3371775B2 (en) Polishing method
US6346144B1 (en) Chemical-mechanical polishing slurry
JP3308476B2 (en) Polishing method for semiconductor wafer
JP2002511650A (en) Slurry for polishing chemical-mechanical metal surfaces
EP1489650B1 (en) Polishing composition and method for forming wiring structure
JP3192968B2 (en) Polishing liquid for copper-based metal and method for manufacturing semiconductor device
CN100533674C (en) Method and abrasive slurry for chemical mechanical polishing, and semiconductor device and its manufacture method
JP2011020208A (en) Cmp polishing liquid, and polishing method using the same
Zhang et al. Effect of chelating agent and ammonium dodecyl sulfate on the interfacial behavior of copper CMP for GLSI
JPH11340173A (en) Slurry for metal film cmp and cmp method using the same
TWI742279B (en) Substrate polishing device and substrate polishing method
JP5090925B2 (en) Polishing liquid for polishing aluminum film and polishing method of aluminum film using the same
WO2008151918A1 (en) A process for polishing patterned and unstructured surfaces of materials and an aqueous polishing agent to be used in the said process
US20020125460A1 (en) Compositions for chemical mechanical planarization of tungsten
JP7210823B2 (en) Polishing liquid, polishing method and method for manufacturing semiconductor parts
JP3516157B2 (en) Polishing liquid and polishing method for chemical mechanical polishing
Sato et al. Copper polishing with a polishing pad incorporating abrasive grains and a chelating resin
JP2004193488A (en) Polishing solution for barrier metal and polishing method
JP2008098369A (en) Polishing method
JP3577002B2 (en) Polishing liquid for copper-based metal